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Abstract

We address state reconstruction by photon-number-resolving detectors, and demonstrate that they
may be effectively exploited to perform quantum tomography of states of light. In particular, we find
that the pattern function technique, originally developed for optical homodyne tomography, may be
also applied to discrete data. Our results open new perspectives for quantum-state reconstruction in
the mesoscopic regime, and pave the way to the use of photon-number-resolving-based detection
schemes in Quantum Information science.

1. Introduction

A quantum tomographic technique is a scheme to evaluate the expectation value of any observables as well as to
reconstruct the density matrix or the Wigner function of a physical system. To this aim, the technique processes
the outcomes of a guorum of observables, measured on repeated preparations of the state under investigation
[1-4]. In the continuous-variable domain, quantum states are usually reconstructed by means of optical
homodyne tomography (OHT) [5]. From the optical point of view, OHT is based on an interferometric scheme
(see the left panel of figure 1) in which a state p (the signal) is mixed at a balanced beam splitter (BS) with a high-
intensity coherent state | 3) = ||3]el?), usually referred to as the local oscillator (LO). The two outputs of the
interferometer are then detected by two p—i—n photodiodes, whose difference photocurrent is formed, suitably
amplified, rescaled by the LO amplitude | 5], and finally recorded as a function of the LO phase ¢. The values of
any observable are then obtained by properly processing the data [6], some of them by averaging pattern
functions [7, 8] or using maximum-likelihood reconstruction techniques [9-12].

In order to avoid the use of a strong LO and the subtleties of these reconstruction protocols [13] (e.g. due to
binning), in the last decade some efforts have been devoted to the development of hybrid detection schemes,
involving photon counting [ 14—18]. In this paper, we focus our attention on photon-number-resolving
detectors [19-21]. The implemented scheme bears some resemblance to homodyne detection and leads to
similar results. However, at variance with the standard scheme, the p—i—n photodiodes are replaced by photon-
number-resolving detectors and the LO | 3) is a low-intensity (few tens of photons) coherent state. The output of
the apparatus is thus the difference between the effective number of detected photons [22—24], rather than the
difference between two macroscopic photocurrents. Note that the use of photon-number-resolving detectors
instead of p—i—n photodiodes gives direct access to the statistics of light at each BS output. This gives the
possibility to easily investigate some properties of the state under exam, such as the mean value and the variance
of the photon number, and, at the same time, it makes it possible the self-consistent calibration of the employed
photon-number-resolving detectors [25]. In addition, the homodyne-like scheme is based on a low-intensity
LO, thus demonstrating that, even in the presence of a small imbalance between signal and LO, the state
reconstruction is guaranteed. This result allows a deep insight into the physics of quantum tomography by
investigating, for instance, the effect of the LO intensity on the state reconstruction. We note that this kind of
study is not possible with the standard homodyne scheme, since p—i—n photodiodes are macroscopic detectors
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Figure 1. (Left) Quantum state reconstruction by photon-number-resolving detectors: the signal p is mixed with a coherent state | 3)
(LO) ata balanced beam-splitter BS. The two beams at the output of the BS are detected and the difference between the numbers of
photons is calculated and then amplified. (Right) Sketch of the experimental setup for the reconstruction of coherent and PHAV
states. The second-harmonic pulses of a ps-laser amplified at 500 Hz are sent to a Mach—Zender interferometer (consisting in two
balanced BS, two right-angle prisms, and two high-reflective mirrors (M)). The light pulses in one arm correspond to the signal under
investigation, whereas those in the other arm correspond to the LO. Note that in both arms neutral density filter wheels (ND) are used
for the fine tuning of the intensities. The length of one arm can be micrometrically changed by means of a piezoelectric movement
(Pz). At each output of the interferometer the light is focused by an achromatic doublet (L) into a multi-mode fiber (MF) and delivered
to a hybrid photodetector (HPD), whose output is amplified, synchronously integrated and acquired. The photon-number difference
is post-processed offline.

and cannot be used to count few photons. At the same time, the exploitation of a detection scheme based on a
weak LO could be crucial in the case in which such a field is not directly available from the laser source and must
be obtained by means of nonlinear interactions. The only limitation of the homodyne-like scheme is given by the
lower quantum efficiency of the photon-number-resolving detectors compared to p—i—n photodiodes.
Currently, only superconducting detectors, such as transition-edge sensors and nanowire detectors, can reach a
detection efficiency larger than 80%.

