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We investigate the performance of a selective cloning machine based on linear optical elements and Gauss-
ian measurements, which allows one to clone at will one of the two incoming input states. This machine is a
complete generalization of a 1→2 cloning scheme demonstrated by Andersen et al. �Phys. Rev. Lett. 94,
240503 �2005��. The input-output fidelity is studied for a generic Gaussian input state, and the effect of nonunit
quantum efficiency is also taken into account. We show that, if the states to be cloned are squeezed states with
known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the
final stage of the cloning process. A binary communication protocol based on the selective cloning machine is
also discussed.
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I. INTRODUCTION

Basic laws of quantum mechanics do not allow the gen-
eration of exactly alike copies of an unknown quantum state
�1–4�. However, approximate copies can be obtained by us-
ing devices called quantum cloning machines �5�. The first of
such devices was studied to deal with qubits, and then a
continuous-variable �CV� �6� analog was developed �7,8�.
Thereafter, CV optimal Gaussian cloners of coherent states
based on two quite different approaches were proposed: the
one relies on a single phase-insensitive parametric amplifier
�9,10�; the other, which has been also experimentally real-
ized, is built around a feedforward loop �11�. On the other
hand, the latter is much simpler than the former, overcoming
the difficulty of implementing an efficient phase-insensitive
amplifier operating at the fundamental limit. Since the setup
of this device is based only on linear components, through-
out this paper we will refer to it as the linear cloning ma-
chine. Reference �12� investigated the performance of the
linear cloning machine when the input state was a single
generic Gaussian state �coherent, squeezed coherent, or dis-
placed thermal state�, taking into account the effect of fluc-
tuation of the input state covariance matrix, variation in the
setup beam splitter ratios, and losses in the detection scheme.

The aim of this paper is to show that the protocol used by
the linear cloning machine to clone a single input Gaussian
state can be generalized in order to achieve the selective
cloning of a state chosen between two inputs. The possibility
to select one of two states may have useful implementations
in binary communication systems, where the two bits are
encoded in two quantum states, and the goal of the commu-
nication is to send the information from one sender to two
receivers. We will address this problem in the final part of
the paper.

The paper is structured as follows. In Sec. II, we describe
the selective cloning machine and describe the evolution of
the input states by means of the characteristic function ap-
proach. In Sec. III, the requirements of selective symmetric
cloning are exploited and the input-output fidelity is studied.

Section IV investigates the possibility of enhancing the clon-
ing fidelity, and in Sec. V a possible application of the selec-
tive cloning machine to 1→2 binary communication is pro-
posed. Finally, Sec. VI closes the paper with some
concluding remarks.

II. THE SELECTIVE LINEAR CLONING MACHINE

The selective cloning machine based on linear optics and
Gaussian measurement is schematically depicted in Fig. 1.
Two input states, denoted by the density operators �k, k
=1,2, are mixed at a beam splitter �BS� with transmissivity
�1. A Gaussian measurement with quantum efficiency � is
performed on one of the outgoing beams, the outcome of the
measurement being the complex number z. According to
these outcomes, the other beam undergoes a displacement by
an amount gz, g being a suitable electronic amplification
factor. Finally, the two output states, denoted by the density
operators �1 and �2, are obtained by dividing the displaced
state using another BS with transmissivity �2. When �1=�2
=1/2, g=1, �=1, �2=�3= �0��0�, and the Gaussian measure-
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FIG. 1. Selective cloning of Gaussian states by linear optics: the
two input states �k, k=1,2, are mixed at a beam splitter �BS� of
transmissivity �1. One of the two emerging beams is measured by a
measurement described by the positive operator valued measure
�POVM� ���z� and the outcome z is forwarded to a modulator,
which imposes a displacement gz on the other outgoing beam, g
being a suitable amplification factor. Finally, the displaced state is
mixed with the state �3 at a second beam splitter of transmissivity
�2. The two outputs �1 and �2 from the beam splitter represents the
two clones, which may be made approximately equal to either �1 or
�2 by changing the gain g from +1 to −1.
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ment is an ideal double-homodyne detection, the scheme re-
duces to that of Ref. �11�, which was shown to be optimal for
Gaussian cloning of coherent states and has been investi-
gated in Refs. �12–14�. In the following, we carry out a thor-
ough description of the selective cloning machine using the
characteristic function approach.

