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Abstract
Weaddress state reconstruction by photon-number-resolving detectors, and demonstrate that they
may be effectively exploited to performquantum tomography of states of light. In particular, wefind
that the pattern function technique, originally developed for optical homodyne tomography,may be
also applied to discrete data. Our results open newperspectives for quantum-state reconstruction in
themesoscopic regime, and pave theway to the use of photon-number-resolving-based detection
schemes inQuantum Information science.

1. Introduction

Aquantum tomographic technique is a scheme to evaluate the expectation value of any observables aswell as to
reconstruct the densitymatrix or theWigner function of a physical system. To this aim, the technique processes
the outcomes of a quorum of observables, measured on repeated preparations of the state under investigation
[1–4]. In the continuous-variable domain, quantum states are usually reconstructed bymeans of optical
homodyne tomography (OHT) [5]. From the optical point of view,OHT is based on an interferometric scheme
(see the left panel offigure 1) in which a state ρ (the signal) ismixed at a balanced beam splitter (BS)with a high-
intensity coherent state b bñ = ñf∣ ∣∣ ∣ei , usually referred to as the local oscillator (LO). The two outputs of the
interferometer are then detected by two p–i–nphotodiodes, whose difference photocurrent is formed, suitably
amplified, rescaled by the LO amplitude b∣ ∣, andfinally recorded as a function of the LOphasef. The values of
any observable are then obtained by properly processing the data [6], some of themby averaging pattern
functions [7, 8] or usingmaximum-likelihood reconstruction techniques [9–12].

In order to avoid the use of a strong LO and the subtleties of these reconstruction protocols [13] (e.g. due to
binning), in the last decade some efforts have been devoted to the development of hybrid detection schemes,
involving photon counting [14–18]. In this paper, we focus our attention on photon-number-resolving
detectors [19–21]. The implemented scheme bears some resemblance to homodyne detection and leads to
similar results. However, at variancewith the standard scheme, the p–i–nphotodiodes are replaced by photon-
number-resolving detectors and the LO bñ∣ is a low-intensity (few tens of photons) coherent state. The output of
the apparatus is thus the difference between the effective number of detected photons [22–24], rather than the
difference between twomacroscopic photocurrents. Note that the use of photon-number-resolving detectors
instead of p–i–nphotodiodes gives direct access to the statistics of light at each BS output. This gives the
possibility to easily investigate some properties of the state under exam, such as themean value and the variance
of the photon number, and, at the same time, itmakes it possible the self-consistent calibration of the employed
photon-number-resolving detectors [25]. In addition, the homodyne-like scheme is based on a low-intensity
LO, thus demonstrating that, even in the presence of a small imbalance between signal and LO, the state
reconstruction is guaranteed. This result allows a deep insight into the physics of quantum tomography by
investigating, for instance, the effect of the LO intensity on the state reconstruction.Wenote that this kind of
study is not possible with the standard homodyne scheme, since p–i–nphotodiodes aremacroscopic detectors
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and cannot be used to count few photons. At the same time, the exploitation of a detection scheme based on a
weak LO could be crucial in the case inwhich such afield is not directly available from the laser source andmust
be obtained bymeans of nonlinear interactions. The only limitation of the homodyne-like scheme is given by the
lower quantum efficiency of the photon-number-resolving detectors compared to p–i–nphotodiodes.
Currently, only superconducting detectors, such as transition-edge sensors and nanowire detectors, can reach a
detection efficiency larger than 80%.

Up to now, our scheme has been exploited for state-discrimination [26, 27], and proved useful to
outperform standard homodyne detection in quantumkey distributionwith continuous variables [28]. In
addition, the same scheme (in the absence of the LO) can be employed to generate negative photon-number
correlations, thus demonstrating the analogous of antibunching at themesoscopic intensity level [29].We also
notice that the scheme adopted in this work is completely different from the so-calledweak-homodyne
detection ones, inwhich photon-number-resolving detectors have been employed. Indeed, in those schemes the
reconstruction of the states has been achieved by considering only a single output of the interferometer [30–37],
whereas herewe deal with the difference between the two outputs.

