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Summary. — When applied to practical problems, the very laws of quantum
mechanics can provide a unique resource to beat the limits imposed by classical
physics: this is the case of quantum metrology and high-precision sensing. Here we
review the main results obtained in the recent years at the Quantum Technology
Lab of the Department of Physics “Aldo Pontremoli” of the University of Milan, also
in collaboration with national and international institutions. In particular we focus
on the application of continuous-variable optical quantum states and operations to
improve different fields of research, ranging from interferometry to more fundamental
problems, such as the testing of quantum gravity.
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1. – Introduction

Quantum states of the radiation field represent a key ingredient to beat the limits
imposed by classical light. The possibility to generate and manipulate single-photon
states [1,2] has made the implementation of protocols beyond the possibility of classical
physical systems possible, paving the way to quantum cryptography [3], quantum com-
munication [4], quantum enhanced sensing and metrology [5,6] and the study of complex
problems as, for instance, the boson sampling [7,8]. When single photons are considered,
the information is usually encoded into observables with a discrete spectrum, such as the
polarisation degree of freedom. Unfortunately, the information encoded in single-photon
states may be completely destroyed by the presence of losses: once the photon is lost, the
carried information cannot be retrieved, though one can resort to schemes more tolerant
to dissipation [9].

Therefore, many efforts have been made to extend discrete-variable quantum informa-
tion protocols to the continuous-variable analogue, where the information is now encoded
into observables with continuous spectrum (but not only), such as the amplitude or the
phase of the field [10, 11]. Continuous-variable optical states are usually more robust to
losses with respect to the single photons [12,13], since they may contain mesoscopic [14]
or macroscopic number of photons [15,16].

In this scenario, optical correlations, both quantum and classical, represent a fun-
damental resource for developing technologies, opening unprecedented opportunities in
the fields of metrology, positioning, imaging and sensing. Furthermore, the correlations
existing between two or more [17] light beams have also a theoretical interest, being of
key relevance in quantum optics and quantum electrodynamics and are at the basis of
the quantum information processing.

In this paper we are going to summarise some of the main theoretical and experimental
results we achieved at the Quantum Technology Lab of the Department of Physics “Aldo
Pontremoli” of University of Milan also in collaboration with national and international
teams. We will focus on our research on optical continuous-variable states and their
application to interferometry, imaging and also to test more fundamental theories, such
as the noncommutativity of position and momentum at the Planck scale.

The structure of the paper is as follows. Section 2 introduces the basic tools of the
estimation and quantum estimation theory and, in particular, the role of the Fisher and
quantum Fisher information.

In sect. 3 we will see how it is possible to enhance the sensitivity of an interferometer
exploiting the quantum features of light. We present the main results we obtained when
continuous-variable states, such as coherent and squeezed states of the optical field, are
used to feed the interferometers: this will be the subject of sect. 4, where we will study
the bound imposed by quantum mechanics to the precision of an interferometer when
only continuous-variable optical states are considered.

Quantum correlations can be exploited to improve the detection. In sect. 5 we present
the first realisation of a practical quantum illumination protocol. It is a scheme to detect
the presence of a faint object embedded in a noisy background, exploiting the quantum
correlation existing between two light beams.

The possibility to enhance the sensitivity of optical interferometers by using setups
based on two interferometers instead of a single one, is discussed in sects. 6, 7 and 8. In
sect. 7 we show how two correlated interferometers can be used to test quantum gravity
and, more precisely, the noncommutativity of position and momentum at the Planck
scale, outperforming schemes based on classical light. Section 8 investigates the role
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Fig. 1. – Scheme of a quantum estimation protocol: a quantum probe is prepared in the initial
state �0 and interacts with a system. The interaction, described by the unitary operator Uφ,
is characterised by the parameter φ we want to estimate. The evolved state is measured and
the outcomes are processed to retrieve the information about φ. In general the measurement is
described by a positive operator-valued measure (POVM) {Πx}, where x is the outcome. See
the text for details.

of a nonclassical resource, such as squeezing, to improve the performance of correlated
interferometry. Finally, we draw some concluding remarks in sect. 9.

Throughout the manuscript we will use many concepts from quantum optics. The
interested reader can find a brief review of these basic notions in dedicated appendices.

2. – Basics of quantum estimation theory

In this section we review the basic tools of estimation theory and quantum estimation
theory which we will use throughout this paper. In particular, we will introduce the
concepts of Fisher information and of quantum Fisher information.

When a physical parameter is not directly accessible, one needs to resort to indirect
measurements. This is the case, for instance, of the measurement of a phase shift, of the
entropy or of the entanglement between two or more parties of a quantum system. Here
we focus on the single-parameter estimation but our results can be extended to scenarios
involving more than one parameter [18].

In fig. 1 we sketch a typical setup to estimate one parameter, say φ, through a quantum
probe. In a quantum estimation protocol, a quantum probe is prepared in a known state
described by the density operator �0. Then the probe interacts with a system, the
interaction being described by the unitary operator Uφ. The evolved state of the probe,
�φ = Uφ�0U

†
φ, encodes the unknown parameter φ and, then, undergoes a measurement

described in general by the positive operator-valued measure (POVM) {Πx}, x being
the measurement outcome. The data sample Ω = {x1, x2, . . . , xM} is finally processed
to retrieve the value of the parameter by means of a suitable estimator φ̂. Of course,
we are not only interested in the expectation value E[φ̂] of φ̂, but also in its uncertainty
var(φ̂) = E[φ̂2] − E[φ̂]2. Therefore, the main goals of quantum estimation theory are to
find the optimal probes which minimise the uncertainty and the optimal measurements
which allow to reach such minimum uncertainty.

From the classical point of view, optimal unbiased estimators saturate the Cramér-
Rao inequality or bound [19]

var(φ̂) ≥ 1
MF (φ)

,(1)
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and we introduced the Fisher information

F (φ) =
M∑

k=1

p(xk|φ) [∂φ log p(xk|φ)]2,(2)

p(x|φ) being the conditional probability of the outcome x given φ.
In the presence of a quantum probe and of a POVM, the conditional probability reads

p(x|φ) = Tr[�φΠx],(3)

and, thus, the Fisher information can be written as (to be more general, we assume that
x ∈ Ω ⊂ R)

F (φ) =
∫

Ω

Tr[∂φ�φΠx]2

Tr[�φΠx]
dx,(4a)

=
∫

Ω

�e{Tr[�φΠxLφ]}2

Tr[�φΠx]
dx,(4b)

where Lφ is the symmetric logarithmic derivative such that

∂�φ

∂φ
=

Lφ�φ + �φLφ

2
.(5)

We can now maximise F (φ) over all the possible POVMs to obtain the quantum Cramér-
Rao bound [20,21]

var(φ̂) ≥ 1
MH(φ)

,(6)

where H(φ) = Tr[�φL2
φ] ≥ F (φ) is the quantum Fisher information [19, 22]. According

to its definition, the eigenvectors of the symmetric logarithmic derivative Lφ correspond
to the optimal POVM.

Looking for the analytical expression of the POVM and the optimal measurement is
not always a simple task, since it requires an optimisation procedure. However, there are
many cases in which it is possible to find some explicit relations.

In the simplest scenario the parameter to be estimated is the amplitude of a unitary
perturbation applied to the probe state �0. This is the case, for instance, of a phase shift
imposed to an optical field. If G is the Hermitian generator of the perturbation, we can
write Uφ = exp(−i φG). Now, expanding the input state in its eigenbasis, namely

�0 =
∑

n

�n|ψn〉〈ψn|,(7)

we obtain �φ =
∑

n �n|ψ(φ)
n 〉〈ψ(φ)

n |, with |ψ(φ)
n 〉 = Uφ|ψn〉. It is straightforward to show

that [18]

H = 2
∑
n�=m

(�n − �m)2

�n + �m
|〈ψn|G|ψm〉|2,(8)
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and it is independent of φ. Moreover, if the input state is a pure state, i.e. �0 = |ψ0〉〈ψ0|,
eq. (8) reduces to

H = 4
(
〈ψ0|G2|ψ0〉 − 〈ψ0|G|ψ0〉2

)
,(9a)

= 4 var[G],(9b)

namely, the quantum Fisher information is proportional to the fluctuations of the gen-
erator G on the probe state.

In sects. 3 and 4 we will apply these results to find the ultimate bounds to interfer-
ometric sensitivity. The interested reader can find in refs. [18] and [23] further details
about the application of quantum estimation theory to more general scenarios of interest
for quantum information processing. In particular, at our Quantum Technology Lab we
applied the tools of quantum estimation to quantum optics [24-26], to open quantum sys-
tems [27-29] and to more fundamental problems [30-32], just to cite some of the relevant
fields of research we investigated in the last years.

3. – Quantum interferometry with continuous-variable states

In this section we introduce the reader to optical quantum interferometry using the
sensitivity of a typical interferometer and its connection with the Fisher information.
The application of quantum estimation theory to find the ultimate bounds given by the
quantum Fisher information and the analysis of more sophisticated setups, involving also
active elements, will be discussed in sect. 4.

An optical interferometer is a paradigmatic example of one of the most precise devices
available in physics. Its applications range from technological ones, to the challenging
task of modern cosmology, i.e. the direct detection of gravitational waves, and also to
measure Planck-scale effects predicted by quantum gravity theories. An interferometer
should maximise the precision in the estimation of phase-shift fluctuations given some
energy constraints on the energy circulating in the interferometer itself. To this aim
one can exploit the nonclassical features of the probe beams which may outperform the
performance of the corresponding classical ones, thus leaving room for quantum enhanced
interferometry. However, the fluctuations associated with the very quantum nature of
light pose bounds to the precision, which can be assessed by the modern tools of quantum
estimation theory briefly introduced in sect. 2.

The key ingredient of an optical interferometers is the beam splitter, a linear optical
device in which two beams of light interfere (see appendix A). In fig. 2 we sketched
a Mach-Zehnder interferometer, but analogous results can be obtained in the case of
a Michelson interferometer. The two input field modes, described by the annihilation
operators a and b, with [a, a†] = I and [b, b†] = I, evolve into the output modes c and d
which depend on the phase φ. To find the input-output relations, we should transform
the input modes through the first 50:50 beam splitter, then apply the phase shift and the
reflections at the mirrors and, finally, recombine the resulting modes in a second 50:50
beam splitter.

