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We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncor-

related multi-mode Gaussian states. In particular, we introduce the notion of \locally the same

states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing,
i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We

also study the interference of orthogonally polarized Gaussian states by means of an interfero-

metric scheme based on a beam splitter, rotators of polarization and polarization ¯lters.
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1. Introduction

Among the possible mechanisms to generate quantum correlations, the one consisting

in the mixing of Gaussian states, that is quantum states with Gaussian characteristic

functions, at a beam splitter (BS) is of special interest in view of its feasibility.1,2 In

fact, the Gaussian states are generated and manipulated by means of linear and

bilinear Hamiltonians, which are actually implemented in all quantum optical labs.

In particular, the interference at a BS of two squeezed states can generate Gaussian

entanglement,3�9 which has been used so far to achieve continuous variable tele-

portation.10 The properties of the correlated states emerging from a BS have been

thoroughly investigated in the past years, either to optimize the generation of

entanglement11,12 or to ¯nd relations between their entanglement and purities13 or

teleportation ¯delity.14 Furthermore, a recent work15 has proved that there exists a

strict relation between the ¯delity (similarity) of the Gaussian states entering the BS

and the birth of entanglement at the output.
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On the other hand, the symmetries exhibited by interfering Gaussian states may

lead to the invariance under mode-mixing interactions.16,17 This e®ect has been

experimentally veri¯ed and exploited to restore the nonlocal correlations lost by a

two-mode squeezed vacuum state.18

Motivated by this result and considering the intrinsic multi-mode nature of

the Gaussian states produced in the laboratories,19,20 in this paper we address the

conditions leading to the \non appearance" of the correlations and state the main

theorems underlying this e®ect.

The plan of the paper is as follows. In Sec. 2 we review the formalism to describe

multi-mode Gaussian states and introduce the notion of \locally the same states"

(LSS). We also state the main theorem and the corollaries concerning the invariance

of two uncorrelated Gaussian states through a bilinear interaction. Section 3

addresses the interference of polarized Gaussian states and we close the paper

drawing some concluding remarks in Sec. 4.

2. Interference of LSS

Gaussian states are completely characterized by their covariance matrix (CM) and

mean values vector.1 If we de¯ne the vector of operators R ¼ fq1; p1; . . . ; qN ; pNg,
where we introduced the quadrature operators qk ¼ 1ffiffi

2
p ðak þ a†

kÞ and

pk ¼ 1
i
ffiffi
2

p ðak � a †
kÞ, and ak is the ¯eld operator of mode k, the 2N � 2N CM §v of a

N -mode Gaussian state %v, v ¼ f1; . . . ;Ng, can be written in the following way:

½§v�nm ¼ 1

2
hRnRm þRmRni � hRnihRmi; ð1Þ

where hAi ¼ Tr½%vA� and Rk ¼ ½R�k. The ¯rst-moments vector is thus given by hRi.
In order to simplify the formalism, we write §v in the block form:

§v ¼

¾1 ±12 � � � ±1N

±T
12 ¾2 � � � ±2N

..

. ..
. . .

. ..
.

±T
1N ±T

2N � � � ¾N

0
BBBBBB@

1
CCCCCCA
; ð2Þ

where ¾k and ±hk are 2� 2 real matrices. In particular, ¾k corresponds to the CM of

the state %k ¼ Trvnfkg½%v� and ±hk is related to the (classical or quantum) correlations

between the modes h ad k: if ±hk ¼ 0, then %hk ¼ Trvnfh;kg½%v� ¼ %h � %k, that is the

two modes are uncorrelated, and the CM:

§hk ¼
¾h ±hk

±T
hk ¾k

 !
ð3Þ
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of the state %hk reduces to the direct sum§hk ¼ ¾h � ¾k of the two single-mode CMs.

We can now introduce the following:

De¯nition 1 (Locally the same). Given theN -mode state describedby thedensity

matrix %v, v ¼ f1; . . . ;Ng, twomodes h; k 2 v are LSS if %h ¼ %k, with %l ¼ Trvnflg½%v�.
As an example, it is easy to verify that each of the two beams of the two-mode

squeezed vacuum state j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p P
n�

njni1jni2, with � ¼ tanh r, where r is the

two-mode squeezing parameter, and a single-mode thermal state with average

number of photons Nth ¼ sinh2r are LSS. Indeed, two Gaussian states which are LSS

also have the same single-mode CM: for what concerns the example cited above, the

CM of the two-mode squeezed vacuum §12 is obtained from Eq. (3) by setting

¾1 ¼ ¾2 ¼ 1
2 ð1þ 2sinh2rÞ 2 and ±12 ¼ 1

2 sinhð2rÞ¾z, where k is the k� k identity

matrix and ¾z ¼ Diagð1;�1Þ is the Pauli matrix, whereas the CM of the thermal

state reads ¾ ¼ 1
2 ð1þ 2NthÞ 2.