In this paper, we address quantum state reconstruction by the scheme offigure 1 and prove that itmay be
efficiently employed to retrieve the densitymatrix of single-mode quantum states, as well as to evaluate the
expectation values of thefirstmoments of the quadrature operator. The homodyne-like scheme can thus be
considered as a valid alternative to the standard one. Since the reconstructionmethod is applied to detected
quantities, namely to the difference between the number of photons detected at the outputs of the
interferometer, the retrieved densitymatrices correspond to the detected states and not to the ones at the input.
We also investigate the role played by quantum efficiency, which is a crucial parameter in the detection of
nonclassical features of quantum states [38]. In all cases examined in the paper, robust and reliable results have
been obtainedwith a relativelymodest imbalance between signal and LO.

The paper is structured as follows. In section 2we describe our reconstruction scheme and compare its
features with those of standardOHT. Section 3 reports the experimental results, whereas section 4 is devoted to
Monte Carlo simulated experiments. Section 5 closes the paperwith some final remarks.

2. State reconstruction by photon-number-resolving detectors

As amatter of fact, information coming fromphoton-number-resolving-based homodyne-like scheme is of
different nature compared to that obtained fromhomodyne detection. In principle, this would require the
design of a new tomographic procedure, in order to reconstruct the quantum state under investigation from
experimental data. Nevertheless, the parametric approximation (i.e. treating the LO as c-number, rather than as
an operator) used to describe homodyne detection is known to hold alsowhen the intensity of the LO is low [39],
as far as its coherence is preserved. In turn, this fact suggests that the pattern functions technique used inOHT

Figure 1. (Left)Quantum state reconstruction by photon-number-resolving detectors: the signal ρ ismixedwith a coherent state bñ∣
(LO) at a balanced beam-splitter BS. The twobeams at the output of the BS are detected and the difference between the numbers of
photons is calculated and then amplified. (Right) Sketch of the experimental setup for the reconstruction of coherent and PHAV
states. The second-harmonic pulses of a ps-laser amplified at 500 Hz are sent to aMach–Zender interferometer (consisting in two
balanced BS, two right-angle prisms, and two high-reflectivemirrors (M)). The light pulses in one arm correspond to the signal under
investigation, whereas those in the other arm correspond to the LO.Note that in both arms neutral densityfilterwheels (ND) are used
for thefine tuning of the intensities. The length of one arm can bemicrometrically changed bymeans of a piezoelectricmovement
(Pz). At each output of the interferometer the light is focused by an achromatic doublet (L) into amulti-modefiber (MF) and delivered
to a hybrid photodetector (HPD), whose output is amplified, synchronously integrated and acquired. The photon-number difference
is post-processed offline.
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[1–5, 7, 8]may be exploited also in our scheme.One of themain outcomes of this paper, substantiated by
experimental and numerical results, is indeed the proof of this equivalence.

We assume that the state of the inputmode â, with =[ ˆ ˆ ]†a a, 1, is described by the densitymatrix ρ. InOHT,
given the homodyne probability distributions f r= á ñf f( ) ∣ ∣p x x x, , where ñf∣x are the eigenstates of the
quadrature operator = +f f-ˆ ( ˆ ˆ )†x a ae e 2i i , the elements of the densitymatrix ρ in the photon number
basis can be reconstructed as

ò òr f f f=
p

-¥

+¥
( ) ( ) ( )x p x F xd d , , . 1nm nm

0

The functions Fnm(x,f) are a set of sampling functions and can bewritten as [7]

q q= -( ) ( ) [ ( ) ] ( )F x f x n m, exp i , 2nm nm

where the pattern functions ( )f xnm can be expressed in terms of regular and irregular wave functions (ψn(x) and
fm(x), respectively)

y f y f y f= - + - ++ +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x x x x n x x m x x2 2 1 2 1 , 3nm n m n m n m1 1

with .m n. Quite simple expressions for the numerical computation of these functions can be found in the
original paper [7] and are not reported here explicitly.

Usually, the homodyne probability distributions p(x,f) are retrieved from the difference of the two
macroscopic photocurrents exiting the homodyne detector [40–42]. In our scheme, we replace p(x,f)with the
probability distributions Df( )pD , where bD = Df ( ∣ ∣)2 andΔ is the (phase-dependent) difference between
the number of photons detected at the two outputs of the homodyne detector [27]. Before going to the
derivation of pD(Δf), we notice that, while the outcome x of standard homodyne detection can assume any real
value, the quantityΔf is intrinsically discrete. However, this discretization does not represent a limitation for
state reconstruction by the sampling function Fnm(x,f). In particular, we notice that ourmethod provides
densitymatrices that are positive semidefinite within their confidence intervals. Indeed, as reported in [7], the
reconstructionmethod also provides confidence regions evaluated from the variance of the densitymatrix
elements by assuming that the homodyne detection is a Poissonian counting process. However, such a
calculationmay require large computational resources and sometimes it is better to estimate the errors by
repeating the tomographic reconstruction on different experimental runs and performing the standard
statistical analysis. Of course, the twomethods lead to compatible results. In this work, we adopt the latter
solution.

