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Abstract
In this paper we propose and realise a practical quantum enhanced sensing protocol aimed at
the detection of a partially reflecting object in a lossy and noisy environment. Our scheme is
inspired by the theoretical quantum illumination protocol elaborated by Lloyd (2008 Science
321, 1463) and Tan et al (2008 Phys. Rev. Lett. 101, 253601). We demonstrate that when only
photon counting is allowed our quantum protocol performs astonishingly better than the best
classical counterpart.
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1. Introduction

In recent years, exploitation of the specific properties of
quantum states has disclosed the possibility of realising tasks
beyond classical limits, creating the new field of quantum
technologies [1–11]. Among them, quantum metrology and
imaging aim at improving the sensitivity and/or resolution
of measurements exploiting non-classical features such as
squeezing and quantum correlations (entanglement and
discordant states) [12–16]. Nevertheless, in most of the
realistic scenarios losses and noise are known to nullify the
advantage of adopting quantum strategies [17, 18]. In this
paper we describe in detail the first experimental realisation
of a quantum illumination protocol aimed at detecting an
object in a noisy environment. It preserves a strong advantage
over the classical counterparts even in the presence of large
amounts of noise and losses. The experiment, inspired by the
theoretical ideas elaborated on in [19–22] (see also [23, 24]),
has been performed exploiting only photon number
correlations in twin beams. Thus, for its simplicity it can find
widespread use. Even more importantly, it challenges the
common belief that real application of quantum technologies
is limited by their fragility to noise and losses.

In our scheme [25] for target detection a probe beam
of a bipartite correlated state may be partially reflected by
an object toward a camera, which also receives a thermal
field acting as a noisy unknown background (a thermal bath).
Our goal is to investigate the performances of the quantum
protocol, in a detection framework in which only photon
numbers (i.e. intensities) are measured, with respect to the
best classical counterpart, namely a classically correlated
light-based protocol. We show that the use of simple
second-order correlation measurements already suffices in
guaranteeing strong advantages to the quantum protocol. This
represents fundamental progress toward a practical realisation
with respect to some previous similar theoretical proposals
[20, 21, 26], stemming from the ‘quantum illumination’ (QI)
scheme of [19], where the discrimination strategy, based on
the quantum Chernoff bound [27, 28], was very challenging
from an experimental point of view.

We point out that the two fundamental starting points
in the present work are the photon number/intensity
measurement and the a priori unknown background. The
latter means that a reliable independent measurement only on
the background is forbidden. In other words, it is impossible to
establish a reference threshold of photocounts (i.e. the mean
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Figure 1. Experimental setup. (a) QI; (b) CI; (c) detected TWB, in the presence of the object, without thermal bath. The region of interest is
selected by an interference filter centered around the degeneracy wavelength (710 nm) and bandwidth of 10 nm. After selection the filter is
removed; (d) detected field for split THB in the presence of the object, without thermal bath; and (e) a typical frame used for the
measurement, where the interference filter has been removed and a strong thermal bath has been added on the object branch. The color
scales on the right correspond to the number of photons per pixel. On the right-hand side there is a photo of the set-up.

value of the background) to be compared with the possible
additional mean photocounts coming from the reflected probe
beam (if the target is present). Therefore, the estimation of
the first-order (mean values) of the photocount distribution
would be not informative regarding the presence or absence
of the object. This unknown-background hypothesis accounts
for a scenario where background properties can randomly
change and drift with time and space. As a simple example
one can consider either a single measurement through a hole
of the presence of an object in a room with no information on
the room lighting or of an object moving on a background
whose illumination is unknowingly fluctuating. Therefore,
the signal revealing the presence of the object must be
extracted by measuring the higher orders of the joint photon
number distribution, namely the photon number/ intensity
correlation between the probe and a reference beam. We
realize quantum target detection both by using QI, specifically
twin beams (TWB), and by using classical illumination (CI),
e.g. correlated thermal beams (THB), representing the best
classical state in the specific detection framework, pointing
out unequivocally the experimental advantage of the quantum
protocol in the mesoscopic regime, independent of the noise
level. The realization of the QI protocol, beyond paving the
way to future practical applications, also provides a significant
example of an ancilla-assisted quantum protocol in addition to
previous ones, e.g. [16, 29–31]. As a first application of QI to
QKD, with a different detection scheme, refer to the recent
paper [32].