Besides the final measurement, it is interesting to note that, from the theoretical point
of view, any interferometer measuring a phase shift φ can be summarised by two input
light beams which interfere at a beam splitter with transmissivity τ = cos2(φ/2), as
sketched in fig. 3. In the case of the Mach-Zehnder interferometer of fig. 2, this requires
to add two phase shifters at π/2 (see PhS in fig. 2). In this view, as the reader can
verify applying the transformations associated with the beam splitter, with the mirror
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Fig. 2. – Scheme of a Mach-Zehnder interferometer. The two input modes, described by the
annihilation operators a and b, with [a, a†] = I and [b, b†] = I, interfere at a first 50:50 beam
splitter and an overall phase-shift difference φ between the beams is applied. The two beams are
then recombined at a second 50:50 beam splitter and, finally, they are detected by measuring
the number of photons Nc = c†c and Nd = d†d, respectively, where c and d are the annihilation
operators of the output fields, [c, c†] = I and [d, d†] = I. In the scheme we also added two phase
shifters (PhS) at a fixed phase π/2: this allows to describe the whole evolution of the input
modes through the interferometer as a simpler one in which they interfere at a single beam
splitter with transmissivity τ(φ) = cos2(φ/2), as shown in fig. 3.

Fig. 3. – Simplified scheme of an interferometer equivalent to the Mach-Zehnder configuration
in fig. 2. The measured phase shift φ can be summarised by the presence of a beam splitter
transmissivity τ(φ) = cos2(φ/2). The two input bosonic field modes, a and b, evolve into the
output filed modes c and d, that are finally detected by measuring the number of photons Nc

and Nd, respectively.

and with the phase shift described in appendix A, the input field modes evolve into the
output modes

c = cos(φ/2) a + sin(φ/2) b,(10a)

d = cos(φ/2) b − sin(φ/2) a.(10b)
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The final stage of an interferometer is the photodetection of the beams leading to the
measurement of the number of photons Nc ≡ Nc(φ) and Nd ≡ Nd(φ) and, finally, a
suitable function f(Nc, Nd) is evaluated (usually, as we will see later, the sum Nc +Nd or
the difference Nc − Nd of the two quantities) obtaining a data sample. The outcomes x
are distributed according to the probability distribution p(x|φ) which, of course, depends
on the states of the optical input beams. The information about φ is retrieved using the
estimator

O(φ) =
∫

Ω

x p(x|φ) dx,(11)

Ω being the data sample space, whereas the sensitivity S of the interferometer is given
by the relation

S(φ) =

√
var[O(φ)]
|∂φO(φ)| .(12)

Whenever p(x|φ) can be approximated by a Gaussian distribution with standard devia-
tion σ, it easy to show that [33]

S(φ) ≈ 1√
F (φ)

≈ σ,(13)

where

F (φ) =
∫

Ω

p(x|φ) [∂φ log p(x|φ)]2 dx(14)

is the Fisher information introduced in sect. 2.
In order to show how the presence of nonclassical states can improve the sensitivity,

we first consider the scheme in fig. 3 when a coherent state |α〉a and the vacuum state |0〉b
enter the two ports of the interferometer. We recall that the coherent state represents,
with good approximation, the output state of a laser with average number of photons
given by N = |α|2 and standard deviation |α| =

√
N [34] (see appendix B for further

details about coherent states).
If we assume to measure the photon number difference at the output, namely

O(φ) = D−(φ) ≡ Tr[�in(Nc − Nd)],(15a)
= Nc(φ) − Nd(φ),(15b)

with

�in = |α〉a〈α| ⊗ |0〉b〈0|,(16)

then we obtain the typical interference fringes, as reported in fig. 4(a). Since D−(φ) =
|α|2 cos φ and var[D−(φ)] = |α|2, it is easy to show that the sensitivity of this interfer-
ometer is

Scl(φ) =
1
|α|

1
| sin φ| ,(17)
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Fig. 4. – (a) Interference fringes (Monte Carlo simulated data). Typical plot of the photon
number difference D−(φ) as a function of φ at the output of an interferometer fed with a coherent
state with amplitude |α|2 = 106 and the vacuum in the other input port. (b) Magnification of
the region near φ = π/2 of the previous plot: we can see the noise due to the photon number
fluctuations.

(the subscript “cl” underlines the use of classical light, such as the coherent state) which
reaches the minimum for φ = φ0 = π/2. The value of the phase leading to the minimum
sensitivity is usually called “working regime” of the interferometer: here a small change
of the phase produces a large effect on the quantity D−(φ), as we can see from fig. 4(b),
since the absolute value of derivative at the denominator of eq. (12) reaches its maximum.

If we consider a scheme in which only one port of the interferometer is monitored, say
the port corresponding to mode d, one finds analogous results, but now

O(φ) = Nd(φ)(18a)
= |α|2 sin2(φ/2),(18b)

and var[Nd(φ)] = |α|2 sin2(φ/2); therefore, the sensitivity becomes

Scl(φ) =
1
|α|

1
| cos(φ/2)| .(19)

Note that in this case the working regime is φ = 0, corresponding to the so-called “dark
port” as expected (we will briefly consider this configuration at the end of this section).
This is the typical working regime of gravitational wave antennas [35]. In both the cases,
however, the minimum sensitivity scales as ∝ N−1/2, N being the average number of
photons circulating in the interferometer. This is the well-known shot-noise scaling. We
will see that this limit can be beaten exploiting nonclassical optical states up to reaching
the Heisenberg scaling ∝ N−1 [36-41].

In order to improve the sensitivity, we should look for a way to increase the value of the
denominator of eq. (12) and/or to reduces the fluctuations of the measured quantity at
the numerator. In this last case we can exploit the nonclassical properties of a particular
class of states called squeezed states (see appendix C for some details about the definition
and the main properties of squeezed states).

If we substitute to the vacuum a squeezed vacuum state, the two-mode input state
reads

�in = |α〉a〈α| ⊗ |0, r〉b〈0, r|,(20)
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Fig. 5. – Same plot as in fig. 4(b) (blue line) and with a squeezed vacuum |0, r〉 instead of the
vacuum, with number of squeezing photons λ = sinh2 r = 4, corresponding to about 12.5 dB,
and the same coherent amplitude |α|2 = 106 (red line). Note that λ � |α|2. We can see that
the photon number fluctuations are clearly reduced by the presence of squeezing.

where |0, r〉b is a squeezed state with 0 coherent amplitude and squeezing parameter r
(see appendix C). The analytical formula of the sensitivity is now quite cumbersome [33]
and is not reported explicitly. Nevertheless, fig. 5 shows the effects of the presence of
squeezing, i.e. a noncalssical resource, on the interference fringes. Though the number of
squeezed photon for the chosen parameters is extremely small with respect to number of
coherent photons (λ = sinh2 r = 4 � |α|2 = 106), we can see a reduction of the photon
number fluctuation which improves the sensitivity of the interferometer [38]. This is clear
from fig. 6, where we plot the ratio

Rsq/cl =
Ssq(φ)
Scl(φ)

(21)

between the sensitivity in the presence of squeezing (Ssq) and without it (Scl) as a function
of the measured phase φ. It is worth noting that only for φ ≈ π/2 the use of squeezing

Fig. 6. – Plot of the ratio Rsq/cl = Ssq(φ)/Scl(φ) between the sensitivity in the presence of
squeezing (Ssq) and without it (Scl) as a function of the measured phase φ. We used the same
squeezing parameter as in fig. 5 and different values of |α|2. When Rsq/cl < 1 squeezing turns
out to be a useful resource for phase estimation.
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Fig. 7. – (a) Interference fringes (Monte Carlo simulated data) when only the port corresponding
to mode d (see fig. 3) is monitored. Typical plot of the photon number Nd(φ) as a function of φ
at the output of an interferometer fed with a coherent state with amplitude |α|2 = 106 and the
vacuum in the other input port. (b) Magnification of the region approaching φ = 0: we can see
the noise due to the photon number fluctuations in the presence of coherent state and vacuum
(blue line) and their reduction when the vacuum state is substituted with a squeezed vacuum
(red lines).

leads to improved interferometer performances. This can be understood by inspecting
the explicit expression of the variance of D−(φ), which is now phase sensitive because of
the presence of squeezing and reads

var[D−(φ)] = |α|2
[
1 − 2

√
λ

(√
λ + 1 −

√
λ
)

sin2 φ
]

+ λ
[
1 + (1 + 2λ) cos2 φ

]
.(22)

Therefore, we have

|α|2
[
1 − 2

√
λ

(√
λ + 1 −

√
λ
)]

+ λ ≤ var[D−(φ)] ≤ |α|2 + 2λ(1 + λ),(23)

where the minimum is achieved for φ = π/2 and the maximum for φ = 0, π. For what
concerns the expectation value of the photon number difference, the squeezing just affects
the amplitude of the interference fringes, namely

D−(φ) =
(
|α|2 − λ

)
cos φ.(24)

Note that, in order to have var[D−(π/2)] < |α|2, we should require λ < 4|α|2/(1+4|α|2),
otherwise the squeezing resource becomes useless. Moreover, in the regime λ � |α|2 (see
the lower red line in fig. 6) we find

var[D−(φ)] ≈ |α|2
[
1 − 2

√
λ

(√
λ + 1 −

√
λ
)

sin2 φ
]
,(25)

and we can see that it always beats the performance of an interferometer fed by the
coherent state (and, of course, the vacuum).

For the sake of completeness in fig. 7(a) we report the interference fringes when
only one port of the interferometer is monitored and the number of photons Nd(φ) is
recorded. In this case, as we noted above, the working regime is φ = 0, where the intensity
fluctuations, which depends on the coherent state amplitude (see appendix B), vanishes,
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Fig. 8. – Plot of the ratio Rsq/cl = Ssq(φ)/Scl(φ) between the sensitivity in the presence of
squeezing (Ssq) and without it (Scl) as a function of the measured phase φ when only the
port of mode d (see fig. 3) is monitored. We used the same squeezing parameter as in fig. 5
and different values of |α|2. When Rsq/cl < 1 squeezing turns out to be a useful resource for
phase estimation. Note the presence of the minimum approaching φ = 0 as the coherent state
amplitude increases.

since the detected intensity is null. In fig. 7(b), blue line, we show the magnification of
the region for φ approaching zero. As in the case of the measurement of D−(φ), also
in this one the presence of squeezing can help: the red line in fig. 7(b) is obtained by
substituting to the vacuum a squeezed state with the same squeezing parameter used in
fig. 5.

