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Abstract
A coherent superposition of two Gaussian wavepackets, which freely
evolves in time, gives rise to an interference pattern similar to that of the
single-particle double-slit Young’s experiment. In this paper we show that
fringe visibility can be reduced by spontaneous decoherence, which can also
destroy quantum coherence when interaction between a system and its
surroundings can be neglected. This decoherence is due to fluctuations in
the evolution time and, in general, cannot be achieved when simple classical
averages are considered. We compare our theoretical results with a C60
fullerenes interference experiment, where thermal decoherence is not
relevant, but the fringe visibility is actually reduced.
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1. Introduction

Interference is one of the most amazing and puzzling fields
of quantum mechanics. Feynman himself, speaking about
Young’s experiment with electrons, said that interference is
‘the only mystery’ of the quantum mechanical world [1].
Double-slit experiments were used to give an example of the
concept of quantum superposition and brought the scientists
to the question of wave–particle duality: when it is possible to
know the path of the interfering particles, quantum interference
disappears. Furthermore, Scully et al [2] illustrated that
the lost interference can be restored simply by erasing the
which-path information. On the other hand, in this paper
we consider a double-slit experiment from another point of
view: a quantum Young’s interference pattern is similar to that
obtained when a superposition of two Gaussian wavepackets
freely evolves in time. This analogy becomes clearer when
the time t of the wavepacket time evolution is compared to
the time t = L/v that the particles of the Young’s experiment
moving at velocity v spend to reach a screen at a distance L [3].
We find that spontaneous decoherence, i.e. decoherence due
to the system itself [4, 5] and not due to some interaction
with the surroundings [6], reduces fringe visibility and we
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argue that this decoherence arises from velocity fluctuations
of the interfering particles, as in cavity QED experiments [5],
where they can destroy quantum coherence. Notice that in
these experiments a simple classical average on velocity is not
enough to describe the experimental results, as we show in the
appendix of this paper. Finally, we compare our theoretical
results with an interference experiment where C60 fullerenes
are used as interfering particles [7]; here thermal decoherence
and interaction with the surroundings are not relevant [7, 8],
while velocity fluctuations are quite large.

2. Schrödinger spread and two-slit interference

A quantum superposition of two Gaussian wavepackets
evolves in time giving rise to an interference pattern. We have
discussed this effect in a previous paper, where we have shown
that such interference is direct evidence of the Schrödinger
spread and is described by the equation [3]

P(x̄ , t̄) ≡ |�(x̄, t̄)|2 ∝ G+ + G− + 2
√

G+G− cos[ω(t̄)t̄ ], (1)

�(x̄, t̄) being the wavefunction of the system and

G± = exp

{
− (x̄ ± d̄)2

2(1 + t̄ 2)

}
, ω(t̄) = x̄ d̄

1 + t̄ 2
. (2)
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In all the previous equations we used the scaling

x̄ = x

σx
, d̄ = d

σx
, t̄ = σv

σx
t = h̄

2mσ 2
x

t (3)

where σx is the width of the Gaussians, σxσv = h̄/2m, m is the
particle mass and equation (1) is obtained assuming the initial
Gaussians centred in x1 = −x2 = d. Furthermore, under the
condition

t̄ � d̄ � 1, (4)

the time-dependent interference term cos[ω(t̄) t̄ ] is modulated
by √

G+G− ≈ exp

{
− x̄2

2t̄ 2

}
. (5)

The link between what we said above and Young’s
interference experiment is achieved by taking into account the
following considerations. We consider a beam of particles
moving along the ẑ axis with mean velocity V̄ and with such
a low intensity that one particle at a time arrives at a screen
F where it passes through two slits (figure 1). In standard
textbooks diffraction from a single slit is usually studied in
momentum space, obtaining an angular distribution given by

s̃(k) = sin(kb/2)

kb/2
≡ sinc(kb/2) (6)

where k = 2π/λ is the wavevector and b is the slit width.
Notice that the central peak of the sinc function can be
well approximated by a Gaussian of width1σk = √

2π/b.
Moreover, a minimum uncertainty wavepacket is characterized
by σxσk = 1/2, so that in the position space the diffraction is
described by the Gaussian

g(x) ∝ exp

{
− x2

2σ 2
x

}
, (7)

where

σx = b

2
√

2π
. (8)

Now, in order to describe quantum double-slit interference,
we assume as the initial wavefunction a superposition of two
Gaussians with a width given by equation (8). Now the
distribution P(x, t) (coming from (1) using (3)) becomes
the probability density of finding a particle on a screen S
at distance L , such that t = L/V̄ , where V̄ is the mean
velocity perpendicular to the plane x̂ of the slits (see figure 1);
this is exactly the interference pattern one expects. In fact
equation (5) can be written under the form of the diffraction
envelope

√
G+G− ≈ exp

{
− x2(2σx )

2

2L2λ−2

}
= exp

{
− ϑ2

2ϑ2
diff

}
, (9)

with λ−2 = λ/2π ≡ h̄/mV̄ (the de Broglie wavelength) and

ϑdiff ≡ λ√
2πb

(10)

in agreement with the usual result.