2. The experimental setup

In our setup (figure 1) correlated photon pairs in orthogonal
polarizations are generated in a parametric down conversion
(PDC) process by pumping a BBO (beta-barium-borate)
nonlinear crystal with the third harmonic (355 nm) of a
Q-switched Nd–Yag laser (repetition rate of 10 Hz, 5 ns pulse
width) after spatial filtering. The correlated emissions are

then addressed to a high quantum efficiency (about 80%,
at 710 nm) CCD camera. The exposure time of the camera
is set to collect in a single image the emission generated
by a single laser shot. For the QI protocol (figure 1(a))
after the BBO crystal, where TWB are generated, one of
the beams (the ‘ancilla’) is reflected toward the detection
system. The correlated beam is partially detected, together
with the thermal field from the Arecchi’s disc, when the object
(actually a beam splitter) is present, otherwise it is lost (did
not show). Low-pass filter (95% of transmission at 710 nm)
and UV-reflecting mirror are used to minimize the background
noise while maintaining low losses. A lens, placed at the
focal length from the crystal and the CCD camera, realizes
the Fourier transform of the field at the output face of the
crystal. The PDC light is then combined at the CCD with
a thermal background (wavelength of 785 nm) produced by
scattering a laser beam on an Arecchi’s rotating ground glass.
When the object is removed, only the thermal bath reaches the
detector. In order to implement CI protocol (figure 1(b)), the
TWB are substituted with classical correlated beams. These
are obtained by splitting a multi-THB (single arm of PDC) and
by setting the pump intensity to ensure equivalent intensity,
time and spatial coherence properties for the quantum and the
classical sources.

We note that traveling wave PDC generates a spatial
multimode emission in the far field, where each mode
corresponds to the transverse component of a specific
wavevector. Each pair of correlated modes, corresponding
to an opposite transverse component of the wavevector
with respect to the pump direction, are found in symmetric
positions [33]. Thus, we choose two correlated regions of
interest (ROIs) on the CCD array (shown in figures 1(c)–(e)).
The proper sizing of the pixels and the centering of the
two-dimensional array with sub-mode precision, allows to
maximize the collection of the correlated photons for each
pair of pixels and at the same time to minimize the possible
presence of uncorrelated ones [34]. In our experiment,
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the correlation in the photon number, even at the quantum
level for QI, is realized independently for each pair of
symmetrical (translated) pixels that belong to the ROIs of the
TWB (THB). Therefore, a single image is enough to evaluate
correlation parameters, like covariance, averaging over the
Npix pairs (Npix = 80 pixels of size Apix = (480 µm)2). Albeit
not strictly necessary, this is practically effective because it
reduces the measurement time (less images are needed) and
avoids to deal with the power instability of the pump laser
from pulse to pulse, which is very destructive in this kind
of application [35]. The number of spatio-temporal modes
collected by a pixel is estimated to be M = 9 ⇥ 104 by
fitting a multithermal statistics. The average number of PDC
photon per mode is µ = 0.075. We measured separately the
size of the spatial mode, as the full-width at half-maximum
of the correlation function between the two beams, Acorr =
(120 ± 20 µm)2. Thus, the number of spatial modes is about
Msp = Apix/Acorr = 16 ± 5 and the number of temporal modes
Mt = M/Msp = (6 ± 2) ⇥ 103, the latter being consistent with
the ratio between the pump pulse duration and the expected
PDC coherence time, i.e. 1 ps. The statistics of the thermal
background, in particular the number of collected temporal
modes, can be adjusted by setting the ratio between the
rotating speed of the disc and the duration of the pulse.