If we now consider the corresponding ratio Rsq/cl between the sensitivity in the pres-
ence of squeezing and without it reported in fig. 8, we can see that the minimum is not
achieved in the working regime φ = 0, but for a value that approaches it as the intensity
of the coherent state increases. On the contrary, we recall that when the photocurrent
difference D−(φ) at the output is used to retrieve the information about the phase, the
working regime at φ = π/2 coincides with the optimal phase to fully exploit the squeezing
resource, as we can see from fig. 5 and fig. 6.

Also in this case there are regions of the phase for which squeezing does not improve
the performance of the interferometer. However, the analysis of the effect is more subtle
than the previous case. In fact, while the mean value reads

Nd(φ) = |α|2 sin2(2φ) + λ cos2(2φ),(26)

the variance is now given by

var[Nd(φ)] =
|α|2
2

[
1 − cos φ +

√
λ

(√
λ + 1 −

√
λ
)

sin2 φ
]

(27)

+
λ

2
cos2

(
φ

2

)
[2 + (1 + 2λ)(1 + cos φ)] ,

which depends on φ also in the absence of squeezing. If we focus on the working regime
φ = 0, we have var[Nd(0)] = 2λ(1 + λ), which vanishes only for λ = 0, i.e. when the
squeezed state is replaced by the vacuum. Nevertheless, squeezing can help in realistic
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Fig. 9. – Diagram of an interferometer showing the main elements: the unitary interaction
Uint(Θ), the phase shift Uph(φ) and the measurement described by the POVM {Πx}.

scenarios, in which one cannot set precisely the phase φ = 0 because of the unavoidable
experimental errors. As shown in fig. 8 (see the red curve for |α|2 = 106) a small deviation
from φ = 0 is enough to make the squeezing a useful resource. In fact, when a very large
number of photons circulates in the interferometer, a phase shift slightly different from
0 is enough to bring a considerable number of photons to the detector. In this case
the presence of squeezing can reduce the intensity fluctuation and, in turn, increase the
sensitivity.

In the next section, we will investigate the limits imposed by quantum mechanics to
the precision of optical interferometers by using the tools of quantum estimation theory
introduced in sect. 2. Moreover, we will also consider more general setups involving
active devices, such as optical parametric amplifiers.

4. – Bounds to precision for quantum interferometry

When a particular measurement stage is chosen and the input states are given, in
order to find the optimal working regime of an interferometer we should maximise the
Fisher information with respect to all the involved parameters (characterising both the
input states and the interferometer). Moreover, we should address and optimise the
quantum Fisher information [20, 21] to study the ultimate bounds imposed by quantum
mechanics, and find the optimal measurement to perform. To this aim it is useful to
describe the interferometers as sketched in fig. 9. Here, the two modes of an input state

|Ψ〉〉 = |ψa〉a|ψb〉b(28)

interact through the unitary interaction Uint(Θ), Θ representing the parameter of the
interaction (such as the beam splitter transmissivity), then one of the modes undergoes
a phase shift Uph(φ); finally, they are measured according to the POVM {Πx}, x being
the outcome of the measurement [18].

In general, different quantum optical states can be used to improve the sensitivity of
an interferometer [5,42,43]. In this section we consider the class Gaussian states, namely,
states described by Gaussian Wigner function which can be generated and manipulated
with the current technology [44-46]. Therefore we can assume that the input states are
two displaced squeezed states, i.e. |α, r〉|γ, ξ〉 (for the sake of simplicity we drop the
subscripts), where we can also assume α, γ, r, ξ ∈ R [33]. In order to make the analysis
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easier, it is useful to introduce the following relevant quantities:

Ntot = α2 + γ2 + sinh2 r + sinh2 ξ (total number of photons),

Δ =
α2

α2 + γ2
(signal fraction),

βtot =
sinh2 r + sinh2 ξ

Ntot
(total squeezing fraction),

β =
sinh2 ξ

Ntot
(partial squeezing fraction).

As we discussed in sect. 2, the inverse of the Fisher information sets a lower bound for
the variance in estimating φ, known as Cramér-Rao bound, that is based on p(x|φ) and,
thus, depends on the particular measurement we perform. It is possible, however, to find
a measurable observable (an optimal POVM) that maximises the Fisher information [18,
19, 22]. This leads to an upper bound for the Fisher information, the quantum Fisher
information (see sect. 2).

In order to find the optimal POVM, one starts from the Born rule

p(x|φ) = Tr[�φΠx],(29)

where

�φ = Uph(φ)Uint(Θ)�inU†
int(Θ)U†

ph(φ),(30)

and �in = |Ψ〉〉〈〈Ψ|. To find the optimal {Πx} we write the Fisher information as in eq. (4)
and the corresponding quantum Fisher information H(φ) is such that H(φ) ≥ F (φ). Here
we are not interested in the actual form of the POVM, but we will focus on the quantum
Fisher information.

First of all we consider a passive interaction, namely, an interaction which does not
change the energy of the input states. In particular, we assume that Uint(Θ) describes
the action of a balanced beam splitter (see appendix A)

Uint(Θ) ≡ exp
[π

4
(
a†b − ab†

)]
,(31)

where a and b are the boson field operators describing the two input modes. The maximi-
sation of the Fisher information over all the involved quantities introduced above shows
that the best configuration requires α = γ and ξ = r, corresponding to the following
quantum Fisher information (the reader can find the details in ref. [37]), which depends
only on Ntot = 2(α2 + sinh2 r) and βtot = 2 sinh2 r/Ntot:

Hmax(Ntot, βtot) =(32)

2Ntot

[
2Ntotβtot(2 − βtot) + 2(1 − βtot)

√
Ntotβtot(2 + Ntotβtot)

]
.

We can perform a further (numerical) maximisation of Hmax(Ntot, βtot) with respect to
the total squeezing fraction βtot. The results are shown in fig. 10(a), where we plot
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Fig. 10. – (a) Plot of the optimal value of βtot maximising the quantum Fisher information (32) as

a function of Ntot. As Ntot increases βtot max → 2/3. (b) The phase sensitivity δφ = [Hmax]
−1/2

as a function of Ntot (blue solid line), where we used the optimal value βtot max given in panel
(a). In the limit Ntot � 1 we have Hmax ≈ 8

3
N2

tot, that is the Heisenberg scaling. We also plot

the shot-noise limit N
−1/2
tot (red dashed line) and the Heisenberg limit N−1

tot (green dotted line).

βtot max as a function of Ntot, whereas in fig. 10(b) we plot the corresponding phase
sensitivity δφ = 1/

√
Hmax obtained by using the optimal squeezing fraction βtot max: it

is clear that in the large energy regime (Ntot � 1) the Heisenberg scaling is reached.
It is worth noting that the maximisation over all the parameters leads to the optimal

symmetric input state |α, r〉|α, r〉. If we assume, however, that the input state has the
form |α, 0〉|0, ξ〉 (coherent state + squeezed vacuum [35]), the optimisation still gives the
Heisenberg scaling for Ntot � 1 but now Hmax ≈ 2Ntot, that is a slightly worse result
than the one we obtained by considering displaced squeezed states.

Let’s suppose, now, that the initial interaction is an active one, namely it increases
the energy of the input states. A typical interaction of this kind is implemented by
an optical parametric amplifier (OPA) [47] and it is the so-called two-mode squeezing
interaction (see appendix D), described by the unitary operator:

Uint(Θ) ≡ exp(ξa†b† − ξ∗ab).(33)

This operator, when applied to the vacuum state, generates the two-mode squeezed
vacuum or twin-beam state, as explicitly shown in appendix D, namely:

|TWB〉〉 =
√

1 − |λ|2
∑

n

λn|n〉a|n〉b,(34)

with λ = earg[ξ] tanh |ξ|, that is a continuous-variable entangled state whose nonclassi-
cal features are exploited in many continuous-variable quantum information processing
protocols [10].

This kind of interferometer is also referred to as coherent light boosted interferometer
(CLBI) [48, 49]. Since the interaction imposes phase-sensitive amplification (i.e. two-
mode squeezing) introducing quantum correlations between the two modes, we can choose
as inputs two classical signals, namely, a couple of coherent states |α〉a|γ〉b, α, γ ∈ R.
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Fig. 11. – (a) Plot of βmax (blue sold line) and Δmax (red dashed line) maximising the quantum
Fisher information in the case of the CLBI as function Ntot. In the limit Ntot � 1 we have
βmax → 2/3 and Δmax → 1/2. (b) The corresponding phase sensitivity δφ = [H

(CLBI)
max ]−1/2

as a function of Ntot (blue solid line). In the limit Ntot � 1 we have Hmax ≈ 4
3
N2

tot, that

is the Heisenberg scaling. We also plot the shot-noise limit N
−1/2
tot (red dashed line) and the

Heisenberg limit N−1
tot (green dotted line).

Now the relevant quantities are

Ntot = (α2 + γ2 + 1) cosh(2r) + 2αγ cos(θ) sinh(2r) − 1 (total number of photons),

Δ =
α2

α2 + γ2
(signal fraction),

β =
sinh2 ξ

Ntot
(total squeezing fraction).

Proceeding as in the case of the passive interferometer, we can maximise the quantum
Fisher information with respect to β and Δ for fixed energy Ntot. In fig. 11(a) we plot the
signal fraction Δmax and the squeezing fraction βmax giving the maximal quantum Fisher
information H

(CLBI)
max plotted in fig. 11(b). By comparison between fig. 10(b) and fig. 11(b)

in the large energy regime we can see that the passive interferometer outperforms the
active one. Nevertheless, in the presence of losses and realistic measurement the latter
turns out to be useful, as we are going to show in the following.

A thorough analysis of passive and active interferometers using passive and active
detection stage can be found in ref. [33], while here we summarise the main results we
obtained also in the presence of non-unit quantum detection efficiency (in appendix E
we describe the model used to include the quantum efficiency in our analysis). As a
matter of fact, one can choose any possible combination of active/passive interaction
and active/passive detection.

