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Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete
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Antonio Mandarino,! Matteo Bina,""* Carmen Porto,! Simone Cialdi,!-? Stefano Olivares,? and Matteo G. A. Paris'-2
1Dipartimento di Fisica, Universita degli Studi di Milano, I-20133 Milan, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milan, Italy
(Received 5 April 2016; published 20 June 2016)

We experimentally address the significance of fidelity as a figure of merit in quantum state reconstruction
of discrete (DV) and continuous-variable (CV) quantum optical systems. In particular, we analyze the use of
fidelity in quantum homodyne tomography of CV states and maximum-likelihood polarization tomography of
DV ones, focusing attention on nonclassicality, entanglement, and quantum discord as a function of fidelity to a
target state. Our findings show that high values of fidelity, despite well quantifying geometrical proximity in the
Hilbert space, may be obtained for states displaying opposite physical properties, e.g., quantum or semiclassical
features. In particular, we analyze in detail the quantum-to-classical transition for squeezed thermal states of a
single-mode optical system and for Werner states of a two-photon polarization qubit system.
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I. INTRODUCTION

In quantum technology, it is very common to summarize the
results of a reconstruction technique, either full quantum to-
mography [1-7] or some partial reconstruction scheme [8—13],
by the use of fidelity [14,15]. Once the information about the
state of a system has been extracted from a set of experimental
data, the fidelity between the reconstructed state and a given
target state, is calculated [16—19]. Fidelity is bounded to the in-
terval [0, 1]. High values such as 0.9 or 0.99 are thus considered
as a piece of evidence in order to certify that the reconstructed
and the target states (i) are very close each other in the Hilbert
space and (ii) they share nearly identical physical properties.
In this framework, quantum resources of the prepared state are
often benchmarked in terms of fidelity [20-25], e.g., to assess
the performances of a teleportation scheme [26,27].

The two statements above may appear rather intuitive, with
the second one following from the first one. On the other hand,
it has been suggested that the use of fidelity may be misleading
in several situations involving either discrete or continuous
variable systems [28-31]. The main goal of the present paper
is to experimentally confirm the first statement and, at the same
time, to provide neat examples where the second one is clearly
proved wrong.

Given two quantum states described by density matrices 0;
and p,, the fidelity between them is defined as [14]

2
F(ﬁl,ﬁz)=Tr[ \/Eﬁz\/ﬁT] : (1)

Fidelity is not a proper distance in the Hilbert space. However,
it can be easily linked to a distance, and in turn to a metric over
the manifold of density matrices. In fact, the Bures distance
[32] between two states is defined as

Du(pr.f2) = /211 — VFGr o)l

Fidelity also provides an upper and a lower bound to the trace
distance, namely [15]

1= F(p1.p2) < 51101 = palli < V1= F(pr,p2).
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These relationships ensure that higher values of fidelity
correspond to geometrical proximity of the two states in the
Hilbert space. However, they do not seem straightforwardly
related to the physical properties of the two states. In turn, it
has been pointed out [28-31] that a pair of states that appear
very close to each other in terms of fidelity may be very far
in terms of physical resources. Relevant examples may be
found with bipartite systems of either qubits or CV Gaussian
states, where pairs of states composed of one entangled and
one separable state may have (very) high value of fidelity one
to each other. Besides, for single-mode CV states high values
of fidelity may be achieved by pairs including one state with a
classical analog and a genuinely quantum state of the field.

In this paper, we address the problem experimentally and
analyze in detail the significance of fidelity as a figure of merit
to assess the properties of a tomographically reconstructed
state. We address both discrete and continuous variable sys-
tems using quantum homodyne tomography to reconstruct CV
states and maximume-likelihood polarization tomography for
DV ones. In particular, we experimentally address two relevant
examples: (i) the reconstruction of squeezed thermal states of a
single-mode radiation field, analyzing in details the quantum-
to-classical transition, and (ii) the reconstruction of noisy
Werner states of a two-qubit polarization system, inspecting
the amount of nonclassical correlations. Our results clearly
show that high values of fidelity, despite well quantifying
geometrical closeness between states in the Hilbert space,
may be obtained for quantum states displaying very different
physical properties, e.g., quantum resources.

The paper is structured as follows. Section II is devoted
to continuous variables: we first describe the experimental
generation of single-mode squeezed thermal states using a
seeded optical amplifier, as well as the homodyne technique
employed for tomography. We then present experimental
results, illustrating in detail the significance of the fidelity
of the reconstructed state to a target one and its nonclas-
sicality. In Sec. Il we illustrate the experimental setup for
generating two-qubit states of Werner type and the method
of maximum-likelihood estimation for tomography. We then
present experimental results, analyzing the significance of
fidelity of the reconstructed states to the target Werner ones in

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.93.062118

ANTONIO MANDARINO et al.

assessing their nonclassical correlations, either entanglement
or quantum discord. Section IV closes the paper with some
concluding remarks.