Let us now turn the attention on the evolution of a Gaussian state. If we act on a

Gaussian state by means of linear or bilinear interaction Hamiltonian (actually these

are most of the interactions implementable in a quantum optics laboratory), then its

Gaussian character is preserved and we can describe its evolution by a suitable

symplectic transformation acting on the CM and the mean values vector.21 By

denoting with U the unitary operator associated with the interaction Hamiltonian

and with S the corresponding symplectic transformation, we have:

%v ! U%vU
† ) §v ! S§vS

T ;

hRi ! ShRi:

(
ð4Þ

In this paper, besides all the possible bilinear interactions, we are interested in the

properties of the Hamiltonian H / a†
hak þ aha

†
k, which describes the mixing of the

two modes h and k at a BS. The corresponding unitary operator describing such an

evolution writes Uhkð�Þ ¼ expf�ða†
hak � aha

†
kÞg, where T ¼ cos2� is the transmis-

sivity of the BS and, without loss of generality, we take � 2 R. The 4� 4 symplectic

matrix associated with Uhkð�Þ is given by:

Shkð�Þ ¼
cos� 2 sin� 2

�sin� 2 cos� 2

� �
: ð5Þ

It is now straightforward to prove the following:

Theorem 1 (Local invariance). Given the two-mode Gaussian state described by

the density matrix %12, such that the two modes are LSS and Tr½Rl%12� ¼ 0, l ¼ 1; 2

and given the unitary bilinear transformation U12ð�Þ ¼ expf�ða†
1a2 � a1a

†
2Þg, then:

U12ð�Þ%12U †
12ð�Þ ¼ %12; ð6Þ

if and only if %12 ¼ %1 � %2, that is if and only if the two modes are uncorrelated.
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Proof. Since the CM of the evolved state reads:

S12ð�Þ
¾1 ±12

±T
12 ¾2

� �
S T

12ð�Þ ¼
§1 §12

§T
12 §2

� �
; ð7Þ

with:

§1 ¼ cos2ð�Þ¾1 þ sin2ð�Þ¾2 �
1

2
sinð2�Þð±12 þ ±T

12Þ; ð8aÞ

§2 ¼ sin2ð�Þ¾1 þ cos2ð�Þ¾2 þ
1

2
sinð2�Þð±12 þ ±T

12Þ; ð8bÞ

§12 ¼
1

2
sinð2�Þð¾2 � ¾1Þ þ cos2ð�Þ±12 � sin2ð�Þ±T

12; ð8cÞ
if ¾1 ¼ ¾2, i.e. if the input states are LSS, then §k ¼ ¾k and §12 ¼ ±12, i.e. the two-

mode CM is left unchanged, if and only if ±12 ¼ 0: the two LSS initial states should

also be uncorrelated, namely, %12 ¼ %1 � %2.

If the input states are not LSS, then the two modes emerging from the BS

exhibit correlations, whose classical or quantum nature has been thoroughly investi-

gated elsewhere.11�15 Indeed, under the hypotheses of Theorem 1 the two uncorrelated

modes may belong to the same multi-mode Gaussian state, as pointed out in the

following:

Corollary 1. Given the N -mode Gaussian state %v, whose two modes h and k are

LSS and uncorrelated, i.e. %hk ¼ Trvnfh;kg½%v� ¼ %h � %k, and Tr½Rl%hk� ¼ 0, l ¼ h; k,

then:

Trvnfh;kg½Uhkð�Þ%vU †
hkð�Þ� ¼ %hk; ð9Þ

where Uhkð�Þ ¼ expf�ða†
hak � aha

†
kÞg. Moreover, if %v ¼ �N

n¼1%n, then one also has

Uhkð�Þ%vU †
hkð�Þ ¼ %v.

