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In a recent research (Olivares et al., 2019 [18]) we have demonstrated that a homodyne-like scheme, 
exploiting a “low-intensity” local oscillator, can be used to perform optical state tomography of both 
quantum and classical states of light. The reconstruction method directly uses the homodyne-like 
probability distribution retrieved from the detector. Here, we further investigate the role played by 
the local oscillator in this respect. In particular, we study to some extent how its intensity affects the 
quantum-state reconstruction procedure by focusing on the case of the Fock states |1〉 and |2〉, whose 
homodyne-like probability distributions are sensibly affected by the actual value of the LO intensity. 
The analysis is performed on Monte Carlo simulated experiments taking also into account the quantum 
detection efficiency.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The development of quantum technologies requires quantum 
resources that can be practically exploited. Therefore, the full char-
acterization of the quantum states to be employed represents an 
unavoidable step. Among the techniques proposed in the optical 
domain, homodyne tomography is one of the most used, giving 
it access to the full description of a quantum state in terms of 
Wigner function and density matrix [1,2]. From the experimental 
point of view, quantum-state tomography is based on measure-
ments performed with a homodyne detector, namely an interfer-
ometric scheme in which the signal state under examination is 
mixed with a second field, called local oscillator (LO), at a balanced 
beam splitter (BS). In the traditional scheme, the LO is a macro-
scopic coherent field that can be described classically. The two 
outputs of the interferometer are detected by two p-i-n photodi-
odes, whose difference photocurrent is formed, amplified, rescaled 
by the LO amplitude and recorded as a function of the LO phase. 
The application of suitable reconstruction methods to the data 
from homodyne detection allows the full characterization of the 
signal state. Among them, the most used are maximum-likelihood 
methods [3–8] and algorithms based on the so-called pattern func-
tions [9–15].
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We have recently proved that quantum-state tomography can 
be achieved also with a homodyne-like scheme, in which a low-
intensity LO and photon-number-resolving detectors are used in-
stead of a macroscopic LO and p-i-n photodiodes. Moreover, the 
possibility to develop homodyne detection strategies using e.g.
multiplexed schemes has been discussed also in [16] and [17].
In Ref. [18] we have shown the experimental reconstruction of 
classical states, such as coherent states and phase-averaged coher-
ent states, obtained by means of hybrid photodetectors, which are 
commercial detectors endowed with partial photon-number reso-
lution and a linear response up to 100 photons. One main limita-
tion of this class of detectors is the quantum efficiency, which is 
roughly 50% in the green spectral region and can be further re-
duced in a realistic setup. A valid alternative, especially for what 
concerns the high value of the quantum efficiency, is represented 
by transition-edge sensors (TES), and some homodyne-like detec-
tion schemes employing them have been very recently published 
[19,20]. Nevertheless, one of the main limitations of TES is given 
by their dynamic range, which is approximately equal to 10 de-
tected photons. Thus, TES cannot be used to investigate the so-
called mesoscopic intensity domain, in which the intensity of the 
LO can reach values as large as 50 photons. On the contrary, 
the most promising photon-number-resolving detectors that can 
be operated over a wide dynamic range are Silicon photomulti-
pliers (SiPMs). They are essentially a matrix of avalanche diodes, 
called cells, connected in parallel to a single output. Each diode is 
reverse-biased at a voltage value exceeding the breakdown thresh-

https://doi.org/10.1016/j.physleta.2020.126354
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2020.126354&domain=pdf
mailto:stefano.olivares@fisica.unimi.it
mailto:alessia.allevi@uninsubria.it
mailto:maria.bondani@uninsubria.it
https://doi.org/10.1016/j.physleta.2020.126354