II. SINGLE-MODE GAUSSIAN STATES

In this section we deal with the generation and the charac-
terization of squeezed thermal states (STS) of a single-mode
radiation field, i.e., states of the form

p = Sr)d(na)S'(r), 2)
where S'(r) = exp {%r[(fﬁ)2 — 4%} is the squeezing operator,
withr € R,0(nq) = n4 /(1 + ng,)* 41 is a thermal state with

ng, average number of photons and [4,4'] = 1,4 and a' being
field operators. Upon defining the quadrature operators

fo=ae ¥ +alte?, (3)

with 6 € [0,7], the STS are fully characterized by their first
and second moments

(%o)

(A%5)

0 Vo, (4a)
2nm)(e* cos’ O 4+ e ¥ sin’6),  (4b)

=+
where (---) = Tr[p - - -]. In terms of the canonical operators
X =%y and p = X2, the covariance matrix (CM) of a STS

reads
_ (a8 0 \_(s/u 0
”‘( 0 <A132>)_< 0 1/us>’ )

where 1 = Tr[p?] = 2ng 4+ 1)~ is the purity of the state p
and s = e is the squeezing factor. A STS is nonclassical, i.e.,
it corresponds to a singular Glauber P function, whenever the
conditions s < u ors > ! are satisfied. The total energy of
a STS is given by

Niot = (@1a) = ng + ng + 2npns, (6)

where n, = sinh®r is the number of squeezing photons and
ny, is the thermal contribution to energy.

According to Eq. (6), it is possible to find a suitable
parametrization of the single-mode STS CM (5) in terms of
the different energy contributions

R Niot — 1,
(ARY) = (1 +2%)(1 +2n, —2\/ns+n2), (Ta)

(Ap?) = (1 +2

Niot _ns) 1 (7b)
2ns+1 ) (14 2ng — 2\/ng + n? ’

from which the linear behavior of the variances as a function
of the total energy N, is apparent.
The fidelity between two STS is given by [33]

1
NN RN
where A = %det[al +o05]and § = %Hi=1,2(det0z‘ - 1.

F(o1,00) = ®)

A. Experimental setup

In order to generate STS we employ the experimental setup
schematically depicted in Fig. 1(a). It consists of three stages:

PHYSICAL REVIEW A 93, 062118 (2016)

PBS LiNbO3
MOD2

1/4 KDP

MOD1
(b)

FIG. 1. (a) Schematic diagram of the experimental setup to
generate squeezed thermal states. See text for details. (b) Generation
stage of the OPO input signals. Two optical systems, MOD1 and
MOD2, are collinear with the direction of propagation of the laser
beam (1064 nm) and are positioned to sequentially intercept it. The
laser beam at 1064 nm is sent to MOD1 which consists of a A/4
plate, a KDP crystal, and a PBS: the optical field is prepared with
circular polarization by setting the fast axis of A/4 at an angle of
45° with respect to the incident p polarization, and then is passed
through a KDP crystal whose axes are oriented at 45°. The horizontal
component of the output beam selected by the PBS is sent in MOD2,
which consists of a LiNbO; crystal whose extraordinary axis is
horizontal.

laser, signal generator (SG), and homodyne detector (HD). Our
source is a homemade internally frequency doubled Nd: YAG
laser. It is based on a four mirrors ring cavity and the active
medium is a cylindrical Nd:YAG crystal (diameter 2 mm and
length 60 mm) radially pumped by three array of water-cooled
laser diodes at 808 nm. The crystal for the frequency doubling
is a periodically poled MgO:LiNbO3; (PPLN) of 10 mm
thermally stabilized (~70°C). Inside the cavity is placed a
light diode that consists of a half-wave plate (HWP), a Faraday
rotator (15°), and a Brewster plate (BP) in order to obtain the
single mode operation.

The laser output at 532 nm is used as the pump for an optical
parametric oscillator (OPO), while the output at 1064 nm is
split into two beams by using a polarizing beam splitter (PBS):
one is used as the local oscillator (LO) for the homodyne
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detector and the other as the input for the OPO. The OPO
cavity is linear with a free spectral range (FSR) of 3300 MHz,
the output mirror has a reflectivity of 92%, and the rear mirror
99%. A phase modulator (PM) generates a signal at frequency
of 110 MHz (HF) used as active stabilization of the OPO
cavity via the Pound-Drever-Hall (PDH) technique [34,35]:
the reflected beam from cavity is detected (D) and used to
generate the error signal of PDH apparatus. This signal error
drives a piezo connected to the rear mirror of the OPO cavity
to actively control its length.

The homodyne detector (HD) consists of a 50:50 beam
splitter, two low noise detectors, and a differential amplifier
based on a LMH6624 operational amplifier. The visibility of
the interferometer is about 98%. The quantum efficiency of
the detector is about 95%, as specified in manufacturer data
sheets of our detectors. To remove the low frequency signal
we use a high-pass filter at 500 kHz and then the signal is
sent to the demodulation apparatus. The information about the
signal, at a frequency 2 ~ 3 MHz, is retrieved by using an
electronic apparatus which consists of a mixer, a phase shifter
W set to ensure zero phase shift between the two inputs of the
mixer, and a low-pass filter at 300 kHz. The electronic noise
is 17 dB below the vacuum noise at 3 MHz for 10 mW of the
LO power. The LO phase is spanned between 0 and 27 thanks
to a piezomounted mirror linearly driven by a ramp generator
(RG).