Up to now, our scheme has been exploited for state-discrimination [26, 27], and proved useful to
outperform standard homodyne detection in quantum key distribution with continuous variables [28]. In
addition, the same scheme (in the absence of the LO) can be employed to generate negative photon-number
correlations, thus demonstrating the analogous of antibunching at the mesoscopic intensity level [29]. We also
notice that the scheme adopted in this work is completely different from the so-called weak-homodyne
detection ones, in which photon-number-resolving detectors have been employed. Indeed, in those schemes the
reconstruction of the states has been achieved by considering only a single output of the interferometer [30-37],
whereas here we deal with the difference between the two outputs.

In this paper, we address quantum state reconstruction by the scheme of figure 1 and prove that it may be
efficiently employed to retrieve the density matrix of single-mode quantum states, as well as to evaluate the
expectation values of the first moments of the quadrature operator. The homodyne-like scheme can thus be
considered as a valid alternative to the standard one. Since the reconstruction method is applied to detected
quantities, namely to the difference between the number of photons detected at the outputs of the
interferometer, the retrieved density matrices correspond to the detected states and not to the ones at the input.
We also investigate the role played by quantum efficiency, which is a crucial parameter in the detection of
nonclassical features of quantum states [38]. In all cases examined in the paper, robust and reliable results have
been obtained with a relatively modest imbalance between signal and LO.

The paper is structured as follows. In section 2 we describe our reconstruction scheme and compare its
features with those of standard OHT. Section 3 reports the experimental results, whereas section 4 is devoted to
Monte Carlo simulated experiments. Section 5 closes the paper with some final remarks.

2. State reconstruction by photon-number-resolving detectors

As amatter of fact, information coming from photon-number-resolving-based homodyne-like scheme is of
different nature compared to that obtained from homodyne detection. In principle, this would require the
design of a new tomographic procedure, in order to reconstruct the quantum state under investigation from
experimental data. Nevertheless, the parametric approximation (i.e. treating the LO as c-number, rather than as
an operator) used to describe homodyne detection is known to hold also when the intensity of the LO is low [39],
as far as its coherence is preserved. In turn, this fact suggests that the pattern functions technique used in OHT
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[1-5, 7, 8] may be exploited also in our scheme. One of the main outcomes of this paper, substantiated by
experimental and numerical results, is indeed the proof of this equivalence.

We assume that the state of the input mode 4, with [d, 4T] = 1, is described by the density matrix p. In OHT,
given the homodyne probability distributions p(x, ¢) = (x4|plx,), where |x,) are the eigenstates of the
quadrature operator £ = (4 e + af ¢'?) /+/2, the elements of the density matrix p in the photon number
basis can be reconstructed as

™ +0o0o
= d dx > Etm > . 1
pun= [ do [ dx px ) Funt, 0) M
The functions F,,,,,(x, ¢) are a set of sampling functions and can be written as [7]
Em(x, 0) = f,,, (x)exp[i(n — m)0], ()

where the pattern functions f,, (x) can be expressed in terms of regular and irregular wave functions (1,,(x) and
@ m(x), respectively)

Jam ) = 2x104 (%) ,,,(x) — J2(1n + D) Yps1(0) h,,(x) — J2(m + 1) Yu(x) @y, (%), 3

with m > n. Quite simple expressions for the numerical computation of these functions can be found in the
original paper [7] and are not reported here explicitly.