We first consider the most common configuration, in which a balanced, 50:50, beam
splitter is used in the initial interaction and before photodetection, as shown in the
scheme in fig. 12: the measured quantity is the difference D−(φ) and the sensitivity is
given by

S1(φ) =

√
var[D−(φ)]
|∂φD−(φ)| ,(35)

In fig. 12(a) we plot the sensitivity of the interferometer as a function of Ntot after the
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Fig. 12. – Interferometer with passive interaction and passive detection scheme: the two input
states are mixed at a balanced beam splitter (BS) before the phase shift and interfere again at
another BS before the photodetection. Here one evaluates the difference D−(φ) = N1(φ)−N2(φ)
between the detected photons in order to retrieve the information about φ. (a) Minimised
sensitivity of the interferometer for unit quantum efficiency η as a function of Ntot. The optimal
input states are two squeezed vacua. (b) Minimised sensitivity of the interferometer for different
values η. Now the optimal input states are a coherent state and a squeezed vacuum (see ref. [33]
for further details). The shot-noise and the Heisenberg scalings are also reported for comparisons.

optimisation (i.e. the minimisation of the sensitivity) with respect to the input states.
In the presence of unit quantum efficiency, we find that the optimal input states are a
couple of squeezed vacuum states: this choice allows us to obtain the Heisenberg scaling.
However, as one may expect, when η < 1 we can only achieve the shot-noise limit [50]
and, in this case, the optimal input states are a coherent state and the squeezed vacuum
(see ref. [33] for further details) as reported in fig. 12(b).

As we have seen, in the presence of losses (i.e. η < 1) the Heisenberg scaling is no
longer achievable by the passive-passive configuration. Nevertheless, if we substitute to
the second beam splitter an OPA (characterised by the squeezing parameter r1), thus
we are using an active detection stage, we can face the losses. Moreover, upon a suitable
optimisation with respect to the squeezing parameter r1 we can still obtain the Heisenberg
scaling. This scenario is shown in fig. 13. We note that the use of an active detection
stage based on an OPA requires to measure the sum

D+(φ) ≡ Tr[�in(Nc + Nd)],(36a)

= N1(φ) + N2(φ),(36b)

since the difference is now independent of φ, as the reader can easily verify. Therefore,
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Fig. 13. – Interferometer with passive interaction and active detection stage: the two input states
are mixed at a balanced beam splitter (BS) before the phase shift and, then, they undergo a two-
mode squeezing interaction through an OPA before the photodetection. Here one evaluates the
sum D+(φ) = N1(φ) + N2(φ) between the detected photons in order to retrieve the information
about φ. (a) Minimised sensitivity S1 min of the interferometer a function of Ntot. The optimal
input states are two squeezed vacua with different energy (for Ntot � 1) or a squeezed coherent
state and the vacuum (for Ntot � 1). The shot-noise and the Heisenberg scalings are also
reported for comparisons. (b) Minimised sensitivity Sη min as a function of r1 for different
values of Ntot. (c) Minimised sensitivity Sη min as a function of r1 for different values of Ntot

and η. We can see that, as r1 increases, Sη min becomes independent of η and depends only on
the total energy Ntot.

the sensitivity is defined as

S1(φ) =

√
var[D+(φ)]
|∂φD+(φ)| .(37)

Assuming η = 1, the optimisation shows that we identify two regimes: for low energy
(Ntot � 1) the optimal input state is a couple of squeezed states with different energy,
but here we can reach only the shot-noise scaling; for Ntot � 1, however, the use of a
squeezed coherent state together with the vacuum allows to reach the Heisenberg scaling,
namely (details can be found in ref. [33])

S1 min ≈ 1 +
√

2√
2Ntot

.(38)

The result is shown in fig. 13(a). In fig. 13(b) we plot S1 min as a function of r1. As we
have mentioned above, the use of an active detection can fight the detrimental effects of
losses (i.e. non-unit quantum efficiency) on the sensitivity. This can be seen analysing
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Fig. 14. – Interferometer with active interaction and detection stage: the two input states interact
at a first OPA before the phase shift and, then, they undergo another two-mode squeezing
interaction through a second OPA before the photodetection. The sum D+(φ) = N1(φ)+N2(φ)
between the detected photons is then evaluated in order to retrieve the information about φ.
(a) Minimised sensitivity S1 min of the interferometer a function of Ntot. The shot-noise and
the Heisenberg scalings are also reported for comparisons. (b) Minimised sensitivity Sη min as
a function of r2 for different values of Ntot (we recall that we have performed the optimisation
over all the other involved parameters [33]). The optimal input states are two coherent states
(for r2 � 1) or the vacuum (for r2 � 1). (c) Minimised sensitivity Sη min as a function of r2 for
different values of Ntot and η. We can see that, as r2 increases, Sη min becomes independent of
η and depends only on the total energy Ntot.

fig. 13(c): here we plot Sη min as a function of r1 for different values of the quantum
efficiency η and Ntot. It is clear that, after the optimisation, as r1 increases we have

Sη min → S1 min,(39)

that is the Heisenberg scaling is restored.
We now turn our attention to active interferometers, in which the first beam splitter

of the passive ones is substituted with an OPA with squeezing parameter r1. The study
of this kind of interferometers shows that the use of a passive detection stage does not
allow to go beyond the shot-noise limit, also in the lossless case [33]. Therefore, here we
consider only the configuration with an active detection stage characterised by an OPA
with squeezing parameter r2 (see the scheme in fig. 14). Moreover, the numerical analysis
proves that the sensitivity is minimised for r2 � 1 [33], thus we consider this regime.
The result for η = 1 is reported in fig. 14(a), where we report S1 min as a function of Ntot:
also in this case the Heisenberg scaling is achieved as the energy increases. Figure 14(b)
shows S1 min as a function of r2: it is clear that the minimum of the sensitivity is obtained
when the OPA employed at the detection introduces a large number of photons (r2 � 1),
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as mentioned above. It is interesting to note that the optimal input states depend on the
energy added by the active detection stage: if r2 � 1 then we should use two coherent
states with the same energy, whereas for r2 � 1 the best choice is the vacuum state.

Finally, as in the passive/active interferometer, in fig. 14(c) we plot Sη min as a function
of r2 and different values of Ntot and η: the use of an active detection stage allows to
reach the Heisenberg scaling of the lossless case also in the presence of non-unit quantum
efficiency, namely (see ref. [33])

S1 min ≈ 1√
Ntot(Ntot + 2)

,(40)

for the large energy regime Ntot � 1.

5. – Practical quantum illumination

In sects. 3 and 4 we have seen that the quantum properties of light, such as “squeez-
ing”, can be a useful resource to enhance the sensitivity of interferometers going be-
yond the quantum shot-noise limit and finding applications in gravitational wave anten-
nas [35,36].

Here we focus on the use of quantum correlation and, in particular, the entanglement
existing between two beams of light generated by an OPA, the so-called twin beams
(see appendix D), in order to detect the presence of an opaque object in a very noisy
background.

We will describe the object as a beam splitter embedded in a background of “thermal”
radiation: the problem is then to distinguish the photons scattered by the object from
those belonging to the background, when the latter is predominant. This scheme is
known as quantum illumination [51,52]. From the theoretical point of view, one can find
an optimal strategy based on twin beams which outperforms any classical one [52, 53].
However, this kind of receivers turns out to be very challenging from the experimental
point of view [53,54].

In the following we show the main results one can obtain using a quantum illumination
protocol based on current technology [55,56] which performs astonishingly better than a
classical one based on classically correlated light [57]. As a matter of fact, this protocol
cannot aim to achieve the optimal target-detection bounds of ref. [52], but it exhibits very
large quantum enhancement and robustness against noise as in the case of the original
idea.

In fig. 15 we report a pictorial view of the experimental schemes used to implement
the quantum illumination protocol and the classical counterpart. The twin beams are
generated by a beta-barium borate crystal (BBO) with an average number of photons per
spatio-temporal mode μ = 0.075. They are then addressed to a high quantum efficiency
CCD camera, able to measure the correlations between the two beams.

In the quantum illumination protocol, see fig. 15(a), an object, a 50:50 beam splitter,
intercepts one of the two correlated beams and superimposes to it a thermal background
produced by scattering a laser beam on an Arecchi’s rotating ground glass. We assume
that the background is caracterised by an average number of photons Nb distributed
among Mb modes. The other beam is instead directly detected. When the beam splitter
is removed, only the background reaches the detector.

In the classical illumination protocol, reported in fig. 15(b), we should substitute to
the twin beams two classical correlated beams. These latter are obtained by splitting



360 STEFANO OLIVARES

Fig. 15. – Schematic view of the quantum illumination protocol. (a) Quantum illumination
protocol: one of the two beams of a twin-beam state generated by a BBO is reflected toward the
detection system. If the beam splitter (the object) is present, the correlated beam is partially
detected by means of a CCD camera, together with the thermal field from Arecchi’s disk;
otherwise it is lost. (b) Classical illumination protocol: now one beam of the twin beams is
stopped and the other one is split at a beam splitter (BS) for generating correlated multithermal
beams. The pump power is adjusted in order to obtain the same energy as in the case (a).
Further details about the experimental setup can be found in ref. [57].

a single beam from the BBO but adjusting the pump power in order to have the same
intensity, time and spatial coherence properties as in the quantum case [57]. As shown
in appendix D, the single beam of a twin beam corresponds to a thermal state: when the
thermal state is split at a beam splitter the two emerging beams are classically correlated.

Whereas the reader can find a thorough and detailed analysis of the source of the
quantum enhancement in refs. [57,58] and [59], here we only report the results about the
error probability in the discrimination of the presence from the absence of the object.
The figure of merit we used in our experiment is the correlation in the photon numbers
N1 and N2 detected by pairs of pixels of the CCD intercepting correlated modes of beams
a1and a2, respectively. In particular we focus on the covariance

Δ1,2 = 〈N1N2〉 − 〈N1〉〈N2〉,(41)

where 〈· · · 〉 is the average over the set of a given number of realisations (since the
experiment uses a CCD camera, the number of realisations is the number of correlated
pixels pairs) [57] and Nk = a†

kak, k = 1, 2.
The problem of discriminating the presence from the absence of the object is then

equivalent to that of distinguishing between two corresponding values of Δ1,2. More
precisely, we can choose a threshold value of Δ1,2 above which we can infer that the object
is present otherwise it is not. Typical results are shown in fig. 16, where the measured
values of the covariance and their error bars are plotted as a function of the background
photons Nb for the quantum illumination (left panel) and classical illumination (right
panel): note how the quantum protocol outperforms the classical one.

Since the experimental values unavoidably fluctuate, we have to evaluate the error
probability Perr of the discrimination, that is the probability to infer the wrong answer
given a value of the covariance. If we know only the mean value and the variance of a
certain quantity, we should assign a Gaussian probability distribution to that quantity
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Fig. 16. – Typical plot of the covariance in the presence, Δ
(in)
1,2 (blue), and in the absence, Δ

(out)
1,2

(green), of the object as a function of the average number of background photons Nb distributed
among Mb = 1300 modes. The plot on the left refers to the quantum illumination protocol,
whereas the one on the right to the classical counterpart as described in the text. The bars are
the effect of the background noise on the covariance estimation. We also report the expectations
(horizontal lines) and the corresponding uncertainty interval as calculated theoretically. It is
clear that the presence or the absence of the object can be inferred by addressing the value of the
covariance. Notice the enhancement due to the quantum protocol. Data comes from ref. [57].

