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We address the interference of a pair of two-mode Gaussian states, interacting pairwise through

a beam-splitter Hamiltonian. In the framework of a suitable phase-space analysis, the corre-

lations generated through the interaction are studied by considering a quantity proportional to

the variance of difference between the detected photocurrents of all the possible couples of

modes. We use this quantity to demonstrate the invariance through the interaction and the

correlations swapping also in the presence of nonideal photodetection.
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1. Introduction

The interference between uncorrelated quantum states may give rise to classical or

quantum correlations. Among the possible interference mechanisms, the one that

involvesmixing of twomodes of the radiationfield at abeamsplitter plays a leading role

in the optical implementations of quantum information processing, due to its exper-

imental feasibility andversatility.1 Inparticular, the class ofGaussian states, i.e. states

with a Gaussian characteristic function, has triggered the attention of the quantum

optics community and has been deeply characterized and studied for both quantum

information purposes and fundamental issues.2,3 For example, the interference

at a beam splitter of two squeezed states can generate Gaussian entanglement,4�10

which has been used so far to achieve continuous variable teleportation.11

The properties of the correlated states emerging from a beam splitter have been

thoroughly investigated in the past years, either to optimize the generation of

entanglement12,13 or to find relations between their entanglement and purities14 or

teleportation fidelity.15 Furthermore, a recent work16 has proved that there exists a

strict relation between the fidelity (similarity) of the Gaussian states interacting

through a beam-splitter Hamiltonian and the birth of entanglement at the output.
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On the other hand, the interference at a beam splitter can also lead to the

\invariance," that is the outgoing two-mode state is overall unaffected by

the interaction and it is left in the same state of the two-mode input.16�18 This

effect may be extremely useful in the case of multi-mode Gaussian states and,

more precisely, in the case of bipartite Gaussian states.19 In Ref. 17, we showed

that the correlations lost by a two-mode squeezed vacuum state, whose modes are

reflected by two beam splitters with the same transmissivity, can be totally

recovered by sending to the other ports of the beam splitters a two-mode squeezed

vacuum state with the same characteristics of the input one. This effect has been

experimentally applied to restore the two-mode squeezing in the presence of strong

optical losses.20

In order to better understand the dynamics of the correlations and the limits of

the setup addressed in Ref. 17, in this paper we consider as input states more general

bipartite Gaussian states than the (pure) two-mode Gaussian states with zero first

moments addressed so far. Moreover, to look at the correlations, we focus on an

experimentally measurable quantity proportional to the variance of the difference

between the detected photocurrents of all the possible couples of modes, also in the

presence on nonunit quantum efficiency.

The paper is structured as follows. In Sec. 2, we review the basic elements of

the interferometric setup, including the input Gaussian states. The evolution

of the system is described in Sec. 3 by means of a suitable phase-space analysis. The

characterization of the evolved states is addressed in Sec. 4, where we summarize the

results concerning the correlations invariance and swapping for a particular choice of

the involved parameters. Finally, Sec. 5 closes the paper with some concluding

remarks.

2. The Interferometric Scheme

In this section, we describe the interferometric scheme to study the correlations

arising from the interference of two bipartite Gaussian states. The main components

of the scheme are sketched in Fig. 1. We consider as initial input states the two

bipartite Gaussian states %12 and %34 generated by the nonlinear crystals NLC12 and

NLC34 (see Fig. 1), which we assume to be a pair of two-mode squeezed thermal

states described by the following density matrices:

%12 ¼ S2ðrÞ�1ðNth;1Þ � �2ðNth;2ÞS †
2ðrÞ; ð1aÞ

%34 ¼ S2ðsÞ�3ðNth;3Þ � �4ðNth;4ÞS †
2ðsÞ; ð1bÞ

respectively, where S2ðzÞ ¼ expfzða†
ha

†
k � ahakÞg is the two-mode squeezing oper-

ator, r; s; z 2 R, ak is the annihilation operator of the kth mode, and:

�kðNth;kÞ ¼
ðNth;kÞa

†
k
ak

ð1þNth;kÞa
†
k
akþ1

; ð2Þ

1728 S. Olivares



is a thermal state of mode kth with Nth;k average photons. If Nth;h;Nth;k ! 0 in

Eqs. (1a) and (1b), then %hk reduces to the maximally entangled two-mode squeezed

vacuum state (the twin-beam state) addressed in Ref. 17.