Usually, the homodyne probability distributions p(x, ¢) are retrieved from the difference of the two
macroscopic photocurrents exiting the homodyne detector [40—42]. In our scheme, we replace p(x, ¢) with the
probability distributions pj,(Ag), where Ay = A / (~/2|8]) and A is the (phase-dependent) difference between
the number of photons detected at the two outputs of the homodyne detector [27]. Before going to the
derivation of pp(A ), we notice that, while the outcome x of standard homodyne detection can assume any real
value, the quantity A ; is intrinsically discrete. However, this discretization does not represent a limitation for
state reconstruction by the sampling function F,,,,,(x, ¢). In particular, we notice that our method provides
density matrices that are positive semidefinite within their confidence intervals. Indeed, as reported in [7], the
reconstruction method also provides confidence regions evaluated from the variance of the density matrix
elements by assuming that the homodyne detection is a Poissonian counting process. However, such a
calculation may require large computational resources and sometimes it is better to estimate the errors by
repeating the tomographic reconstruction on different experimental runs and performing the standard
statistical analysis. Of course, the two methods lead to compatible results. In this work, we adopt the latter
solution.

In order to obtain pp(A ), let us remind that the information coming from our scheme is contained in the
joint count statistics q(#1, m) of the number of photons detected at each laser shot at the outputs of the BS. To find
the expression of q(n, m), it is useful to consider the Glauber—Sudarshan P representation of the input state p

pzﬁﬁwmmm, )

where P () is the P-function associated with p. After the interference of the input state with the LO (the coherent
state | 3)) at the balanced BS, the two-mode state R;, = p ® |3) (/3| becomes

e (sec| g | =) (=] -
V2 V2 V2 V2
and the corresponding joint photon-number statistics can be written as [43, 44]:

»‘”ﬂu(fﬁ) [,UC(C> B)]n [Nd(C) ﬂ)]m ,

n!m!

_ 2
Rw_zﬁdcmo

g(n,m) = [ #C P e ©)
C
where 1.(¢, B) = %W + ([Fand 1 (¢, B) = %W — (|*. The effect of non unit quantum efficiency 7 of the
detector on the output modes k = ¢, d may be taken into account by replacing 1(¢, 58) with ng(C, 5).

Starting from the joint probability (6), it is possible to calculate the distribution of the quantity A = n — m,
namely

pD(A) = Z Q(m’ n) (7)
mn:m—n=A

and the corresponding ‘rescaled’ version pp(Ay), where A, = A / (~/218)). In order to investigate the
performance of our reconstruction scheme, we consider some paradigmatic optical states: The coherent state,
which is phase-sensitive, its phase-averaged counterpart (PHAV), which is of course phase insensitive, the
single-photon Fock state, which is a nonclassical phase-insensitive state, and even and odd cat states, which are
both nonclassical and phase-sensitive. For coherent and PHAV states we provide an experimental demonstra-
tion, whereas for the Fock and cat states we perform Monte Carlo simulated experiments, and analyze the effect
of anon-unit quantum efficiency, n < 1.
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Figure 2. Experimental reconstruction of a coherent state with measured amplitude || = 1.03. The LO has an amplitude | 3] = 3.82.
(a) A, asafunction of LO phase, ¢. The experimental data (green dots) are shown together with the mean value (solid line) and the
standard deviation (dashed lines) of the quadrature, as obtained through the pattern function tomography. (b) Reconstructed density
matrix. The fidelity with the expected state is F = 99.4%.

3. Experimental results

3.1. Experimental setup
For a coherent state p = |«) (], the joint photon-number statistics, and the corresponding pp(A) distribution,
can be obtained by setting P(¢) = 8¢ — @), where §%(z) is the complex Dirac’s delta function. The
experimental setup is sketched in the right panel of figure 1. The second harmonic pulses (~5 ps pulse duration)
at 523 nm of amode-locked Nd:YLF laser regeneratively amplified at 500 Hz are divided at a Mach—Zehnder
interferometer into two parts in order to yield the signal and the LO. The length of one arm of the interferometer
is changed in steps by means of a piezoelectric movement (Pz) in order to vary the relative phase ¢ between the
two arms in the interval [0, ). Two variable neutral density filter wheels (ND) are used to change the balancing
between the two beams, which are then recombined in a balanced BS. At the BS outputs two multi-mode
600 pm core fibers (MF) deliver the light to a pair of photon-number-resolving detectors. In detail, we employ
two HPDs (mod. R10467U-40, Hamamatsu Photonics, having a quantum efficiency 1 ~ 0.5 in the green spectral
region), whose outputs are amplified, synchronously integrated and digitized. HPDs are commercial detectors
endowed with partial photon-number-resolving capability and a good linearity up to 100 photons. As already
demonstrated elsewhere (see for instance [27, 25, 45]), HPD response can be characterized in a self-consistent
way with the same light under examination. Here we just remark that from the experimental data it is possible to
calculate the gain of the detection apparatus in order to recover the distribution of detected photons at each BS
output. In addition, this kind of detector allows us to obtain information on the relative phase between the two
arms of the interferometer by simply monitoring the mean number of detected photons measured at each BS
output as a function of the piezoelectric movement [27, 46]. In the present case, 3 x 10° data corresponding to
subsequent laser pulses are recorded and used to reconstruct the density matrix of the coherent state and of the
PHAV state, which is a diagonal state obtained by randomizing the phase of a coherent state |a) = ||r|e!’)