2 S. Olivares et al. / Physics Letters A 384 (2020) 126354
old, and it works in Geiger Müller regime, yielding a standard 
output signal at any detection event. Assuming that at most one 
photon impinges on a single cell, the number of fired cells gives 
the number of incident photons. Unfortunately, these detectors are 
affected by some spurious effects, such as dark counts, cross talk 
and afterpulses. Moreover, the current value of their quantum effi-
ciency is up to 60%. In the context of quantum-state tomography, 
such drawbacks unavoidably affect the reconstructed state. Never-
theless, we notice that SiPMs response can be suitably modeled
[21] and, by properly acting on the control parameters, such as the 
bias voltage and the integration gate, it is possible to substantially 
reduce all the spurious effects [21,22]. These parameters also con-
trol the photon-number-resolving capability of SiPMs, that is the 
ability to distinguish among one, two, three or more photons. For 
instance, reducing the integration gate can improve the separation 
among peaks, thus enhancing the determination of the statistical 
properties of light. Thanks to the optimized operation of SiPMs, 
we have recently proved that such detectors can be exploited to 
test both nonclassical correlations and subPoissonianity of optical 
states [22].

In this paper we investigate the effects on the reconstruction 
procedure of varying the intensity of the LO. In Ref. [18] we have 
demonstrated that the scheme can be suitable for the reconstruc-
tion of both classical and nonclassical states of light (such as cat 
states), upon optimization of the value of the LO with respect to 
the signal state. The results obtained in Ref. [18] suggest that the 
intensity of the LO must be increased not only when the energy of 
the reconstructed states increases, but also when the states exhibit 
peculiar Wigner functions with, for instance, many oscillations in 
the phase space. In this last scenario, increasing the LO inten-
sity allows a better sampling of the corresponding “discretized” 
homodyne probability distributions and, thus, a more faithful to-
mographic reconstruction. Here, we aim at studying the effect of 
the intensity of the LO on the fidelity of the tomographic recon-
struction and we consider the paradigmatic cases of the Fock states 
|1〉 and |2〉, which show an increasing number of oscillations of the 
homodyne probability distributions, both in the case of a perfect 
detection efficiency and in the non ideal one.

2. Materials and methods

The standard homodyne scheme mentioned in the Introduction 
allows to retrieve the information about the quadrature operators 
x̂φ of the signal state by recording the difference photocurrent, de-
scribed by the operator, � Î , between the two BS outputs. Here, 
φ is the relative phase between the signal and the LO, which is 
assumed to be a highly excited classical coherent field. If β is the 
complex amplitude of the LO and â and â†, with [â, ̂a†] = 1, are the 
annihilation and creation operators of the signal field, respectively, 
one can show that

lim|β|→∞

(
� Î√
2|β|

)n

=
(

â†eiφ + âe−iφ

√
2

)n

≡ x̂n
φ, (1)

where n ∈N .
In the case of homodyne-like detection, the physical quantity 

which we have access to is given by the photon-number difference 
� = m −n between the two outputs of the detectors, whose proba-
bility distribution pD(�, φ) reduces to the standard homodyne one 
pHD(x, φ) when the LO becomes intense [23,19,20], namely,

pD(�,φ) → pHD(x = �/(
√

2|β|),φ)/(
√

2|β|), (2)

where |β| is the amplitude of the LO described by a coherent state 
with complex amplitude β = |β| eiφ . In this case, one finds
(
� Î√
2|β|

)n

= x̂n
φ + γ

(n)
φ (â, â†)

|β|2 , (3)

γ
(n)
φ (â, ̂a†) being a suitable function of the annihilation and cre-

ation operators which can be obtained performing direct calcu-
lations. For instance, the first three terms are γ

(1)
φ (â, ̂a†) = 0, 

γ
(2)
φ (â, ̂a†) = â†â, and γ (3)

φ (â, ̂a†) = 3 ̂a† x̂φ â + x̂φ . The last term in 
Eq. (3) scales as 1/|β|2, where |β|2 is the energy of the LO, and it 
vanishes in the limit |β|2 	 1, as one may expect: this is the stan-
dard homodyne detection working regime. However, in the pres-
ence of a low intensity LO, the function γ (n)

φ (â, ̂a†) in Eq. (3) can 
become relevant for the tomographic reconstruction method based 
on the homodyne-like probabilities, since it affects their moments 
and, thus, also the moments of the reconstructed quadratures. 
Therefore, the contribution of γ (n)

φ (â, ̂a†), whose actual expectation 
value is state-dependent, should be made negligible by properly 
choosing the LO intensity in the homodyne-like detection scheme.

