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Abstract: Multiple photon subtraction applied to a dis-
placed phase-averaged coherent state, which is a non-
Gaussian classical state, produces conditional states
with a non trivial (positive) Glauber-Sudarshan P-
representation. We theoretically and experimentally
demonstrate that, despite its simplicity, this class of condi-
tional states cannot be fully characterized by direct detec-
tionof photonnumbers. In particular, thenon-Gaussianity
of the state is a characteristics that must be assessed by
phase-sensitive measurements. We also show that the
non-Gaussianity of conditional states can be manipulated
by choosing suitable conditioning values and composition
of phase-averaged states.
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1 Introduction
In the last years we have witnessed an impressive step
forward in the implementation of quantum information
technologies, ranging from quantum communication to
quantum computation. One of the main requirements to
achieve this goal and pass from theoretical predictions
to experimental realizations is the characterization of the
quantum states and the operations involved in the proto-
cols. Many e�orts have been devoted to the introduction of
new parameters aimed at characterizing the states: one of
these is the non-Gaussianity.

While a Gaussian state is by de�nition described by a
Gaussian Wigner function [1], we can identify two classes
of non-Gaussian states: quantumnon-Gaussian states (e.g.

the photon-number states or the cat-like states) and states
belonging to the Gaussian convex-hull, which can be ex-
pressed as convex combinations of Gaussian ones. In the
case of pure states, the border between Gaussian and non-
Gaussian states coincides with that between states with
positive and negative Wigner functions, respectively [2, 3].
On the other hand, if we consider mixed states with pos-
itive Wigner function, then it is possible to de�ne an ad-
ditional border between the two classes: very recently
some new criteria have been proposed to detect quantum
non-Gaussian states with positive Wigner function [4–6],
which have been also experimentally veri�ed [7].

Here we focus on a particular set of states which
belong to the Gaussian convex hull and we show how
non-Gaussianity can be successfully used to characterize
states which turn out to be experimentally indistinguish-
able from each other when setups based only on photon-
number resolving (PNR) detectors and direct detection
schemes are employed. Among the conditional measure-
ments, photon subtraction (PS), both single and multiple,
is an e�ective method to enhance quantum features of op-
tical �eld states [8]. The process, which is in general im-
plemented bymixing at a beam splitter (BS) an input state
with the vacuum, is obtained by performing PNRmeasure-
ments at one output and selecting the other output only if
a certain condition on the number of detected photons is
satis�ed. When PS is applied to nonclassical �elds, it can
lead to the generation of highly nonclassical states [9, 10],
such as squeezed Fock states [11, 12] and cat-like states
[13, 14]. Furthermore, PS can be used in the continuos vari-
able regime to enhance teleportation �delity [15–17] and
non-locality [18–21].

As a matter of fact, PS is in general a non-Gaussian
operation: when applied to Gaussian states [22], namely
states described by a Gaussian characteristic function, it
generates conditional non-Gaussian states, whose charac-
teristic functions are no longer Gaussian [23, 24]. Based on
this result, one would expect that applying PS to native
non-Gaussian states would increase the amount of non-
Gaussianity. This intuition is not always true and the e�ect
of the PS operation is in general non-obvious.
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In this paper we investigate, both theoretically and ex-
perimentally, the e�ect of PS on a particular class of clas-
sical states, the displaced phase-averaged coherent states,
which are obtained by �rst averaging the phase of a coher-
ent state and then displacing it [25, 26]. These states are
indeed useful candidates for our study, since they can be
accurately generated,manipulated and characterized [27].

The paper is structured as follows: in Sec. 2 we sum-
marize the statistical properties of phase-averaged coher-
ent states, displaced or not, whereas in Sec. 3 we describe
the conditioning operations on these states by empha-
sizing the main features of the conditional states. Sec-
tion 4 presents the experimental setup used to gener-
ate such states. The experimental reconstruction of the
detected-photon distributions of conditional states is ad-
dressed in Sec. 5, where we also discuss the symmetry
properties. Section 6 is devoted to the investigation of non-
Gaussianity in dependence on the di�erent parameters
characterizing our conditional states. Further discussions
and concluding remarks are drawn in Sec. 7.