|2n

2w de " 0 o
PPHAY = j; E|Oé> (o = e71oF )" |T|”><”|~ ®
n=0 .

3.2. Coherent state

In order to process the data corresponding to the coherent state, once obtained the number of detected photons
at each BS output, we calculate the shot-by-shot photon-number difference, A. The corresponding phase value
¢ is determined by acquiring a suitable data sample (5 x 10* pulses) for each one of the 60 piezo positions. As
the piezo moves in regular steps, the measured mean number of detected photons follows a sinusoidal trend due
to the interference at the BS, from which the effective value of ¢ for each piezo position can be evaluated. The

5 x 10* data corresponding to the same ¢ are uniformly distributed around that value with a step of

1/(5 x 10%.

The typical behavior of A, as a function of ¢ is shown in figure 2(a) (3 x 10° data). Note that, due to
irregularities in the piezoelectric movement, the data are not uniformly distributed in ¢. As mentioned in
section 2, in order to estimate the uncertainties of the reconstructed states, we have chosen to perform a
statistical analysis of different runs instead of following a tomographic approach, which is computationally more
demanding.

In particular, the reconstruction procedure is applied to 10 sets of 3 x 10° data drawn from the whole
sample: the modulus of the average density matrix is shown in figure 2(b), and the typical uncertainty, obtained
as standard deviation over the 10 runs, in the determination of the matrix elements is ~10~>. The mean number

4



I0OP Publishing NewJ. Phys. 21 (2019) 103045 S Olivares et al

29 (@)

05 10 15 2.0 25 3.0

-4
-6

Figure 3. Experimental reconstruction of a PHAV state with amplitude || = 1.08. The LO has an amplitude | 5| = 3.82.(a) Agasa
function of ¢. The experimental data (green dots) are shown together with the mean value (solid line) and the standard deviation
(dashed lines) of the quadrature as obtained through the pattern function tomography. (b) Reconstructed density matrix. The fidelity
with the expected state is F = 99.9%.

of photons corresponding to figure 2(b) is (1) = 3=, n p, , = 1.06. The fidelity [47] between the reconstructed
coherent state and a coherent state with the same amplitude is F = 99.4%.

As amatter of fact, the fidelity may not fully assess the quality of a reconstruction scheme [48] and therefore,
in order to qualify our reconstruction scheme, we also consider the evaluation of the expectation values of some
observables. To this aim, we remind that, given a generic observable, we may obtain its expectation value
<A> = Tr[ pA] from the distribution of homodyne data as [4]

(Ay =L [ 40 [ axpen ORIAIE 0) ©

™

where R[A] (x, ¢)isakernel, or pattern function, associated with the operator A. For instance, in the following
we will use the fist two moments of the quadrature operator, which may be obtained from the kernels [4]:

R[-&:G] (.X, ¢) =2x COS(¢ - 0)’