In order to obtain pD(Δf), let us remind that the information coming fromour scheme is contained in the
joint count statistics q(n,m) of the number of photons detected at each laser shot at the outputs of the BS. Tofind
the expression of q(n,m), it is useful to consider theGlauber–SudarshanP representation of the input state ρ

�òr z z z z= ñá( ) ∣ ∣ ( )Pd , 42

where z( )P is the P-function associatedwith ρ. After the interference of the input state with the LO (the coherent
state bñ∣ ) at the balanced BS, the two-mode state r b b= Ä ñá∣ ∣Rin becomes

�ò z z
b z b z b z b z

=
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Ä
- -( ) ( )R Pd

2 2 2 2
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and the corresponding joint photon-number statistics can bewritten as [43, 44]:
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where m z b b z= +( ) ∣ ∣,c
1

2
2 and m z b b z= -( ) ∣ ∣,d

1

2
2. The effect of non unit quantum efficiency ηk of the

detector on the outputmodes k=c, dmay be taken into account by replacingμk(ζ,β)with ηkμk(ζ,β).
Starting from the joint probability (6), it is possible to calculate the distribution of the quantityD = -n m,

namely

åD =
- =D

( ) ( ) ( )p q m n, 7
m n m n

D
, :

and the corresponding ‘rescaled’ version pD(Δf), where bD = Df ( ∣ ∣)2 . In order to investigate the
performance of our reconstruction scheme, we consider some paradigmatic optical states: The coherent state,
which is phase-sensitive, its phase-averaged counterpart (PHAV), which is of course phase insensitive, the
single-photon Fock state, which is a nonclassical phase-insensitive state, and even and odd cat states, which are
both nonclassical and phase-sensitive. For coherent and PHAV states we provide an experimental demonstra-
tion, whereas for the Fock and cat states we performMonteCarlo simulated experiments, and analyze the effect
of a non-unit quantum efficiency, η<1.
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3. Experimental results

3.1. Experimental setup
For a coherent state r a a= ñá∣ ∣, the joint photon-number statistics, and the corresponding pD(Δ) distribution,
can be obtained by setting P(ζ)=δ(2)(ζ−α), where δ(2)(z) is the complexDiracʼs delta function. The
experimental setup is sketched in the right panel offigure 1. The second harmonic pulses (∼5 ps pulse duration)
at 523 nmof amode-lockedNd:YLF laser regeneratively amplified at 500 Hz are divided at aMach–Zehnder
interferometer into two parts in order to yield the signal and the LO. The length of one armof the interferometer
is changed in steps bymeans of a piezoelectricmovement (Pz) in order to vary the relative phasef between the
two arms in the interval [0,π]. Two variable neutral density filter wheels (ND) are used to change the balancing
between the two beams, which are then recombined in a balanced BS. At the BS outputs twomulti-mode
600 μmcorefibers (MF) deliver the light to a pair of photon-number-resolving detectors. In detail, we employ
twoHPDs (mod. R10467U-40,Hamamatsu Photonics, having a quantum efficiency η∼ 0.5 in the green spectral
region), whose outputs are amplified, synchronously integrated and digitized.HPDs are commercial detectors
endowedwith partial photon-number-resolving capability and a good linearity up to 100 photons. As already
demonstrated elsewhere (see for instance [27, 25, 45]), HPD response can be characterized in a self-consistent
waywith the same light under examination.Herewe just remark that from the experimental data it is possible to
calculate the gain of the detection apparatus in order to recover the distribution of detected photons at each BS
output. In addition, this kind of detector allows us to obtain information on the relative phase between the two
arms of the interferometer by simplymonitoring themean number of detected photonsmeasured at each BS
output as a function of the piezoelectricmovement [27, 46]. In the present case, 3× 106 data corresponding to
subsequent laser pulses are recorded and used to reconstruct the densitymatrix of the coherent state and of the
PHAV state, which is a diagonal state obtained by randomizing the phase of a coherent state a añ = ñq∣ ∣∣ ∣ei

ò år
q
p
a a

a
= ñá = ñá

p
a-

=

¥

∣ ∣ ∣ ∣
!