Fig. 17. – Plot of the target detection error probability as a function of the background photons
Nb and for two values of the number of modes, Mb = 57 (black) and Mb = 1300 (red). The
symbols refer to the experimental data whereas the lines are the theoretical previsions. The
points corresponding to Mb = 1300 have been obtained by processing the data in fig. 16 as
described in the text.

according to the maximum entropy principle (see, for instance, ref. [60]). Therefore it
is possible to associate a probability distribution with each point of fig. 16 and we can
evaluate the error probability by fixing a threshold value of the covariance chosen in
order to minimise Perr. In fig. 17 we show Perr as a function of Nb for two values of the
number of background modes Mb, in the case of both the quantum illumination protocol
and the classical one. We can also see that the quantum improvement becomes larger as
Mb increases. In particular, the points corresponding to Mb = 1300 have been obtained
by processing the data in fig. 16 as described above.
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Entanglement is usually a fragile resource which should be carefully protected by the
environment and, thus, the advantages of entangled and quantum states can be exploited
only in advanced quantum laboratories or for academic discussions. Nevertheless, the
results we presented in this section show that it is possible to obtain orders of magnitude
improvements compared to the classical protocol, independent of the amount of noise and
losses, by using devices available nowadays. Therefore, this kind of “practical” quantum
illumination protocol based on photon counting can have interesting potentialities to
promote the usage of quantum correlated light in real and more complex scenarios [61,62].

6. – Beyond single-interferometer setups

In sect. 4 we have seen how quantum light can be exploited in interferometers to
improve the estimation of an unknown phase shift also beating the shot-noise limit and,
thus, opening the way to a new generation of quantum-enhanced interferometers [35].
However, as illustrated in sect. 5, quantum correlations between light beams can be used
to successfully outperform the performance of standard imaging protocols. The question
that now arises is whether it is possible to exploit quantum correlations to further improve
interferometers. In fact, recently quantum correlations have received a lot of attention
as a key ingredient in advanced quantum metrology protocols [63,64].

In the following section we will review the main theoretical results we obtained cou-
pling two interferometers via quantum-correlated beams. In particular, we show how
protocols based on quantum-correlated interferometers lead to substantial advantages
with respect to the use of classical light, up to a noise-free scenario for the ideal lossless
case [65,66] also in the presence of some additional noise [67].

7. – Probing the noncommutativity of position and momentum

One of the most interesting applications of interference devices concerns the quan-
tum gravity tests. The noncommutativity at the Planck scale (lp = 1.616 × 10−35 m) of
position variables in different directions gives rise to quantum fluctuations of the space
geometry [68, 69] which, under particular conditions, could lead to detectable effects in
cavities with microresonators [70] or in two coupled interferometers, the so-called holome-
ter [71, 72]. In the latter case, the predicted noncommutativity leads to an additional
phase noise, the “holographic noise”.

If we consider a single interferometer based on a single beam splitter, such as the
Michelson interferometer sketched in fig. 18, in the presence of the holographic noise the
jitter in the beam splitter position leads to fluctuations of the measured phase. Since,
the phase shift can be seen as a measurement of the beam splitter position, the phase
fluctuations are directly related to the fluctuations Δx2

k = lp L of the coordinate xk,
k = 1, 2, 3, L being the length of the interferometer’s arm (for the sake of clarity we recall
that L = 600 m for GEO600 and L = 4 km for LIGO) [71]. Therefore, the holographic
noise accumulates as a random walk and becomes detectable.

Unfortunately, the most precise interferometers able to detect gravitational waves have
a resolution at low frequencies f � c/(4πL) not enough to detect the holographic noise
(the interested reader can find plenty of details about the holographic noise and its origin
in ref. [71]). Nevertheless, it could be possible to identify this noise by evaluating the
cross-correlation between the two equal interferometers of the holometer when placed in
the same space-time volume: while the shot noises of the interferometers are uncorrelated
and do vanish over a long integration time, the holographic noises are not. Moreover, one
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Fig. 18. – The jitter in the beam splitter position (x1, x2) leads to fluctuations in the measured
phase. See the text for details.

Fig. 19. – Scheme of the Michelson interferometer Ik, k = 1, 2. We reported the involved modes
and the measured quantities.

can also “turn off” the holographic fluctuations by separating the space-time volumes,
thus obtaining a background estimation. As a matter of fact, the ultimate limit for
the holometer sensibility is related to the shot noise. In the following we will discuss
how it could be possible to go beyond this limit by using the quantum optical states we
introduced in sect. 4 in the case of a single interferometer. We consider two Michelson
interferometers Ik, k = 1, 2, as shown in fig. 19, where we reported the involved modes
and the measured number operators at the outputs. The k-th interferometer detects the
phase shift φk. We are interested in a joint measurement, thus we should consider a
suitable operator C(φ1, φ2) with expectation

〈C(φ1, φ2)〉 = Tr[�12 C(φ1, φ2)],(42)

where �12 is the overall density matrix associated with the four-mode state of the light
beams injected into the two interferometers I1 and I2.

The two configurations used to observe the holographic noise are depicted in fig. 20.
Figure 20(a) shows the parallel configuration, in which the two interferometers occupy the
same space-time volume: in this case the holographic noise induces the same fluctuation
on the phase shift, thus leading to a correlation of the intensity fringes. When the
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Fig. 20. – Two possible configurations of the two Michelson interferometers. (a) In the parallel
configuration the interferometers are in overlapping space-time volumes: the holographic noise
correlates the outputs. (b) In the orthogonal configuration the space-time volumes of the in-
terferometers are no longer overlapping and the correlation induced by the holographic noise
vanishes.

interferometers are in the orthogonal configuration, fig. 20(b), their space-time volumes
are no longer overlapping and the correlation induced by the holographic noise vanishes:
this can be used as a reference, that is a measurement of the “background”.

Following ref. [65], we can describe the statistical properties of the phase shift fluc-
tuations induced by the holographic noise by means of a suitable probability density
function fx(φ1, φ2), x = ‖,⊥. Of course, since if we address the single interferometer we
cannot distinguish between the two configurations, given the marginals

F (k)
x (φk) =

∫
fx(φ1, φ2) dφh,(43)

with h, k = 1, 2 and h �= k, we should have

F (k)
‖ (φk) = F (k)

⊥ (φk);(44)

on the other hand, since in the orthogonal configuration there are not correlations be-
tween the two interferometers, we should also require

f⊥(φ1, φ2) = F (1)
‖ (φ1)F (2)

⊥ (φ2).(45)

Therefore, the actual expectations of an operator O(φ1, φ2), which depends on the phase
shifts, should be averaged over fx(φ1, φ2), namely

〈O(φ1, φ2)〉 → Ex[O(φ1, φ2)] =
∫

fx(φ1, φ2) 〈O(φ1, φ2)〉dφ1 dφ2.(46)

The information about the correlation between the two phases can be obtained by
estimating the covariance in the parallel configuration, i.e. E‖[δφ1, δφ2], where

δφk = φk − φk,0,(47)
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and we introduced the central phase φk,0 measured by the k-th interferometer. In the
limit δφ1, δφ2 � 1 we can write [65]

E‖[δφ1, δφ2] ≈
E‖[C(φ1, φ2)] − E⊥[C(φ1, φ2)]

〈∂2
φ1,φ2

C(φ1,0, φ2,0)〉
,(48)

and we clearly see that the covariance can be estimated by measuring the difference
between the expectation values of the operator C(φ1, φ2) in the two configurations.

In order to observe the holographic noise, we should minimize the uncertainty associ-
ated with the measurement of the covariance, which reads (still in the limit δφ1, δφ2 � 1)

U(δφ1, δφ2) ≈
√

var‖[C(φ1, φ2)] + var⊥[C(φ1, φ2)]
|〈∂2

φ1,φ2
C(φ1,0, φ2,0)〉|

,(49)

with varx[C(φ1, φ2)] = Ex[C2(φ1, φ2)] − Ex[C(φ1, φ2)]2. Since

var‖[C(φ1, φ2)] = var⊥[C(φ1, φ2)] = var[C(φ1, φ2)] + O(δφ2),(50)

the zero-order contribution to the uncertainty reduces to

U (0) ≈
√

2 var[C(φ1,0, φ2,0)]
|〈∂2

φ1,φ2
C(φ1,0, φ2,0)〉|

.(51)

It is worth noting that U (0), that is the main contribution to the uncertainty, does not
depend on the fluctuations induced by the holographic noise, but only on the intrinsic
fluctuations due to the chosen measurement and to the state sent through the interfer-
ometers. As we have also seen in sects. 3 and 4, the choice of the measurement is strictly
related to the input state and, in the following, we will show that squeezing and entan-
glement can provide huge advantages in terms of the achieved accuracy with respect to
classical light [65].

We start considering that the two-mode input state of the k-th interferometer is
excited in a coherent and a squeezed vacuum state with mean number of photons μk and
λk, respectively (see appendices B and C). As discussed in sect. 4, in this case the value
of φk can be retrieved assessing the difference Dk,−(φk) of the number of photons in the
two output ports of the interferometer Ik. Therefore, we can now define

ΔC(φ1, φ2) ≡ ΔD1,−(φ1)ΔD2,−(φ2),(52)

where

ΔDk,−(φk) = Dk,−(φk) − E [Dk,−(φk)].(53)

If we assume μ1 = μ2 = μ and λ1 = λ2 = λ, and consider the optimal working regime
φ1,0 = φ2,0 = π/2, we obtain [65]

U (0)
SQ ≈

√
2

λ + μ(1 + 2λ − 2
√

λ + λ2)
(λ − μ)2

,(54)
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which, in the limit μ � λ � 1, becomes

U (0)
SQ ≈ 1

2
√

2 λμ
.(55)

The advantage with respect to the classical case U (0)
CL ≈

√
2/μ in which only coherent

states are used is thus clear. Nevertheless, in this latter case it is worth noting that
the measurement on the covariance, involving second-order momenta, leads to a scaling
∝ μ−1 instead of ∝ μ−1/2 as in the case of the single interferometer.

