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We address the interaction of two Gaussian states through bilinear exchange Hamiltonians and analyze

the correlations exhibited by the resulting bipartite systems. We demonstrate that entanglement arises if

and only if the fidelity between the two input Gaussian states falls under a threshold value depending only

on their purities, first moments, and the strength of the coupling. Our result clarifies the role of quantum

fluctuations (squeezing) as a prerequisite for entanglement generation and provides a tool to optimize the

generation of entanglement in linear systems of interest for quantum technology.
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Gaussian states (GS), that is, quantum states with
Gaussian Wigner functions, play a leading role in continu-
ous variable quantum technology [1] for their extremal
properties [2] and because they may be generated with
current technology, in particular, in the quantum optics
context [3–5]. As a consequence, much attention has
been dedicated to the characterization of Gaussian entan-
glement [6–14]. Among the possible mechanisms to gen-
erate Gaussian entanglement, the one consisting in mixing
squeezed states [15–21] is of special interest in view of its
feasibility, which indeed had been crucial to achieve con-
tinuous variable teleportation [22]. The entangling power
of bilinear interactions has been widely analyzed, either to
optimize the generation of entanglement [23,24] or to find
relations between their entanglement and purities [25] or
teleportation fidelity [26,27].

In this Letter, we address bilinear, energy-conserving,
i.e., exchange, interactions described by Hamiltonians of
the form HI ¼ gðaybþ abyÞ, where a and b are bosonic
annihilation operators, ½a; ay� ¼ 1 and ½b; by� ¼ 1, and g
the coupling constant. These Hamiltonians are suitable to
describe very different kinds of quantum systems, such as,
e.g., two light modes in a beam splitter or a frequency
converter, collective modes in gases of cold atoms [28],
atom-light nondemolition measurements [29], optome-
chanical oscillators [27,30], nanomechanical oscillators
[31], and superconducting resonators [32], all of which
are of interest for quantum technology. Our analysis can
be applied to all these systems and lead to very general
results about the resources needed for Gaussian entangle-
ment generation.

The bilinear Hamiltonians HI generally describe the
action of simple passive interactions, and, in view of this
simplicity, their fundamental quantum properties are often
overlooked. Actually, the exchange amplitudes for
the quanta of one of the systems strongly depend on the
statistics of the quanta of the other one and on the
particle indistinguishability. This mechanism gives rise to

interference and, thus, to the birth of correlations in the
output bipartite system. A question arises about the nature
of these correlations, depending on the parameters of the
input signals and coupling constant. In this Letter, moti-
vated by recent results on the dynamics of bipartite GS
through bilinear interactions [33,34] and by their experi-
mental demonstration [35], we investigate the relation
between the properties of two input GS and the correlations
exhibited by the output state. Our main result is that
entanglement arises if and only if the fidelity between the
two input states falls under a threshold value depending
only on their purities, first-moment values, and the strength
of the coupling. Our analysis provides a direct link between
the mismatch in the quantum properties of the input signals
and the creation of entanglement, thus providing a better
understanding of the process leading to the generation of
nonclassical correlations. In fact, if, on the one hand, it is
well known that squeezing is a necessary resource to create
entanglement [16,17,24], on the other hand, in this Letter
we show what is the actual role played by the squeezing
that is making the two input GS different enough to en-
tangle the output system.
The most general single-mode Gaussian state can be

written as %¼%ð�;�;NÞ¼Dð�ÞSð�Þ�thðNÞSyð�ÞDyð�Þ,
where SðrÞ¼ exp½12ð�ay2���a2Þ� and Dð�Þ¼ exp½�ay�
��aÞ� are the squeezing operator and the displacement

operator, respectively, and �thðNÞ ¼ ðNÞaya=ð1þ NÞayaþ1

is a thermal equilibrium state with N average number of
quanta, a being the annihilation operator. Up to introduc-
ing the vector of operator RT ¼ ðR1; R2Þ � ðq; pÞ, where
q ¼ ðaþ ayÞ= ffiffiffi

2
p

and p ¼ ða� ayÞ=ði ffiffiffi
2

p Þ are the so-
called quadrature operators, we can fully characterize %
by means of the first-moment vector �XT ¼ hRTi ¼ffiffiffi
2

p ðRe½��; Im½��Þ, with hAi ¼ Tr½A%�, and of the 2� 2
covariance matrix (CM) �, with ½��hk¼ 1

2hRhRkþ
RkRhi�hRhihRki, k ¼ 1; 2, which explicitly reads ½��kk ¼
ð2�Þ�1½coshð2rÞ � ð�1Þk cosðc Þ sinhð2rÞ� for k ¼ 1; 2
and ½��12 ¼ ½��21 ¼ �ð2�Þ�1 sinðc Þ sinhð2rÞ, where we
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put � ¼ reic , r; c 2 R and introduced the purity of the
state� ¼ Tr½%2� ¼ ð1þ 2NÞ�1. Since we are interested in
the dynamics of the correlations, which are not affected by
the first moment, we start addressing GS with zero first
moments (� ¼ 0). The general case will be considered
later on in this Letter.