∣ ∣ ( )∣ ∣
n

n n
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2
e . 8

n

n

PHAV
0

2
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2
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3.2. Coherent state
In order to process the data corresponding to the coherent state, once obtained the number of detected photons
at each BS output, we calculate the shot-by-shot photon-number difference,Δ. The corresponding phase value
f is determined by acquiring a suitable data sample (5×104 pulses) for each one of the 60 piezo positions. As
the piezomoves in regular steps, themeasuredmean number of detected photons follows a sinusoidal trend due
to the interference at the BS, fromwhich the effective value off for each piezo position can be evaluated. The
5×104 data corresponding to the samef are uniformly distributed around that value with a step of
1/(5×104).

The typical behavior ofΔf as a function off is shown infigure 2(a) (3× 105 data). Note that, due to
irregularities in the piezoelectricmovement, the data are not uniformly distributed inf. Asmentioned in
section 2, in order to estimate the uncertainties of the reconstructed states, we have chosen to perform a
statistical analysis of different runs instead of following a tomographic approach, which is computationallymore
demanding.

In particular, the reconstruction procedure is applied to 10 sets of ´3 105 data drawn from thewhole
sample: themodulus of the average densitymatrix is shown infigure 2(b), and the typical uncertainty, obtained
as standard deviation over the 10 runs, in the determination of thematrix elements is∼10−3. Themean number

Figure 2.Experimental reconstruction of a coherent state withmeasured amplitude a =∣ ∣ 1.03. The LOhas an amplitude b =∣ ∣ 3.82.
(a)Δf as a function of LOphase,f. The experimental data (green dots) are shown together with themean value (solid line) and the
standard deviation (dashed lines) of the quadrature, as obtained through the pattern function tomography. (b)Reconstructed density
matrix. Thefidelity with the expected state is F=99.4%.
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of photons corresponding tofigure 2(b) is rá ñ = å =n n 1.06n n n, . Thefidelity [47] between the reconstructed
coherent state and a coherent state with the same amplitude is F=99.4%.

As amatter of fact, thefidelitymay not fully assess the quality of a reconstruction scheme [48] and therefore,
in order to qualify our reconstruction scheme, we also consider the evaluation of the expectation values of some
observables. To this aim, we remind that, given a generic observable, wemay obtain its expectation value

rá ñ =ˆ [ ˆ]A ATr from the distribution of homodyne data as [4]

*
�ò òp

f f fá ñ =
pˆ ( ) [ ˆ ]( ) ( )A x p x A x

1
d d , , , 9

0

where* f[ ˆ]( )A x, is a kernel, or pattern function, associatedwith the operator Â. For instance, in the following
wewill use thefist twomoments of the quadrature operator, whichmay be obtained from the kernels [4]:

*

*

f f q

f
h

f q

= -

= - - - +

q

q

⎛
⎝⎜

⎞
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By exploiting the expressions of equations (10) in (9), inwhichwe use the distributions pD(Δf) instead of p
(x,f) and set θ=0, we get á ñ = ox̂ 1.451 0.0030 and = á ñ - á ñ = o[ ˆ ] ˆ ˆx x xvar 0.688 0.0150 0

2
0

2 for the case
under investigation. These values should be compared to those expected in the limit of a discrete scheme,
namely aá ñ = = =ˆ ∣ ∣x 2 2 1.03 1.4560 theo and a b= + =[ ˆ ] ∣ ∣ ∣ ∣xvar 0.5360 theo

1

2

1

2
2 2 . The last result

explicitly shows the contribution to the variance due to the low-intensity LO,which becomes negligible as
b a�∣ ∣ ∣ ∣. Notice that sincewe are dealingwith classical states, the quantum efficiency just rescales the energy of
the detected states, andwe can safely set η=1: the results we obtain are thus referred to the detected states.We
see thatwhile themean value of the quadrature is well reconstructed by the experimental data, the variance is
larger than expected. Such discrepancy is likely due to phasefluctuations occurred during themeasurements
session.