Though the use of squeezing leads to an advantage with respect to the classical sce-
nario, the improvement is due to the independent improvement of the two single inter-
ferometers. Here, however, we are interested in minimising the noise of the correlation
between the interferometers. It is thus natural to investigate whether the use of quantum
correlated states coupling the two interferometers can produce further improvement.

Let us now suppose to couple I1 and I2 by exciting their input modes a1 and a2 (see
fig. 19) in the twin-beam state introduced in sect. 4 (see also appendix D) which we
rewrite as

|TWB〉〉a1,a2 =
∑

n

cn(λ) |n〉a1 |n〉a2 ,(56)

where λ is still the average number of photons of each mode and

cn(λ) =

√
λn

(1 + λ)n+1
.(57)

Due to the symmetry between the two modes, we have the peculiar property

a1,a2〈〈TWB|
(
a†
1a1 − a†

2a2

)M

|TWB〉〉a1,a2 = 0, ∀M > 0.(58)

As in the previous case, we assume to send in the other input ports of the interferometers
two equal coherent states |√μ〉b1 |

√
μ〉b1 with average number of photons μ. Overall, we

have the four-mode input state

|Ψ〉 = |TWB〉〉a1,a2 |
√

μ〉b1 |
√

μ〉b1 .(59)

If we choose the working regime φ1,0 = φ2,0 = 0 and, of course, in the absence of the
holographic noise, the two interferometers of the holometer behave like two completely
transparent media, as one can easily check from the input-output relations (10): the
output modes c1 and c2, coming from a1 and a2, respectively, exhibit perfect correlation
between the number of photons.

If we now define the observable

C(φ1, φ2) = Δ2(Nc1 − Nc2),(60)

where Nck
= c†kck, we have var[C(φ1,0, φ2,0)] = 0 in eq. (51), whereas the denominator

reads

|〈Ψ|∂2
φ1,φ2

C(φ1,0, φ2,0)|Ψ〉| =
1
2

μ
√

λ + λ2.(61)
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Fig. 21. – Plot of the ratio R(0) = U (0)/U (0)
CL as a function of the overall transmission-detection

efficiency η for the squeezed vacua and the twin beams (solid lines). We consider the realistic
values μ = 2×1023 for the coherent state intensities and λ = 0.5 for the squeezed vacua and each
of the twin beams. The dashed lines refer to the second-order uncertainties where we also added
the radiation pressure contribution. Here we considered a mirror mass 102 kg and a central light
frequency ω = 3.14 × 1015 Hz (corresponding to a wavelength of 600 nm) and a measurement
time of 10−3 s. Adapted from ref. [65].

Therefore, if μ, λ �= 0 we find the following striking result:

U (0)
TWB = 0.(62)

Remarkably, the perfect correlation existing between the two beams leads to a vanishing
zero-order contribution to the uncertainty of the covariance. In this scenario any very
faint perturbation which correlates the interferometers can be detected, since it cannot be
masked by a residual noise. We note that in the presence of fluctuations due to the holo-
graphic noise, a little portion of the coherent states is reflected to the monitored ports,
thus guaranteeing the sensitivity to the covariance of the holographic noise phase shift.

As a matter of fact, in real experiments we should also consider other effects which
may affect the ideal results obtained above. One of the main contributions which can
increase the uncertainty of the covariance measurement is a non-unit overall transmission-
detection efficiency η (see appendix E). In fig. 21 the ratio

R(0) =
U (0)

U (0)
CL

(63)

is shown as a function of η for the squeezed vacua and the twin beams (solid lines). We
can see that there exists a threshold on η (that depends on the other involved parameters)
above which the measurement involving the twin beams outperforms both the classical
strategy and the one based on uncorrelated squeezed vacua. In this region of high
efficiency we have a significant reduction of the uncertainty. Moreover, our analysis
proves that also below that threshold nonclassical squeezed light beats the performance
of classical coherent light. In the limit μ � 1 and λ � 1 (as considered in fig. 21), we find

R(0)
SQ =

U (0)
SQ

U (0)
CL

≈ 1 − 2η
√

λ (μ � 1, λ � 1),(64)
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whereas

R(0)
TWB =

U (0)
TWB

U (0)
CL

≈

√
2(1 − η)

η
(μ � 1, λ � 1),(65)

and an improvement with respect the classical case can be obtained for η > 2/3 ≈ 0.67.
On the other hand, if μ � λ � 1 we obtain

R(0)
SQ ≈ (1 − η) − η

4λ
(μ � λ � 1),(66)

and

R(0)
TWB ≈ 2

√
5(1 − η) (μ � λ � 1).(67)

Therefore, also in this case the approach based on twin beams outperforms the classical
one (for η > 0.776) and the uncertainty drop to zero as η → 1.

For the sake of completeness, in fig. 21 we also plot the uncertainty reduction nor-
malised to U (0)

CL as a function of η (dashed lines) considering the second-order uncertainties
and the radiation pressure contribution [73]. We recall that in the case of a single inter-
ferometer fed by squeezed light, the amplitude of the noise due to the radiation pressure
decreases as the squeezing parameter increases. In the present case we have an analogue
behaviour. If we consider reasonable values of the involved parameters, the radiation
pressure noise is completely negligible. We can see in fig. 21 that for the realistic param-
eters we have chosen we have just a very small correction. The reader can find further
details about this last point in ref. [65].

Remarkably, our results not only demonstrate that the use of quantum and entangled
states of light allows reaching much higher sensibility for the realisation of experiments to
test quantum gravity, but also put forward new opportunities for the design of innovative
interferometric schemes, as we will discuss in the next section.

8. – Squeezed and entangled light in correlated interferometry

The experimental requirements to implement the double-interferometer setup intro-
duced in the previous section are extremely challenging. In particular, one should control
the working regimes of the interferometers with a very high accuracy in order to obtain
the huge advantages given by twin beams. Moreover, the quantum efficiency η must be
greater than ≈ 0.99 (see fig. 21).

We have seen that to exploit the twin-beam properties to reduce the uncertainty in
the covariance measurement, we should choose a regime in which the interferometers act
like transparent media. We recall that if φk is the measured phase, the interferometer Ik

is equivalent to a beam splitter with transmissivity τk = cos2(φk/2) (the interferometer
transmission). The coherent amplitude which usually circulates in the interferometers is
so high that also a small reflection probability 1 − τk can send a really high number of
photons to the measured ports. For instance, if only coherent states with energy μ are
considered and, therefore, the input state is

|0〉a1 |0〉a2 |
√

μ〉b1 |
√

μ〉b2 ,(68)
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we have

〈Nk〉cohητk
= 〈δN2

k 〉cohητk
= ημ(1 − τk),(69a)

〈δN1δN2〉cohητ1τ2
≡ 0,(69b)

where Nk = c†kck, k = 1, 2, δO = O − 〈O〉, δO2 = O2 − 〈O〉2 and η is the quantum
efficiency of the detectors (see appendix E). We assume, for the sake of simplicity, that
they have the same quantum efficiency. On the other hand, when we send only the twin
beams to correlate the interferometer the four-mode input state is

|TWB〉〉a1,a2 |0〉b1 |0〉b2 ,(70)

and we find

〈Nk〉TWB
ητk

= ητkλ,(71a)

〈δN2
k 〉TWB

ητk
= ητkλ(1 + ητkλ),(71b)

〈δN1δN2〉TWB
ητ1τ2

= η2τ1τ2λ(1 + λ),(71c)

where we used the same parametrization as in sect. 6.
Following ref. [66], we introduce the noise reduction parameter

NRF± =
〈δ(N1 ± N2)2〉
〈N1 + N2〉

,(72)

that is the ratio between the variance of the sum or difference between the detected
photon numbers and the corresponding shot-noise limit. Since a value NRF− < 1 is a
signature of nonclassical correlations while NRF+ < 1 denotes anticorrelations of the
photon number beyond the classical limits, we can use NRF± as a figure of merit for the
correlations at the output ports.

When we consider as input state |TWB〉〉a1,a2 |
√

μ eiψ〉b1 |
√

μ eiψ〉b2 , by using
eqs. (10), (69) and (71) we can easily find

〈Nk〉 = 〈N〉TWB
ητk

+ 〈N〉cohητk
,(73a)

〈δN2
k 〉 = 〈δN2〉TWB

ητk
+ 〈δN2〉cohητk

+ 2〈N〉TWB
ητk

〈N〉cohητk
,(73b)

〈δN1δN2〉 = 〈δN1δN2〉TWB
ητ1τ2

− 2
√

〈δN1δN2〉TWB
ητ1τ2

〈N〉cohητ1
〈N〉cohητ2

cos(2ψ).(73c)

It is interesting to note that the covariance 〈δN1δN2〉 depends on the coherent fields phase
ψ: if we set ψ = π/2 the covariance is maximised whereas if ψ = 0, we can also have
a negative value for 〈δN1δN2〉, corresponding to an anticorrelation of photon numbers.
We can now write explicitly the expression of the noise reduction factor, namely (we set
for the sake of simplicity τ1 = τ2 = τ):

NRF± =(74)

1
2 〈δ(N1 ± N2)2〉TWB

ητ + 2〈N〉cohητ

[
1
2 + 〈N〉TWB

ητ ∓
√

〈δN1δN2〉TWB
ητ cos(2ψ)

]
〈N〉TWB

ητ + 〈N〉cohητ

.
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Fig. 22. – Top: plot of the maximised (i.e. ψ = π/2) NRF− as a function of the overall in-
terferometer transmission τ for different values of the twin-beam energy per beam λ and for
μ = 102 (left panel) and μ = 105 (right panel). We set η = 1. Centre: plot of the maximised
(i.e. ψ = 0) NRF+ as a function of the overall interferometer transmission τ for different values
of the twin-beam energy per beam λ and for μ = 102 (left panel) and μ = 105 (right panel).
We set η = 1. Bottom: plot of NRF± with the same parameters as in the other plots but with
η = 0.9. In all the panels the dotted line refers to NRF± in the limit λ � 1.

It is clear that the condition ψ = π/2 (optimising of the photon number correlation)
minimises NRF−, while ψ = 0 (optimising of the anticorrelation) minimises NRF+:
from now on we consider these optimising conditions when we refer to the NRF±. In
fig. 22 we plot the NRF± as a function of τ1 = τ2 = τ and different values of the other
parameters.