2 Phase-averaged coherent states
A phase-averaged coherent (PHAV) state, the main ingre-
dient of our investigation, is obtained fromacoherent state

|β〉 = exp
(
− |β|

2

2

) ∞∑
k=0

βk√
k!
|k〉, (1)

with β = |β|eiϕ ∈ Cby averaging over the phaseϕ. A PHAV
state with amplitude β is described by a positive Glauber-
Sudarshan P-representation [28, 29]

ϱPHAV(β) =
∫
C

d2z P(z; β) |z〉〈z|, (2)

where
P(z; β) = 1

2π|β| δ (|z| − |β|) (3)

and {|z〉} is the basis of coherent states. We can also ex-
pand the PHAV state on the photon-number basis, namely

ϱPHAV(β) =
π∫

−π

dϕ
2π |β〉〈β| =

∞∑
k=0

Pk (〈n〉) |k〉〈k|, (4)

where
Pk(〈n〉) = e−〈n〉〈n〉k/k! (5)

is the Poisson distribution, with mean value 〈n〉 = |β|2.
The latter representation is particularly useful to under-
stand why a PHAV state alone is not suitable to produce
conditional states by means of PS. In order to be an actual

conditioning operation, PS requires the existence of inten-
sity correlations between the two involved beams. In the
case of classical states mixed with the vacuum at a BS, the
amount of intensity correlations at the output is a function
of the �rst two moments of the photon-number statistics
[30]. In particular, for a balanced BS we can write

C = σ
2
n − 〈n〉
σ2n + 〈n〉

(6)

〈n〉 being the average number of photons of the state and
σ2n the corresponding variance. In the presence of a Pois-
son photon-number distribution, as in the case of a coher-
ent or a PHAV state, we have σ2n = 〈n〉 and no intensity cor-
relations are observed between the two outputs, i.e. C = 0.
For this reason, the transmitted beam is una�ected by the
operation performed on the re�ected one and viceversa.

On the other hand, if a displacement operation is
applied to a PHAV state, the resulting state, namely the
displaced PHAV (DPHAV) state, gives rise to two classi-
cally correlated beams when it is divided at a BS [31]. In
fact, its non-trivial photon-number distribution is super-
Poissonian [29].

If we start from the PHAV state given in Eq. (4), the
DPHAV state can be written as

ϱDPHAV(α, β) = D(α)ϱPHAV(β)D†(α),

=
∫
C

d2z P(z − α; β) |z〉〈z|,

=
π∫

−π

dϕ
2π |α + |β| e

iϕ〉〈α + |β| eiϕ|, (7)

where D(α) = exp(αa† − α*a) is the displacement opera-
tor, a and a† are the annihilation and creation operators,
respectively, [a, a†] = I, and

P(z − α; β) = 1
2π|β| δ (|z − α| − |β|) . (8)

It is worth noting that the Wigner function of a DPHAV
state is still non-Gaussian, like in the case of PHAV states
[27, 32], but the state is phase-sensitive as it exhibits a non-
diagonal density matrix in the photon-number basis.

The photon-number distribution of DPHAV states can
bewritten as (without loss of generalitywe can take α ∈ R,
α ≥ 0):

Pk,DPHAV (〈n〉) = Ake−A
n!

k∑
h=0

(
k
h

)
(−1)h
2π

(
B
A

)h
× 1F2

[{ 1
2 +

1
2h
}
,
{ 1
2 +

1
2h
}
, 12 +

1
4B

2
]

×
Γ
( 1
2 +

1
2h
)
Γ
( 1
2
)

Γ
(
1 + 1

2h
) , (9)
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where A = α2+ |β|2, B = 2α|β| and 1F2(a, b, z) is the gener-
alized hypergeometric function. The distribution in Eq. (9)
has mean 〈n〉 = α + |β|2 and variance σ(2)n = 〈n〉 (K〈n〉 + 1),
withK ≡ 2α2|β|2/(α2 + |β|2)2.