3. The model of the measurement

In our approach, the ability to distinguish the
presence/absence of the object depends on the possibility
of distinguishing between the two corresponding values of
covariance 11,2 between the photon number N1 and N2 of a
pair of correlated pixels, evaluated experimentally as

11,2 = E[N1 N2] � E[N1]E[N2], (1)

where the quantity E[X ] = 1
K

PK
k=1 X (k) represents the

average over the set of K realizations corresponding in
our experiment to the pixels of the ROI, i.e. K = Npix =
80. Therefore, each image provides a determination of the
covariance. Then we define the signal to noise ratio (SNR)
of the counting base QI protocol as the ratio of the mean
‘contrast’ to its standard deviation (mean fluctuation)
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where ‘in’ and ‘out’ refer to the presence and absence of
the object, respectively, and h· · · i is the quantum expectation
value. From equation (1) it follows that h11,2i = (1 �
K�1)h�N1�N2i and, for K� 1, h�211,2i ' h�2[�N1�N2]i/K.
These expressions allow to calculate fSNR theoretically. In
particular the denominator can be calculated as
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target and Nb is the uncorrelated background, the right-hand
side of (3) can be rewritten as
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where we used the statistical independence of Nb and the fact
that h�Nbi = 0. It is clear that in the absence of the target (the
situation labeled with the superscript ‘out’), N (in)

2 = 0, thus
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largest contribution to the noise, also when the target is present
(indicated with superscript ‘in’) we can write h�21
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↵
. Under this assumption representing a realistic

situation of a very noisy environment, the SNR becomes

fSNR ' h�N1�N2iq
2
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We underline that (5) holds for a dominant background,
irrespective of its statistics (e.g. multi-thermal or Poissonian).

In our experiment we consider background with
multi-thermal statistics. For a generic multi-thermal statistics
with a number of spatiotemporal modes M , a mean photon
number per mode µ, the total number of detected photons
is hN i = M⌘µ and the mean squared fluctuation is

⌦
�2 N

↵
=

M⌘µ(1 + ⌘µ) = hN i (1 + hN i /M) (see for example [36]),
where ⌘ is the detection efficiency.

Thus, the amount of noise introduced by the background
can be increased by boosting its total number of photons hNbi
or by varying the number of modes Mb.

Moreover, both TWB and correlated THB present locally
the same multi-thermal statistics, but with a number of
spatiotemporal modes M = 9 ⇥ 104 much larger than the one
used for the background beam (Mb = 57 in one case and
Mb = 1.3 ⇥ 103 in the other). This contributes to making
the condition of preponderant background effective in our
realization, even for a relatively small value of Nb.

However, we point out that all the theoretical curves
reported in all the figures are evaluated by the exact analytical
calculation of the fourth-order (in the number of photons)
quantum expectation values appearing on the right-hand side
of (3), even if the whole expressions are far more complex
than the ones obtained with the assumption of a preponderant
background.

Starting from (5) and considering the same local
resources for classical and QI beams (in particular the same
local variance

⌦
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of the quantum protocol can be easily obtained as
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Figure 2. Top: NRF in the case of TWB, NRFTW, and of the
correlated THB, NRFTH, as a function of the average number of
background photons Nb for Mb = 57 (black series) and Mb = 1300
(red). The lines represent the theoretical prediction for
⌘1 = 2⌘2 = 0.4 and µ = 0.075 (the latter estimated independently).
For Nb = 0, NRFTW is � = 0.761 ± 0.006. Statistical uncertainty
bars are too small to be visible. Bottom: generalized
Cauchy–Schwarz parameter " in the case of TWBs, "(TW), and of
the correlated THB, "(T H), as a function of the average number of
background photons Nb for a number of background modes
Mb = 57 (black series) and Mb = 1300 (red). The lines represent the
theoretical prediction at µ = 0.075 (the last estimated
independently).

with " = h: �N1�N2 :i/
p

h: �2 N1 :ih: �2 N2 :i being the
generalized Cauchy–Schwarz parameter, where h: :i is
the normally ordered quantum expectation value. This
parameter is interesting since it does not depend on the
losses and it quantifies non-classicality being " 6 1 for
the classical state of light (with positive P-function). The
covariance of two correlated beams obtained by splitting a
single THB is h�N1�N2iTH = M⌘1⌘2µ