1 This condition is obtained by imposing that the sinc and Gaussian functions
have the same height and area.
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Figure 1. Set-up of a double-slit interference experiment.

3. Spontaneous decoherence and Young’s
interference

First of all we briefly summarize our model-independent
formalism introduced in previous papers [5, 10, 11] to describe
spontaneous decoherence due to fluctuations in the evolution
time. The density matrix that takes into account these
fluctuations is assumed to be the time average of the usual
density matrix, i.e.

ρ̄(t) =
∫ ∞

0
dt ′ P(t ′, t, τ) ρ(t ′) (11)

where the weight function is given by the 	-distribution
function

P(t ′, t, τ) = exp(−t ′/τ)

τ

(t ′/τ)t/τ−1

	(t/τ)
. (12)

Such a choice was justified in [5] by imposing general
conditions about the new density matrix ρ̄(t) and its time
evolution. Here τ is a characteristic time which rules time
fluctuations. Notice that τ can also be a function of t and can
have experimental or intrinsic origin [5, 10].

In the interference case, since t ′ = L/v, time fluctuations
are induced by velocity fluctuations as in the case of cavity
QED studied in [5, 11]. Now, if the system is initially in a
pure state, as assumed above, and we use the scaling (3), from
equation (11) one obtains

P̄(x̄, t̄) ≡ 〈x̄ |ρ̄(t̄)|x̄〉 =
∫ ∞

0
dt̄ ′ P(t̄ ′, t̄ , τ̄ )P(x̄, t̄ ′) (13)

where the expression of P(x̄, t̄ ′) is given by (1) and τ̄ is

τ̄ ≡ σv

σx
τ. (14)

We argue that τ is the uncertainty in arrival time of
particles at the screen, so that [3, 11, 12]

τ̄ = at̄ with a =
√

σ 2
V̄

+ 
2
V̄

V̄
, (15)
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where t = L/V̄ and V̄ is the mean velocity of all the
wavepackets along the ẑ axis. Here we are assuming
that particles along the ẑ axis are described with minimum
uncertainty wavepackets with mean velocity V̄ and spread
σV̄ . Moreover, if we note that each wavepacket can have
a different mean velocity V̄ , then we define V̄ as the mean
velocity of all the packets and 
V̄ as the spread. In the limit
τ̄ /t̄ = τ/t = a 
 1 we can perform the average (13),
obtaining

P̄(x̄ , t̄) ∝ G+ + G− + 2
√

G+G−e−D cos ωt̄ (16)

where, using equations (3) and (15),

D ≈ x̄ 2d̄ 2

2

τ̄

t̄ 3
= 1

2

x2(2d)2

L2

(
1

�

)2

a (17)

with
1

�
≡ mV̄

h̄
. (18)

The term e−D is a decoherence envelope not due to
diffraction, as in the case of equation (9), but due to velocity
spread. It is very important and significative to note that it
varies as (2d)2, i.e. the square of the distance between slits, as
is typical of all the decoherence phenomena [6].

One could think that this result could be easily reproduced
just by performing an average on the classical velocity
distribution along the ẑ axis. However, this would give
an expression of the decoherence exponent D similar to
equations (17) but with two basic differences: (1) a2 instead of
a and (2) a will only be a function of the classical contribution

V̄ , as shown in detail in the appendix. Hence, if a < 1, one
will obtain a much smaller decoherence than in our approach.

4. Spontaneous decoherence and C60 interference

In a recent interference experiment, C60 fullerenes were
produced in an oven, so that their velocity distribution had
a most probable velocity V̄ = 220 m s−1 (corresponding
to a de Broglie wavelength of 2.5 pm) and a spread 
V̄/

V̄ ≈ 0.25. They arrived at a grating and then a Channeltron
electron multiplier counted their spatial distribution [7]. The
interference pattern one expects can be well approximated by
that from a double-slit experiment; as one can see in figure 2,
the number of visible fringes is dramatically reduced and, in
particular, the ‘wings’ of this interference pattern are not fitted
by the standard Kirchhoff diffraction theory [13], which is only
able to reproduce the central peak. Notice that this reduction
of visibility cannot be associated with thermal decoherence,
even if such molecules have an internal temperature as high as
900 K [8].

