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We introduce a family of criteria to detect quantum non-Gaussian states of a harmonic oscillator, that is,
quantum states that cannot be expressed as a convex mixture of Gaussian states. In particular, we prove that for
convex mixtures of Gaussian states, the value of the Wigner function at the origin of phase space is bounded from
below by a nonzero positive quantity, which is a function only of the average number of excitations (photons)
of the state. As a consequence, if this bound is violated, then the quantum state must be quantum non-Gaussian.
We show that this criterion can be further generalized by considering additional Gaussian operations on the state
under examination. We then apply these criteria to various non-Gaussian states evolving in a noisy Gaussian
channel, proving that the bounds are violated for high values of losses, and thus also for states characterized by
a positive Wigner function.
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I. INTRODUCTION

Several criteria to detect nonclassicality of quantum states
of a harmonic oscillator have been introduced, mostly based on
phase-space distributions [1–11], ordered moments [12–14],
or on information-theoretic arguments [15–21]. At the same
time, an ongoing research line addresses the characterization
of quantum states according to their Gaussian or non-Gaussian
character [22–31], and a question arises as to whether those
two different hierarchies are somehow linked to each other.

As a matter of fact, if we restrict our attention to pure
states, Hudson’s theorem [32,33] establishes that the border
between Gaussian and non-Gaussian states coincides exactly
with the one between states with positive and negative
Wigner functions. However, if we move to mixed states, the
situation gets more involved. Attempts to extend Hudson’s
theorem have been made by looking at upper bounds on
non-Gaussianity measures for mixed states having positive
Wigner function [34]. In this framework, by focusing on
states with positive Wigner function, one can define an
additional border between states in the Gaussian convex hull
and those in the complementary set of quantum non-Gaussian
states, that is, states that cannot be expressed as mixtures of
Gaussian states. The situation is summarized in Fig. 1: the
definition of the Gaussian convex hull generalizes the notion
of Glauber’s nonclassicality [35], with coherent states replaced
by generic pure Gaussian states, i.e., squeezed coherent
states.

Quantum non-Gaussian states with positive Wigner func-
tion are not useful for quantum computation [36,37] and are not
necessary for entanglement distillation, e.g., the non-Gaussian
entangled resources used in [38] are mixtures of Gaussian
states. On the other hand, they are of fundamental interest
for quantum information and quantum optics. In particular,
since no negativity of the Wigner function can be detected
for optical losses higher than 50% [39] (or, equivalently,
for detector efficiencies below 50%), criteria able to detect
quantum non-Gaussianity are needed in order to certify that
a highly nonlinear process (such as Fock state generation,
Kerr interaction, photon addition/subtraction operations, or
conditional photon-number detections) has been implemented

in a noisy environment, even if no negativity can be observed
in the Wigner function.

Different measures of non-Gaussianity for quantum states
have been proposed [22–24], but these cannot discriminate be-
tween quantum non-Gaussian states and mixtures of Gaussian
states. An experimentally friendly criterion for quantum non-
Gaussianity, based on photon-number probabilities, has been
introduced [26] and then employed in different experimental
settings to prove the generation of quantum non-Gaussian
states, such as heralded single-photon states [27], squeezed
single-photon states [28], and Fock states from a semiconduc-
tor quantum dot [29].

In this paper, we introduce a family of criteria which are able
to detect quantum non-Gaussianity for single-mode quantum
states of a harmonic oscillator based on the Wigner function.
As we already pointed out, according to Hudson’s theorem,
the only pure states having a positive Wigner function are
Gaussian states. One can then wonder if any bound exists
on the values that the Wigner function of convex mixtures
of Gaussian states can take. By following this intuition, we
present several bounds on the values of the Wigner function
for convex mixtures of Gaussian states, consequently defining
a class of sufficient criteria for quantum non-Gaussianity.

In the next section, we will introduce some notation and
the preliminary notions needed for the rest of the paper. In
Sec. III, we will prove and discuss our Wigner-function-based
criteria for quantum non-Gaussianity, and in Sec. IV, we will
prove their effectiveness by considering different families of
non-Gaussian states evolving in a lossy (Gaussian) channel.
We will conclude the paper in Sec. V with some remarks.