When two uncorrelated, single-mode GS %k with CMs
�k, k ¼ 1; 2, interact through the bilinear Hamiltonian HI,

the 4� 4 CM � of the evolved bipartite state %12 ¼
UgðtÞ%1 � %2U

y
g ðtÞ, UgðtÞ ¼ expf�iHItg being the evolu-

tion operator, can be written in the following block-matrix
form [1]:

�1 ¼ ��1 þ ð1� �Þ�2;

� ¼ �1 �12

�12 �2

� �
; �2 ¼ ��2 þ ð1� �Þ�1;

�12 ¼ �ð1� �Þð�2 � �1Þ;
(1)

� ¼ cos2ðgtÞ being an effective coupling parameter, and
where the presence of a nonzero covariance term �12

suggests the emergence of quantum or classical correla-
tions between the two systems. Since �12 depends on the
difference between the input state CMs, a question natu-
rally arises about the relation between the ‘‘similarity’’ of
the inputs and the birth of (nonlocal) correlations. In this
Letter, we answer this question and demonstrate that en-
tanglement arises if and only if the fidelity between the two
input GS falls under a threshold value, which depends only
on their purities, the value of the first moments, and the
coupling �.

Let us now consider the pair of uncorrelated, single-
mode GS %k ¼ %ð�k; NkÞ, k ¼ 1; 2, and assume, without
loss of generality, �1 ¼ r1 and �2 ¼ r2e

ic , with rk; c 2
R. After the interaction, we found that the presence of
entanglement at the output is governed by the sole fidelity

Fð%1; %2Þ ¼ ½Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%1

p
%2

ffiffiffiffiffiffi
%1

pp Þ�2 between the inputs. Our
results may be summarized by the following theorem.

Theorem 1.—The state %12 ¼ UgðtÞ%1 � %2U
y
g ðtÞ, re-

sulting from the mixing of two GS with zero first moments,
%1ðr1; N1Þ and %2ðr2eic ; N2Þ, is entangled if and only if the
fidelity Fð%1; %2Þ between the inputs falls below a thresh-
old value Feð�1; �2; �Þ, which depends only on their pu-
rities �k ¼ Tr½%2

k� ¼ ð1þ 2NkÞ�1, k ¼ 1; 2, and on the

effective coupling parameter � ¼ cos2ðgtÞ.
Proof.—In order to prove the theorem, we recall that a

bipartite Gaussian state %12 is entangled if and only if the

minimum symplectic eigenvalue ~� of CM associated with

the partially transposed state is ~� < 1=2 [6]. Moreover,
without loss of generality, we can address the scenario in
which rk and Nk, k ¼ 1; 2, are fixed and we let c vary in
the interval ½0; 2��.

First of all, we prove that ~� < 1=2 ) Fð%1; %2Þ<
Feð�1; �2; �Þ (necessary condition). As we will see, this
will allow us to find the analytic expression of the threshold
Feð�1; �2; �Þ, which will be used to prove the sufficient

condition, i.e., Fð%1; %2Þ< Feð�1; �2; �Þ ) ~� < 1=2.

Figure 1 shows the typical behavior of ~� and of the fidelity
F as a function of the squeezing phase c for fixed rk and
Nk, k ¼ 1; 2 (here we do not report their analytic expres-
sions since they are quite cumbersome). As one can see,

both ~� and F are monotonic, decreasing (increasing) func-
tions of c in the interval ½0; �Þ (½�; 2��, respectively) and
have a minimum at c ¼ �, whose actual value depends on
both rk and Nk but not on �. In our case, one finds that, for

fixed rk andNk, k ¼ 1; 2, ifminc ~�<1=2, then there exists

a threshold value c e � c eðr1; �1; r2; �2; �Þ:

c e ¼ arccos

�
coshð2r1Þ coshð2r2Þ � fð�1; �2; �Þ

sinhð2r1Þ sinhð2r2Þ
�
;

where we introduced

fð�1; �2; �Þ ¼ 1þ�2
1�

2
2 � ð�2

1 þ�2
2Þð1� 2�Þ2

8�1�2�ð1� �Þ ;

and�k ¼ Tr½%2
k� ¼ ð1þ 2NkÞ�1, k ¼ 1; 2, are the purities

of the inputs, such that if c 2 ðc e; 2�� c eÞ, then ~� <
1=2; i.e., %12 is entangled. Since the fidelity between the
two GS %k, characterized by the CMs �k, k ¼ 1; 2