To fit the result displayed in figure 2, it is not enough to
take into account the experimental velocity distribution. In
fact, quoting [7] ‘the agreement with the experimental results,
including the ‘wings’, can be achieved allowing for a Gaussian
variation of the slit widths over the grating, with a mean open
gap width centred at b = 38 nm and with a full-width at half
maximum of 18 nm’. The actual mean slit width (38 nm) is
smaller than the width of 55 nm specified by the manufacturer,
but this reduction can be justified if we consider the van der
Waals potential which acts between the molecules and the slit
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Figure 2. The dotted curve is a plot of equation (1), with the
experimental parameters from [7]: h/mV̄ = 2.5 pm, 2d = 100 nm,
b = 38 nm, L = 1.25 m, V̄ = 220 m s−1, t = L/V̄ and m is the
particle mass. The solid curve is a plot of equation (16) with
a = 0.25. Circles are experimental data from [7].

(This figure is in colour only in the electronic version)

edges and reduces the effective slit width of the grating [14].
However, the Gaussian variation of the width is not directly
connected to the van der Waals potential, and could be due
to the imperfections of the grating; these kinds of defects
exponentially reduce the intensities of the maxima but also
increase the diffuse background [15].

According to our formalism, we simply apply our
theoretical results to the C60 interference experiment. In
figure 2 we plot equations (1) and (16) using the experimental
parameters from [7]. The dotted curve is the expectation of
the quantum mechanical treatment of interference given by
equation (1); the number of experimental fringes (circles) is
actually reduced. Finally, the solid curve of the figure is a
plot of equation (16) with a = 0.25 (we assumed 
V̄ � σV̄ ).
It is very interesting to note that our prediction only depends
on the parameter τ , so that we must not invoke any kind of
slit distribution to justify the experimental result. We think
that the slight deviation from the data in figure 2 could be
a consequence of other experimental errors which, at first
approximation, we did not take into consideration (e.g. a
classical average on the velocity distribution, which gives a
second-order correction to the damping, see appendix).

Finally, from the point of view of equation (16), to increase
the number of visible fringes and then the visibility of the
interference pattern, one must reduce the width of the velocity
distribution. This last assertion seems to be confirmed by the
preliminary results of a new interference experiment, where
the reduction of the velocity spread brings an increase in the
visibility [8].

5. Conclusions

We have shown that interference fringe visibility can be
reduced by spontaneous decoherence, i.e. a decoherence not
due to interaction with the environment [4]. We argued
that this kind of decoherence arises from fluctuations in the
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evolution time t = L/v, which, in this paper, are induced
by particle velocity spread as already observed in cavity QED
experiments [5].

Our theoretical results are in good agreement with
a C60 fullerenes interference experiment, where extrinsic
decoherence (thermal decoherence due to the internal
vibrational states of the C60 molecules and their coupling
with the surroundings) can be excluded [8]. In particular, our
approach takes into account the presence of fluctuations in
evolution time due to the velocity spread and this reproduces
the experimental data, without any other assumption. In this
way, our theory expects an increase of fringe visibility when the
velocity spread is made narrower by a more efficient velocity
selection, an expectation which is verified by the preliminary
results of a new experiment [8].
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Appendix

We consider the effect of a simple average on a classical
velocity distribution. For the sake of simplicity we assume
a Gaussian velocity distribution:

P(v) = 1√
2π
V̄

exp

{
− (v − V̄)2

2
2
V̄

}
(19)

where V̄ is the mean wavepacket velocity and 
V̄ is the
spread. Furthermore, in the limit t̄ � 1, the interference term
cos[ω(t̄)t̄ ] of equation (1) can be rewritten as

cos[ω(t̄)t̄] ≈ cos

(
xd

σxσv

v

L

)
≡ I(x, v) (20)

where we used equations (2) and (3) and put t = L/v. Let us
now perform the average of the interference term:

〈I(ω, t)〉 ≡
∫ ∞

−∞
dvP(v)I(x, v) = e−A cos[ω(t̄0)t̄0] (21)

with t0 = L/V̄ and

A ≡ ω2(t̄0) t̄ 2
0

2
a2 = 1

2

x2(2d)2

L2

(
1

�

)2

a2 (22)

where 1/� ≡ mV̄/h̄.

Notice that in equation (22) a ≡ 
V̄/V̄ , so that
the fluctuations in velocity have a simple classical origin,
while in equation (15) the quantum contribution σV̄ due
to the Heisenberg uncertainty principle is also present.
Furthermore, one can observe that the exponential damping
D of equation (17), coming from our theory, is a function of
a, while in equation (22), due to a classical average, one finds
a2. When a < 1 the damping we obtain using our approach
is greater than the damping due to the average of a velocity
distribution. For this reason a classical average of velocity
does not completely achieve for the ‘wings’ of figure 2.
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