3 Conditioning by PNR detectors
The bipartite state ϱ(out)(α, β) we obtained by mixing the
ϱDPHAV(α, β) state with the vacuum state ϱ0 = |0〉〈0| at a
50:50 BS can be written as (without loss of generality we
can take α ∈ R, α ≥ 0)

ϱ(out)(α, β) = UBSϱDPHAV(α, β)⊗ ϱ0U†BS

=
∫
C

d2z P(z − α; β) |z/
√
2〉〈z/

√
2|

⊗ | − z/
√
2〉〈−z/

√
2|,

=
π∫

−π

dϕ
2π |α̃ + β̃ e

iϕ〉〈α̃ + β̃ eiϕ|

⊗ | − (α̃ + β̃ eiϕ)〉〈−(α̃ + β̃ eiϕ)|, (10)

where UBS is the unitary operator describing the action of
the BS, α̃ = α/

√
2 and β̃ = |β|/

√
2.

As we perform PNR measurement on the re-
�ected beam, which has a natural expansion in the
photon-number basis, from now on we focus on the
photon-number expansion of the states, whereas the
P-representation can be directly obtained from our re-
sults. In particular, it is worth noting that although the P-
representation of the conditional statesmaybenon-trivial,
it is always positive, underlining the classical nature of the
states [28]. The expansion in the photon-number basis of
the PNR measurement we are considering here is

Π(k1, k2) =
k2∑
h=k1

|h〉〈h|, (11)

with 0 ≤ k1 ≤ k2. If k1 = k2 = k, we have Π(k, k) = |k〉〈k|
and the measurement subtracts k photons from the input
state. Indeed, if k1 = ̸ k2 we can generate a large family of
conditional states. Therefore, the single-mode conditional
state writes (for the sake of simplicity in the following we
drop the explicit dependence on the amplitude α̃ and β̃)

ϱ(k1, k2) =
1
N

π∫
−π

dϕ
2π |α̃ + β̃ e

iϕ〉〈α̃ + β̃ eiϕ|

× 〈−(α̃ + β̃ eiϕ)|Π(k1, k2)| − (α̃ + β̃ eiϕ)〉, (12)

where we introduced the normalization factor

N = N(k1, k2)

=
π∫

−π

dϕ
2π 〈−(α̃ + β̃ e

iϕ)|Π(k1, k2)| − (α̃ + β̃ eiϕ)〉

=
k2∑
h=k1

π∫
−π

dϕ
2π Ph

(
α̃2 + β̃2 + 2α̃β̃ cosϕ

)
, (13)

in which Ph is the Poisson distribution de�ned in Eq. (5).
Equation (12) can be also written as

ϱ(k1, k2) =
π∫

−π

dϕ p(ϕ; k1, k2) |α̃ + β̃ eiϕ〉〈α̃ + β̃ eiϕ| (14)

where p(ϕ; k1, k2) is the probability distribution of the
variable ϕ given k1 and k2 (and, of course, α and β)

p(ϕ; k1, k2) = p(ϕ; α̃, β̃; k1, k2)

= 〈−(α̃ + β̃ e
iϕ)|Π(k1, k2)| − (α̃ + β̃ eiϕ)〉

2πN ,

=

∑k2
h=k1 Ph

(
α̃2 + β̃2 + 2α̃β̃ cosϕ

)
2πN . (15)

From Eq. (14) it follows that we can engineer di�erent
kinds of statistical mixtures of coherent states by suitably
selecting the values of k1 and k2. In Fig. 1 we plot the
probability distribution p(ϕ; k1, k2) and the correspond-
ing Wigner function of the conditional state for di�erent
choices of k1 and k2 in the case of a DPHAV state with
α =
√
7 and β =

√
6.