RIZ(x, &) — (4x2 _ l)[4cos2(¢; N (10)
n 4 4

By exploiting the expressions of equations (10) in (9), in which we use the distributions pp(A ;) instead of p
(x, )and set @ = 0, we get (£y) = 1.451 4 0.003 and var[£,] = (£;) — (%,)> = 0.688 + 0.015 for the case
under investigation. These values should be compared to those expected in the limit of a discrete scheme,
namely (£o)heo = ~/2 || = /2 1.03 = 1.456 and var[X(]heo = % + %l04|2/|ﬁ|2 = 0.536. The last result
explicitly shows the contribution to the variance due to the low-intensity LO, which becomes negligible as
|8l > |al. Notice that since we are dealing with classical states, the quantum efficiency just rescales the energy of
the detected states, and we can safely set = 1: the results we obtain are thus referred to the detected states. We
see that while the mean value of the quadrature is well reconstructed by the experimental data, the variance is
larger than expected. Such discrepancy is likely due to phase fluctuations occurred during the measurements

session.

3.3.PHAV state

In order to check whether this interpretation holds, we consider the PHAV state, which is phase insensitive and
thus should not be influenced by the presence of possible phase fluctuations. As in the case of the coherent state,
we save 10 sets of 3 x 10° data by calculating the shot-by-shot photon-number difference between the two BS
outputs. Since the PHAV state is phase-insensitive, we randomly assign a phase value to each experimental value
of A. A typical trace of A versus ¢ is shown in figure 3(a), whereas in panel (b) the modulus of the average density
matrix is presented. As expected, the off-diagonal elements are absent, and, also in this case, the typical
uncertainty, obtained as standard deviation over the 10 runs, in the determination of the matrix elements is
~107>. In order to compare the reconstructed matrix to the theoretical prediction in equation (8) with

|a] = 1.08, we calculate the fidelity and obtain F = 99.9%. For what concerns the first and second moments of
the quadrature, we obtain (%g) = 0.004 + 0.003 and var[®¢] = 1.725 £ 0.013, V 6. In this case, the expected
values are (Xg)theo = 0and var[£,]neo = % + |af? + %|oz|2 /|1BI* = 1.706, respectively. The very good
agreement between theory and experiment for this phase-insensitive state confirms our considerations about
the variance of the reconstructed coherent state.
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Figure 4. Upper panels: reconstruction of the Fock state |1) (Monte Carlo simulated experiments), with LO amplitude 3 = +/20 and
quantum efficiency = 1.(a) A, as a function of ¢; (b) Reconstructed density matrix. The fidelity with the expected state is

F = 99.9%. Lower panels: Reconstruction of the Fock state | 1) (Monte Carlo simulated experiments), with LO amplitude 8 = ~/20
and quantum efficiency 7 = 0.4. (c) Reconstructed density matrix; (d) Photon-number statistics of the reconstructed state (the error
bars have been obtained averaging over 10 simulated experiments). The fidelity with respect to the expected distribution is

F = 99.0%.

4. Numerical simulations

4.1. Fock states
We now turn our attention to the Fock state | 1), through which we explore the role played by alimited quantum
efficiency for quantum-state reconstruction. Since the light source employed in the experiment is operated at
500 Hz, it does not guarantee an effective production of single-photon states. Thus, in the following we show the
results obtained by using Monte Carlo simulated experiments, in which we set 3 = /20.

The state |1) has a highly singular P function given by:

82

P(Q) = 69 + W(S(z)(@, (11)
and the joint probability in equation (6) reads:
_ e BRI L = ) — lP
q,,(n, m) = W(T 1+ KR > (12)

where we assume that both detectors have the same quantum efficiency 7. The corresponding pp(A) is quite
clumsy and is not explicitly reported here.

In figure 4(a), we show a typical data trace, i.e. A asa function of ¢, obtained from a Monte Carlo
simulation (with 5 x 10* data) assuming ideal detection, i.e.77) = 1.Itis clear that, as one may expect, A, does
not depend on the relative phase ¢ since the Fock state is phase insensitive. The modulus of the reconstructed
density matrix is plotted in the panel (b) of the same figure. At variance with the experimental results, in this case
the typical uncertainty in the determination of the matrix elements is ~10~ 2, a value that in principle can be
decreased either by increasing the samples or increasing the imbalance between signal and LO. Since the density
matrix is diagonal, the fidelity of the state coincides with that of the photon-number distribution, for which we
have F = 99.9%.