The characteristic function �k��k�����k���k� associated
with a Gaussian state �k of mode k=1,2 ,3 �see Fig. 1� reads

�k��k� = exp	−
1

2
�k

T�k�k − i�k
TXk
 , �1�

where �k= �xk ,yk�T, �¯�T denotes the transposition opera-
tion, �k is the covariance matrix, and Xk=Tr��k�x̂ , ŷ�T� is the
vector of mean values, x̂ and ŷ being the quadrature opera-
tors x̂= �1/�2��â+ â†� and ŷ= �i /�2��â†− â�, with â and â†

being the field annihilation and creation operators. In turn,
the initial two-mode state �=�1 � �2 is Gaussian, and its
two-mode characteristic function reads

������� = exp	−
1

2
�T�� − i�TX
 , �2�

with

� = 	�1 0

0 �2

, X = �X1,X2�T, �3�

and �= ��1 ,�2�. Under the action of the first BS, the state
������� preserves its Gaussian form, namely,

������� � �������� = exp	−
1

2
�T�� − i�TX
 , �4�

where ��=UBS,1�1 � �2UBS,1
† , while its covariance matrix

and mean values transform as �15�

� � �̃ � SBS,1
T �SBS,1 = 	 A C

CT B

 , �5�

X � X̃ � SBS,1
T X = �X̃1,X̃2�T, �6�

A, B, and C are 2�2 matrices, and

SBS,1 = 	 ��112
�1 − �112

− �1 − �112
��112


 �7�

is the symplectic transformation associated with the evolu-
tion operator UBS,1 of the BS with transmission �1. Note that
�� is an entangled state if the set of states to be cloned
consists of nonclassical states, i.e., states with singular
Glauber P function or negative Wigner function �16,17�.

The Gaussian measurement with quantum efficiency �
�see Fig. 1� is described by the characteristic function

�����z����2� =
1

�
exp	−

1

2
�2

T�M�2 − i�2
TXM
 , �8�

with XM =�2�Re�z� , Im�z��T and �M ��M���. The probabil-
ity of obtaining the outcome z is then given by

p��z� = Tr12���I � ���z�� �9�

=
1

�2��2�
R4

d4� ����������I � ���z���− �� �10�

=

exp−
1

2
�XM − X̃2�T�−1�XM − X̃2��

��Det���
, �11�

where ��I � ���z��������I���1������z����2�, ��I���1�
=2���2���1�, and ��2��	� is the complex Dirac delta function.
We also introduced the 2�2 matrix �=B+�M.

The conditional state �c of the other outgoing beam, ob-
tained when the outcome of the measurement is z, i.e.,

�c =
Tr2������z��

p��z�
, �12�

has the following characteristic function �for the sake of clar-
ity we explicitly write the dependence on �1 and �2�:

���c���1� = �
R2

d2�2
�������1,�2������z���− �2�

p��z�

�13�

=exp�−
1

2
�1

T�A − C�−1CT��1

− i�1
T�C�−1�XM − X̃2� + X̃1�� . �14�

Now, the conditional state �c is displaced by the amount gz
resulting from the measurement amplified by a factor g. By
averaging over all possible outcomes of the double-
homodyne detection, we obtain the following output state:

�d = �
C

d2z p��z�D�gz��cD
†�gz� , �15�

with D�	� being the displacement operator. Since

��D�gz��cD
†�gz����1� = ���c���1�exp�− ig�1

TXM� ,

�16�

we obtain

���d���1� = �
C

d2z p��z���D�gz��cD
†�gz����1� �17�

=exp	−
1

2
�1

T�d�1 − i�1
TXd
 , �18�

with �d=A+g2�+g�C+CT� and Xd= X̃1+gX̃2. The integral
�17� can be evaluated in the space R2 by performing the
change of variables z→XM =�2�Re�z� , Im�z��T and using Eq.
�11�. The conditional state �15� is then sent to a second BS
with transmission �2 �see Fig. 1�, where it is mixed with the
Gaussian state �3, and finally the two clones are generated.
Note that, in practice, the average over all the possible out-
comes z in Eq. �15� should be performed at this stage, that is,
after the second BS. On the other hand, because of the lin-
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earity of the integration, the results are identical, but per-
forming the averaging just before the BS simplifies the cal-
culations. Since �d is still Gaussian, the two-mode state � f
=�d � �3 is a Gaussian with covariance matrix and mean
given by