2
TH, while the one of

TWB is h�N1�N2iTW = M⌘1⌘2µTW(1 + µTW) (see e.g. [12]).
By using this relation with the assumption of the same
local resources, µTH = µTW = µ we can derive explicitly
R ⇡ (1 + µ)/µ, which is insensitive to the amount of noise
and loss. On the other side the generalized Cauchy–Schwarz
parameter for a split THB is "

(CI)
0 = 1, where the subscript ‘0’

stands for ‘in the absence of background’, as it can be easily
derived from the equations of covariance and single beam
fluctuations used previously. Therefore the comparison with
split THB represents the comparison with the ‘best’ classical
case.

4. Results

First of all we evaluate the noise reduction factor (NRF)
defined as [16, 34, 37, 38]

� ⌘
⌦
�2(N1 � N2)

↵

hN1 + N2i
, (7)

where hNi i is the mean value and �2 Ni = (Ni � hNi i)2 is
the fluctuation of the photon number Ni , i = 1, 2, detected
by correlated pixels. It represents the noise of the photon
number difference normalized to the shot noise level or
standard quantum limit [34]. For classical states � > 1,
while it is always smaller than 1 for TWB. In particular,
when the thermal bath is off, we have �0 = 1 � ⌘ + (⌘1 �
⌘2)

2 (1/2 + µ) /(2⌘), with ⌘ = (⌘1 + ⌘2)/2, and ⌘i is the
overall detection efficiency of beam i = 1, 2 [34, 35]. It
includes all the transmission-detection losses, thus ⌘1 = 2⌘2

due to the presence of the half reflecting object in the path
of the second beam. In figure 2 we report the measured NRF
and the theoretical prediction. From the inset one can observe
that the NRF is actually in the quantum regime (� < 1)
for small values of the thermal bath, and in absence of it
we obtain �0 = 0.76 corresponding to ⌘1 = 0.4. While, as
soon as the contribution of the bath to the fluctuation of N2

becomes dominant, NRF increases quite quickly, well above
the classical threshold. As expected from the multi-thermal
character of the bath, the number of modes Mb determines the
noise level introduced, and it can be tuned easily according
to the spin velocity of the ground-glass disc and/or the
acquisition time. We also note that, for THB, the NRF is
always in the classical regime.

As a second figure of merit, more appropriate for
quantifying the quantum resources exploited by our QI
strategy, we consider the generalized Cauchy–Schwarz
parameter " introduced in section 3. In figure 2 we report the
measured " and the theoretical prediction. One observes that
for TWB "(QI) is actually in the quantum regime ("(QI) > 1) for
small values of the thermal background hNbi ("(QI)

0 ' 10 when
hNbi = 0). Also here, "(QI) decreases quite quickly, well below
the classical threshold with the intensity of the background.
As expected, for THB "(CI) is always in the classical regime
(being one for hNbi = 0).

In figure 3, the fSNR/
p
K is compared with the

experimental data, where the estimation of quantum mean
values of (2) are obtained by performing averages of
1

(in/out)
1,2 over a set of Nimg acquired images. While the

SNR unavoidably decreases with the added noise for both
QI and CI, the ratio between them is almost constant
(R & 10) regardless of the value of Nb, in agreement with
the results of section 3. In turn, the measurement time, i.e.
the number of repetitions Nimg needs for discriminating the
presence/absence of the target, is dramatically reduced (for
instance, to achieve fSNR = 1, Nimg is 100 times smaller when
quantum correlations are exploited). Furthermore, figure 3
shows that the mean value of the covariance does not
depend on the quantity of environmental noise, because, as
expected, only the correlated components survive to this
operation. However, the added noise influences drastically
the uncertainty on the measurement for a certain fixed
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Figure 3. SNR versus Nb normalized by the square root of number of realization. The red (black) markers refer to Mb = 1300 (Mb = 57)
and the solid (dashed) theoretical curve corresponds to quantum (classical) illuminating beams. The lowest curve of the classical protocol
has not been compared with the experimental data because the SNR is so low that a very large number of images (out of the possibility of
the actual setup) is required to have reliable points. The insets on the right present the covariance values corresponding to the three data sets
indicated by the arrows. The blue (green) color refers to the data when the object is present, 1