In order to make our analysis more general, we apply a displacement operator

Dkð�kÞ ¼ expð�ka
†
k � ��

ka
†
kÞ to the mode k ¼ 1; 2; 3; 4, which are thus displaced

by an amount �k, respectively, and we also add a phase shift �k, as depicted

in Fig. 1.

After the displacements and the phase shifts (see Fig. 1), the modes 1 and 3 and

the modes 2 and 4 are mixed at two beam splitters with transmissivities �1 ¼ cos2�1

and �2 ¼ cos2�2, respectively, giving rise to the interference between the involved

states. Finally, each outgoing mode undergoes a photodetection process and the

following quantity is evaluated for all the possible couples of modes h�k:

�hkð�Þ ¼
Var½Dhkð�Þ�
Ihð�Þ þ Ikð�Þ

; ð3Þ

with Dhkð�Þ ¼ Ihð�Þ � Ikð�Þ, where Ikð�Þ is the photocurrent measured at the

detector k ¼ 1; 2; 3; 4 in Fig. 1 and � is the corresponding quantum efficiency (we are

assuming that all the photodetectors have the same quantum efficiency).

The next session will be devoted to the description of the evolution of the input

states through the interferometer and the calculation of �hkð�Þ.

3. System Evolution

Since the states and the operations involved in our scheme are all Gaussian, namely,

the states have a Gaussian characteristic function and the operations acting on them

2

1

3 4

3 4

2

1

Fig. 1. Scheme to investigate the correlations arising from the pairwise interference of two bipartite

Gaussian states. See the text for details.
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preserve their Gaussian character, in this section we address the evolution of the

system by using the phase-space approach. In particular, since the Gaussian states

are fully characterized by their covariance matrix (CM) and first-moments vector,

we can describe the evolution of these quantities through suitable symplectic

transformations describing the unitary evolutions.3 For the sake of simplicity, from

now on we set:

Nth;2 ¼ Nth;1 ¼ Nth; Nth;4 ¼ Nth;3 ¼ Mth; ð4Þ
�1 ¼ �2 ¼ �; �3 ¼ �4 ¼ �; �2 ¼ �4 ¼ 0; ð5Þ

with �; � 2 R.

The 4� 4 CM of the the two-mode state %hk ¼ S2ðrÞ�hðNÞ � �kðNÞS †
2ðrÞ reads3:

¾hkðr;NÞ ¼ 1þ 2N

2

coshð2rÞ1 sinhð2rÞ�3

sinhð2rÞ�3 coshð2rÞ1

� �
; ð6Þ

where 1 is the 2� 2 identity matrix and �3 ¼ diagð1;�1Þ is the Pauli matrix,

while the first-moments vector Xhk ¼ Tr½%hk ðqh; ph; qk; pkÞT � reduces to Xhk ¼
ð0; 0; 0; 0ÞT , where ð� � �ÞT is the transposition operation and qk ¼ 1 ffiffi

2

p ða†
k þ akÞ and

pk ¼ i ffiffi
2

p ða†
k � akÞ are the quadrature operators of mode k. Thus, the 8� 8 CM of the

four-mode input state %12 � %34 with the assumptions in Eq. (4) reads:

§in � §inðr;Nth; s;MthÞ ¼
¾12ðr;NthÞ 0

0 ¾34ðs;MthÞ
� �

; ð7Þ

while the first-moments vector is Xin ¼ ðX12;X34ÞT . The displacement operations

leave the CM unchanged, but \displace" the vector Xin, i.e. (here we use the same

symbol Xin for both the initial and the displaced first-moments vector)3:

Xin ! Xin ¼
ffiffiffi
2

p
ð�; 0; �; 0; �; 0; �; 0ÞT ; ð8Þ

where we used the assumptions (4).