� f = 	�d 0

0 �3

, X f = �Xd,X3�T, �19�

respectively, which, as in the case of Eqs. �5� and �6�, under
the action of the BS transform as follows:

� f � �out � SBS,2
T � fSBS,2 = 	A1 C

CT A2

 , �20�

X f � Xout � SBS,2
T X f = �X1,X2�T, �21�

where Ak and C are 2�2 matrices, and SBS,2 is the symplec-
tic matrix given by Eq. �7� with �1 replaced by �2. Finally,
the �Gaussian� characteristic function of the clone �k, k
=1,2, is obtained by integrating over �h, h�k, the two-
mode characteristic function ���out���1 ,�2�, where �out

=UBS,2� f � �3UBS,2
† , i.e.,

���k���k� =
1

2�
�

R2
d2�h���out���1,�2� �22�

=exp	−
1

2
�k

TAk�k − i�k
TXk
 . �23�

The explicit expressions of X1 and X2 are

X1 = ��2�f1X1 + f2X2� − �1 − �2X3, �24a�

X2 = �1 − �2�f1X1 + f2X2� + ��2X3, �24b�

with

f1 � f1��1,�2,g� = ��1 + g�1 − �1, �25�

f2 � f2��1,�2,g� = g��1 − �1 − �1, �26�

whereas A1 and A2 can be written in a compact form as
follows:

A1 = �2�f1
2�1 + f2

2�2 + g2�M� + �1 − �2��3, �27a�

A2 = �1 − �2��f1
2�1 + f2

2�2 + g2�M� + �2�3. �27b�

III. SELECTIVE CLONING

From Eqs. �24� and �27�, we see that the two outgoing
states �1 and �2 are generally different. In this paper, we will
consider the case in which the clones are equal, therefore, in
order to make them exactly alike, we have to put �2=1/2 and
X3=0: in this case, X1=X2 and A1=A2. A further inspection
of Eqs. �24� and �27� with �2=1/2 shows that the states �k
could be quite different from both the input states, the cova-
riance matrices and the mean value vectors being linear com-

binations of the input ones. On the other hand, if f2 �or f1�
vanishes, then the Gaussian output states depend only on �1,
X1 �or �2, X2�, �3, and �M. In the following, we will inves-
tigate this scenario thoroughly.

After we have chosen the symmetric output setup, i.e.,
�2=1/2 and X3=0, we are interested in removing the depen-
dence on the state, e.g., �2 from the output states, namely, we
want to let f2 vanish; this is achieved when

g � g1��1� = ��1 − �1�/�1, �28�

which gives f1=�1
−1/2, and leads to

X1 = X2 = �2�1�−1/2X1 �29�

A1 = A2 =
1

2
	 1

�1
�1 + �3 +

1 − �1

�1
�M
 . �30�

It is now clear that, if the first BS is balanced ��1=1/2�, we
obtain

X1 = X2 = X1, �31a�

A1 = A2 = �1 +
1

2
��3 + �M� . �31b�

This is the 1→2 symmetric cloning of the state �1. This
configuration has been experimentally implemented to opti-
mally clone coherent states �11,12�. Notice that g1�1/2�=1.

On the contrary, in order to eliminate the dependence on
the state �1, one needs �we are assuming again �2=1/2 and
X3=0�

g � g2��1� = − ��1/�1 − �1� , �32�

which gives f2=−�1−�1�−1/2 and leads to

X1 = X2 = − �2�1 − �1��−1/2X2, �33�

A1 = A2 =
1

2
	 1

1 − �1
�2 + �3 +

�1

1 − �1
�M
 , �34�

and if �1=1/2 one has

X1 = X2 = − X2, �35a�

A1 = A2 = �2 +
1

2
��3 + �M� . �35b�

As a matter of fact, to obtain the actual symmetric cloning of
the state �2, we have to implement a unitary transformation
to change the phase of the output states as follows: Xh
→−Xh. Notice that g2�1/2�=−1.