3.3. PHAV state
In order to checkwhether this interpretation holds, we consider the PHAV state, which is phase insensitive and
thus should not be influenced by the presence of possible phase fluctuations. As in the case of the coherent state,
we save 10 sets of 3×105 data by calculating the shot-by-shot photon-number difference between the twoBS
outputs. Since the PHAV state is phase-insensitive, we randomly assign a phase value to each experimental value
ofΔ. A typical trace ofΔ versusf is shown infigure 3(a), whereas in panel (b) themodulus of the average density
matrix is presented. As expected, the off-diagonal elements are absent, and, also in this case, the typical
uncertainty, obtained as standard deviation over the 10 runs, in the determination of thematrix elements is
∼10−3. In order to compare the reconstructedmatrix to the theoretical prediction in equation (8)with
a =∣ ∣ 1.08, we calculate the fidelity and obtain F=99.9%. Forwhat concerns the first and secondmoments of
the quadrature, we obtain á ñ = oqx̂ 0.004 0.003 and = oq[ ˆ ]xvar 1.725 0.013, q" . In this case, the expected

values are á ñ =qx̂ 0theo and a a b= + + =f[ ˆ ] ∣ ∣ ∣ ∣ ∣ ∣xvar 1.706theo
1

2
2 1

2
2 2 , respectively. The very good

agreement between theory and experiment for this phase-insensitive state confirms our considerations about
the variance of the reconstructed coherent state.

Figure 3.Experimental reconstruction of a PHAV statewith amplitude a =∣ ∣ 1.08. The LOhas an amplitude b =∣ ∣ 3.82. (a)Δf as a
function off. The experimental data (green dots) are shown together with themean value (solid line) and the standard deviation
(dashed lines) of the quadrature as obtained through the pattern function tomography. (b)Reconstructed densitymatrix. Thefidelity
with the expected state is F=99.9%.
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4.Numerical simulations

4.1. Fock states
Wenow turn our attention to the Fock state ñ∣1 , throughwhichwe explore the role played by a limited quantum
efficiency for quantum-state reconstruction. Since the light source employed in the experiment is operated at
500 Hz, it does not guarantee an effective production of single-photon states. Thus, in the followingwe show the
results obtained by usingMonte Carlo simulated experiments, inwhichwe set b = 20 .

The state ñ∣1 has a highly singularP function given by:

*
z d z

z z
d z= +

¶
¶ ¶

( ) ( ) ( ) ( )( ) ( )P , 112
2

2

and the joint probability in equation (6) reads:

h b h b
b

= +
- -

h

h b- +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )

! !
∣ ∣ ( ) ∣ ∣

∣ ∣
( )
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q n m

n m

n m
,

e

2
1 , 12

n m2 2 2

2

2

wherewe assume that both detectors have the same quantum efficiency η. The corresponding pD(Δ) is quite
clumsy and is not explicitly reported here.

Infigure 4(a), we show a typical data trace, i.e.Δf as a function off, obtained from aMonte Carlo
simulation (with 5×104 data) assuming ideal detection, i.e. η=1. It is clear that, as onemay expect,Δf does
not depend on the relative phasef since the Fock state is phase insensitive. Themodulus of the reconstructed
densitymatrix is plotted in the panel (b) of the samefigure. At variancewith the experimental results, in this case
the typical uncertainty in the determination of thematrix elements is∼10−2, a value that in principle can be
decreased either by increasing the samples or increasing the imbalance between signal and LO. Since the density
matrix is diagonal, the fidelity of the state coincides with that of the photon-number distribution, for whichwe
have F=99.9%.

Up to this point, we have shown the reliability of the reconstruction scheme and of the reconstruction
strategy under ideal detection conditions. However, since photon-number-resolving detectors are real
detectors, it is worth investigatingwhether the schemewould alsowork in the presence of an overall quantum
efficiency η<1.When standard homodyne is employed, it is well known that a non-unit quantum efficiency