II. PRELIMINARY NOTIONS

Throughout the paper, we will use the quantum optical
terminology, where excitations of a quantum harmonic os-
cillator are called photons. All the results can be naturally
applied to any bosonic continuous-variable (CV) system.
We will consider a single mode described by a mode
operator a, satisfying the commutation relation [a,a†] = 1.
A quantum state � is fully described by its characteristic
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FIG. 1. (Color online) Venn diagram description for continuous-
variable quantum states with positive Wigner function. The quantum
states can be divided in two sets: quantum non-Gaussian states and
states belonging to the Gaussian convex hull. The latter trivially
includes (Glauber) classical states and Gaussian states.

function [39]

χ [�](γ ) = Tr[�D(γ )], (1)

where D(γ ) = exp{γ a† − γ ∗a} represents the displacement
operator. In addition, the quantum state � can be fully described
by the Fourier transform of the characteristic function, i.e., the
Wigner function [39]

W [�](α) =
∫

d2γ

π2
eγ ∗α−γα∗

χ [�](γ ). (2)

A state is defined to be Gaussian if and only if its Wigner func-
tion (or, equivalently, its characteristic function) is Gaussian.
All single-mode Gaussian states can be expressed as

� = D(α)S(ξ )νβS†(ξ )D†(α),

where S(ξ ) = exp{ 1
2ξ (a†)2 − 1

2ξ ∗a2} is the squeezing opera-

tor, and νβ = e−βa†a/Tr[e−βa†a] is a thermal state (α,ξ ∈ C
and β > 0). Pure Gaussian states can be written as |ψG〉 =
D(α)S(ξ )|0〉, and, according to Hudson’s theorem [32,33],
are the only pure states having a positive Wigner function.
Together with that of a Gaussian state, one can define the
concept of Gaussian map: a quantum (completely positive)
map is defined as Gaussian if and only if it transforms
Gaussian states into Gaussian states. All unitary Gaussian
maps can be expressed as UG = exp{−iHbilt}, and they
correspond to Hamiltonian operators Hbil at most bilinear in
the mode operators. Similarly, a generic Gaussian map can be
decomposed as a Gaussian unitary acting on the system plus
an ancilla (the latter prepared in a Gaussian state), followed by
partial tracing over the ancillary mode [40].

Another complete description of a CV quantum state � may
be given in terms of the so-called P function P [�](α) [39],
defined implicitly via the formula

� =
∫

d2α P [�](α)|α〉〈α|, (3)

where |α〉 = D(α)|0〉 represents a coherent state. According
to Glauber, a state is nonclassical if and only if its P

function is not a proper probability distribution, e.g., the P

function is more singular than a Dirac-δ function. Note that
the negativity of the Wigner function is a more restrictive

definition of nonclassicality: there exist nonclassical states
having a positive Wigner function (e.g., squeezed states),
while all the states having a nonpositive Wigner function are
nonclassical according to Glauber.

In a similar spirit to Glauber’s approach to nonclassicality,
in this paper we study the concept of quantum non-Gaussian
states. These are defined as follows. The Gaussian convex hull
is the set of states

G =
{
� ∈ H | � =

∫
dλ p(λ) |ψG(λ)〉〈ψG(λ)|

}
, (4)

where H denotes the Hilbert space of continuous-variable
quantum states, p(λ) is a proper probability distribution, and
|ψG(λ)〉 are pure Gaussian states, i.e., in the single-mode case,
squeezed coherent states identified by the set of parameters
λ ≡ {α,ξ}. Since Gaussian states do not form a convex set, the
set in Eq. (4) includes states which are not Gaussian. Moreover,
any mixed Gaussian state can be written as a weighted sum
of pure Gaussian states, and hence the set above also includes
convex mixtures of mixed Gaussian states.

The definition of quantum non-Gaussianity naturally
follows:

Definition. A quantum state � is quantum non-Gaussian if
and only if it is not possible to express it as a convex mixture
of Gaussian states, that is, if and only if � /∈ G.

As illustrated in Fig. 1, the border here defined dividing
quantum non-Gaussian states and mixtures of Gaussian states
falls in between the border dividing classical and nonclassical
states, and the one which divides states with positive and
nonpositive Wigner functions. The importance of such a
further distinction is evident if we note that all states in G
can be prepared through a combination of Gaussian operations
and classical randomization. On the contrary, if � /∈ G, then
a highly nonlinear process (due to a non-Gaussian operation
or measurement) had necessarily taken place in the generation
of the quantum state �. While the negativity of the Wigner
function is always sufficient to certify it, more elaborated
criteria, such as those elaborated in this paper, are needed
in order to detect such a characteristic when quantum states
exhibit a positive Wigner function.

III. CRITERIA TO DETECT QUANTUM
NON-GAUSSIANITY

In order to find criteria for the detection of quantum
non-Gaussian states, we follow the intuition given by Hudson’s
theorem for pure Gaussian states. We will focus on lower
bounds on the values taken by the Wigner function of states
which belong to the Gaussian convex hull G. In this section,
we present our main findings as one lemma leading to two final
propositions and two additional corollaries. The “quantum
non-Gaussianity criteria,” derived directly from these results,
are presented at the end of the section.