Since we are considering correlations, it is natural to identify two regimes. The first
one corresponds to the regime studied in sect. 6, in which κ ≡ μ (1 − τ) /τλ � 1,
corresponding to 〈N〉cohητ � 〈N〉TWB

ητ . In this case the intensity arriving at the detectors
is dominated by the twin beams and, as one may expect from the results of sect. 6,
NRF− drastically decreases whereas NRF+ grows (see fig. 22 for τ → 1). If we expand
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the noise reduction factor up to the first order in 1 − τ we have

NRF− ≈ 1 − η + η(1 − τ)

[
1 + 2μ +

μ(1 − 2
√

λ2 + λ)
λ

]
,(75)

and

NRF+ ≈ 1 + η(1 + 2λ) + η(τ − 1)

[
1 + 2λ +

μ(1 − 2
√

λ2 + λ)
λ

]
,(76)

respectively, and we used, as mentioned above, the corresponding optimising values of
ψ. In the limit λ � 1 we also have

NRF− ≈ 1 − ητ,(77a)
NRF+ ≈ 1 + ητ(1 + 2λ).(77b)

Overall, this regime allows obtaining a huge quantum enhancement in phase correlation
measurement by exploiting the twin-beam correlations also in the presence of a large
classical power circulating into the interferometer.

In the other regime we have μ(1− τ) � λτ and, thus, 〈N〉cohητ � 〈N〉TWB
ητ . Now (still

considering the corresponding optimizing values of ψ) we find

NRF± ≈ 1 − 2ητ
[√

λ(1 + λ) − λ
]

< 1,(78)

which, in the limit λ � 1 reduces to NRF± ≈ 1 − ητ (see the dotted lines in fig. 22).
Since NRF± < 1, the number of photons are always correlated or anticorrelated beyond
the classical limit. It is worth noting that this correlation can be also really bright, since,
in real experiments, 〈N〉cohητ = ημ(1 − τ) can be very large [66].

We now focus our attention of the effect of small deviations from the optimal working
regime φ0 = φ1,0 = φ2,0 = 0 on the ratio R(0) between the quantum and the classical
uncertainties of the covariance estimation introduced in the previous section (see fig. 21).
Since we are interested in having strong nonclassical correlations, we set ψ = π/2 and
consider the limit μ � 1. In fact, a quantum strategy is supposed to enhance the
sensitivity when high power is circulating in the interferometer. The results are plotted
in figs. 23 and 24 for both the twin beams and two independent squeezed vacua as inputs
(and, of course, the coherent states).

In the case of twin beams (left panels of figs. 23 and 24) we can in general identify two
regions: one for φ0 < 10−6 and the other for 10−5 < φ0 < 10−1. These regions depend
on the choice of the involved parameters and their relations.

If φ0 is very small, the interferometer transmissivities are high and, thus, we have
the regime 〈N〉cohητ � 〈N〉TWB

ητ in which twin-beam correlations are predominant. This is
the regime considered in the previous section and in ref. [65]. In the second region, for
10−5 < φ0 < 10−1, the transmissivity of the interferometers is such that the regime of
bright quantum correlation 〈N〉cohητ � 〈N〉TWB

ητ is reached: we find a flat R(0)
TWB.
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Fig. 23. – Log-log plot of the ratios R(0)
TWB (left) and R(0)

SQ (right) as functions of the central
phase φ0 measured by the interferometers and different values of the detection efficiency η. When
R(0) < 1 we have an advantage with respect to the classical case. We set λ = 10, μ = 3 × 1012

and ψ = π/2.

Fig. 24. – Log-log plot of the ratios R(0)
TWB (left) and R(0)

SQ (right) as functions of the central
phase φ0 measured by the interferometers and different values of the detection efficiency λ.
When R(0) < 1 we have an advantage with respect to the classical case. We set η = 0.95,
μ = 3 × 1012 and ψ = π/2.

When we consider two independent squeezed states instead of the twin beams (see
the right panels of figs. 23 and 24) we can write the following expansions for μ � 1 [66]:

R(0)
SQ ≈ 1 − η(1 + cos φ0)

2
+

η cos2(φ0/2)
4λ

if λ � 1,(79a)

R(0)
SQ ≈ 1 − η(1 + cos φ0)

√
λ(1 −

√
λ) if λ � 1,(79b)

that are both less than 1 and, thus, show the advantage of using quantum light. From
these expansions and from the right panel of figs. 23 and 24, we can see that the best
results are obtained for φ0 very close to 0. Moreover, if we consider the interval of phase
values 10−5 < φ0 < 10−1 in the limit μ � 1, we have R(0)

TWB ≈
√

2R(0)
SQ.

In the left panel of fig. 25 we plot the ratio R(0) for the twin beams (solid lines)
and the squeezed states (dashed lines) as functions of η and a particular choice of the
other involved parameters. There exists a threshold value ηth of the quantum efficiency
such that for η > ηth the strategy based on twin beams outperforms the one exploiting
independent squeezed states (see fig. 25, right panel).
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Fig. 25. – Left: plot of the ratio R(0)
TWB (solid lines) and R(0)

SQ (dashed lines) as a function of
the detection efficiency η for two different values of the average number of photons per single

mode λ of the twin beams and the squeezed sates. The grey dotted lines refer to R(0)
TWB in the

limits λ � 1 and λ � 1. Right: plot of the threshold value ηth as a function of λ: if η > ηth

then R(0)
TWB < R(0)

SQ (upper shaded region of the plot). The inset shows ηth as a function of λ
(we dropped the axes labels) for different values of φ0 (the dotted line is the same as the main
plot). In both the panels we set μ = 3 × 1012, ψ = π/2 and φ0 = 10−8.

Overall, we can conclude that quantum light injected into the free ports of interferom-
eters is a useful and practical resource to improve the measurement of phase-correlation
covariance. On the one hand, the results obtained for two interferometers confirm the
advantage of exploiting squeezed beams and highly excited coherent states at the inputs.
This is the analogue of the case of single interferometers considered in sect. 4. On the
other hand, the promising results concerning the twin beams show that there is room
for realistic applications of bipartite continuous-variable entanglement in interesting and
unexplored areas requiring high-precision correlation measurements, such as the test of
quantum gravity theories.

9. – Conclusion

In these pages we have presented some of the theoretical and experimental results
obtained by applying the tools of classical and quantum estimation theory to optical
systems. Firstly, we have investigated the role of single- and two-mode squeezing in
active and passive interferometers, finding the regimes in which quantum resources
can improve the sensitivity of the interferometer also in the presence of losses. Then
we have considered a quantum illumination protocol where two quantum correlated
beams are used to detect the presence of an object embedded in a very noisy and
predominant background. Also in this case the theoretical and experimental results
show that the use of quantum light outperforms schemes based on classical correlated
beams. Eventually, our research was focused on interferometric schemes involving two
interferometers. This kind of setup has been recently proposed to test the effects of
the noncommutativity of the position and momentum operators at the Planck scale
predicted by a quantum gravity theory, giving birth to the so-called holographic noise.
We have theoretically shown that coupling the two interferometers by means of two
continuous-variable entangled beams can improve the sensitivity to the holographic
noise or, more in general, to the correlation measurements.

The quest for advanced schemes to measure a phase shift with high accuracy, to
detect the presence of an evanescent object in a noisy environment or to unveil very
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faint and subtle phenomena that may confound with the background is indeed amazing
and always brings to new exiting results (also thanks to technological advances). The
research we reviewed in this paper shows that there is room for innovative, quantum-
enhanced schemes which can shed new light not only on well-known areas, but also on
still unexplored realms.
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Appendix A.

Beam splitter

The beam splitter is a common device we can find in any quantum optics experiment.
The Hamiltonian describing the beam splitter interaction can be written as H = ga†b +
g∗ab†, g being the coupling constant, and involves the two input bosonic field operators,
a and b, with commutation relations [a, a†] = I and [b, b†] = I, respectively, and [a, b] = 0.
For the sake of simplicity, we write the corresponding evolution operator as

UBS(ζ) = exp
(
ζ a†b − ζ∗ ab†

)
,(A.1)

where ζ = φ eiθ. To write the evolution operator in the form (A.1) we applied the
transformation a → −ia which physically corresponds to impose a π/2 phase shift to
the mode a, namely U†

ph(π/2) aUph(π/2) = −ia, where Uph(ϕ) = exp(−iϕ a†a) is the
phase-shift operator and, in general

U†
ph(ϕ) aUph(ϕ) = a e−iϕ.(A.2)

In order to calculate the Schrödinger evolution of two states through a beam splitter
by applying UBS(ζ), we note that the two-boson operators

J+ = a†b, J− = ab† and J3 =
1
2
[J+, J−] =

1
2
(a†a − b†b)(A.3)

are a realisation of the SU(2) algebra. Therefore, we can rewrite eq. (A.1) as follows:

UBS(ζ) = exp
[
eiθ tan φ a†b

] (
cos2 φ

)(a†a−b†b)/2
exp

[
−e−iθ tan φ ab†

]
,(A.4a)

= exp
[
−e−iθ tan φ ab†

] (
cos2 φ

)−(a†a−b†b)/2
exp

[
eiθ tan φ a†b

]
,(A.4b)
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Sometimes it is also useful to study the Heisenberg evolution of the input modes. In
this case we can use the identity:

eA B e−A = B + [A,B] +
1
2!

[A, [A,B]] +
1
3!

[A, [A, [A,B]]] + · · · ,(A.5)

which holds for two operators A and B. In the presence of the beam splitter, we obtain

U†
BS(ζ) aUBS(ζ) = a cos φ + b eiθ sinφ,(A.6a)

U†
BS(ζ) bUBS(ζ) = b cos φ − a e−iθ sin φ,(A.6b)

It is therefore clear that, due to the action of the beam splitter, each mode evolves into
a linear combination of the input modes and, for this reason, this kind of interaction
is also called two-mode mixing interaction. The quantity τ = cos2 φ is usually called
transmissivity of the beam splitter.

A mirror can be seen as a beam splitter with reflectivity equal to 1. Therefore, by
setting φ = π/2 and θ = 0, we find the following mode transformations:

U†
BS(π/2) aUBS(π/2) = b,(A.7a)

U†
BS(π/2) bUBS(π/2) = −a.(A.7b)

We note that the results described in this appendix depend on the phase-shift trans-
formation we initially applied to the mode a to write the beam splitter evolution operator
in the form (A.1).

Appendix B.