In particular, we can identify two relevant cases:
– k1 = 0 and k2 → ∞: we have the identity operator

Π(0,∞) = 1 and p(ϕ; 0,∞) = (2π)−1, and we obtain
a DPHAV state with half the energy with respect to the
input onedue to the presence of the 50:50BS [see Fig. 1
(a)].

– k1 = k2 = k: now we obtain Π(k, k) = |k〉〈k|, i.e.,
the projector onto the photon-number state |k〉, and
we �nd

p(ϕ; k, k) = exp[−(α̃2 + β̃2 + 2α̃β̃ cosϕ)]
2πN

× (α̃
2 + β̃2 + 2α̃β̃ cosϕ)k

k! . (16)

In general for k < (α̃ + β̃)2 the probability p(ϕ; k, k),
which is indeed a non-Gaussian distribution, is dou-
ble peaked in the interval [−π, π] [see Fig. 1 (c)] and
the two maxima occur at the phase values

ϕ(max)
± = ± arccos

[
1 − (α̃ + β̃)2 − k

2α̃β̃

]
. (17)
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Fig. 1. (Color online) Plots of p(ϕ; k1 , k2) for di�erent values of k1 and k2 and of the corresponding Wigner function of the conditional state
obtained starting from a DPHAV state. We set α =

√
7 and β =

√
6. The dashed line in the plot (d) is the Gaussian approximation in Eq. (18)

of the probability distribution p(ϕ; k1 , k2) for k1 = k2 � |α + β|2/2 ≈ 12.98, which can be seen as a phase-di�usion process.

For k ≥ (α̃ + β̃)2 we have only one peak at ϕ(max) = 0
and, in particular, for k � (α̃ + β̃)2, the probability
distribution reduces to the normal distribution

p(ϕ; k, k) ≈ 1√
2π∆2

exp
(
− ϕ

2

2∆2

)
, (18)

with (remember that we have α̃, β̃ ≥ 0)

∆2 = (α̃ + β̃)2

2α̃β̃
[
k − (α̃ + β̃)2

] , (19)

as shown in Fig. 1 (d). This last case is formally anal-
ogous to that of a coherent state undergoing a phase-
di�usion process [33].

One of the properties of the states ϱ(k1, k2) written in
Eq. (14), for �xed displacement amplitude α̃ and PHAV
state amplitude β̃, is the symmetry of their photon distri-
butions with respect to the exchange α̃↔ β̃, namely

pn(α̃, β̃; k1, k2) = pn(β̃, α̃; k1, k2)
= 〈n|ϱ(k1, k2)|n〉 ≡ pn(k1, k2). (20)

This feature makes it impossible to distinguish the dis-
placement amplitude from the PHAV state one bymeans of
a direct detection scheme, that is a scheme involving only
PNR detectors.

On the contrary, the non-Gaussianity of ϱ(k1, k2)
strongly depends on the value of the PHAV state ampli-
tude β̃ and becomes di�erent by exchanging α̃ ↔ β̃.
There are di�erent ways to assess the non-Gaussianity of

a state ϱ. Here we consider the relative entropy of non-
Gaussianity [34]. Given a generic state ϱ, this quantity is
de�ned as the di�erence between the von Neumann en-
tropy S(σ) = −Tr[σ ln σ] of a reference Gaussian state σ and
that of the state ϱ under investigation, namely

δ(ϱ) = S(σ) − S(ϱ). (21)

The reference state σ is a Gaussian state chosen to have the
samemean value and covariancematrix as the state ϱ [34],
namely

〈xθ〉ϱ = 〈xθ〉σ ∀θ (22)
∆2ϱ(x) = ∆2σ(x), ∆2ϱ(y) = ∆2σ(y) (23)