The results of this section are summarized in Table I: in
the case of symmetric cloning ��1=�2=1/2 and X3=0�, one
can select the state to clone simply change the value of the
gain g from +1 to −1.

IV. ENHANCEMENT OF LINEAR CLONING FIDELITY

The similarity between the input state �k and the clone �h,
k, h=1,2, can be quantified by means of the fidelity �18�
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F��k,�h� = �Tr����k�h
��k��2

, �36�

which, for Gaussian states, reduces to �12,19,20�

F� � F��k,�h� =
1

�Det��k + Ah� + � − ��

� exp−
1

2
�Xk − Xh�T��k + Ah�−1�Xk − Xh�� ,

�37�

where �=4�Det��k�− 1
4
��Det�Ah�− 1

4
�. Note that, for pure

Gaussian states, Det��k�= 1
4 , and in turn �=0. In the case of

symmetric cloning Xk=Xh, the fidelity �37� reduces to

F���k,�3,�M� �
1

�Det��k + Ah� + � − ��
, �38�

and the cloning machine is said to be universal because of its
invariance with respect to displacement of the input states.

It is a matter of fact that we can now maximize Eq. �38�
by a suitable choice of the state �3 ��1, �2, and �M being
fixed�. Without loss of generality, we assume that the cova-
riance matrix associated with �3 has the following diagonal
form:

�3 = 	
11 0

0 
22

 , �39�

with


11 =
2J + 1

2
e2s, 
22 =

2J + 1

2
e−2s, �40�

i.e., a squeezed thermal state with J mean thermal photons
and squeezing parameter s. We recall that X3=0 in order to
satisfy the symmetric cloning requirements. Now, if

�k = 	�11
�k� �12

�k�

�12
�k� �22

�k� 
, �M = 	�11
2 �12

�12 �22
2 
 . �41�

are the explicit forms of the covariance matrices of �k, k
=1,2, and of the measurement ���z�, respectively, then we
find that the fidelity reaches a maximum for �for the sake of
simplicity, we do not report explicitly the dependence of �mn

�k�

on k, since it is clear what is the input state �k under consid-
eration�

s = s̄ �
1

4
ln	4�11 + �11

2

4�22 + �22
2 
, J = 0, �42�

i.e., �3 should be a squeezed vacuum state with covariance
matrix �3��s̄= 1

2 Diag�e2s̄ ,e−2s̄�. Indeed, such a maximiza-
tion of the fidelity requires knowledge of �11 and �22.

The result obtained above generalizes the conclusions
given in Ref. �12�. The linear cloning machine described in
�12�, used to perform 1→2 cloning of the state �1, follows
from the present scheme choosing �2=�3= �0��0�, corre-
sponding to �1=�3=�0� 1

212, and �M = ��2−�� / �2���12,
which describes the covariance matrix of the double-
homodyne detection with quantum efficiency �. From Eq.
�42�, we see that sending the vacuum into the second BS is
the best choice only if �1 is a coherent state or a displaced
thermal state �12� �in both cases s=0 and �3 reduces to the
vacuum state covariance matrix, since X3=0�. On the con-
trary, when �k is the covariance matrix associated with the
squeezed state D��S�r��0�= � ,r�, where D��=exp�a†

−*a� and S�r�=exp� 1
2r�a†2

−a2�� are the displacement and
squeezing operators, respectively, r being the real squeezing
parameter, then 2�11=2�22

−1=e2r, and the cloning fidelity is
optimized if �3 is a squeezed state with squeezing parameter
given by Eq. �42�. Figure 2 shows the enhancement of the
fidelity in the case of squeezed state 1→2 cloning, when a
suitable squeezed vacuum state with squeezing parameter s̄
given in Eq. �42� is used, instead of the vacuum state, as
input �3 �see Fig. 1�. In the present case, we have

s̄ � s̄�r,�� =
1

4
ln	 4�e2r + 2 − �

4�e−2r + 2 − �

 , �43�

which is plotted as a function of r with �=1 in the inset of
Fig. 2. The effect of nonunit quantum efficiency can be seen
in Fig. 3, where we plot the quantity