More in general, the Corollary 1 states that if two LSS modes interacting through

the BS are not correlated with each other, but may be correlated with other modes,

they are still left unchanged by the interaction. Nevertheless, as we will see in the

following, the presence of the BS a®ects the correlations existing between the

interacting modes and the other ones.

Theorem 1 can be extended to address the bilinear interactions between couples of

modes belonging to di®erent uncorrelated multi-mode states. We have the:

Corollary 2. (Multi-mode invariance). Given two uncorrelated N -mode Gaus-

sian states with zero ¯rst moments, %A and %B, where A ¼ f1; . . . ;Ng and B ¼
fN þ 1; . . . ; 2Ng, and the transformationUBS;Nð�Þ ¼ �N

k¼1expf�ða†
kaNþk � aka

†
NþkÞg,

whichmixes themode k of the state %A with themodeN þ k of the state %B, k ¼ 1; . . . ;N ,

then:

UBS;Nð�Þ%A � %BU
†
BS;Nð�Þ ¼ %A � %B; ð10Þ

if and only if %A and %B are excited in the same state.
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Proof. The proof follows by noting that the 4N � 4N CM of the 2N -mode state

%AB ¼ %A � %B is §AB ¼ §A �§B, where §k is the 2N � 2N CM of the state %k,

k ¼ A;B and that the symplectic matrix associated with UBS;Nð�Þ reads:

SBS;Nð�Þ ¼
cos� 2N sin� 2N

�sin� 2N cos� 2N

� �
: ð11Þ

2N being the 2N � 2N identity matrix. Now, one has:

SBS;Nð�Þ§ABS
T
BS;Nð�Þ ¼

cos2�§A þ sin2�§B

1

2
ð§B �§AÞ sinð2�Þ

1

2
ð§B �§AÞ sinð2�Þ cos2�§B þ sin2�§A

0
B@

1
CA ð12Þ

and SBS;Nð�Þ§ABS
T
BS;Nð�Þ ¼ §AB if and only if §A ¼ §B, and, in turn, %A and %B

describe the same N -mode state.

The results summarized by the previous theorem and corollaries can be used to

design suitable scheme to control decoherence in lossy channels,16�18 to investigate

the birth of nonclassical correlations15 or to eliminate mode coupling in communi-

cation schemes.22

It is worth noting that two LSS modes really interfere at the BS, though the ¯nal

state is the same as the input one. The interaction can be demonstrated considering

the scheme in Fig. 1, where the two modes 1 and 2, in the mixed states %1 ¼ %2 ¼ %,

are LSS and uncorrelated, but the mode 2 is correlated with mode 3, i.e.

%23 6¼ %2 � %3. It is worth noting that since modes 2 and 3 are correlated, then %2
and %3 should be mixed states. Thanks to the Corollary 1, after the interference

modes 1 and 2 are still left unchanged and uncorrelated, however, because of the

interaction, part of the correlations shared between modes 2 and 3 are now shared

between modes 1 and 3. This can be seen by looking at the evolved CM of the whole

state of the three modes in the presence of the BS. The CM of the initial state

Fig. 1. In this scheme, the modes 1 and 2 are LSS and interfere at a BS, but the mode 2 is correlated with

the mode 3: because of the interaction mode 1 becomes correlated with mode 3, though it is still uncor-

related with mode 1. See the text for details.
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%123 ¼ %1 � %23 reads:

§123 ¼
¾1 0 0

0 ¾2 ±23

0 ±T
23 ¾3

0
BB@

1
CCA; ð13Þ

where ¾k is the 2� 2 single-mode CM of mode k ¼ 1; 2; 3, ¾1 ¼ ¾2 ¼ ¾ and the

matrix ±23 6¼ 0 contains the correlations between modes 2 and 3. Since the BS acts

only on modes 1 and 2, the 6� 6 symplectic matrix associated with the unitary

evolution U12ð�Þ � I can be written as the direct sum S12ð�Þ � 2, where S12ð�Þ is
given in Eq. (5). We have:

§
ðoutÞ
123 ¼ S12ð�Þ � 2§123S

T
12ð�Þ � 2 ¼

¾ 0 sin� ±23

0 ¾ cos� ±23

sin� ±23 cos� ±23 ¾3

0
BB@

1
CCA: ð14Þ

The comparison between Eqs. (13) and (14) shows that while, according to the

Corollary 1, the states of modes 1 and 2 are (locally) left unchanged (and uncor-

related), now both modes 1 and 2 are correlated with mode 3. In fact we have the

following CMs of the three reduced two-mode subsystems:

§
ðoutÞ
12 ¼ ¾ 0

0 ¾

 !
; ð15aÞ

§
ðoutÞ
13 ¼

¾ sin� ±23

sin� ±T
23 ¾3

 !
; §

ðoutÞ
23 ¼

¾ cos� ±23

cos� ±T
23 ¾3

 !
; ð15bÞ

respectively. Furthermore, the degree of correlations between the modes 2 and 3 is

decreased (±23 ! cos� ±23) for the bene¯t of the birth of correlations between the

previously uncorrelated modes 1 and 3 (0 ! sin� ±23). We conclude that the modes

1 and 2 are actually mixed at the BS, since mode 1 becomes correlated with mode 3

at the expenses of the initial correlations between modes 1 and 2. Nevertheless, this

happens in such a way that no overall correlations arise between the interacting

modes. This e®ect has been very recently experimentally demonstrated addressing

pseudo-thermal (Gaussian) states.23

3. Interference of Polarized Gaussian States

In this section we address the e®ect of the polarization on the interference of Gaussian

states. Without loss of generality, we still consider Gaussian states with zero ¯rst

moments.

In order to include the polarization in our analysis, each ¯eld operator introduced

in the previous section should be doubled, according to two orthogonal polarizations

S. Olivares
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(for the sake of simplicity, we use the basis fjHi; jV ig for the polarization degree of

freedom), namely:

ak ! ak;H ; ak;V with ½ak;s; al;t� ¼ �h;l�s;t; ð16Þ
where ak;s is the annihilation operator of the mode kth with polarization s. In turn,

the 2� 2 CM matrix characterizing a single-mode Gaussian state is now replaced

with a 4� 4 CM ¾, which may be written in the block form:

¾ ¼ ¾ðHÞ ¾ðHV Þ

¾ðVHÞ ¾ðV Þ

 !
; ð17Þ

where all the blocks are 2� 2 real matrices. Indeed, the CM (17) ful¯lls all the

properties to be a CM.1,24 The block ¾ðsÞ, s ¼ H;V , refers to the CM of the state the

reduced s-polarized Gaussian state %ðsÞ ¼ hsj%jsi, while the block ¾ðHV Þ represents
the eventual correlations between the two orthogonally polarized modes.

In order to manipulate the polarization of the states, we introduce the operator

Rkð�Þ, which describes the transformation performed by a rotator of polarization

and, thus, acts on mode k by rotating its polarization by an amount � (with respect to

the horizontal axis):

Rkð�Þ ¼ exp � a†
k;H ak;V � ak;Ha†

k;V

� �n o
: ð18Þ

We recall that, by using the Schwinger two-mode representation of the SU(2) alge-

bra,25 i.e. Jk;þ ¼ a†
k;H ak;V , Jk;� ¼ ak;Ha†

k;V and Jk;3 ¼ 1
2 ½Jk;þ; Jk;�� ¼ 1

2 ða†
k;H ak;H �

a†
k;V ak;V Þ the operator Rkð�Þ can be also written as:

Rkð�Þ ¼ exp �ðJk;þ � Jk;�Þ
� � ð19aÞ

¼ exp �tan �Jk;þ
� �ðcos �Þ2Jk;3exp tan � Jk;�

� � ð19bÞ
¼ exp tan � Jk;�

� �ðcos �Þ�2Jk;3exp �tan � Jk;þ
� � ð19cÞ

and, by using the Hausdor® recursion formula26:

e�ABe��A ¼ Bþ �½A;B� þ �2

2!
½A; ½A;B�� þ �3

3!
½A; ½A; ½A;B��� þ � � � ;

it is straightforward to verify that:

R†
kð�Þ ak;HRkð�Þ ¼ cos � ak;H þ sin � ak;V ; ð20aÞ

R†
kð�Þ ak;V Rkð�Þ ¼ cos � ak;V � sin � ak;H : ð20bÞ

The symplectic transformation corresponding to Rkð�Þ reads:

Rkð�Þ ¼
cos � 2 sin � 2

�sin � 2 cos � 2

� �
: ð21Þ

Note that the symplectic Rkð�Þ is similar to the symplectic of the BS given in Eq. (5).
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As an example of the dynamics of a polarized Gaussian state under the action of