〈[x, y]+〉ϱ − 2〈x〉ϱ〈y〉ϱ = 〈[x, y]+〉σ − 2〈x〉σ〈y〉σ , (24)

in which ∆2A(X) = 〈(X − 〈X〉A)2〉A, 〈· · · 〉A = Tr[· · · A],
[x, y]+ = xy + yx and

xθ =
a† eiθ + a e−iθ√

2
, (25)

is the quadrature operator with x ≡ x0 and y ≡ xπ/2. In
the case of the states ϱ = ϱ(k1, k2) we have

∆2ϱ(x) =
1
2 + 2b2

π∫
−π

dϕ p(ϕ; k1, k2) cos2 ϕ

− 2b2
 π∫
−π

dϕ p(ϕ; k1, k2) cosϕ

2 , (26)

∆2ϱ(y) =
1
2 + 2b2

π∫
−π

dϕ p(ϕ; k1, k2) sin2 ϕ, (27)
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and 〈[x, y]+〉ϱ − 2〈x〉ϱ〈y〉ϱ = 0. As one may expect from
the classicality of the states and from the choice of the pa-
rameters, we have ∆2ϱ(y) ≥ ∆2ϱ(x) ≥ 1/2, which means that
both the quadrature variances cannot be below the shot
noise. Indeed, the behavior of p(ϕ; k1, k2) leads to statisti-
calmixtures of coherent stateswith anon-Gaussianity that
strongly depends on the particular choice of k1 and k2.

4 Experimental setup
The experimental setup we used to produce DPHAV states
is shown in Fig. 2. The DPHAV state is obtained by sending

Nd:YLF 
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F HWP 

HPD2 

HPD1 Pz 
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ti
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Fig. 2. (Color online) Experimental setup. Fj: variable neutral density
�lter; BS: 50:50 beam splitter; Pz: piezoelectric movement; HWP:
half-wave plate; PBS: polarizing cube beam-splitter; HPD: hybrid
photodetectors.

the second-harmonic pulses (∼5.4 ps, 523 nm) of a Nd:YLF
mode-locked laser ampli�ed at 500 Hz (High Q Laser Pro-
duction) into aMichelson interferometer (see dotted box in
Fig. 2). The mirror located in the re�ected arm of the inter-
ferometer ismounted on a piezoelectricmovement, whose
displacement is operated at a frequency of 100Hz and cov-
ers a 12 µm span in order to produce the PHAV state. The
beam in the transmitted arm is kept coherent and re�ected
back to superimpose to the PHAV state: at the output of
the beam splitter we have a DPHAV state. Variable neutral-
density �lters are inserted to adjust the values of the PHAV
state and of the displacement independently. The DPHAV
state is then sent to a second beam splitter whose outputs
are collected by two multimode �bers and delivered to a
pair of hybrid photodetectors (HPD, model R10467U-40,
maximumquantume�ciency∼ 0.5 at 500 nm), which act
as PNR detectors. According to the strategy extensively de-
scribed in Refs. [35], the experimental data, given in terms
of output voltages, are processed in a self-consistent way,
without any a-priori calibration of the detection chain and

any background subtraction, and converted in numbers of
detected photons. In this way we are able to reconstruct
the statistics of detected photons and to calculate shot-by-
shot detected-photon correlations.

Due to the non unit quantum e�ciency η of the PNR
detectors, there is a di�erence between the incident num-
ber of photons and the number of detected photons. In this
last case, the projector on the photon-number basis, i.e.,
|k〉〈k| should be replaced as follows [36]

|k〉〈k| → Θk(η) =
∞∑
s=k

(
s
k

)
ηs(1 − η)s−k |s〉〈s|. (28)

We remark that all these results have been obtained in
terms of photons, but actually they are also valid for
detected photons because we are considering classical
states, which are invariant under Bernoullian detection.
Thus the statistical properties do not change and the ef-
fects of the substitution in Eq. (28) are just a rescaling of
the amplitudes, i.e., |α|2 → η|α|2 and |β|2 → η|β|2.