In Ref. [18], we have demonstrated that the probability distri-
bution for the photon-number difference can be written in terms 
of the joint photon-number statistics q(m, n) measured at the two 
BS outputs:

pD(�,φ) =
∑

m,n:m−n=�

q(m,n), (4)

in which [24,25]

q(m,n) =
∫
C

d2ζ P (ζ )e−μc(ζ,β)−μd(ζ,β) [μc(ζ,β)]n[μd(ζ,β)]m

n!m! .

(5)

In this expression, P (ζ ) is the Glauber-Sudarshan P -representa-
tion of the generic signal state ρ = ∫

C d2ζ P (ζ )|ζ 〉〈ζ |, whereas 
μc(ζ, β) = |β + ζ |2/2 and μd(ζ, β) = |β − ζ |2/2 are the mean val-
ues of the distributions of the two BS output modes c and d. In the 
case of a non-ideal detection, the effect of a quantum efficiency 
ηk �= 0 (k, being equal to c, d) on the output modes may be taken 
into account by replacing μk(ζ, β) with ηkμk(ζ, β).

Here, we consider the reconstruction of the Fock state ρ =
|ν〉〈ν|, ν ∈N , whose Glauber-Sudarshan P -representation is given 
by

P (ζ ) =
ν∑

m=0

(
ν

m

)
1

m!
(

∂2

∂ζ∂ζ ∗

)m

δ2(ζ ), (6)

for which the joint photon-number distribution reads as

q(m,n) = e−|β|2/2

√
ν!

[
ν∑

k=0

(
ν

k

)√(
n + m − ν

m − k

)
(−1)n−ν+k

√
2n+m

× βn+m−ν
√

n!m!√
(m − k)!(n − ν + k)!(n + m − ν)!

]2

. (7)

An analogous expression of q(n, m) can be written in the case of a 
non-ideal detection efficiency. Since it is quite clumsy, we decided 
not to show it here.

As already demonstrated in Ref. [18], the knowledge of the 
homodyne-like distribution can be exploited to calculate the ele-
ments ρnm of the density matrix of the Fock states. By following 
the methods proposed by Leonhardt et al. in [9], for a homodyne-
like detection we have

ρnm =
π∫

dφ

+nmax∫
d� pD(�,φ) Fnm(�,φ). (8)
0 −nmax
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Fig. 1. Joint-photon-number distribution in the case of Fock state |1〉 for η = 1 and 
different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50. Note that the 
different ranges in the three axes of the two panels are due to the fact that the 
joint-photon-number distributions are built with two different choices of LO.

Fig. 2. Homodyne-like distribution pD in the case of Fock state |1〉 for η = 1 and 
different choices of the LO intensity (blue points). Left: |β|2 = 5; Right: |β|2 = 50. 
In each panel, the theoretical homodyne distribution is shown as red solid line. 
The fidelity between the two curves is equal to 99.612% for |β2| = 5 and 99.999% 
for |β2| = 50. In order to compare pD and pHD, we suitably rescaled the photon-
number difference � appearing in Eq. (4). (For interpretation of the colors in the 
figures, the reader is referred to the web version of this article.)

The functions Fnm(�, φ) are a set of sampling functions written 
as [9]

Fnm(�, θ) = fnm(�)exp[i(n − m)θ], (9)

where the pattern functions fnm(�) can be expressed in terms of 
regular and irregular wave functions, ψn(�) and φm(�), respec-
tively:

fnm(�) = 2xψn(�)φm(�) − √
2(n + 1)ψn+1(�)φm(�)

− √
2(m + 1)ψn(�)φm+1(�), (10)

with m ≥ n. Quite simple expressions for the numerical computa-
tion of these functions can be found in the original paper [9].