G�r,�� =
F���1,�s̄,�M� − F���1,�0,�M�

F���1,�0,�M�
�44�

as a function of r for different values of �. G�r ,�� expresses
the relative improvement of cloning fidelity. As is apparent

TABLE I. Selective symmetric cloning ��1=�2=1/2 and X3=0�:
by changing the value of the electronic gain from +1 to −1, one can
choose to clone the state �1 or �2, respectively. Notice that, if g
=−1, a unitary transformation at the output is needed in order to
obtain the right sign of the amplitude Xk, k=1,2.

g A1=A2 X1=X2

+1
�1+

1

2
��3+�M�

X1

−1
�2+

1

2
��3+�M�

−X2 0 1 2 3 4 5
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0.6

0.7

r

Fη
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2
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r

s

FIG. 2. Fidelity F���k ,�3 ,�M� in the case of symmetric clon-
ing, when �1 is a squeezed state with real squeezing parameter r;
�3 is chosen to be the covariance matrix �s̄ of a vacuum squeezed
state �solid line� or �0 of the vacuum state �dashed line�. The inset
shows the optimal squeezing parameter s̄ as a function of r. See text
for details. We set �=1.
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from the plot, one has enhancement of fidelity for any value
of � as long as the signals show nonzero squeezing.

V. 1\2 BINARY COMMUNICATION

In this section we address an application of the selective
cloning machine to a 1→2 binary communication protocol.
The goal is to encode a classical sequence �string� S of two
classical symbols, e.g., −1 and +1, into a quantum sequence
S� of two quantum states, e.g., �1 and �2, eventually un-
known, and to send it to two receivers, which are interested
not only in the classical message but also in the quantum
states encoding it. In this case a cloning machine is necessary
to generate the copies R1 and R2 of S�. Let us now assume
that the sender, which possesses the string S, is not able to
generate S� itself, so it needs a service provider that provides
a communication channel based on the states �1 and �2.
However, since the service provider does not know S, the
communication channel should be independent on the mes-
sage the sender wants to send. In this scenario the selective
cloning machine �operating in the symmetric cloning regime�
presented above can be a useful tool.

The 1→2 communication protocol based on the selective
cloning machine is sketched in Fig. 4 and can be summarized
in these steps: �a� the service provider mixes �1 and �2 at the
balanced BS and addresses the outputs to the sender; �b� the

sender performs double-homodyne detection onto one of the
two beams and displaces the other one by an amount gz, z
being the outcome of the measurement and g being chosen
according to the entries ±1 of S; �c� the displaced beam is
divided into the two clones �̃1�z�= �̃2�z�� �̃�k��z� by means of
another balanced BS, with k=1�2� if g= +1�−1�.

It is worth noting that the selective cloning machine is
now operating in a “single-shot” regime, namely, each clone
is obtained after a single outcome z of the double-homodyne
detection and not after a complete measurement onto a state.
In turn, each clone actually depends on z. Once the receivers
get the single clone, they need a strategy to decide if the bit
was +1, corresponding to �1, or −1, corresponding to �2.

In order to illustrate the protocol, in the following we
address the simple case in which

�1 = �2 = ���� �45�

are coherent states, i.e., �k= 1
212 and X1=X2=�2� ,0� �for

the sake of simplicity we take  as real and positive�. We
recall that the clones of �2 have the amplitude with a �
phase shift �see Table I� with respect to input one: in this way
it is possible to distinguish between �̃�1��z� and �̃�2��z�. Note
that one has

UBS,1�1 � �2UBS,1
† = �0��0� � ��2���2� . �46�

One of the possible strategies to distinguish between �̃�1��z�
and �̃�2��z� is performing a homodyne detection, which is
described by the POVM �21�

�x��� =
1

�2���
2�

R
dy exp	−

�y − x�2

2��
2 
�y , �47�

where ��
2= �1−�� / �4��, � is the detection quantum effi-

ciency, and �y = �y��y�, with

�y� =
e−y2/2

�1/4 �
n=0

�
Hn�y�
�n!2n

�n� �48�

being an eigenstate of the quadrature operator ŷ= �1/�2��a
+a†� of the measured mode. In Eq. �48�, Hn�y� denotes the
nth Hermite polynomial. Finally, the decision is taken ac-
cording to the following rule: if x� x̄⇒k=1, otherwise k
=2, x̄ being a threshold value. On the other hand, �̃�1��z� and
�̃�2��z� are not orthogonal, and then we have to evaluate the
probability of inferring the wrong state, namely, the error
probability, defined as follows:

He�z� =
1

2
�Pz�2�1� + Pz�1�2�� , �49�

where Pz�h �k� is the probability of inferring the state �̃�h��z�
when the actual state was �̃�k��z�, h�k. In writing Eq. �49�,
we assumed that the two states are sent with the same a
priori probability p=1/2. The explicit expressions of
Pz�2 �1� and Pz�1 �2� read as follows:

Pz�2�1� = �
−�

x̄

dx Tr��̃�1��z��x���� , �50a�

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

r

G

FIG. 3. G�r ,�� given in Eq. �44� as a function of the squeezing
parameter of the input state for different values of �; from top to
bottom, �=1.0, 0.75, and 0.5. See the text for details.

service provider sender (g → ±1)
receiver 1

receiver 2

D(gz)

Πη(z)

BS BS�1

�2

ς̃1(z)

ς̃2(z)

FIG. 4. 1→2 binary communication assisted by the selective
cloning machine. The “service provider” provides the communica-
tion channel by mixing the two states �1 and �2 at a balanced BS
and by addressing the outgoing beams to the “sender.” The sender
performs a measurement on one of the beams and displaces the
other by an amount gz, z being the measurement’s outcome and g
being chosen according to the bit the sender wants to encode. Fi-
nally, the message is split into two clones by means of a second BS.
See text for detalis.
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Pz�1�2� = �
x̄

+�

dx Tr��̃�2��z��x���� . �50b�

It is easy to see that, because of the choice of the states �1
and �2, the probability He�z� is minimum when x̄=0. The
average error probability is then given by

H̄e�,�,�� = �
C

d2z p��z�He�z� , �51�

where p��z� is the double-homodyne detection probability
given by Eq. �9�. In Figs. 5 and 6, we plot Eq. �51� as a
function of the amplitude  and different values of � and �:
as one may expect, the effect of nonunit quantum efficiencies

is to increase H̄e, since inferring the right state becomes more
difficult; on the other hand, in order to reduce the error prob-
ability, one has to increase the amplitude of the input coher-
ent states.

It is worth mentioning that, when �1 and �2 are nonclas-
sical states, then UBS,1�1 � �2UBS,1

† is entangled �16,17�, and
such correlations can be used to reveal the presence of an
eavesdropper along the communication line by means a suit-
able nonlocality test �22,23�.

VI. CONCLUDING REMARKS

We have addressed the performance of a 1→2 selective
cloning machine based on linear optics and Gaussian mea-
surement, which allows us to clone one of two incoming
input states. We have shown that this is achieved by simply
changing the gain of a feedforward loop. Moreover, a third
Gaussian state can be used in the final stage of the cloning
process in order to enhance the input-output fidelity. We have
found that for coherent or thermal states this state reduces to
the vacuum state. On the contrary, for squeezed input states,
a suitable squeezed vacuum should be considered, depending
on the squeezing parameter of the input and on the measure-
ment quantum efficiency. Finally, a protocol for 1→2 binary
communication involving the selective cloning machine has
been proposed, and the average error probability has been
evaluated for a particular choice of the states involved.
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FIG. 5. Average error probability H̄e� ,� ,�� as a function of the
amplitude  and different values of the quantum efficiencies: we set
�=1.0 and, from bottom to top, �=1.0, 0.5, and 0.75.
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FIG. 6. Average error probability H̄e� ,� ,�� as a function of the
amplitude  and different values of the quantum efficiencies: we set
�=0.75 and, from bottom to top, �=1.0, 0.5, and 0.75.
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