From now on, we will refer to the detected number
of photons m, if necessary with suitable subscripts. We

Fig. 3. (Color online) Second-order correlation coe�cient as a func-
tion of the overall mean number of detected photons at the outputs
of the beam splitter. Dots: experimental data; line: theoretical ex-
pectation evaluated in the experimental parameters.

start our analysis by investigating thedetected-photon cor-
relations between the two beams produced by splitting a
DPHAV state at a 50:50 BS. The correlation coe�cient be-
tween the outputs of the BS depends only on the input am-
plitudes α2 and |β|2. According toEq. (6) inwhichwe insert
mean values and variance of the PHAV state, we have

C ≡ C(α2, |β|2) = α2 |β|2

α2 + |β|2 + α2 |β|2
. (29)
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Note that C(α2, |β|2) = C(|β|2, α2): as we mentioned in
the previous Section, direct detection leads to quantities
which are symmetric with respect to the PHAV state and
displacement amplitudes. Figure 3 shows the experimen-
tal behavior of the correlation coe�cient together with the
theoretical expectation obtained by using the experimen-
tal parameters, determined in a self-consistent way as de-
scribed in [37], in Eq. (29). As anticipated in the Introduc-
tion, the existence of correlations between the two emerg-
ing beams makes the conditional PS process possible.

5 Conditional states
The conditional states ϱ(k1, k2) are obtained by condition-
ing a DPHAV state ϱDPHAV(α, β) divided at a 50:50 BS ac-
cording to the projector de�ned in Eq. (11) and the sub-
stitution in Eq. (28). First of all, we measure the photon-
number statistics of the conditional states pm(k1, k2). In

Fig. 4. (Color online) Detected-photon distributions of the condi-
tional states obtained from a DPHAV state having α2 = 6.17 and
|β|2 = 7.13 for the condition “= m1”. Symbols: experimental
data; lines: theoretical expectations. The unconditional state is also
shown in black.

Fig. 4 we show the experimental photon-number distribu-
tions of the conditional states (dots) obtained by selecting
a precise value of k1 = k2 = m1 (condition “= m1”). The
theoretical expectations of Eq. (20) (written in terms of de-
tected photons) are superimposed to the data. Similar re-
sults can be obtained for the other conditions. The good
quality of our data is certi�ed by the high values of the �-
delity evaluated as f =

∑
m

√
pexpm pthm .

In order to experimentally verify the symmetry ex-
hibited by the photon-number distributions in Eq. (20),

we consider two input DPHAV states with the displace-
ment and PHAV state amplitudes exchanged, namely
ϱDPHAV(α, β) and ϱDPHAV(β, α). The results are shown in Fig. 5,

Fig. 5. (Color online) Detected-photon distributions of the con-
ditional states obtained for the condition “= m1”. Full symbols:
α2 = 3 and |β|2 = 7.13; empty symbols: α2 = 7.13 and |β|2 = 3. The
two sets of histograms are indistinguishable.

where we plot the experimental distributions obtained by
imposing the condition k1 = k2 = m1: as expected, the
two situations are indistinguishable. Similar results are
obtained also for other choices of k1 and k2, con�rming
our calculations. Finally, in Fig. 6 we show the mean val-

Fig. 6. (Color online) Mean values of conditional states as a function
of the conditioning value obtained for the same parameters as in
Fig. 4. Symbols: experimental data; lines: theoretical expectations.
The mean value of the initial state is displayed as dashed line. The
error bars are smaller than the symbol size.

ues of the conditional states as a function of the condition-
ing value.
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6 Non-Gaussianity
To quantify the resources of an optical state to be used in
quantum information protocols, we can exploit the fact
that in general a state is characterized by several param-
eters. The case of the DPHAV state is interesting because
it can be described by its mean number of photons, the
ratio between PHAV state and displacement in the origi-
nal DPHAV state and the value of non-Gaussianity, which
depends also on the conditioning value. We can oper-
ate on all these parameters independently: the amount of
non-Gaussianity depends on PHAV state, while the overall
mean value of the state is also in�uenced by the displace-
ment.