Lemma 1. [Lower bound on the Wigner function at the ori-
gin of phase space for a pure Gaussian state] For any given pure
single-mode Gaussian state |ψG〉, the value of the Wigner func-
tion at the origin of the phase space is bounded from below as

W [|ψG〉〈ψG|](0) � 2

π
exp{−2n(1 + n)}, (5)

where n = 〈ψG|a†a|ψG〉.
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Proof. A generic pure single-mode Gaussian state can be
always written as |ψG〉 = D(α)S(ξ )|0〉, where α = |α|eiθ and
ξ = reiφ (r > 0) are two complex numbers. We can thus write
the Wigner function evaluated in zero as

W [|ψg〉〈ψg|](0)

= 2

π
exp{−2|α|2[cosh 2r − cos (2θ + φ) sinh 2r]}. (6)

Our goal is to minimize the value of the Wigner function or,
equivalently, to maximize the function

f (α,ξ ) = 2|α|2[cosh 2r − cos (2θ + φ) sinh 2r]. (7)

A first maximization is obtained by considering

2θ + φ = π + 2kπ with k ∈ N, (8)

which yields

f (α,ξ ) � 2|α|2e2r = 2nd [2ns + 1 + 2
√

ns(1 + ns)]. (9)

In the last equation, we introduced the displacement and
squeezing photon numbers, nd = |α|2 and ns = sinh2 r , and
we used the formula arcsinh(x) = log(x + √

1 + x2). Note
that these two parameters obey

n = 〈ψG|a†a|ψG〉 = nd + ns,

where n is the average photon number of the state |ψG〉. We
can thus express the right-hand side (rhs) of Eq. (9) in terms
of n and ns , obtaining

f (α,ξ ) � 2(n − ns)[2ns + 1 + 2
√

ns(1 + ns)]. (10)

For a given average photon number n, the above function is
maximized with regard to the parameter ns by choosing

ns = n2

1 + 2n
, (11)

and obtaining

f (α,ξ ) � 2n(1 + n). (12)

This leads to

W [|ψG〉〈ψG|](0) � 2

π
exp{−2n(1 + n)}. (13)

�
By looking at the proof, we remark that the bound obtained

is tight: given a fixed energy n, by choosing the phases
according to condition (8) and the squeezing energy according
to (11), it is always possible to find a family of pure Gaussian
states saturating the inequality. In particular, the maximization
obtained via condition (8) simply corresponds, at fixed nd and
ns , to displace the state along the direction of the squeezed
quadrature. The condition (11) shows that for small values of
n, the minimum of the Wigner function is obtained by using
the energy in displacement, while for larger values of n, the
optimal squeezing fraction ns tends to an asymptotic value
n(as)

s = n/2. Let us now generalize the bound obtained to a
generic convex mixture of Gaussian states.

Proposition 1. [Lower bound on the Wigner function at
the origin for a convex mixture of Gaussian states] For any
single-mode quantum state � which belongs to the Gaussian

convex hull G, the value of the Wigner function at the origin
is bounded by

W [�](0) � 2

π
exp{−2n̄(1 + n̄)}, (14)

where n̄ = Tr[�a†a].
Proof. The multi-index λ, which labels every Gaussian state

in the convex mixture |ψG(λ)〉 = D(α)S(ξ )|0〉, contains the
information about the squeezing ξ and displacement α. We
can then equivalently consider as variables λ = {n,ns,θ,φ}.
By exploiting the linearity property of the Wigner function,
we obtain

W [�](0) =
∫

dλ p(λ)W [|ψG(λ)〉〈ψG(λ)|](0)

� 2

π

∫
dλ p(λ) exp{−2n(1 + n)}, (15)

where inequality (5) has been used. By defining

p̃(n) =
∫ n

0
dns

∫ 2π

0
dφ

∫ 2π

0
dθ p(λ), (16)

which is a valid probability distribution with respect to the
variable n, Eq. (15) becomes

W [�](0) � 2

π

∫ ∞

0
dn p̃(n) exp{−2n(1 + n)}. (17)

Studying the second derivative of

Bmin(n) = 2

π
exp{−2n(1 + n)}, (18)

we conclude that the function is convex in the whole physical
region (i.e., n � 0). As a consequence,∫ ∞