Up to this point, we have shown the reliability of the reconstruction scheme and of the reconstruction
strategy under ideal detection conditions. However, since photon-number-resolving detectors are real
detectors, it is worth investigating whether the scheme would also work in the presence of an overall quantum
efficiency ) < 1. When standard homodyne is employed, it is well known that a non-unit quantum efficiency
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rescales the mean value of the reconstructed density matrix in the case of classical states of light, such as coherent
and PHAV states, whereas it deeply modifies the properties of the reconstruction in the case of nonclassical
states, such as Fock states [41]. In order to check if analogous results can be achieved by means of our scheme, we
consider the non-ideal detection of the Fock state | 1) in a simulated experiment. We assume the same value of
LO adopted above, i.e. 3 = 20, but now we set 71 = 0.4, arealistic value for many kinds of photon-number-
resolving detectors [25, 49, 50]. In figure 4(c), we show the modulus of the reconstructed density matrix for the
Fock state |1), whereas in figure 4(d) the corresponding photon-number statistics. From the reconstructed
density matrix it is clear that the effect of a non-unit quantum efficiency is to add a vacuum component to the
state: in this case the expected density matrixis p = n|1) (1] + (1 — 1)|0) (0] [41] and its fidelity with respect to
the reconstructed oneis F = 99.0%. In this case the typical uncertainty in the determination of the matrix
elementsis ~102,

4.2. Cat states

Now, we focus the attention on a class of states exhibiting a peculiar density operator, namely, the class of cat
states [51-53]. These states represent a useful quantum resource for quantum teleportation, quantum
computation and error correction. Here we consider the even and odd cat states defined as:

) +1-a)

|¢+(OZ)> = T,
+

(even cat) (13)

and

la) — |-a)
AL

respectively, where V. = 2[1 + exp(—2|a[?)]. By assuming the same quantum efficiency for both the
detectors, the joint probabilities of such states can be written as

() = (odd cat) (14)

0© (n, m3 6) = [P 1) P 1) + P 1) Buy 1)
0 A

n m n m
+ nn+m e771((y2+52)72(1 'r,)az( >\+ )\*n'—’_m?‘* >\+ ):|, (15)
inwhich B,(x) = e *x"/n!is the Poisson distribution,
a? + 3 £ 208 cos ¢

ve(a, ﬁ; ¢) = ) > (16)

and

o? — 3% £ 2iaBsin ¢

/\i(a) 6; ¢) - )

7)

In panel (a) of figures 5 and 6, we show typical data traces for the even and odd cat states with o = 1, respectively,
obtained from Monte Carlo simulations (with 2 x 10* data) in the case of ) = 1. Asiitis clearly evident from the
two panels, the cat states are phase sensitive, at variance with Fock states. The modulus of the reconstructed
density matrix for the even cat state is shown in panel (b) of figure 5, and for the odd cat state in panel (b) of
figure 6. As expected, in the former case the density matrix only exhibits a non null probability only for even
numbers of photons, whereas the latter one only for odd numbers. The good quality of the retrieved matrices is
quantified by the high values of fidelity, which are F ~ 99.9% and 99.8%, respectively.