The symplectic transformation associated with the single-mode phase shift of an

amount � acting on mode k is given by the following 2� 2 matrix:

Sps;kð�Þ ¼
cos � � sin �

sin � cos �

� �
; ð9Þ

in turn, the symplectic transformation acting on the four modes (see also Fig. 1) is

just the direct sum:

Spsð±Þ ¼
O4

k¼1

Sps;kð�kÞ; ð10Þ

with ± ¼ ð�1; �2; �3; �4Þ ¼ ð�1; 0; �3; 0Þ. Now, both §ðr;Nth; s;MthÞ and the displaced

Xin are transformed as follows:

§in ! Spsð±Þ§inS
T
psð±Þ; Xin ! Spsð±ÞXin: ð11Þ
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Finally, the mode-mixing at the two beam splitters is described by the symplectic

transformation:

S13;24ð�1; �2Þ ¼
cos�1 1 0 � sin�1 1 0

0 cos�2 1 0 � sin�2 1

sin�1 1 0 cos�1 1 0

0 sin�2 1 0 cos�2 1

0
BBB@

1
CCCA: ð12Þ

The CM §out � §outðr;Nth; �1; �1; s;Mth; �3; �2Þ and the first-moments vector

Xout � Xoutð�; �1; �1;�; �3; �2Þ of the final four-mode Gaussian state are given by

§out ¼ S13;24ð�1; �2ÞSpsð±Þ§inS
T
psð±ÞS T

13;24ð�1; �2Þ; ð13Þ
Xout ¼ S13;24ð�1; �2ÞSpsð±ÞXin; ð14Þ

respectively. In order to calculate the quantity �hkð�Þ defined in Eq. (3) and which

we will study in the following section, we will use the results reported in the

Appendix A.

4. Output State Characterization

We cannot report explicitly the analytic expression of �hkð�Þ, since it is clumsy.

However, in this section we report some relevant result obtained focusing on the

couple of modes 1, 2 and 1, 4 (analogous results are obtained considering the other

couples of modes). In particular, we consider two interesting effects due to the

interference: the correlations invariance (through the interaction) and the corre-

lations swapping. In the first case, the correlations between the input modes 1 and 2

are overall not affected by the presence of the beam splitters17,20: the same values of

�hkð�Þ for �1 ¼ 0; 2	 are obtained in the absence of the beam splitters. In the second

case, the beam splitters cause the swap of the correlations between the modes17: the

correlations exhibited by the modes 1 and 2 are swapped to the modes 1 and 4 as one

can verify by looking at the values of �hkð�Þ at �1 ¼ 	 (it is worth noting that the

modes 1 and 4 do not directly interact).

In Figs. 2 and 3, we plot �12ð�Þ and �14ð�Þ: in both the cases it is clear that the

effect of the correlations invariance and swapping is according to the particular

choice of the transmissivities of the beam splitters.

The presence of the displacement operators does not affect the amount of cor-

relations at the output, nevertheless it changes the actual value of �hkð�Þ. In Fig. 4,

we show how it is possible to remove the contribution to �12ð�Þ of the displacement

operations, for a suitable choice of the parameters and in the special case of equal

two-mode input states. In fact, by setting, e.g. �1 ¼ 	=4, �2 ¼ �1 þ 	=2, and �1 ¼ 	

(with �2 ¼ 0) one hasffiffiffi
2

p
ð�; 0; �; 0; �; 0; �; 0Þ ! ð0; 0; 0; 0;�2�; 0;�2�; 0Þ; ð15Þ

that is, the displacements are moved to modes 3 and 4 due to the interference at

the BSs and, in turn, �12ð�Þ decreases. Though we are working in the correlation
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swapping configuration (i.e. �2 ¼ �1 þ 	=2), since we set �1 ¼ 	, we have the fol-

lowing output CM:

§out ¼
¾12ð�r;NthÞ 0

0 ¾34ðr;NthÞ;
� �

; ð16Þ

that is, the input states %12 and %34 are left unchanged (invariance), up to a \swapping"

of the modes 1 and 2, which corresponds to the transformation r ! �r [see the

upper left 2� 2 block matrix in Eq. (16) and the corresponding one in Eq. (7)]. This

effect survives also if the input states are not perfectly equal.