3. Results

3.1. Single-photon Fock states

The analysis we present in the following concerns the Fock 
states |1〉 and |2〉 and is based on Monte Carlo simulated exper-
iments. In order to properly evaluate the statistical errors in the 
reconstruction procedure, for each state we repeat the simulation 
10 times and use 30,000 data in each run. First of all, we con-
sider the state |1〉 with η = 1 and η < 1 (for the sake of simplicity 
we assume that both the detectors have the same quantum effi-
ciency η). To investigate the role played by the intensity of the 
LO in the reconstruction of the state, we consider six possible in-
tensity values, namely |β|2 = 5, 10, 20, 30, 40, and 50. In Fig. 1, 
we show, for the two extreme values, the joint photon-number 
distribution, which exhibits a double-peak structure, as expected. 
Note that, the larger the value of |β|2 the better the distinction be-
tween the two peaks and the “resolution” of the distribution. The 
corresponding homodyne-like distributions, obtained from Eq. (4)
for the joint-probability distributions in Eq. (7), are shown in the 
panels of Fig. 2 for |β|2 = 5 and |β|2 = 50, together with the theo-
retical homodyne probability distributions
Fig. 3. Reconstruction of the density matrix in the case of Fock state |1〉 for η = 1
and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Fig. 4. State fidelity in the case of Fock state |1〉 as a function of the LO intensity 
for η = 1. The dashed line corresponds to the fitting function ga

(|β|2)
with a =

0.144 ± 0.008.

pHD(x, φ) = 1√
2

e−x2

√
2

π
2x2. (11)

By comparing the homodyne-like distributions with the corre-
sponding homodyne ones, we can clearly see that the larger the 
intensity |β|2, the better the superposition. In general, it is inter-
esting to notice that the two distributions are well superimposed 
even for a small imbalance between signal and LO. Indeed, for the 
values of |β|2 of Fig. 2, the fidelities fH = ∑N

i=1
√

pi,D pi,HD be-
tween the two distributions are equal to 99.612% and 99.992%, 
respectively.

The slight discrepancy between homodyne and homodyne-like 
distributions does not prevent the reconstruction of the density 
matrix according to the method presented in [9]. However, the 
direct observation of the obtained matrices in Fig. 3 witnesses 
the limitations imposed by a low-intensity LO. Indeed, in the left 
panel, corresponding to the case in which |β|2 = 5, the density ma-
trix exhibits a peak at n = 1 which is lower than 1. On the contrary, 
in the right panel, corresponding to the case in which |β|2 = 50, 
the reconstruction is definitely better. Note that, the maximum er-
ror on a single element of the density matrix is equal to 0.014 for 
|β|2 = 5 and 0.009 for |β|2 = 50, whereas the mean error on a sin-
gle reconstructed element is equal to 0.006 for |β|2 = 5 and 0.004 
for |β|2 = 50.
Since the Fock states are diagonal, the state fidelity can be evalu-
ated as fS = ∑ν

m=0
√

ρmm,exp ρmm,th. For the two cases shown in 
Fig. 3, fS is equal to 97.02 ± 0.29% and 99.67 ± 0.16%, respectively. 
We note that, in the quantum regime, only very high values of the 
fidelities can be considered acceptable when dealing with the reli-
able generation of a required quantum state [26]. In order to better 
emphasize the dependence of fidelity on the intensity of the LO, in 
Fig. 4 we plot fS as a function of |β|2, where the saturation at 1 
at increasing intensity values of the LO is clearly visible. The data 
can be numerically fitted by the function

ga
(|β|2) = 1 − a

|β|2 (12)

where a is a real fitting parameter. It is worth noting that the scal-
ing 1/|β|2 appearing in ga

(|β|2) is consistent with the scaling of 
the additional term in Eq. (3): in the limit |β|2 	 1, the results 
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Fig. 5. Joint-photon-number distribution in the case of Fock state |1〉 for η = 0.4
and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Fig. 6. Homodyne-like distribution pD in the case of Fock state |1〉 for η = 0.4 and 
different choices of the LO intensity (blue points). Left: |β|2 = 5; Right: |β|2 = 50. 
In each panel, the theoretical homodyne distribution is shown as red solid line. 
The fidelity between the two curves is equal to 99.599% for |β|2 = 5 and 99.947% 
for |β|2 = 50. In order to compare pD and pHD, we suitably rescaled the photon-
number difference � appearing in Eq. (4).

of the homodyne-like detection approaches those corresponding to 
the standard homodyne one.