(and zero first moments), is given by [36] Fð%1; %2Þ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p � ffiffiffiffi

�
p Þ�1, where � ¼ det½�1 þ �2� and � ¼

4
Q

2
k¼1ðdet½�k� � 1

4Þ, the threshold value Fe �
Feð�1; �2; �Þ of the fidelity is thus obtained by setting
c ¼ c e and explicitly reads

Fe ¼ 4�1�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� þ 4�ð1� �Þgþ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð1� �Þg�

p ; (2)

where g� � g�ð�1; �2Þ ¼
Q

k¼1;2ð1��2
kÞ. The thresh-

old depends only on � and on the purities �k of the input
GS and is independent of the squeezing parameters rk,

despite the fact that c e does. Finally, if ~� < 1=2, i.e., %12
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FIG. 1 (color online). Plot of the fidelity Fð%1; %2Þ (red, solid
line) between the two input states and of the minimum symplec-
tic eigenvalue ~� as a function of c for � ¼ 0:5 (blue, dashed
line) and � ¼ 0:8 (purple, dotted line). The other involved
parameters are �1 ¼ 0:5, N1 ¼ 0:2, �2 ¼ 0:7eic , and N2 ¼
0:3. The colored regions denote the ranges of c leading to an
entangled state for the given �, while the horizontal dot-dashed
lines refer to the corresponding thresholds Fe.
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is entangled, then Fð%1; %2Þ<Feð�1; �2; �Þ. This con-
cludes the first part of the proof.

Now we focus on the sufficient condition, i.e.,

Fð%1; %2Þ< Feð�1; �2; �Þ ) ~� < 1=2. Thanks to the first

part of the theorem and since both F and ~� are continuous
functions of c , for fixed rk and Nk, k ¼ 1; 2, which have a

minimum in c ¼ �, it is enough to show that Fmin �
mincFð%1; %2Þ< Feð�1; �2; �Þ ) �min � minc ~�<1=2.

We have

Fmin ¼ 2�1�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

1�
2
2 þ 2�1�2 cosh½2ðr1 þ r2Þ�

q
� ffiffiffiffiffiffi

g�
p ;

where g� is the same as in Eq. (2), and

~� min ¼ 1

2

½	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � ð2�1�2Þ2

p �1=2ffiffiffi
2

p
�1�2

;

with 	¼ð�2
1þ�2

2Þð1�2�Þ2þ8�1�2�ð1��Þcosh½2ðr1þ
r2Þ�, respectively. The inequality Fmin <Feð�1; �2; �Þ,
where Feð�1; �2; �Þ is given in Eq. (2), is satisfied if

	 > 1þ�2
1�

2
2, which leads to ~�min < 1=2, as one may

verify after a straightforward calculation. Now, since ~� is a
continuous function of c , there exists a range of values
centered at c ¼ �, where the minimum occurs, in which
~� < 1=2 and, thus, Fð%1; %2Þ< Feð�1; �2; �Þ, because of
the first part of the theorem (necessary condition). This
concludes the proof of the theorem. j

As a matter of fact, the presence of nonzero first mo-
ments does not affect the nonclassical correlations exhib-
ited by a bipartite Gaussian state, which depend only on the
CM [1]. Thus, we can state the following straightforward
corollary.

Corollary 1.—If �XT
k ¼ Tr½ðqk; pkÞ%k� � 0, where qk ¼

ðak þ ayk Þ=
ffiffiffi
2

p
and p ¼ ðayk � akÞ=ði

ffiffiffi
2

p Þ are the quadra-

ture operators of the system k ¼ 1; 2, then the state %12 ¼
UgðtÞ%1 � %2U

y
g ðtÞ is entangled if and only if

Fð%1; %2Þ< �ð �X1; �X2ÞFeð�1; �2; �Þ; (3)

where Feð�1; �2; �Þ is still given in Eq. (2) and

�ð �X1; �X2Þ ¼ exp½�1
2
�XT
12ð�1 þ �2Þ�1 �X12�; (4)

where �X12 ¼ ð �X1 � �X2Þ.
Proof.—The proof follows from Theorem 1 by noting

that the presence of nonzero first moments does not
modify the evolution of the CM, whereas the expression

of the fidelity becomes [36] Fð%1; %2Þ ¼ �ð �X1; �X2Þ�
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p � ffiffiffiffi