Our goal is to study a single-mode squeezed thermal state
and therefore we have to generate a thermal seed to be injected
into the OPO. The density matrix of thermal state in the
Glauber representation reads as follows:

A - oo 20o| a2 o d¢ i i
vopomth):/ dla) 2% / 2 |1alei®)(lale®|.
0 Tith 0o 2m
©)

i.e., it can be viewed as a mixture of coherent states with phase
¢ uniformly distributed over the range O to 27, and a given
amplitude |«| distribution. Therefore, we have to generate a
rapid sequence of coherent states with |«| and ¢ randomly
selected from these distributions. It is worth noting that the
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parameter 71y, does not coincide with the number of thermal
photons ng, in Eq. (6), as the former is related to the thermal
seeding of the OPO, whereas the latter accounts for both the
seeding and any losses from the OPO to the detector.

Our strategy is to exploit the combined effect of the two
optical systems [MODI1 and MOD?2 in Fig. 1(a) described
in Ref. [36] and sketched in more detail in Fig. 1(b)]. MOD1
generates a coherent state with phase 0, while MOD?2 generates
a coherent state with phase 7. By matching these coherent
states with properly chosen amplitudes, it is possible to
generate an arbitrary coherent state. In order to control this
process via pc, the MOD1 and MOD2 are driven by two
identical electronic circuits which consist of a phase shifter
W, and a mixer. The pc processes the || and ¢ values of
the coherent state which we want to generate, and converts
them into voltage signals. These are sent to the mixer together
with the sinusoidally varying signals at frequency €2 in order
to obtain the right modulation signals on MOD1 and MOD2,
while W and W, are set so that these modulation signals are
in phase when they reach MOD1 and MOD2.

Finally, in order to obtain the desired thermal state, the pc
generates random |«| and ¢ values according to their specified
distributions [see Eq. (9)] and converts them in two simulta-
neous trains of voltage values which are sent to the crystals in
a time window of 70 ms with a repetition rate of 100 kHz.
Generation and acquisition operations are synchronized in
the same time window at the same sampling rate. Therefore,
we collect 7000 homodyne data points {(6x,xx)}, LO phase,
and quadrature value, respectively. The sampling is triggered
by a signal generated by RG to ensure the synchronization
between the acquisition process and the scanning of LO with
O, € [0,27].

Notice that seeding the OPO is a crucial step to observe
the quantum-to-classical transition with STS. As a matter of
fact, without seeding the OPO, output signal is a squeezed
vacuum state, which is then degraded to a STS with a nonzero
thermal component by propagation in a lossy channel (state
no. 1 in Table I). However, STS obtained in this way are
always nonclassical for any value of the loss and the squeezing
parameters [37-39].

TABLEI. Characterization, via homodyne tomography, of the m = 14 experimental STS in terms of the position and momentum variances,
total energy, squeezing factor, and purity. The STS display squeezing in position and antisqueezing in momentum coordinates (r < 0).

State no. (A£2) (AP (ata) Sexp Hexp

1 0.48 +0.03 3.15 +0.09 0.41 +0.02 0.39 +0.01 0.81 +0.03
2 0.67 +0.04 333 +0.09 0.50 +0.02 0.45+0.01 0.67 +0.02
3 0.62 +0.04 3.77+0.11 0.60 = 0.02 0.40 + 0.02 0.66 = 0.02
4 0.69 + 0.05 3.94+0.11 0.66 =+ 0.02 0.41 +0.02 0.61 +0.02
5 0.70 % 0.05 451+0.12 0.80 + 0.03 0.39 +0.02 0.56 + 0.02
6 0.77 +0.05 4544013 0.83 +0.03 0.41 +0.02 0.54 +0.02
7 0.77 +0.05 4.60+0.13 0.84 +0.03 0.41 +0.02 0.53 +0.02
8 0.93 +0.06 5.00+0.14 0.98 +0.03 0.43 +0.02 0.46 % 0.02
9 0.95 +0.06 536+0.15 1.08 £ 0.03 0.42 +0.01 0.44 +0.02
10 0.93 +0.07 5.56+0.15 1.1240.03 0.41 +0.02 0.44 +0.02
1 1.00 + 0.07 5.80 +0.17 1.20 +0.03 0.42 +0.02 0.42 +0.02
12 1.13 £0.07 5.87+0.16 1.25+0.03 0.44 +0.02 0.39 +0.01
13 1.11+0.08 6.33+0.18 1.36 + 0.04 0.42 +0.02 0.38 +0.01
14 1.30+0.08 6.16 +0.18 1.36 + 0.04 0.46 + 0.02 0.35 4 0.01
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B. Homodyne tomography

We perform state reconstruction of single-mode CV sys-
tems by quantum homodyne tomography, i.e., by collecting
homodyne data at different LO phases and applying the pattern
functions method [1]. This technique allows one to obtain the
expectation value of any observable O on a given state p
starting from a set of homodyne data {(6;,x;)}, xx being the
kth outcome from the measurement of the quadrature (3) at
phase 6, with k = 1,...,M. Upon exploiting the Glauber
representation of operators in polar coordinates, the average
value of a generic observable O may be rewritten as