When η < 1, the reconstructed state is no longer that expected 
in the ideal case, i.e. for η = 1. For instance, in the case of the Fock 
state |1〉, it has been demonstrated, theoretically, numerically and 
experimentally, that its density matrix displays two terms on the 
diagonal, namely a peak corresponding to 0 photon in addition to 
that corresponding to 1 photon [27]. More in general, in the case 
of the Fock state |ν〉, the reconstructed density matrix [28]

ρ =
n∑

ν=0

(
n

ν

)
ην(1 − η)n−ν |ν〉〈ν| (13)

is given by n + 1 contributions. In the following we present the 
results achieved for the Fock states |1〉 in the case η = 0.4, which 
is a reliable value of the detection efficiency of commercial photon-
number-resolving detectors.

In Fig. 5, we plot the joint probability distributions for the ex-
treme values of the LO, namely, |β|2 = 5 and |β|2 = 50. Note that, 
due to the low quantum efficiency, it is no more possible to distin-
guish the two peaks shown in the analogous Fig. 1. The same result 
holds for the corresponding homodyne-like distributions in Fig. 6. 
Indeed, instead of having a good separation between the peaks, 
we have a unique large structure with only a small dip on the top. 
Moreover, it is well evident that the higher the LO intensity the 
better the superposition to the standard homodyne distribution. 
On the other hand, the weaker the LO, the higher the contribu-
tion to pD(x, φ) at x = 0: This is clear by inspecting the plot with 
|β|2 = 5 in Fig. 6.

The application of the reconstruction method to the case under 
examination yields to the results shown in Fig. 7, where the pres-
ence of the vacuum contribution, ρ00, is clearly visible. We notice 
that for |β|2 = 5 also the peak corresponding to ρ22 on the di-
agonal is visible. This depends on the fact that, when the signal 
and the LO are similar, the assumption that the LO can be clas-
sically treated does not hold anymore and thus the reconstructed 
state contains information both on the signal and on the LO. Here, 
the maximum error on a single element of the density matrix is 
equal to 0.019 for |β|2 = 5 and 0.012 for |β|2 = 50, whereas the 
mean error on a single reconstructed element is equal to 0.006 
Fig. 7. Reconstruction of the density matrix in the case of Fock state |1〉 for η = 0.4
and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Fig. 8. State fidelity in the case of Fock state |1〉 as a function of the LO intensity 
for η = 0.4. The dashed line corresponds to the fitting function ga

(|β|2)
with a =

0.224 ± 0.017.

Fig. 9. Joint-photon-number distribution in the case of Fock state |2〉 for η = 1 and 
different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

for |β|2 = 5 and 0.005 for |β|2 = 50. In this case, the fidelities to 
the expected states are equal to 95.27 ± 0.43% for |β|2 = 5 and to 
99.55 ±0.18% for |β|2 = 50. As also proved by the values of fidelity 
reported in Fig. 8, the larger the LO the better the reconstruction. 
We also note that, compared to the case with η = 1, the values of 
fidelity are slightly worse. This is due to the fact that not only the 
signal is affected by a low quantum efficiency, but also the inten-
sity of the LO, which is now reduced by a factor η.

3.2. Two-photon Fock states

The results achieved so far give proof of the possibility to fully 
characterize a single-photon Fock state even in the presence of a 
low-intensity LO. This can be obtained both in the ideal case and 
in the presence of an imperfect detection.

In this Section we want to explore the situation of more pop-
ulated Fock states, namely two-photon Fock states. First of all, we 
consider a Fock state |2〉 for η = 1 and compare the results with 
those achieved in the previous Section. We consider the same val-
ues of |β|2, namely 5, 10, 20, 30, 40, and 50. In Fig. 9 we show the 
joint probability distribution for the two extreme cases.