Finally, for what concerns the nonlocal correlations, we observe that the

entanglement of formation E hk of the evolved states of modes 1, 2 and 3, 4 with CM

(16) is the same as that of the states (1a) and (1b) and reads21:

E hkðr;NthÞ ¼ xþ 1

2

� �
ln xþ 1

2

� �
� x� 1

2

� �
ln x� 1

2

� �
; ð17Þ
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Fig. 3. (Color online.) Same plot as in Fig. 2, but for different input states, we set: � ¼ 0:8, r ¼ s ¼ 0:7,
Nth ¼ 0:2,Mth ¼ 0:1, � ¼ 2:0, � ¼ 1:0. Left: correlations invariance configuration (�1 ¼ �2 ¼ 	=4); right:

correlations swapping configuration (�1 ¼ 	=4 and �2 ¼ �1 þ 	=2).
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Fig. 2. (Color online.) Plot of �12ð�Þ, red lines, and �14ð�Þ, blue lines, with (solid lines) and without

(dashed lines) the interaction at the beam splitters as functions of �1 (without lack of generality we put

�2 ¼ 0:0), in the case of equal input states. We set: � ¼ 1:0, r ¼ s ¼ 0:7, Nth ¼ Mth ¼ 0:0, � ¼ � ¼ 0:0.
Left: correlations invariance configuration (�1 ¼ �2 ¼ 	=4); right: correlations swapping configuration

(�1 ¼ 	=4 and �2 ¼ �1 þ 	=2).
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where

x ¼
1
2 þNth

� �
2 þ 1

4

� �
coshð2rÞ �Nthð1þNthÞ sinhð2rÞ

1þ 2Nth

: ð18Þ

Analogously one can evaluate the entanglement of formation of the different couples

of modes also for the other configurations.22

4.1. Robustness of the scheme

Due to the large number of the involved parameters, it is quite complicated

to obtain general results about the robustness of the proposed interferometric

scheme with respect to the presence of the thermal contributions at the inputs

or to the amplitudes of the displacement operators. Here, we focus on the relevant

case of equal input states and we comment on the effect of small amount of

the thermal contribution and of the displacements (� ¼ � � 1, �; � 2 R) on the

quantities �12ð�Þ and �14ð�Þ. Also in this case, the analytic expressions of the

expansions are lengthy and they cannot be explicitly reported here, thus we sum-

marize our main results.

The series expansions of �12ð�Þ and �14ð�Þ for Nth ¼ Mth � 1 show that in both

the cases we have a contribution at the first order in Nth: the quantity we have

chosen to characterize the system is quite sensible to the presence of thermal noise at

the input.

For what concerns the amplitudes of the displacements, the series expansions for

� ¼ � � 1 show that for both �12ð�Þ and �14ð�Þ we have a contribution at the

second order in �2: this corresponds to a linear dependence on the energy added with

the displacement operators.

π/2 π 3π/2 2π
δ1

0.5

1.0

1.5

2.0

2.5
∆12

Fig. 4. (Color online.) Plot of �12ð�Þ in the correlations swapping configuration (�1 ¼ 	=4 and

�2 ¼ �1 þ 	=2) as a function of �1 (with �2 ¼ 0). We set: � ¼ 0:8, r ¼ s ¼ 0:7, Nth ¼ Mth ¼ 0:1,

� ¼ � ¼ 1:5. The solid line refers to �12ð�Þ after the mode mixing, the dashed one without the mode

mixing and the dotted one without mode mixing and by putting � ¼ 0. Actually, due to the interference at

the BSs, in this configuration and for �1 ¼ 	, it is possible to remove the contribution due to the dis-

placement operations and, thus, to reduce the value of �12ð�Þ. See the text for details.
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5. Concluding Remarks

In this paper, we have addressed the dynamics of the correlations of two bipartite

Gaussian states, whose beams are mixed at two beam splitters. We have described

the evolution of the states by means of the phase-space analysis, focusing on the

transformation of the corresponding CM and first-moments vector. The effects of the

correlations invariance and correlations swapping between the modes h and k have

been proved by means of the quantity �hkð�Þ, where � is the quantum efficiency of

the detectors. Our analysis has shown that the results of Ref. 17, which have been

demonstrated for two-mode squeezed vacuum states, i.e. pure bipartite Gaussian

states, can be extended and experimentally verified also in the presence of mixed

Gaussian states by measuring a quantity proportional to the variance of the

difference between two photocurrents.
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Appendix A. Difference Photocurrent of a Two-Mode
Gaussian State and Its Variance

In this appendix, we explicitly write the difference between the detected photo-

currents of the modes of a bipartite Gaussian state and its variance as functions of

the corresponding CM and first moments vector elements. The difference between

the photocurrents of the modes 1 and 2 of the state %12 is given by (we assume that

the two modes are detected with the same quantum efficiency �):