0
dnp̃(n)Bmin(n) � Bmin

[ ∫ ∞

0
dnp̃(n)n

]
= Bmin(n̄),

(19)

where n̄ = ∫ ∞
0 dnp̃(n)n = Tr[�a†a]. From the last inequality,

we obtain straightforwardly the thesis

W [�](0) � 2

π
exp{−2n̄(1 + n̄)}. (20)

�
The following proposition generalizes the bound obtained

above.
Proposition 2. For any single-mode quantum state � ∈ G,

and for any given Gaussian map EG (or, alternatively, a convex
mixture thereof), the following inequality holds:

W [EG(�)](0) � 2

π
exp{−2n̄E (1 + n̄E )}, (21)

where n̄E = Tr[EG(�)a†a].
Proof. Given a quantum state � which can be expressed as

a mixture of a Gaussian state and a Gaussian map EG (or a
convex mixture thereof), the output state

�′ = EG(�) (22)

can still be expressed as a mixture of Gaussian states. As
a consequence, we can apply to the state �′ the result in
Proposition 1 obtaining the thesis. �
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Proposition 2 leads to two corollaries that will be used in
the rest of the paper.

Corollary 1. For any single-mode quantum state � ∈ G, the
following inequality holds:

W [�](β) � 2

π
exp{−2n̄β(1 + n̄β)}, ∀β ∈ C, (23)

where n̄β = Tr[�D(β)a†aD†(β)].
Proof. The proof is straightforward from Proposition 2 with

the Gaussian map EG(�) = D(−β)�D†(−β). We also use the
property of the Wigner function

W [�](β) = W [D†(β)�D(β)](0),

and D†(β) = D(−β). �
Corollary 2. For any single-mode quantum state � belong-

ing to the Gaussian convex hull G, the following inequality
holds:

W [�](0) � max
ξ∈C

(
2

π
exp{−2n̄ξ (1 + n̄ξ )}

)
, (24)

where n̄ξ = Tr[�S†(ξ )a†aS(ξ )].
Proof. The proof follows from Proposition 2 by considering

the Gaussian map EG(�) = S(ξ )�S†(ξ ). Moreover, since the
value of the Wigner function at the origin is invariant under
any squeezing operation, i.e.,

W [S(ξ )�S†(ξ )](0) = W [�](0), (25)

one can maximize the rhs of inequality (21) with regard to the
squeezing parameter ξ . �

The violation of any of the inequalities presented in the
last two propositions and two corollaries provides a sufficient
condition to conclude that a state is quantum non-Gaussian. We
formalize this by reexpressing the previous results in the form
of two criteria for the detection of quantum non-Gaussianity.

Criterion 1. Let us consider a quantum state � and define
the quantity

�1[�] = W [�](0) − 2

π
exp{−2n̄(n̄ + 1)}. (26)

Then,

�1[�] < 0 ⇒ � /∈ G,

that is, � is quantum non-Gaussian.
Criterion 2. Let us consider a quantum state �, a Gaussian

map EG (or a convex mixture thereof), and define the quantity

�2[�,EG] = W [EG(�)](0) − 2

π
exp{−2n̄E (n̄E + 1)}. (27)

Then,

∃ EG such that �2[�,EG] < 0 ⇒ � /∈ G.

Typically, Criterion 1 can be useful to detect quantum
non-Gaussianity of phase-invariant states having the minimum
of the Wigner function at the origin of phase space. On the
other hand, Criterion 2 is of broader applicability. To give
two paradigmatic examples, the latter criterion can be useful
if (i) the minimum of the Wigner function is far from the
origin, so that one may be able to violate inequality (23) by
considering displacement operations, or (ii) the state is not
phase invariant and presents some squeezing, and thus one

may be able to violate inequality (24) by using single-mode
squeezing operations.

IV. VIOLATION OF THE CRITERIA FOR NON-GAUSSIAN
STATES EVOLVING IN A LOSSY GAUSSIAN CHANNEL

In this section, we test the effectiveness of our criteria by
applying them to typical quantum states that are of relevance
to the quantum optics community. We shall consider pure,
non-Gaussian states evolving in a lossy channel and test their
quantum non-Gaussianity after such evolution. Specifically,
we focus on the family of quantum channels associated with
the Markovian master equation,

d�

dt
= γ a�a† − γ

2
(a†a� + �a†a). (28)

The resulting time evolution, characterized by the parameter
ε = 1 − e−γ t , models both the incoherent loss of photons
in a dissipative zero-temperature environment and inefficient
detectors with an efficiency parameter η = 1 − ε. The evolved
state Eε(�0) can be equivalently derived by considering the
action of a beam splitter with reflectivity ε, which couples
the system to an ancillary mode prepared in a vacuum state.
The corresponding average photon number reads

n̄ε = Tr[Eε(�0)a†a] = (1 − ε) n̄0, (29)

where n̄0 = Tr[�0a
†a] is the initial average photon number.