The distributions exhibit three peaks, which become more sep-
arated at increasing intensity values of the LO. The same holds 
for the homodyne-like distributions shown in Fig. 10. Here, for 
|β|2 = 5, it is also quite evident the discrepancy between the 
homodyne-like and the homodyne distributions, which in this case 
reads as

pHD(x, φ) = e−x2

√
1

π

H2(x)

8
, (14)

Hν(x) being the Hermite polynomial with ν = 2.
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Fig. 10. Homodyne-like distribution pD in the case of Fock state |2〉 for η = 1 and 
different choices of the LO intensity (blue dots). Left: |β|2 = 5; Right: |β|2 = 50. 
In each panel, the theoretical homodyne distribution is shown as red solid line. 
The fidelity between the two curves is equal to 98.525% for |β|2 = 5 and 99.962% 
for |β|2 = 50. In order to compare pD and pHD, we suitably rescaled the photon-
number difference � appearing in Eq. (4).

Fig. 11. Reconstruction of the density matrix in the case of Fock state |2〉 for η = 1
and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Fig. 12. State fidelity in the case of Fock state |2〉 as a function of the LO intensity 
for η = 1. The dashed line corresponds to the fitting function ga

(|β|2)
with a =

0.508 ± 0.017.

Fig. 13. Joint-photon-number distribution in the case of Fock states |2〉 for η = 0.4
and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Concerning the reconstruction of the density matrix, the cor-
responding plots are shown in Fig. 11: in the case |β|2 = 5 the 
density matrix is not very well reconstructed due to the presence 
of diagonal elements other than 2, while in the case |β|2 = 50 it is 
properly retrieved. Note that, the maximum error on a single ele-
ment of the density matrix is equal to 0.010 for |β|2 = 5 and 0.010 
for |β|2 = 50, whereas the mean error on a single reconstructed 
element is equal to 0.005 for |β|2 = 5 and 0.004 for |β|2 = 50. 
The fidelities to the expected states are equal to 89.93 ± 0.42% for 
|β|2 = 5 and to 98.76 ± 0.14% for |β|2 = 50. The fidelity between 
each reconstructed matrix and the corresponding theoretical one 
as a function of the LO intensity is highlighted in Fig. 12.

As the last case, we consider the reconstruction of the Fock 
state |2〉 for a detection efficiency η = 0.4. In Fig. 13 we compare 
the joint probability distributions. As already noticed in the case 
of the single-photon Fock state, also for |2〉 the two peaks are al-
Fig. 14. Homodyne-like distribution pD in the case of Fock states |2〉 for η = 0.4
and different choices of the LO intensity (blue dots). Left: |β|2 = 5; Right: |β|2 = 50. 
In each panel, the theoretical homodyne distribution is shown as red solid line. 
The fidelity between the two curves is equal to 99.322% for |β|2 = 5 and 99.988% 
for |β|2 = 50. In order to compare pD and pHD, we suitably rescaled the photon-
number difference � appearing in Eq. (4).

Fig. 15. Reconstruction of the density matrix in the case of Fock states |2〉 for η =
0.4 and different choices of the LO intensity. Left: |β|2 = 5; Right: |β|2 = 50.

Fig. 16. State fidelity in the case of Fock state |2〉 as a function of the LO intensity 
for η = 0.4. The dashed line corresponds to the fitting function ga

(|β|2)
with a =

0.312 ± 0.023.

most superimposed because of the low quantum efficiency. At the 
same time, the homodyne-like distributions in Fig. 14 do not ex-
hibit nothing more than one large peak with a small dip on the 
top.