A Tdo [T A
(0) :f ;/ dx p(x,0)R[O](x,0),  (10)
0 —00

where p(x,0) = (xg|p|xp) is the distribution of quadrature
outcomes, with {|xy)} the set of eigenvectors of Xy, and
RIO1(x,0) = [ dy|y|Tt[Oe™®~)] the estimator of the
operator ensemble average (O). For large samples M >> 1,
the integral (10) can be recast in the discrete form

(0) ~ — ZR[O](xk,eu (11)

The uncertainty of the estimated value (0) is ruled by the
central limit theorem and scales as +/ M, namely

i [Rm](xk,ek)P (0)?

k=1

§(0 (12)

In order to properly characterize a single-mode prepared in a
Gaussian STS, we need to estimate the first two moments of
the quadrature operator £, and reconstruct the first-moment
vector and the CM, as well as the total energy a'a of the state.
We thus need the following estimators [1]:

RI£s1(x.0) = 2x cos(6 — ¢), (13a)
RIL;1(x.0) = (x* — {1 +2cos[2(0 — $)]} + 1, (13b)
Rla'al(x,0) = (x> — 1). (13c)

In this way it is possible to compute the average value
(O) and the fluctuations (AO?) = (0% — (0)? for the
observables of interest, together with the corresponding
uncertainties (12).

We collect M = 7000 homodyne data {(x;,6;)} for each
state and address the quantum-to-classical transition by gen-
erating m = 14 STS with increasing thermal component, as
the squeezing is fixed by the geometry of the experimental
setup. For all the detected states, we tested the compatibility
with the typical form of the STS, i.e., null first-moment
vector (4a) and diagonal CM (5). We characterized these
states (see Table I) in terms of the position (A%2) and
momentum (A p?) variances; the total energy Ny = (a'a).
From the measured quadrature variances, the experimental
squeezing factor Sexp = [(A%?) /(A ﬁz)]l/ 2 and purity flexp =
[(A%%)(Ap*)]~!/? are obtained. As already mentioned at the
beginning of this section, the shot-noise threshold is set at
(A%?) = (Ap?) =1, under which the state of the detected
single-mode radiation displays genuine quantum squeezing.
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FIG. 2. Tomographic reconstruction of the variances of the
squeezed quadrature % (red lower dots) and of the antisqueezed
quadrature p (green upper dots) as a function of the total energy
Nioi, for m = 14 experimental STS. Dashed lines represent linear fits
of the experimental data [see Eq. (7)], from which we obtain the
number of squeezed photons n >~ 0.2. The black dotted horizontal
line is the shot-noise level at (A%?) = (Ap?) = 1.

The generated STS display squeezing in position quadrature
and antisqueezing in momentum quadrature (i.e., we have real
and negative squeezing parameter r < 0). In Fig. 2 we show
the position and momentum variances as a function of the total
energy for the m = 14 experimentally generated STS. A linear
fitting, following Eq. (7), provides the value of the number of
squeezed photons ng >~ 0.2, which corresponds to ~3.7 dB
of squeezing. Figure 2 makes apparent the capability of the
experimental setup to generate STS on demand by seeding the
OPO with a controlled number of thermal photons and, in turn,
to monitor the quantum-to-classical transition of a single-mode
Gaussian state of light.

C. Fidelity

In order to perform the uncertainties budget, to discuss
the statistical distribution of relevant quantities, and to assess
the statistical significance of fidelity, we generate Nyic = 103
Monte Carlo replica data samples (see the Appendix), for each
experimental state. Resampled (raw) homodyne data are drawn
from Gaussian distributions using the experimental values of
Table I to build the average values (4a) and the variances
(4b) of the distributions. For all the m = 14 STS we apply
homodyne tomography and analyze the distribution of the
reconstructed states in the neighboring of the experimental
target state. Results are shown in Fig. 3 and Fig. 4, using the
squeezing-purity plane-{s,u} representation. Figure 3 focuses
on three specific states (number 7, 9, and 13 of Table I)
which are closer to the quantum-classical boundary. Target
states correspond to black points, whereas the ovoidal regions
denote the set of states having fidelity larger than F* > 0.995 to
the target. The darker, stripelike, regions within each balloon
correspond to states satisfying the additional constraint of
having fluctuations of the total energy (6) at most within one
standard deviation.
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FIG. 3. Statistical distribution of reconstructed STS in the
squeezing-purity plane {s,u}. Data come from Nyc Monte Carlo
resampled set of data for STS (see text and Appendix). From right to
left, we have distributions for three experimental STS (state number
7,9 and 13 of Table I), shown as black points with the corresponding
bars of precision. The triangularlike region s > p contains states
with a classical analog. The whole set of reconstructed states are
contained in the ovoidal regions, i.e., have fidelity F > 0.995 to
the corresponding target state. The stripelike regions are obtained
adding a constraint to the total energy, i.e., N5 — SNE® < (afa) <
N + NG