Coherent states

The coherent states are the closest approximation of the output state of a laser and
are the eigenvectors of the annihilation operator a, namely

a|α〉 = α|α〉, α ∈ C.(B.1)

Exploiting the completeness relation
∑

n |n〉〈n| = I and the normalisation condition
〈α|α〉 = 1, we can find the photon number expansion of a coherent state, which reads

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉,(B.2)

and the photon number distribution is

p(n) = |〈n|α〉|2 = e−|α|2 |α|2n

n!
,(B.3)

that is a Poisson distribution with average number of photons N = 〈a†a〉 = |α|2 and
variance var[N ] = 〈(a†a)2〉 − 〈a†a〉2 = |α|2.
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Coherent states can be obtained by applying the so-called displacement operator D(α)
to the vacuum state |0〉. The displacement operator is defined as

D(α) = exp
(
αa† − α∗a

)
.(B.4)

Given two operators A and B such that [A,B] ∈ C, we have

exp(A + B) = exp(A) exp(B) exp
{
−1

2
[A,B]

}
,(B.5a)

= exp(B) exp(A) exp
{

1
2
[A,B]

}
.(B.5b)

If we use eqs. (B.5) to evaluate D(α)|0〉 we have

D(α)|0〉 = e−|α|2/2 exp(αa†) exp(α∗a)|0〉︸ ︷︷ ︸
|0〉

,(B.6a)

= e−|α|2/2
∞∑

n=0

1
n!

(
αa†)n |0〉,(B.6b)

= e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉,(B.6c)

that is D(α)|0〉 = |α〉.
Other useful properties of the coherent states concern the expectation values of the

quadrature operator

Xθ = a e−iθ + a† eiθ.(B.7)

Given the coherent state |α〉, we have

〈Xθ〉 = 〈α|Xθ|α〉 = 2�e[α e−iθ],(B.8)

for the first moment and

var[Xθ] = 〈X2
θ 〉 − 〈Xθ〉2 = 1,(B.9)

for the variance which is independent of both the quadrature phase θ and the coherent
state amplitude α. It is interesting to note that var[Xθ] = 1 also for |α〉 = |0〉, that is in
the presence of the vacuum state: the value var[Xθ] = 1 is sometimes called the “vacuum
noise” or the “shot noise”(1).

Coherent states are minimum uncertainty states. In fact, in general we have

var[X] var[P ] ≥ 1,(B.10)

(1) It is worth noting that the actual value of var[Xθ] depends on the definition of the quadrature
Xθ. In general, if we define Xθ = σ0(a e−iθ+a† eiθ) we obtain, for a coherent state, var[Xθ] = σ2

0 .
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where X = X0 and P = Xπ/2. As a matter of fact, the inequality (B.10) reaches the
minimum for coherent states, since var[X] = var[P ] = 1. Nevertheless, there exists an-
other class of minimum uncertainty states, the squeezed states, which will be introduced
in the following.

Appendix C.

Single-mode squeezed states

A state is called “squeezed” if the value of a quadrature variance is less than the
vacuum state one (in the present case less than 1). The Hamiltonian associated with
single-mode squeezing has the form H = g(a†)2 + g∗a2 and the corresponding evolution
operator can be written as

S(ξ) = exp
[
1
2
ξ(a†)2 − 1

2
ξ∗a2

]
,(C.1)

where ξ = r eiψ. Upon introducing the operators

K̂+ =
1
2
(a†)2, K̂− =

1
2
a2, and K̂3 = −1

2
[K̂+, K̂−] =

1
2

(
a†a +

1
2

)
,(C.2)

we obtain a boson realisation of SU(1, 1) algebra. Therefore we have the following iden-
tity:

S(ξ) = exp
[

ν

2μ
(a†)2

]
μ−(a†a+ 1

2 ) exp
[
− ν∗

2μ
a2

]
,(C.3)

where μ = cosh r and ν = eiψ sinh r. It is straightforward to show that

S†(ξ) aS(ξ) = μa + νa†,(C.4)

and if we apply the squeezing operator to the vacuum state, we obtain the so-called
squeezed vacuum, namely

S(ξ)|0〉 = |0, ξ〉,(C.5a)

=
1
√

μ

∞∑
n=0

(
ν

2μ

)n √
(2n)!
n!

|2n〉.(C.5b)

It is easy to show that the squeezed vacuum has the following relevant properties:

〈N〉 = sinh2 r;(C.6a)

var[N ] = 2 sinh2 r(sinh2 r + 1);(C.6b)

〈Xθ〉 = 0, ∀θ;(C.6c)

var[Xθ] = e2r cos2(θ − ψ/2) + e−2r sin2(θ − ψ/2),(C.6d)
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where we set ξ = r eiψ. If we assume, without loss of generality, a real squeezing param-
eter, i.e. ξ = r ∈ R, we have

var[X] = e2r, var[P ] = e−2r ⇒ var[X] var[P ] = 1,(C.7)

that is the state |0, r〉 is a minimum uncertainty state where one of the quadratures, X,
has fluctuations larger than the vacuum one (for positive r) while for the other, P , the
fluctuations are lower. The reader can prove that also the displaced squeezed state

|α, ξ〉 = D(α)S(ξ)|0〉(C.8)

is still a minimum uncertainty state with quadrature variance given by eq. (C.6d) but with
〈Xθ〉 = 2�e[α e−iθ] �= 0 (note that 〈Xθ〉 does not depend on the squeezing parameter ξ
but only on the displacement amplitude α).

Appendix D.

Two-mode squeezed states

The Hamiltonian leading to two-mode squeezing is H = ga†b† +g∗ab, which is similar
to the single-mode squeezing one introduced in appendix C, but now it involves two
different modes of the radiation field. The evolution operator can be written as

S2(ξ) = exp
(
ξa†b† − ξ∗ab

)
,(D.1)

where ξ = r eiψ. We can obtain a realisation of SU(1, 1) algebra by introducing the
operators

K̂+ = a†b†, K̂− = ab, and K̂3 = −1
2
[K̂+, K̂−] =

1
2
(a†a + b†b + 1).(D.2)

Therefore, as in the case of single-mode squeezing, we have

S2(ξ) = exp
(

ν

μ
a†b†

)
μ−(a†a+b†b+1)/2 exp

(
−ν∗

μ
ab

)
,(D.3)

where μ = cosh r and ν = eiψ sinh r. Under the action of S2(ξ) the field operators a and
b transform as follows:

S†
2(ξ) aS2(ξ) = μa + νb† and S†

2(ξ) b S2(ξ) = μb + ν∗a†.(D.4)

In analogy to the squeezed vacuum state, if we apply the two-mode squeezing operator
to the vacuum state we obtain the two-mode squeezed vacuum, namely

S2(ξ)|0〉 =
1
√

μ

∞∑
n=0

(
ν

μ

)n

|n〉|n〉,(D.5)

or, if we introduce the parameter λ = eiψ tanh r

S2(ξ)|0〉 =
√

1 − |λ|2
∞∑

n=0

λn |n〉|n〉,(D.6)



HIGH-PRECISION INNOVATIVE SENSING WITH CONTINUOUS-VARIABLE OPTICAL STATES 379

which is also referred to as twin-beam state (TWB), since a measurement of the photon
number on the two beams always leads to the same result. Note that

|λ|2 =
N

N + 1
,(D.7)

where N = sinh2 |ξ| is the average number of photon per mode.
Remarkably, if we consider a single beam of a TWB, it is a thermal state with average

number of photons N and, thus, it is described by the density operator

�(N) =
1

1 + N

∞∑
n=0

(
N

1 + N

)n

|n〉〈n|.(D.8)

The states of the form given in eq. (D.8) are called thermal states because they have
the same analytical expression as the state describing a radiation of frequency ω at
equilibrium at temperature T . In this last case, the average number of photons is

Nth =
1

e�ω/(kBT ) − 1
,(D.9)

where kB is the Boltzmann constant. It is also interesting to note that, since the reduced
state of the TWB is a thermal state, it exhibits the maximum von Neumann entropy for
a fixed energy: being the TWB a pure state, this means that it is a maximally entangled
state.

Appendix E.

Bernoulli sampling from non-unit efficiency photodetection

A photon-number-resolving detector allows to directly measure the photon number
distribution

p(n) = 〈n|�|n〉(E.1)

of an input state � and it is described by the projectors |n〉〈n| onto the photon number
basis {|n〉}, with n ∈ N.

However, a realistic detector has a non-unit quantum efficiency η, that can be seen
as an overall loss of photons during the detection process. From the theoretical point
of view, a real photodetector can be modelled as a beam splitter with transmissivity η
followed by an ideal photon-number-resolving detector, as sketched in fig. 26. In this
scheme, before the detection the input state is mixed with the vacuum state at the beam
splitter and part of its photons is thus reflected and lost.

If we send a single-photon state |1〉 to the realistic detector, η corresponds to the
probability of detection. What happens when we send a Fock state |n〉, n > 1? Starting
from the model of fig. 26 and by using the results of appendix A, we can explicitly
calculate the evolution of the two-mode input state |n〉|0〉 just after the beam splitter,



380 STEFANO OLIVARES

Fig. 26. – A photon-number-resolving detector with quantum efficiency η can be represented
as an ideal photodetector and a beam splitter with transmissivity η in front of it. Note the
presence of the vacuum state |0〉.

described by the unitary operator UBS(η), namely

UBS(η)|n〉|0〉 =
1√
n!

(√
η a† −

√
1 − η b†

)n

|0〉,(E.2a)

=
1√
n!

n∑
k=0

(
n

k

)
(−1)k

√
ηn−k(1 − η)k (a†)n−k(b†)k|0〉,(E.2b)

=
n∑

k=0

(−1)k

√(
l

k

)
ηn−k(1 − η)k |l − k〉|k〉,(E.2c)

=
n∑

m=0

(−1)h−m

√(
n

m

)
ηm(1 − η)n−m |m〉|n − m〉,(E.2d)

where we assumed that the states |n〉 and |0〉 refer to the modes described by the bosonic
filed operators a and b, respectively. Therefore, the probability P (m; η) to detect m
photons, m ≤ n, is given by

P (m; η) =
(

n

m

)
ηm(1 − η)n−m.(E.3)

Of course, if η → 1 we have P (m; η) → p(m) = δn,m.
It is now clear that if we know the actual photon number statistics p(n) of the state

�, then the detected photon number statistics is

P (m; η) =
∞∑

n=0

(
n

m

)
ηm(1 − η)n−mp(n),(E.4a)

=
∞∑

n=0

(
n

m

)
ηm(1 − η)n−m〈n|�|n〉.(E.4b)

Exploiting this simple model based on the beam splitter, it is also straightforward to
find the evolution of a quantum state � through a dissipative channel: in this case the
quantum efficiency should be replaced by the overall loss parameter.
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