It is interesting to notice the appearance of more than one non 
null contribution in the density matrix of Fig. 15, due to the low 
quantum efficiency. Moreover, the height of the non null contri-
butions of the diagonal tends to the expected values at increas-
ing intensity values of the LO. In this case, the maximum error 
on a single element of the density matrix is equal to 0.014 for 
|β|2 = 5 and 0.010 for |β|2 = 50, whereas the mean error on a 
single reconstructed element is equal to 0.004 for |β|2 = 5 and 
0.004 for |β|2 = 50. The fidelities to the expected states are equal 
to 94.61 ± 0.16% for |β|2 = 5 and to 99.22 ± 0.14% for |β|2 = 50. 
The larger the photon-number state, the stricter the requirement 
on the LO, as also quantified by the state-fidelity values shown in 
Fig. 16 as a function of the LO intensity. It is worth noting that 
for the Fock state |2〉 the closeness of the reconstructed state to 
the expected one is slightly worse than for |1〉. This result can be 
ascribed to the fact that the increase of the intensity of the Fock 
state requires a more populated LO.

4. Conclusions

In this paper, we have investigated the role of the LO used in a 
homodyne-like scheme for optical state tomography. In particular, 
we have tested how its intensity affects the different steps of the 



6 S. Olivares et al. / Physics Letters A 384 (2020) 126354
applied procedure in the case of Fock states |1〉 and |2〉, obtained 
by Monte-Carlo simulations. In general, we can conclude that even 
a small imbalance between the signal state and the LO allows a 
reliable state reconstruction, at variance with the standard homo-
dyne detection. However, the higher the intensity of the LO the 
better the reconstruction, as testified by the state fidelity, which 
exhibits an inverse dependence on the intensity of the LO. The ac-
tual value of intensity of the LO depends on the particular state 
under investigation and, more in detail, it depends on the behav-
ior of its Wigner function and, thus, of its quadrature probability 
distributions. This result can be understood considering the gen-
eral expression reported in Eq. (3).
The simulations are performed both in the case of an ideal de-
tection efficiency, i.e. η = 1, and in the case of a non-ideal one. 
In particular, we considered η = 0.4, since it represents a reliable 
value of the quantum efficiency of commercial photon-number-
resolving detectors, such as hybrid photodetectors [29] and Silicon
photomultipliers [22]. It is interesting to notice that, even in this 
non-ideal condition, in which not only the signal state but also 
the LO is reduced, the reconstructed states resemble the theoret-
ical expectation. All these results lead us to emphasize that the 
macroscopic nature of the LO in standard homodyne detection is 
not necessary for the state reconstruction, but it is required by 
the presence, in the scheme, of detectors operating in the macro-
scopic regime, i.e. the p-i-n photodiodes. Remarkably, a strong LO 
is also a way to avoid drawbacks from the detector dark current 
noise and, for instance, allows the quantum analysis of very weak 
entangled beams [30]. On the contrary, the use of a low-intensity 
LO and of photon-number-resolving detectors gives us the oppor-
tunity to investigate the role of the LO intensity and to better 
understand the real limitations in the reconstruction procedure. 
Thanks to its hybrid nature, the homodyne-like detection scheme 
can find applications in a Quantum Communication context ex-
ploiting both continuous- and discrete-variable states. In this case, 
one should switch between two quite different detection setups, 
namely standard homodyne detection and photon counting. While 
it is not possible requiring photon-number-resolving power to a 
homodyne detector, the homodyne-like configuration allows us to 
retrieve information both about the photon-number statistics and 
the quadrature field. This can be useful, for instance, for applica-
tions to Quantum Key Distribution [31] and to state discrimination 
with coherent [32] or squeezed [33] states of light.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

Fruitful discussions with Matteo G.A. Paris and Giovanni Ca-
iazzo are acknowledged. S.O. acknowledges the MAECI project 
PGR06314-ENYGMA.

References

[1] U. Leonhardt, Measuring the Quantum State of Light, Cambridge Univ. Press, 
Cambridge, 1997.

[2] A.I. Lvovsky, M.G. Raymer, Continuous-variable optical quantum state tomogra-
phy, Rev. Mod. Phys. 81 (2009) 299.

[3] Z. Hradil, Quantum-state estimation, Phys. Rev. A 55 (1997) 1561 (R).
[4] A. Ourjoumtsev, R. Tualle-Brouri, P. Grangier, Quantum homodyne tomography 

of a two-photon Fock-state, Phys. Rev. Lett. 96 (2006) 213601.
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