0.8t
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FIG. 4. Statistical distribution of reconstructed STS in the
squeezing-purity plane {s,u} for all the experimental target states
in Table I (black points corresponding to states 1 ... 14 from right to
left). The two balloons include states having fidelity to a nonclassical
target STS (with s =0.41 and p = 0.53) larger than F > 0.90
(outer balloon) or F' > 0.95 (inner balloon), respectively, i.e., values
commonly recognized as regions of high fidelity. The size of the
compatibility regions may be reduced by adding energy constraints
(as discussed in Fig. 3). As an example, the stripelike region is
centered around the red dashed line (state no. 7, (a'a) = 0.84). A
significant amount of states may still display opposite classicality
properties compared to the target.
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As is apparent from the plot, the distribution of STS is
concentrated within those stripes. On the other hand, despite
the distributions being very sharp in terms of fidelity to their
targets (recall that the balloons contains states with fidelity
larger than F > 0.995 to the target), their physical properties
may be very different. This fact is clearly illustrated looking at
nonclassicality, i.e., checking whether the Glauber P function
of the state is regular (this happens if s > u, corresponding to
a triangular region in Fig. 3) or singular: states with very high
fidelity to a classical or a nonclassical target may not share this
property with the target itself.

This effect may be not particularly surprising for target
states at the border of the classicality region, even for high
values of fidelity. On the other hand, the point becomes
far more relevant if values of fidelity commonly used in
experiments are considered. In Fig. 4 we show the balloons of
states having fidelity F > 0.9 or F > 0.95 to a nonclassical
target STS. As is apparent from the plot, all the generated
STS are contained in the balloons, irrespective of their
nonclassicality. The compatibility region may be considerably
reduced in size by adding an energy constraint but, nonetheless,
a large number of states may still fall in the region of
classicality.

Overall, we conclude that fidelity is not a significant figure
of merit to assess nonclassicality of STS and should not
be employed to benchmark a generation scheme or certify
quantum resources for a given protocol.

III. TWO-QUBIT SYSTEMS

In this section we deal with discrete two-qubit systems.
In particular, we focus on two-photon polarization states
|HH), |HV), |VH), and |VV), and address the reconstruc-
tion of statistical mixtures belonging to the class of Werner
states:

4

A(w “\ Ps
P = p W]+ fa, (14)
where fi, is the identity operator in the four-dimensional
Hilbert space of two qubits and |¥ ™) is one of the maximally
entangled Bell states
HH)x|VV HV)x|VH
oy L HHVEIVY) e HV)E V)

V2 V2
(15)

The parameter —1/3 < p < 1 tunes the mixture (14) from
the maximally mixed state i, /4 for p = 0 to the maximally
entangled Bell state | W ™) for p = 1. In between, the quantum-
to-classical transition is located at p = 1/3, with entangled
states satisfying p > 1/3 and separable ones p < 1/3.

A. Experimental generation of Werner states

A schematic diagram of experimental setup is sketched in
Fig. 5. Photon pairs are generated by type-I down conversion
from a couple of beta barium borate (BBO) crystals, in a non-
collinear configuration, pumped with a linearly polarized cw
405 nm laser diode, whose effective power on the generating
crystals is about 10 mW. The experimental apparatus has been
already described in detail in Refs. [40,41]. Here a half-wave
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FIG. 5. Schematic diagram of experimental setup. A linearly
polarized cw laser diode at 405 nm pumps a couple of BBO crystals
cut for type-1 down conversion. The horizontal and vertical amplitudes
of the photon pairs are balanced by a half-wave plate set along
the pump path (HWP1), whereas an additional BBO crystal (TD)
is placed on the pump path to compensate the temporal delay.
The amplitude modulator (AM) consists of a half-wave plate and
polarizer beam splitter. Signal and idler beams travel through the
SLM, which provides purification of the generated states. A half-wave
plate (HWP2) is inserted on signal path in order to generate the state
0, (see the text), whereas a quarter-wave plate, a half-wave plate,
and a polarizer (sectors T1 and T2) are used for the tomographic
reconstruction. Finally, the beams are detected by detectors D1 and
D2 and sent to single-photon counting modules (CC).

plate (HWP2 in Fig. 5) has been inserted in front of detector D1
to perform |®~) — |¥™) transformation. A programmable
one-dimensional spatial light modulator (SLM), which is
a liquid crystal phase mask (64 x 10 mm) divided in 640
horizontal pixels, each 100 um wide, is placed on the path
of signal and idler beams in order to control the visibility of
the generated states. The SLM provides the setup with great
flexibility, allowing the experimenter to choose and set the
visibility of generated states [42,43]. Eventually, photons are
focused in two multimode fibers and sent to single-photon
counting modules (CC).

Our experimental apparatus allows us to mix two types
of Bell states at a time, either |¥*) or |®*). In order
to obtain a Werner state (14) we generate the polarization
entangled states 0, = AW~ (W |+ (1 — )|¥T(PT| and
the mixed state Ppix = (|OT)(DT| + |O)(D™|)/2 [40,44].
Werner states may be obtained by suitably mixing these two
states /™ = fipr + fPmix With Iz)roper probabilities, given
by f1 = HTP, fr= I_T”, and A = p—j_’l. The mixed state Ppix 1S
obtained using the same scheme of Fig. 5 upon removing the
HWP2 from the signal path and setting the SLM in order to get
A >~ 0. The frequencies f; and f, are tuned by changing the
power of the pump beam with an amplitude modulator (AM).
The full range of Werner states may be explored.