Figure 4.Upper panels: reconstruction of the Fock state ñ∣1 (MonteCarlo simulated experiments), with LO amplitude b = 20 and
quantum efficiency η=1. (a)Δf as a function off; (b)Reconstructed densitymatrix. The fidelity with the expected state is
F=99.9%. Lower panels: Reconstruction of the Fock state ñ∣1 (MonteCarlo simulated experiments), with LO amplitude b = 20
and quantum efficiency η=0.4. (c)Reconstructed densitymatrix; (d)Photon-number statistics of the reconstructed state (the error
bars have been obtained averaging over 10 simulated experiments). Thefidelity with respect to the expected distribution is
F=99.0%.
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rescales themean value of the reconstructed densitymatrix in the case of classical states of light, such as coherent
and PHAV states, whereas it deeplymodifies the properties of the reconstruction in the case of nonclassical
states, such as Fock states [41]. In order to check if analogous results can be achieved bymeans of our scheme, we
consider the non-ideal detection of the Fock state ñ∣1 in a simulated experiment.We assume the same value of
LO adopted above, i.e. b = 20 , but nowwe set η= 0.4, a realistic value formany kinds of photon-number-
resolving detectors [25, 49, 50]. Infigure 4(c), we show themodulus of the reconstructed densitymatrix for the
Fock state ñ∣1 , whereas infigure 4(d) the corresponding photon-number statistics. From the reconstructed
densitymatrix it is clear that the effect of a non-unit quantum efficiency is to add a vacuum component to the
state: in this case the expected densitymatrix is r h h= ñá + - ñá∣ ∣ ( )∣ ∣1 1 1 0 0 [41] and itsfidelity with respect to
the reconstructed one is F=99.0%. In this case the typical uncertainty in the determination of thematrix
elements is∼10−2.

4.2. Cat states
Now,we focus the attention on a class of states exhibiting a peculiar density operator, namely, the class of cat
states [51–53]. These states represent a useful quantum resource for quantum teleportation, quantum
computation and error correction. Herewe consider the even and odd cat states defined as:

&
y a

a a
ñ =

ñ + - ñ
+

+

∣ ( ) ∣ ∣ ( ) ( ), even cat 13

and

&
y a

a a
ñ =

ñ - - ñ
-

-

∣ ( ) ∣ ∣ ( ) ( ), odd cat 14

respectively, where & a= o -o [ ( ∣ ∣ )]2 1 exp 2 2 . By assuming the same quantum efficiency for both the
detectors, the joint probabilities of such states can bewritten as
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In panel (a) offigures 5 and 6, we show typical data traces for the even and odd cat states withα=1, respectively,
obtained fromMonteCarlo simulations (with 2×104 data) in the case of η=1. As it is clearly evident from the
two panels, the cat states are phase sensitive, at variance with Fock states. Themodulus of the reconstructed
densitymatrix for the even cat state is shown in panel (b) offigure 5, and for the odd cat state in panel (b) of
figure 6. As expected, in the former case the densitymatrix only exhibits a non null probability only for even
numbers of photons, whereas the latter one only for odd numbers. The good quality of the retrievedmatrices is
quantified by the high values offidelity, which are F∼ 99.9% and 99.8%, respectively.

The situation changes if the quantum efficiency of the detector apparatus is lower than 1. For instance, in
panels (c) offigures 5 and 6we plot the reconstruction of themodulus of the densitymatrices for η=0.4. As it is
evident, in both cases thematrices are no longer characterized by the presence of either even or odd elements.
This fact is better emphasized in the panel (d) of bothfigures, inwhich the diagonal of thematrix is shown.
Indeed, the non unit quantum efficiency is responsible for the appearance of odd elements in the case of the even
cat state, and of even elements in the case of the odd cat state. In this respect, it is remarkable that the latter case is
theworst because of the dominance of the 0-element. Nevertheless, the obtained results are in perfect agreement
with the theoretical expectations, as testified by the high values offidelity (F∼ 99.7% for the even cat state and
99.8% for the odd one). However, we note that for the reconstruction of the cat states the use of a larger LO
(b = 40 or 45 ) is needed to guarantee a good quality of reconstruction.We ascribe such a requirement to
themore complex structure of the densitymatrix associatedwith these states.Wewill investigate the actual role
of the LO amplitude in a futurework.
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Figure 5.Upper panels: reconstruction of the even cat state y a ñ+∣ ( ) withα=1 (MonteCarlo simulated experiments), with LO
amplitude b = 40 and quantum efficiency η=1. (a)Δf as a function off; (b)Reconstructed densitymatrix. The fidelity with the
expected state is F=99.9%. Lower panels: Reconstruction of the even cat state (MonteCarlo simulated experiments), with LO
amplitude b = 40 and quantum efficiency η=0.4. (c)Reconstructed densitymatrix; (d)Photon-number statistics of the
reconstructed state (the error bars have been obtained averaging over 10 simulated experiments). The fidelity with respect to the
expected density operator is F=99.7%.