The situation changes if the quantum efficiency of the detector apparatus is lower than 1. For instance, in
panels (c) of figures 5 and 6 we plot the reconstruction of the modulus of the density matrices for n = 0.4. Asitis
evident, in both cases the matrices are no longer characterized by the presence of either even or odd elements.
This fact is better emphasized in the panel (d) of both figures, in which the diagonal of the matrix is shown.
Indeed, the non unit quantum efficiency is responsible for the appearance of odd elements in the case of the even
cat state, and of even elements in the case of the odd cat state. In this respect, it is remarkable that the latter case is
the worst because of the dominance of the 0-element. Nevertheless, the obtained results are in perfect agreement
with the theoretical expectations, as testified by the high values of fidelity (F ~ 99.7% for the even cat state and
99.8% for the odd one). However, we note that for the reconstruction of the cat states the use of a larger LO
(3 = /40 or +/45)is needed to guarantee a good quality of reconstruction. We ascribe such a requirement to
the more complex structure of the density matrix associated with these states. We will investigate the actual role
of the LO amplitude in a future work.
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Figure 5. Upper panels: reconstruction of the even cat state |/, (o)) with & = 1 (Monte Carlo simulated experiments), with LO
amplitude # = /40 and quantum efficiency n = 1. (a) A, as a function of ¢; (b) Reconstructed density matrix. The fidelity with the
expected stateis F = 99.9%. Lower panels: Reconstruction of the even cat state (Monte Carlo simulated experiments), with LO
amplitude 8 = /40 and quantum efficiency n = 0.4. (c) Reconstructed density matrix; (d) Photon-number statistics of the
reconstructed state (the error bars have been obtained averaging over 10 simulated experiments). The fidelity with respect to the
expected density operator is F = 99.7%.
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Figure 6. Upper panels: reconstruction of the odd cat state | («)) with @ = 1 (Monte Carlo simulated experiments), with LO
amplitude 3 = /45 and quantum efficiency ) = 1.(a) A asafunction of ¢; (b) Reconstructed density matrix. The fidelity with the
expected state is F = 99.8%. Lower panels: Reconstruction of the odd cat state (Monte Carlo simulated experiments), with LO
amplitude § = /45 and quantum efficiency 7 = 0.4. (c) Reconstructed density matrix; (d) Photon-number statistics of the
reconstructed state (the error bars have been obtained averaging over 10 simulated experiments). The fidelity with respect to the
expected density operator is F = 99.8%.
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5. Conclusions

In conclusion, for the first time to our knowledge we have demonstrated that photon-number-resolving
detectors and alow-intensity LO can be used in a homodyne scheme instead of p—i—n photodiodes and a
macroscopic LO to properly reconstruct quantum states of light. In particular, our numerical and experimental
results highlight that reconstruction schemes based on the use of discrete variables may be effectively employed
to retrieve the density matrix of continuous-variable systems, as well as the first two moments of the quadrature
operator. At variance with standard homodyne detectors, our apparatus offers two main advantages: First of all,
itis characterized by a larger experimental tolerance, since the reconstruction procedure can be applied also in
the presence of a small imbalance between the two BS outputs. On the contrary, in the standard scheme an
almost perfect balancing is required to avoid the damage of the circuit that amplifies the difference
photocurrent. Secondly, since our apparatus is based on proportional PNR detectors to which we have direct
access, each detector response can provide a self-consistent monitoring of the relative phase between signal and
LO, as extensively explained in [24] and [27].

We have investigated advantages and limitations of our reconstruction scheme by performing experiments
on coherentand PHAV states. The good results suggest that the homodyne-like scheme based on HPDs can find
applications in discriminating among states that have the same photon-number statistics but different density
matrix, such as between coherent and phase-averaged coherent states.

In addition, we have performed Monte Carlo simulated experiments with a single-photon Fock state and
even and odd cat states in order to assess the role of quantum efficiency. We have found that, even in the presence
of averylow value of the quantum efficiency, that further reduces the amplitude of the LO, the reconstructed
density matrices corresponding to the detected states are consistent with the description model.

Our experimental scheme involves a low-intensity LO instead of a macroscopic one, thus proving that even a
modest imbalance between signal and LO is sufficient to successfully perform quantum-state tomography. At
variance with inversion algorithms, the reconstruction method we have applied to both experimental and
simulated data properly works also in the presence of high loss. Moreover, it represents a valid alternative to
maximum-likelihood methods which, being point estimators, do not naturally provide confidence intervals
unless more than one data run is considered and fail in the case of a very low value of quantum detection
efficiency. Overall, our results open new perspectives to quantum-state reconstruction in the mesoscopic
regime, and pave the way to the use of photon-number-resolving-based detection schemes as novel hybrid
schemes in Quantum Information science. For instance, they can be successfully employed also in the case in
which, for some specific applications, a complete reconstruction of the states is not necessary. Moreover, the
hybrid schemes could be used in all the applications in which the dual nature oflight, namely wave-like and
particle-like, should be exploited. For instance, the versatility of the hybrid schemes could be interesting for the
codification and de-codification of information in complementary variables.
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