The tomographic reconstruction is performed by measuring
16 projective and independent observables in the two-qubit
Hilbert space, namely P; = [y;){(y;| (with j =1,...,16).
Different settings of the apparatus, obtained by combining a
quarter-wave plate, a half-wave plate, and a polarizer (sectors
T1 and T2 in Fig. 5), are employed [45,46]. Each of the 16
measurements correspond to 30 acquisitions, in a time window
of 1 s, of coincidence photon counts {n }}Gzl, 1.€., the outcomes
of the projectors P;.
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B. Tomography with MLE

The density matrix of the two-qubit states generated in the
experiment has been reconstructed using maximum-likelihood
(MLE) tomographic protocol [45,46]. This scheme adopts a
suitable parametrization of the density matrix, namely p(T) =
TTT/Tr[T'T], where T is a complex lower triangular matrix
and T = {r j}}i, is the set of 16 parameters characterizing the
density matrix. In this way it is ensured that g is positive
and Hermitian (Choleski decomposition). The MLE protocol
allows one to recover the set T by means of a constrained
optimization procedure with Lagrange multipliers, which
accounts for the normalization condition Tr[ 0] = 1, involving
the set of data coming from the 16 experimental measurements.
In particular, the logarithmic likelihood functional to be
minimized reads

o = 126 [N 1ADNY;) —n;
o 2N (DY)

(16)

where N = Z‘;:l n; is a constant proportional to the total
number of acquisitions.

We experimentally generated Neyx, = 4 two-qubit states not
too far from the border between separable and entangled states
(see Table II). MLE quantum tomography shows that the
reconstructed density matrices do not display the typical X
shape of an ideal Werner state (14) with real-valued elements.
A possible route to extract the desired Werner state is based
on the maximization of the fidelity between the experimental
state and the generic Werner state (14). This procedure sounds
reasonable and, in principle, may allow one to assess the
quantum resources contained in the generated state, as well as
to exploit them in order to accomplish quantum tasks. On the
other hand, we will show in the following that a fidelity-based
inference is in general misleading and should be avoided in
assessing the true quantum properties of the experimentally
generated state.

C. Fidelity

In order to perform statistical analysis of data and evaluate
uncertainties we have resampled photon counts data to obtain
Numc = 107 repeated samples for each of the Nexp = 4 exper-
imental states (see the Appendix for details). The significance
of fidelity may be assessed upon the comparison between
two possible strategies to reconstruct quantum properties
of the generated states and their distribution. In the first
strategy we evaluate properties from the reconstructed states ﬁ,i
(k=1,...,Nepandi =1, ..., Nyc) as obtained by the MLE
tomography. In the second strategy we analyze the properties
of Werner states [ﬁ,i]("’) closest to each reconstructed state
ﬁ,i. We point out that the parameter p characterizing these
approximated Werner states maximize F(p', ™), where ")
is a generic Werner state (14). In Figs. 6(a)-7(a) we can see how
the states [} 1™ distribute according to p along the horizontal
axis.

The first method is based only on tomographic data and
provides an average two-qubit state Jp = vajf ﬁ,i/ Nwmc,
which optimizes the likelihood of the experimental data. This
average state may be then employed to infer a Werner target

state ﬁ,ﬁw), of the form given in Eq. (14), via a maximization
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TABLE II. Statistical analysis of the tomography of Nyc = 10° two-qubit states, having fidelities F (4, ,5,(;”)) with target Werner of

parameter p."’

tomographic states and of the approximated Werner states.

. The average values of the least eigenvalue e,,(5™) and of quantum discord D(p) are reported for both the distributions of

State 1 State 2 State 3 State 4
P 0.32 + 0.04 0.35 + 0.04 0.28 + 0.04 0.44 + 0.05
F(pe,0") 0.985+0:300 0.988+0:00° 0.987+0:000 0.985+0:907
en(B”) 0.01 + 0.03 —0.01 £ 0.03 0.04 £ 0.03 —0.07 £ 0.03
en([2]7) 0.01 & 0.03 —0.01 + 0.03 0.04 + 0.03 —0.08 + 0.04
D(pe) 0.08 £ 0.02 0.10 £ 0.02 0.06 =+ 0.02 0.14 £ 0.02
D(p") 0.11 + 0.03 0.14 + 0.03 0.06 + 0.02 0.21 +0.04
(w)

of the fidelity F(py, ﬁ,ﬁw)). Upon adopting the second strategy,
we obtain a distribution of approximated Werner states, with
an average state compatible, at least in principle, with the

en(p™)
0.1 ™
02 P
-0.1f
en(P™)
0.1} _
Py
0 ‘ ‘ ‘ BN
0.85 0.90 0.95\‘ 1,00
i
-0.2}
A (W) %
4
(b)

FIG. 6. (a) Distribution of e, ([5;]®) for 10° resampled states
as a function of the Werner parameter p. The N, =4 average
states gy are highlighted with black dots and error bars, matching the
theoretical curve e,,(p™) = (1 — 3p)/4 (dashed black line) relative
to the negative eigenvalue of the partially transposed ideal Werner
state (14). Moreover, it is evident how many states may cross the
boundary between entangled and separable states. (b) Distribution
of e, ([p:]®) for 10° simulations of the target state f, as a function
of the fidelity F (,6};,;35‘“’)) (green dots). The same distribution as a
function of F([p]™, ") (orange dots) matches with the theoretical
parametric curve (dashed black curve) obtained by evaluating F' and
e,, of the approximated Werner states. The values of entanglement for
the average state /, and for the target Werner state /."’ are compatible
(black dots and error bars).