Figure 6.Upper panels: reconstruction of the odd cat state y a ñ-∣ ( ) withα=1 (MonteCarlo simulated experiments), with LO
amplitude b = 45 and quantum efficiency η=1. (a)Δf as a function off; (b)Reconstructed densitymatrix. The fidelity with the
expected state is F=99.8%. Lower panels: Reconstruction of the odd cat state (MonteCarlo simulated experiments), with LO
amplitude b = 45 and quantum efficiency η=0.4. (c)Reconstructed densitymatrix; (d)Photon-number statistics of the
reconstructed state (the error bars have been obtained averaging over 10 simulated experiments). The fidelity with respect to the
expected density operator is F=99.8%.
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5. Conclusions

In conclusion, for thefirst time to our knowledgewe have demonstrated that photon-number-resolving
detectors and a low-intensity LO can be used in a homodyne scheme instead of p–i–nphotodiodes and a
macroscopic LO to properly reconstruct quantum states of light. In particular, our numerical and experimental
results highlight that reconstruction schemes based on the use of discrete variablesmay be effectively employed
to retrieve the densitymatrix of continuous-variable systems, as well as the first twomoments of the quadrature
operator. At variance with standard homodyne detectors, our apparatus offers twomain advantages: First of all,
it is characterized by a larger experimental tolerance, since the reconstruction procedure can be applied also in
the presence of a small imbalance between the twoBS outputs. On the contrary, in the standard scheme an
almost perfect balancing is required to avoid the damage of the circuit that amplifies the difference
photocurrent. Secondly, since our apparatus is based on proportional PNRdetectors towhichwe have direct
access, each detector response can provide a self-consistentmonitoring of the relative phase between signal and
LO, as extensively explained in [24] and [27].

We have investigated advantages and limitations of our reconstruction scheme by performing experiments
on coherent and PHAV states. The good results suggest that the homodyne-like scheme based onHPDs canfind
applications in discriminating among states that have the same photon-number statistics but different density
matrix, such as between coherent and phase-averaged coherent states.

In addition, we have performedMonte Carlo simulated experiments with a single-photon Fock state and
even and odd cat states in order to assess the role of quantum efficiency.We have found that, even in the presence
of a very low value of the quantum efficiency, that further reduces the amplitude of the LO, the reconstructed
densitymatrices corresponding to the detected states are consistent with the descriptionmodel.

Our experimental scheme involves a low-intensity LO instead of amacroscopic one, thus proving that even a
modest imbalance between signal and LO is sufficient to successfully performquantum-state tomography. At
variancewith inversion algorithms, the reconstructionmethodwe have applied to both experimental and
simulated data properly works also in the presence of high loss.Moreover, it represents a valid alternative to
maximum-likelihoodmethodswhich, being point estimators, do not naturally provide confidence intervals
unlessmore than one data run is considered and fail in the case of a very low value of quantumdetection
efficiency. Overall, our results open new perspectives to quantum-state reconstruction in themesoscopic
regime, and pave theway to the use of photon-number-resolving-based detection schemes as novel hybrid
schemes inQuantum Information science. For instance, they can be successfully employed also in the case in
which, for some specific applications, a complete reconstruction of the states is not necessary.Moreover, the
hybrid schemes could be used in all the applications inwhich the dual nature of light, namelywave-like and
particle-like, should be exploited. For instance, the versatility of the hybrid schemes could be interesting for the
codification and de-codification of information in complementary variables.

Acknowledgments

Thiswork has been supported byCARIPLO foundation through the Lake-of-Como School program. The
authors are grateful toMatteo Bina for useful discussions.

ORCID iDs

StefanoOlivares https://orcid.org/0000-0002-9251-0731
Alessia Allevi https://orcid.org/0000-0002-1972-3124
MatteoGAParis https://orcid.org/0000-0001-7523-7289
Maria Bondani https://orcid.org/0000-0001-6083-0776

References

[1] D’ArianoGM,Maccone L and ParisMGA2001Quoromof observables for universal quantum estimation J. Phys. A:Math. Gen. 34 93
[2] TeoY S 2016 Introduction toQuantum-State Estimation (Singapore:World Scientific)
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