It is well known that for ε > 0.5 (i.e., for detector
efficiencies η < 0.5), no negativity of the Wigner function
can be observed. We will focus then on the violation of our
criteria for larger values of ε, which ensures that the evolved
states have a positive Wigner function.

Notice that the quantum map Eε is a Gaussian map. As
a consequence, by combining the divisibility property of the
map [inherited from the Markovian structure of Eq. (28)] and
Criterion 2, if a violation is observed for a given loss parameter
ε̄, then the state is quantum non-Gaussian for any lower value
ε � ε̄ [41]. For this reason, we will focus on the maximum
values of the loss parameter ε for which a violation of the
bounds is observed, i.e.,

ε(1)
max[�] = max{ε : �1[Eε(�)] � 0}, (30)

ε(2)
max[�] = max{ε : ∃EG such that �2[Eε(�),EG] � 0}.

(31)

In what follows, we start by focusing on Criterion 1, and
thus we will look for negative values of the non-Gaussianity
indicator �1[�] defined in Eq. (26). We will consider different
families of states, namely Fock states, photon-added coherent
states, and photon-subtracted squeezed states. In Sec. IV B, we
will study how to improve the results obtained by considering
the second criterion and thus by studying the non-Gaussianity
indicator �2[�,EG].

A. Violation of the first criterion

1. Fock states

Let us start by considering Fock states |m〉, that is, the
eigenstates of the number operator: a†a|m〉 = m|m〉. A Fock
state evolved in a lossy channel can be written as a mixture of
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Fock states as

Eε(|m〉〈m|) =
m∑

l=0

αl,m(ε)|l〉〈l|, (32)

with

αl,m(ε) =
(

m

l

)
(1 − ε)lεm−l . (33)

We recall here that the Wigner function at the origin is
proportional to the expectation value of the parity operator
� = (−)a

†a , that is,

W [�](0) = 2

π
Tr[��] = 2

π
(Peven − Podd), (34)

where Peven (Podd) represents the probability of detecting an
even (odd) number of photons. By using Eq. (32), one obtains

W [Eε(|m〉〈m|](0) = 2

π
(2ε − 1)m, (35)

and thus the non-Gaussianity indicator reads

�1[Eε(|m〉〈m|] = 2

π
{(2ε − 1)m − e−2(1−ε)m[(1−ε)m+1]}. (36)

The behavior of �1[Eε(|m〉〈m|] as a function of ε for
the first three Fock states is plotted in Fig. 2 (left panel).
One can observe that the criterion works very well for the
Fock state |1〉, which is proven to be quantum non-Gaussian
for all values of ε < 1. For the Fock states |2〉 and |3〉, a
nonmonotonous behavior of �1 is observed as a function of
the loss parameter. Still, negative values of the non-Gaussian
indicator are observed in the region of interest ε > 0.5.
However, the maximum value of the noise parameter ε(1)

max
decreases monotonically as a function of m, as shown in Fig. 2
(right panel). By increasing the Fock number m, it settles to
the asymptotic value ε(1)

max → 0.5. As one would expect by
looking at the bound in Eq. (14), for high values of the average
photon number, the criterion becomes practically equivalent
to the detection of negativity of the Wigner function, and thus
the maximum noise corresponds to ε = 0.5.
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FIG. 2. (Color online) Left: Non-Gaussianity indicator
�1[Eε(|m〉〈m|)] for the first three Fock states. Red dotted line:
m = 1; green dashed line: m = 2; blue solid line: m = 3. Right:
Maximum value of the noise parameter ε(1)

max such that the bound (14)
is violated for the state Eε(|m〉〈m|), as a function of the Fock
number m.

2. Photon-added coherent states

A photon-added coherent (PAC) state is defined as

|ψpac〉 = 1√
1 + |α|2

a† |α〉 . (37)

The operation of photon addition has been implemented in
different contexts [42–45], and in particular non-Gaussianity
and nonclassicality of PAC states have been investigated
in [25].