(in)
1,2 (absent 1

(out)
1,2 ). The uncertainty bars

represent the uncertainty of the mean values of the covariance obtained averaging over the Nimg images (from the top to bottom:
Nimg = 2000, 6000 and 4000). Horizontal lines are the theoretical values h1(in/out)

1,2 i, while the uncertainty bars should be compared with the
gap between the dashed lines, corresponding to the theoretically evaluated h�21

(in/out)
1,2 i/

p
Nimg.

Figure 4. Error probability Perr of the target detection versus the
total number of photons of the thermal bath Nb evaluated with
Nimg = 10 (Nimg = 100 in the inset). The black squares and red
circles are the data for QI with Mb = 57 and 1300, respectively,
while red diamonds refers to the data for the CI with Mb = 1300.
The curves are the corresponding theoretical predictions.

number of images Nimg and thus the ability to assert the
presence of the object.

In order to show that the quantum strategy outperforms
the classical one, in figure 4 we report the error probability in
the discrimination, Perr, versus the number of photons of the
thermal bath Nb. The statement on the presence/absence of

the object is performed on the basis of the covariance value
obtained for a fixed number of images Nimg = 10. Thus, Perr

is estimated by fixing the threshold value of the covariance
that minimizes the error probability itself. Figure 4 shows
a remarkable agreement between the theoretical predictions
(lines) and the experimental data (symbols), both for QI
and CI strategy. Furthermore, the Perr in the case of QI is
several orders of magnitude below the CI one and, in terms of
background photons, the same value of the error probability is
reached for a value of Nb at least ten times larger than in the
QI case.

5. Conclusions

We have described in detail the model and the experiment
which addresses quantum enhancement in detecting a target
in a thermal radiation background in a relevant and
realistic measurement scenario. Our system shows quantum
correlation with no external noise (� = 0.76) even in the
presence of the losses introduced by the only partially
reflective target. Remarkably, even after the transition to
the classical regime (� � 1), the scheme preserves the
same strong advantage with respect to its natural classical
counterpart based on classically correlated beams, as also
suggested in [20]. This apparent contradiction is explained
by considering that quantum correlations actually survive
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unchanged up to the detector, where they are simply added
to an independent noisy background. Moreover the quantum
resources and the quantum enhancement achieved by the
protocol can be precisely quantified by the generalized
Cauchy–Schwarz parameter that is only related to the source
properties ".

Unlike other quantum-enhanced measurement protocols,
based on the experimental estimation of the first moments
of the photon number distribution, our scheme, which is
based on the measurement of the second-order momenta, is
impressively robust against losses. This derives from the fact
that it does not require a high level of two-mode squeezing
(�0 = 0.76 in our experiment). For instance the quantum
imaging protocol [16], where the signal is given by hN1 �
N2i, provides a maximum improving factor of 1/

p
�0 over

classical techniques, that would correspond to 1.14 in our
working condition in the absence of thermal background. Also
in exemplar quantum-enhanced schemes, such as the detection
of small beam displacement [14] and phase estimation by
interferometry [17], it is well-known that losses and noise can
rapidly decrease the advantage of using quantum light [18],
and typically a high level of squeezing is necessary. This has
enforced within the generic scientific community the common
belief that the advantages of entangled and quantum states
are hardly applicable in a real context, and they will remain
limited to proofs of principle experiments in highly controlled
laboratories, and/or to mere academic discussions. Our work
challenges this belief by demonstrating an advantage of orders
of magnitude with respect to CI protocol, independent of the
amount of thermal noise and using devices currently available.
In summary, we believe that the photon counting-based QI
protocol has a huge potential to foster the exploitation of
quantum light-based technologies in real lossy and noisy
environments.
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