D12ð�Þ ¼ �ha†
1a1 � a †

2a2i ¼ �Tr½%12ða†
1a1 � a†

2a2Þ� ¼ �h½a †
1a1�s � ½a†

2a2�si; ðA:1Þ
where ½� � ��s denotes (Weyl) symmetric ordering and ak is the annihilation operator

of mode k ¼ 1; 2. The variance Var½D12ð�Þ� of the quantity D12ð�Þ reads23:
Var½D12ð�Þ� ¼ �2Var½D12� þ �ð1� �ÞNtot; ðA:2Þ

where Ntot ¼ ha†
1a1 þ a†

2a2i ¼ h½a†
1a1�s þ ½a †

2a2�si � 1, and:

Var½D12� ¼ h½ða†
1Þ2a2

1�si þ h½ða †
2Þ2a2

2�si � h½a †
1a1�si2 � h½a†

2a2�si2

� 2h½a †
1a1�s ½a†

2a2�si þ 2h½a†
1a1�sih½a†

2a2�si �
1

2
: ðA:3Þ

The expectations values of the symmetrically ordered operators involved in the

previous quantities can be calculated by using the property3:

h½ða†
1Þnam

1 �s ½ða †
2Þhak

2�si ¼ ð�1Þnþh@ n

 �

1
@m

1
@ h

 �

2
@ k

2�ð
1; 
2Þj
1¼
2¼0; ðA:4Þ
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where �ð
1; 
2Þ ¼ Tr½%12D1ð
1ÞD2ð
2Þ� is characteristic function of the state %12,

Dkð�Þ is the displacement operator acting on mode k ¼ 1; 2 and 
1; 
2 2 C. The

characteristic function �ð
1; 
2Þ can also be written in the following Cartesian form,

which put in evidence the dependence on the 4� 4 CM ¾ and on the first-moments

vector X:

�ð¤Þ ¼ exp � 1

2
¤T¾¤þ i¤TX

� 	
; ðA:5Þ

where¤T ¼ ðx1; y1;x2; y2Þ andX ¼ Tr½%ðq1; p1; q2; p2ÞT �, with qk ¼ 1ffiffi
2

p ða†
k þ akÞ and

pk ¼ i ffiffi
2

p ða†
k � akÞ. If we write the 4� 4 CM and the first-moments vector as follows:

¾ ¼
a c e f

c b g h

e g A C

f h C B

0
BBB@

1
CCCA; X ¼ ðX1;Y1;X2;Y2ÞT ; ðA:6Þ

then the characteristic function in Eq. (A.5) can be expressed in the complex

notation as24:

�ð
1; 
2Þ ¼ expf�A j
1j2 �Bj
2j2 � C
2
1 � C �
�2

1 �D
2
2 �D �
 �2

2

� E
1
2 � E �
�
1


�
2 �F
1


�
2 �F �
�

1
2

þ i½U �
1 þU
�
1 þ V �
2 þ V 
�

2�g; ðA:7Þ
where

A ¼ 1

2
ðaþ bÞ; B ¼ 1

2
ðAþ BÞ; ðA:8Þ

C ¼ 1

4
ða� b� 2icÞ; D ¼ 1

4
ðA� B� 2iCÞ; ðA:9Þ

E ¼ 1

2
½e� h� iðf þ gÞ�; F ¼ 1

2
½eþ hþ iðf � gÞ�; ðA:10Þ

U ¼ 1ffiffiffi
2

p ðX1 þ iY1Þ; V ¼ 1ffiffiffi
2

p ðX2 þ iY2Þ: ðA:11Þ

Finally, we have:

h½a†
1a1�si ¼ A þ jU j2; h½a †

2a2�si ¼ B þ jV j2; ðA:12aÞ
h½a†

1a1�s ½a†
2a2�si ¼ jE j2 þA jV j2 þBjU j2 þ jU j2jV j2 þ jF j2

þAB þU �V �E þUV E � þ V �UF þF �U �V ; ðA:12bÞ
h½a †2

1 a2
1�si ¼ 2A 2 þ 4A jU j2 þ j2C þU 2j2; ðA:12cÞ

h½a †2

2 a2
2�si ¼ 2B2 þ 4BjV j2 þ j2D þ V 2j2; ðA:12dÞ

which can be directly used to calculate the difference photocurrent (A.1) and its

variance (A.2) as functions of the CM and first-moments vector elements given in

Eq. (A.6).
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