Since the quantum non-Gaussianity indicator �1[�] is
phase insensitive, we can consider α ∈ R without loss of gen-
erality. The average photon number can be easily calculated,
obtaining

n̄
(pac)
0 = 〈ψpac|a†a|ψpac〉 = α4 + 3α2 + 1

1 + α2
, (38)

while its Wigner function reads

W [|ψpac〉](λ) = 2

π

e−2(α−λ)(α−λ∗)

1 + α2

× [−1 + α2 + 4|λ|2 − 2α(λ + λ∗)]. (39)

The Wigner function of the state after the loss channel
Eε(|ψpac〉〈ψpac|) can be evaluated by means of the formula

W [Eε(�)](λ) =
∫

d2λ′Kε(λ,λ′)W [�](λ′), (40)

where

Kε(λ,λ′) = 2

πε
exp

{
− 2|λ − λ′√1 − ε|2

ε

}
. (41)

The non-Gaussianity indicator �1[Eε(|ψpac〉〈ψpac|) can then
be straightforwardly evaluated and is plotted in Fig. 3 (left) as
a function of ε for different values of α. We note that negative
values of the indicator can be observed in an interval for the
noise parameter ε, which decreases with the increase of α.
We can explain this feature by noting that as α decreases, the
PAC state approaches the Fock state |1〉: as a consequence,
its quantum non-Gaussianity can be more easily detected via
Criterion 1, in particular due to the minimum value of the

0.2 0.4 0.6 0.8 1.0
Ε
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FIG. 3. (Color online) Left: Non-Gaussianity indicator
�1[Eε(|ψpac〉〈ψpac|)] for PAC states as a function of ε and for
different values of α. Red dotted line: α = 0.2; green dashed line:
α = 0.4; blue solid line: α = 0.6. Right: Maximum value of the
noise parameter ε(1)

max such that the bound (14) is violated for the state
Eε(|ψpac〉〈ψpac|), as a function of the parameter α.
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Wigner function approaching the origin of the phase space.
We plotted in Fig. 3 (right) the maximum value ε(1)

max at which
the violation of the bound is observed as a function of α.
Similarly to Fock states, we observe that by increasing the
energy, this value tends to the asymptotic value ε(1)

max → 0.5.

3. Photon-subtracted squeezed states

Let us consider now another important class of non-
Gaussian states that can be engineered with current technology.
The photon-subtracted squeezed (PSS) states are defined as

|ψpss〉 = 1

sinh r
aS(r)|0〉. (42)

For low values of squeezing, these states approximate the
Schrödinger kitten states, that is, superpositions of coherent
states |±α〉 with opposite phase and small amplitude (|α| � 1)
[46]. The generation of this kind of state has been demonstrated
experimentally [47–50] and it relies on performing conditional
photon-number measurements.

Without loss of generality, we shall consider a real
squeezing parameter r ∈ R; the corresponding average photon
number of a PSS state reads

n̄
(pss)
0 = 3 sinh2 r + 1, (43)

while its Wigner function is

W [|ψpss〉](λ) = − 2

π
e−2|λ|2 cosh 2r+(λ2+λ∗2) sinh 2r

× [1 − 4|λ|2 cosh 2r + 2(λ2 + λ∗2) sinh 2r].

(44)

As for the PAC states, the Wigner function of the evolved state
can be evaluated by means of Eq. (40) and the non-Gaussianity
indicator �1[Eε(|ψpss〉〈ψpss|] can be evaluated accordingly. Its
behavior as a function of ε and for different values of the
squeezing factor r is plotted in Fig. 4 (left). In the right panel of
Fig. 4, we plot the maximum noise parameter ε(1)

max as a function
of the squeezing parameter r , observing the same behavior
obtained for Fock and PAC states: the value of ε(1)

max decreases
monotonically with the energy of the state, approaching the
asymptotic value ε(1)

max → 0.5.
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FIG. 4. (Color online) Left: Non-Gaussianity indicator
�1[Eε(|ψpss〉〈ψpss|)] for PSS states as a function of ε and for different
values of r . Red dotted line: r = 0.1; green dashed line: r = 0.3; blue
solid line: r = 0.5. Right: Maximum value of the noise parameter
ε(1)

max such that the bound (14) is violated for the state Eε(|ψpss〉〈ψpss|),
as a function of the initial squeezing parameter r .
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FIG. 5. (Color online) Contour plot of the Wigner function of the
photon-added coherent state |ψpac〉 for α = 1. The minimum of the
Wigner function is not at the origin of the phase space, and the state
has nonzero first moments.

B. Violation of the second criterion

We will now show how the second criterion, which is based
on the violation of the inequality (21), can be exploited in
order to improve the results shown in the previous section.
Since in this case one can optimize the procedure over
an additional Gaussian channel, in general one has ε(2)

max �
ε(1)

max. The simplest Gaussian maps that one can consider are
displacement and squeezing operations; correspondingly, we
are going to seek violation of the bounds described by Eqs. (23)
and (24). As anticipated in Sec. III, these new criteria are useful
for states which are not phase invariant: the paradigmatic
examples are states displaced in the phase space, that is, having
the minimum of the Wigner function outside the origin, or
states that exhibit squeezing in a certain quadrature. Due to
this fact, the bounds based on Eqs. (23) and (24) cannot help
in optimizing the results we obtained for Fock states. We will
focus, then, on the other classes of states we introduced, that
is, PAC and PSS states.