Rkð�Þ, let us assume that the Gaussian input state %in is initially H -polarized. The

4� 4 CM of % then reads (we stress that the diagonal blocks refer to di®erent

polarizations):

¾ ¼ ¾in 0

0 ¾0

� �
; ð22Þ

where ¾in and ¾0 ¼ 1
2 2 are the CMs of the reduced H -polarized and V -polarized

modes, respectively (since the input state is H -polarized, the V -polarized mode is in

the vacuum state). The evolved state %� ¼ Rð�Þ%R†ð�Þ is still a Gaussian state with

CM given by:

¾� ¼
cos2�¾in þ sin2�¾0

1

2
ð¾0 � ¾inÞ sinð2�Þ

1

2
ð¾0 � ¾inÞ sinð2�Þ cos2�¾0 þ sin2�¾in

0
B@

1
CA: ð23Þ

As one may expect, correlations can arise between the two orthogonally polarized

modes, which can be spatially separated by means of a polarizing BS and, thus,

exploited for quantum information purposes.

In Fig. 2, we sketched an interferometric scheme consisting of two polarized

Gaussian states which interfere at a BS. As inputs, we take two uncorrelated

Gaussian states %1;H and %2;V with orthogonal polarizations, H and V , respectively

and the CM of the resulting Gaussian state %12 ¼ %1;H � %2;V is:

ð24Þ

where the upper-left 4� 4 block describes the modes a1;p and the lower-right one

refers to the modes a2;p, p ¼ H;V . Indeed, at the BS only the modes with the same

Fig. 2. Interference of polarized Gaussian states (see the text for details).
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polarization interfere, thus the symplectic matrix describing the interaction can be

written as:

ð25Þ

After the BS we can insert two rotators of polarization, Rkð�kÞ, k ¼ 1; 2, as

depicted in Fig. 2, and the corresponding symplectic transformation R12ð�1; �2Þ ¼
R1ð�1Þ � R2ð�2Þ reads:

ð26Þ

Finally, two polarization ¯lters (\pol." in Fig. 2) are placed in front of the two

photodetectors in order to select the H or V polarization: this last operation corre-

sponds to delete the unwanted rows and columns from CM §
ðoutÞ
12 of the evolved

state, which writes:

§
ðoutÞ
12 ¼ R12ð�1; �2ÞS12ð�Þ§12S T

12ð�ÞRT
12ð�1; �2Þ: ð27Þ

In the following we assume that the two inputs are in the same Gaussian state (but

with orthogonal polarizations), i.e. ¾1 ¼ ¾2 ¼ ¾ in Eq. (24). At ¯rst we remove the

rotators of polarizations, i.e. �1 ¼ �2 ¼ 0, and the CM §
ðoutÞ
12 of the state arriving at

the detectors becomes (for the sake of simplicity we set � ¼ �=2):

ð28Þ

If we now place the polarization ¯lters H or V before the detectors, we obtain the

following reduced CM:

ð29Þ

respectively, which exhibit correlations between the two detected modes in both

the cases. As a matter of fact, the same CMs (29) and, thus, the same output states

are obtained by sending separately the two input states, since they do not interfere at

the BS.
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Now we insert the two rotators of polarization after the BS (see Fig. 2) and set

�1 ¼ �2 ¼ �=4: the resulting Gaussian state has the following CM:

ð30Þ

and, after ¯ltering the modes by means of the polarization ¯lters H or V we

obtain:

ð31Þ

i.e. in both the cases the two modes are no longer correlated. This e®ect is due to

the rotators that let the modes with orthogonal polarization interfere and \erase" the

information on the input state carried by its polarization, analogously to what

happened in the ¯rst optical implementation of the quantum eraser.27 This kind of

interference has been also exploited to fully reconstruct the CM of a two-mode

entangled Gaussian state.28�30

4. Concluding Remarks

In this paper we have introduced the notion of \LSS" and we have proved that

two uncorrelated LSS modes are invariant under the evolution through a BS. The

theorem and the corollaries written in Sec. 2 summarize, generalize and formalize the

results of previous works, opening the way to the experimental investigation of the

invariance in the multi-mode regime. We have included in our study the interference

of orthogonally polarized Gaussian states and, in particular, we have proposed

an interferometric scheme based on a BS rotators of polarization and polarization

¯lters aimed to explore the dynamics of correlation in polarized continuous-variable

systems.
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