Werner target state of the first strategy. The parameters p,
characterizing the Werner target states are reported in Table II.

637
0.4}
0.3}
0.2}

0.1}

D(p)
0.5¢
0.4} %

03} o

0.2} \]

0.1} ”

0.0 0.85 0.90 095 1.00

(b)

FIG. 7. (a) Distribution of D(4;) for 10° resampled states as a
function of the Werner parameter p. The N, = 4 average states e
are highlighted with black dots and error bars. The theoretical curve
D(p™) (dashed black line), relative to the discord of the ideal Werner
state (14), is systematically higher than the discord distribution of the
tomographic states 5;. (b) Distribution of D(p}) for 10° simulations
of the target state g, as a function of the fidelity F (ﬁj,ﬁiw)) (green
dots). The same distribution as a function of F([55]™,p.") (orange
dots) matches with the theoretical parametric curve (dashed black
curve) obtained by evaluating F and D of the approximated Werner
states. The values of quantum discord for the average state p, and for
the target Werner state ﬁﬁ"") are not compatible (black dots and error
bars).
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In the following, we analyze how some properties of the
quantum states distribute around the target states in terms of
fidelity, depending on which of the two strategies has been
adopted. In particular, we consider the amount of quantum
correlations of two-qubit states, as quantified by entanglement
and quantum discord.

1. Entanglement

The separability of two-qubit systems is established by the
Peres-Horodecki criterion [47,48]: a quantum state of two
qubits p is separable if and only if the partially transposed
density matrix is positive, i.e., 5 > 0. Thus it is possible
to study entanglement or separability properties by evaluating
the eigenvalues of the partially transposed density matrix. We
compute the minimum of these eigenvalues

en(p) = min{Al):_ (17)

for both the considered strategies, i.e., for the distributions of
resampled states p; and of the approximated Werner states
[$i]1™). For a Werner state the minimum eigenvalue, which
may assume negative values, is given by e, ([p™]") = (1 —
3p)/4.

In Fig. 6(a) we plot the distribution of e,,(5%) as a
function of the Werner parameter p for all the Nyc = 103
resampled states, with average tomographic states p;. We
note that the average states arrange along the curve of the
theoretical behavior for a Werner state and that the resampled
states follow the same prediction (see Table II). Nonetheless,
there is evidence of some states generated from a separable
experimental state in the entangled region, and vice versa.
This first observation reveals that statistical fluctuations in an
experiment may still produce quantum states with properties
radically different from the expected ones, such as separability
and entanglement.

In Fig. 6(b), we focus on the most entangled state A4
and compare the distribution of the resampled states and
of the corresponding Werner states, in terms of e,,(07) and
fidelity with the target state ,65"”). In this way we can highlight
the differences between the two possible strategies for data
analysis, i.e., between the evaluation of the properties of
the direct tomographic states and the approximated Werner
states. This second strategy compels the resampled states
to follow the single-parameter Werner state (14) and, thus,
to force the distribution of the least eigenvalue em([,@,gw)](’))
according to the theoretical prediction (dashed black curve
in the plot). In this way, we obtain a distribution of Werner
states having, obviously, very high values of fidelity with the
target (Werner) state. On the other hand, tomographic states
display lower values of fidelity with the target state, but e,,, (6%)
is evaluated directly from the tomographic density matrices.
From the statistical analysis, we conclude that the estimated
value of e,,, (6" ) is compatible within errors for both the adopted
strategies. We will see in the following that these two strategies
may lead to different and noncompatible results for another
property of quantum states, the quantum discord.

2. Quantum discord

Another widely adopted measure of the amount of quantum
correlations in a state g is the quantum discord [49,50], which

PHYSICAL REVIEW A 93, 062118 (2016)

is defined starting from two equivalent definitions, in the
classical domain, of the mutual information, i.e., the total
amount of correlations of p:

I(p) = S(pa) + S(pp) — S(D),
Ja(p) = S(pp) —min Y " c;S(pp))).
J

(18a)
(18b)

where p4 (Pp) is the reduced density matrix of p for
the subsystems A (or B) and S(p) = —Tr[plog,(p)] is the
von Neumann entropy. While the first definition (18a) is
based only on the von Neumann entropy, the second one
in Eq. (18b) accounts for all the classical correlations that
can be detected by local projective measurements only on a
subsystem. Here pp|; = Tra[[1;p I1;1/7; is the reduced state
of B conditioned to the set of projectors {IT ), with probability
= Tr[f[ b I ;1 for the outcome j, and the minimum in
Eq. (18b) is taken over all the possible {11 j}. A similar
definition applies for local measurements on subsystem B. The
quantum discord is then evaluated as the residual information
stemming from the difference of the two definitions in Eq. (18),
which has a pure quantum character:

D(p) = Z(p) — Ta(p). 19)

For a Werner state (14) the quantum discord can be analytically
evaluated:

A(w l+3p 1_p
D™ = —— logy(1+3p) +

log,(1 — p)
+p

log, (1 + p). (20)

In Fig. 7(a) we plot the quantum discord D(,é,i) for all
the Nyic = 10° resampled states, with average tomographic
states pi, as a function of the Werner parameter p. The
theoretical behavior of Eq. (20), represented in the figure by
a dashed curve, puts in evidence the high discrepancy with
the quantum discord computed for the tomographic states.
The approximation to Werner states leads to a systematic
overestimation of the quantum discord for the two-qubit states
(see also Table II). We can enforce this result by looking at
the distribution of the quantum discord relative to the single

Al

set of states p; only, as a function of the fidelity with the

corresponding target Werner state ﬁ;w) [see Fig. 7(b)]. Most
of the states are contained in a region of high values of
fidelity, thus suggesting that the approximation to an average
Werner state could be correct. Nonetheless, if we consider the
distribution of the approximated Werner states, we observe
that the values of fidelity increase, but the value of quantum

discord of the target Werner state /34(1“)) is out of the limits of

compatibility with the average quantum discord D(54). This
suggests that the second strategy employing the approximation
to Werner states reveals to be too drastic, as it does not
account properly for the actual tomographic reconstruction
of the density matrix.

We can conclude that, even though high values of fidelity
between a target state and a tomographic state are achieved, the
properties of the two can be very different. On an extreme level,
we can look at the distribution of the fidelity between the most
classical states we generated, ,65, and, at the opposite, the most
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FIG. 8. Histogram shows the distribution of F (ﬁg,,ﬁ;w)), i.e., the
fidelity between a set of separable states and an entangled target state.
The data are well fitted by a g distribution, centered around F' =~ 0.97.

entangled one as the target state, namely ﬁftw) . The probability
density histogram in Fig. 8 shows that the two kinds of states
should result compatible with a level of fidelity F' =~ 0.97, even
though they possess clearly different properties.

IV. CONCLUSIONS

In conclusion, we have addressed quantum state recon-
struction for DV and CV quantum optical systems and
experimentally analyzed the significance of fidelity as a figure
of merit to assess the properties of the reconstructed state.
State reconstruction, in the two cases, has been performed
adopting homodyne and MLE tomography techniques. One
of the most natural ways to link the tomographic results
to the target states, i.e., the quantum states supposed to be
generated by the designed experimental setup, is the evaluation
of fidelity. In order to study the relation between fidelity and
the experimental states, we performed statistical analysis using
Monte Carlo sampling of each experiment, regenerating sets

of Nyc = 10° data samples, and analyzing the distribution of
some of their main properties as a function of fidelity.

In the CV framework, we employed a thermal-state seeded
OPO cavity, an experimental configuration which allows one to
generate STS on demand. The accurate control of the thermal
and squeezing component of the apparatus allows us to address
the quantum-to-classical transition for these states. Our results
show that even for high values of fidelity and imposing energy
constraints, one may find neighboring states in terms of fidelity

which, however, not share the same quantum or classical
properties.

PHYSICAL REVIEW A 93, 062118 (2016)

In the DV context, we experimentally obtained pairs of po-
larized photons from type-I down conversion and conveniently
generate the Werner mixed states. This one-parameter family
of states allowed us to analyze the nonclassical properties of
two-qubit states in terms of entanglement or separability and to
evaluate the amount of quantum correlations by means of the
quantum discord. We found that a fidelity based approximation
of the tomographic states by Werner states may lead to an
overestimation, e.g., of the quantum discord. Moreover, high
values of fidelity may occur between two very different states
in terms of their separability properties.

Overall, we conclude that while fidelity is a good measure
of geometrical proximity in the Hilbert space it should not
be used as the sole benchmark to certify quantum properties
[20-25], which should be rather estimated tomographically in
a direct way, or using a suitable witness operator [1,4].
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APPENDIX: EVALUATION OF UNCERTAINTIES BY
MONTE CARLO RESAMPLING

In order to avoid the limitations of finite samples and the
influence of systematic unpredictable errors that could be
present in an experiment, we evaluate uncertainties by Monte
Carlo resampling of data, according to standard metrological
prescriptions [51] valid for any statistical models having a
single output quantity and input quantities with arbitrary
distribution. Here we provide a brief summary of the main
assumptions and principles.

The measured quantities of interest X; are random variables
distributed according to a given probability density function
(PDF) G(X;). In particular, we assume normal distributions
characterized by mean value (x;) and standard deviation éx;.
Monte Carlo evaluation of uncertainties is based on sampling
random outcomes from G(X;) according to experimental data,
which themselves fix the average values and the standard

deviations. In particular, as described in the main text, the

considered experimental measurements, for CV systems,
correspond to homodyne detection of the radiation field
quadratures, whereas for DV systems we perform coincidence
photon counting measurements of polarized photons. Starting
from experimental results, we generate Nyic = 10° resampled

replicas of the experiments, thus building a significative sample
for the statistical analysis.
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