1. Photon-added coherent states

By looking at the PAC state Wigner function in Fig. 5, one
observes that its minimum is not at the origin of the phase
space. Moreover, these states have nonzero first moments,
implying that one can decrease their average photon number
by applying an appropriate displacement. Both observations
suggest that it is possible to decrease the value of the quantum
non-Gaussianity indicator defined in Eq. (27),

�pac(β) = �2[Eε(|ψpac〉〈ψpac|),Dβ], (45)

by means of a displacement operation Dβ(�) = D(β)�D(β)†.
To evaluate �pac(β) according to Eq. (45), one has simply to
evaluate the Wigner function of the state � = Eε(|ψpac〉〈ψpac|)
in a displaced point in the phase space, i.e., W [�](−β), and its
average photon number

n̄(pac)(β) = (1 − ε)n(pac)
0 + |β|2 + √

1 − ε(β∗〈a〉0 + β〈a†〉0),

(46)
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FIG. 6. (Color online) Left: Non-Gaussianity indicator �pac(β)
as a function of the additional displacement parameter β, for ε = 0.8
and for different values of the initial parameter α. Red dotted line:
α = 0.2; green dashed line: α = 0.4; blue solid line: α = 0.6. Right:
Optimized non-Gaussianity indicator �pac(βopt) as a function of ε and
for different values of α, where the displacement parameter βopt has
been chosen as in Eq. (48). Red dotted line: α = 0.2; green dashed
line: α = 0.4; blue solid line: α = 0.6.

where 〈A〉0 = 〈ψ0|A|ψ0〉, and for |ψ0〉 = |ψpac〉,

〈a〉0 = 〈a†〉0 = α(2 + α2)

1 + α2
. (47)

Our goal is then to minimize �pac(β) over the possible
displacement parameters β.

In Fig. 6 (left), we plot �pac(β) as a function of β

for different values of the coherent-state parameter α and
for ε = 0.8. We observe that while for β = 0 the bound
is not always violated, it is possible to find values such
that �pac(β) < 0 and thus prove that the state is quantum
non-Gaussian. Unfortunately, the optimal value βopt, which
minimizes �pac(β), cannot be obtained analytically. However,
we observed that for large values of ε and for α � 1.5, one can
approximate it as

βopt � −α
√

1 − ε = −αe−γ t/2. (48)

The behavior of �pac(βopt) as a function of ε is shown
in Fig. 6 (right) for different values of α and fixing βopt

as in Eq. (48). If we compare this with Fig. 3, not only
do we observe an improvement in our capacity to witness
quantum non-Gaussianity for these states, but we also see
that �pac(βopt) remains negative for all values of ε. Indeed,
numerical investigations seem to suggest that ε(2)

max � 1 for all
the possible values of α: we indeed conjecture that any initial
PAC state remains quantum non-Gaussian during the lossy
evolution induced by Eq. (28), and that this feature can be
captured by our second criterion. However, as one can observe
from Fig. 6 (right), the non-Gaussianity indicator approaches
zero quite fast with both α and ε, and thus it may be more
challenging to detect its negativity in an actual experiment for
states with a high average photon number and for large losses.

2. Photon-subtracted squeezed states

Like PAC states inherit a displacement in phase space from
the initial coherent states, PSS states inherit squeezing, as we
can observe by looking at the Wigner function in Fig. 7. This
motivates us to make use of Corollary 2, and thus optimize the

2 1 0 1 2
2

1
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1

2

ΛR

ΛI

0.6

0.4

0.2

0

0.2

FIG. 7. (Color online) Contour plot of the Wigner function of the
photon-subtracted squeezed state |ψpss〉 for r = 0.3. The minimum of
the Wigner function is at the origin of the phase space, and the state
exhibits squeezing in one of the quadratures.

non-Gaussianity indicator in Eq. (27) as

�pss(s) = �2[Eε(|ψpss〉〈ψpss|,Ss], (49)

that is, by considering an additional squeezing operation
Ss(�) = S(s)�S†(s) on the evolved state � = E(|ψpss〉〈ψpss|).
As pointed out in the proof of inequality (24), the Wigner
function at the origin is invariant under squeezing operations.
Hence, the optimal value sopt that minimizes �pas(s) coincides
with the value which minimizes the average photon number of
Ss = S(s)�S†(s),

n̄(pss)(s) = (1 − ε)
[
n

(pss)
0

(
μ2

s + ν2
s

)
+μsνs(〈a2〉0 + 〈a†2〉0)