�
p Þ�1, where � and � have been defined

above. j
Theorem 1 states that if the two Gaussian inputs are ‘‘too

similar,’’ the correlations induced by the interaction are
local, i.e., may be mimicked by local operations performed
on each of the systems. The extreme case corresponds to
mixing a pair of identical GS: In this case the interaction

produces no effect, since the output state is identical to the
input one [33,34], i.e., a factorized state made of two
copies of the same input states, and we have no correlations
at all at the output. Notice that for pure (zero mean) states
the threshold on fidelity reduces to Feð1; 1; �Þ ¼ 1 8 �;
namely, any pair of not identical (zero mean) pure GS gives
rise to entanglement at the output. On the contrary, two
thermal states �k � �thðNkÞ, k ¼ 1; 2, as inputs, i.e., the
most classical GS, lead to Fð�1; �2Þ> Feð�1; �2; �Þ: This
fact, thanks to the Theorem 1, shows that we need to
squeeze one or both of the classical inputs in order to
make the states different enough to give rise to entangle-
ment. Notice, finally, that the thresholds in Eqs. (2) and (3)
involve strict inequalities and when the fidelity between the
inputs is exactly equal to the threshold the output state is
separable.
The threshold Feð�1; �2; �Þ is symmetric under the

exchange �1 $ �2 and if one of the two state is pure,

i.e., if�k ¼ 1, then Feð�Þ ¼
ffiffiffi
2

p
�h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

h

q
, with h � k;

i.e., the threshold no longer depends on �.
For what concerns Gaussian entanglement, i.e., the re-

source characterized by the violation of Simon’s condition
on CM [6], our results also apply to the case of non-
Gaussian input signals, upon evaluating the fidelity be-
tween the GS with the same CMs of the non-Gaussian
ones. In fact, violation of Simon’s condition is governed
only by the behavior of the CM independently on the
Gaussian character of the inputs states. On the other
hand, identical non-Gaussian states may give rise to en-
tangled output, the mixing of two single-photon states in
quantum optical systems being the paradigmatic example
[37]. In other words, the entanglement raising from the
mixing of two identical non-Gaussian states cannot be
detected by Simon’s condition on CM.
Up to now we have considered the correlation properties

of the output states with respect to the fidelity between the
input ones. However, similar relations may be found for the
fidelities Fð%h; ~%kÞ, k; h ¼ 1; 2, between the input and out-
put states, respectively, where ~%h ¼ Trk½%12�, with h � k,
are the reduced density matrices of the output states taken
separately. In this case we found that the output is en-
tangled if and only if Fð%h; ~%kÞ<Feð%h; ~%kÞ where all
the thresholds Feð%h; ~%kÞ still depend only on �1, �2,
and � (here we put as arguments the density matrices in
order to avoid confusion with the previous thresholds).
The analytic expressions of Feð%h; ~%kÞ are cumbersome
and are not reported explicitly, but we plot in Fig. 2
the input-output fidelities and the corresponding thresholds
for a particular choice of the involved parameters. If we
look at the interaction between the two systems as a
quantum noisy channel for one of the two, namely,
%k ! Eð%kÞ � Trh½%12�, h � k, then the birth of the cor-
relations between the outgoing systems corresponds to a
reduction of the input-output fidelity: The correlations
arise at the expense of the information contained in the
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input signals. In turn, this result may be exploited for
decoherence control and preservation of entanglement us-
ing bath engineering [35].

In conclusion, we have analyzed the correlations exhib-
ited by two initially uncorrelated GS which interact
through a bilinear exchange Hamiltonian. We found that
entanglement arises if and only if the fidelity between the
two inputs falls under a threshold value depending only on
their purities, the first moments, and the coupling constant.
Similar relations have been obtained for the input-output
fidelities. Our theorems clarify the role of squeezing as a
prerequisite to obtain entanglement out of bilinear inter-
actions and provide a tool to optimize the generation of
entanglement by passive (energy-conserving) devices. Our
results represent progress for the fundamental understand-
ing of nonclassical correlations in continuous variable
systems and may find practical applications in quantum
technology. Because of the recent advancement in the
generation and manipulation of GS, we foresee experimen-
tal implementations in optomechanical and quantum opti-
cal systems.
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FIG. 2 (color online). Plot of the fidelities Fð%h; ~%kÞ for
� ¼ 0:8 and the same choice of the other involved parameters
as in Fig. 1. The yellow region shows the interval of values of c
leading to an entangled state. The right panel is a magnification
of the green, boxed region of the left panel: The horizontal lines
refer to the corresponding thresholds Feð%h; ~%kÞ. See the text for
details.
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