] + ν2
s , (50)

where μt = cosh t , νt = sinh t , and for an initial PSS state
(with a real squeezing parameter r),

〈a2〉0 = 〈a†2〉0 = 3μrνr . (51)
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FIG. 8. (Color online) Left: Non-Gaussianity indicator �pss(s)
as a function of the additional squeezing parameter s, for ε = 0.7
and for different values of the initial parameter r . Red dotted line:
r = 0.1; green dashed line: r = 0.3; blue solid line: r = 0.5. Right:
Optimized non-Gaussianity indicator �pss(sopt) as a function of ε and
for different values of r , where the squeezing parameter is given by
the following: red dotted line: r = 0.1; green dashed line: r = 0.3;
blue solid line: r = 0.5.
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FIG. 9. (Color online) Maximum values of the noise parameter
ε(2)

max and ε(1)
max, obtained, respectively, by means of the optimized and

nonoptimized criteria, for the state Eε(|ψpss〉〈ψpss|), as a function of
the initial squeezing parameter r . Red dotted line: ε(2)

max; blue solid
line: ε(1)

max.

The behavior of �pas(s) as a function of the additional
squeezing s is plotted in Fig. 8. As we observed in the
previous case, the optimised criterion works in cases where
the bound (14) (corresponding to s = 0) was not violated.

Moreover, the optimal squeezing value can be evaluated
analytically, yielding

sopt = −arccosh(μopt), (52)

μopt = 1√
2

[
1 + 6(1 − ε)μ2

r + 4ε − 3√
(4ε − 3)2 + 12(1 − ε)εμ2

r

]1/2

. (53)

The optimized quantum non-Gaussianity indicator
�pss(sopt) is plotted in Fig. 8 (right), where we observe
that negative values are obtained for large values of losses.
However, while for PAC states we had evidence that the
maximum value of losses is ε(2)

max � 1 for all the possible
initial states, this is no longer true for PSS states. The
behavior of ε(2)

max as a function of r is plotted in Fig. 9,
together with the previously obtained ε(1)

max. We can notice
the big improvement in our detection capability, obtained by
exploiting Corollary 2; however, for large values of r , we still
observe that ε(2)

max decreases towards the same limiting value
ε(2)

max → 0.5. Moreover, as it can be observed in Fig. 8 (right),
the indicator �pas(sopt) approaches zero by increasing r and ε,
and thus also in this case it can become challenging to witness
quantum non-Gaussianity with our methods, in experiments
with large values of the initial squeezing r and large losses.

V. CONCLUSIONS

We have presented a set of criteria to detect quantum
non-Gaussian states, that is, states that cannot be expressed
as mixtures of Gaussian states. The first criterion is based
on seeking the violation of a lower bound for the values that
the Wigner function can take at the origin, depending only
on the average photon number of the state. To verify the
effectiveness of the criterion, we considered the evolution of
non-Gaussian pure states in a lossy Gaussian channel, looking
for the maximum value of the noise where such bound is
violated. We observed that the criterion works well, detecting
quantum non-Gaussianity in the nontrivial region of the noise
parameters where no negativity of the Wigner function can be
observed.

We have also shown how the criterion can be generalized
and improved by optimizing over additional Gaussian opera-
tions applied to the states of interest. Notice that in a possible
experimental implementation, one does not need to perform
such additional Gaussian operations, such as displacement or
squeezing, in the actual experiment. Indeed, it suffices to use
the data obtained on the state itself, and then apply suitable
postprocessing to evaluate the optimized non-Gaussianity
indicator.

Our criterion, which expresses a sufficient condition for
quantum non-Gaussianity, shares some similarities with Hud-
son’s theorem for pure Gaussian states, in the sense that it
establishes a relationship between the concept of Gaussianity
(combined with classical mixing) and the possible values that
a Wigner function can take. The successful implementation of
our criteria corresponds to the measurement of the Wigner
function at the origin of the phase space which, in turn,
corresponds to the (photon) parity of the state under inves-
tigation. This may be obtained with current technology by
direct parity measurement [51], or by reconstruction of the
photon distribution either by tomographic reconstruction or
by the on/off method [52–65]. When the criterion is satisfied,
one can confirm that the quantum state at disposal has been
generated by means of a highly nonlinear process, even in the
cases where, perhaps due to inefficient detectors or other types
of noise, negativity of the Wigner function cannot be detected.
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