As we observed in Sec. 3, the non-Gaussianity of a
DPHAVstate andof its conditional counterparts strictly de-
pends on the amplitude of the original PHAV state, that is
the source of non-Gaussianity.

The amount of non-Gaussianity of the DPHAV state in
Eq. (7) is equal to that of the original PHAV state in Eq. (4),
being the displacement operation a Gaussian operation.
As the PHAV state has a diagonal density matrix, the re-
sulting expression of δ is particularly simple and only de-
pends on its average number of photons 〈n〉 = |β|2 [29]

δ(ϱDPHAV) = δ(ϱPHAV)

=
∞∑
k=0

{
− 〈n〉k
(〈n〉 + 1)k+1 ln

[
〈n〉k

(〈n〉 + 1)k+1

]
+ Pk(〈n〉) lnPk(〈n〉)

}
. (30)

It is worth pointing out that even in the case of diagonal
states, we are not able to directly measure δ, since Eq. (30)
involves the distribution of the incident number of pho-
tons, whereas we have experimentally access only to de-
tected photons. Nevertheless, we can de�ne a lower bound
ε for the non-Gaussianity, ε(ϱ) < δ(ϱ), which is formally
equal to Eq. (30) but is based on the detected-photons
statistics [38].

First of all we demonstrate that a Gaussian opera-
tion, that is the displacement, does not modify the non-
Gaussianity of a PHAV state. Therefore, we calculate the
density matrix of the DPHAV state from prime principles
and compare the values of the calculated ε with those ob-
tained by measuring the PHAV state statistics. In Fig. 7 we
plot the non-Gaussianity of a DPHAV state with α2 = |β|2

as calculated from the experimental statistics of detected
photons for di�erent values of the total energy (symbols).
In the same �gure we show the theoretical values of the
PHAV state obtained from Eq. (30) (line).

Fig. 7. (Color online) Non-Gaussianity measure for DPHAV states
with α2 = |β|2 as a function of their mean number of detected
photons < m1 + m2 >=< m >= α2 + |β|2 in the state (symbols) along
with theoretical values calculated according to Eq. (30) (line).

As a further investigation of the contribution of the
di�erent experimental parameters to the amount of non-
Gaussianity of the conditional states we study the lower
bound ε as a function of the conditioning value for a �xed
choice of the mean number of detected photons in the ini-
tial DPHAV state. In Fig. 8 we plot ε[ϱ(k1, k2)] as a func-
tion of the conditioning value m1 for four di�erent crite-
ria (or rules) adopted to generate the conditional states:
“= m1”, “= ̸ m1”, “> m1” and “≤ m1”. The results show
that the values of ε depend on the conditioning operation
and that, against intuition, the e�ect of non-Gaussian op-
erations applied to a non-Gaussian state can determine ei-
ther larger or smaller values of non-Gaussianity.

Fig. 8. (Color online) Values of the non-Gaussianity amount of the
conditional states as a function of the conditioning value, gener-
ated according to di�erent rules: “= m1” (black dots), “= ̸ m1” (red
dots), “> m1” (green dots) and “≤ m1” (blue dots). The data for the
�rst conditions correspond to the histogram in Fig. 4.

Brought to you by | St. Johns University
Authenticated | 159.149.103.6

Download Date | 3/14/14 9:14 AM



8 | Stefano Olivares, Alessia Allevi, and Maria Bondani

First of all, we observe that the condition “= m1” pro-
duces conditional states having themaximum variation of
ε with respect to the initial values of non-Gaussianity (see
horizontal line in Fig. 8). In particular, the operation cor-
responding to the selection rule “m1 = 0” produces a state
with ε → 0, that is a quasi-Gaussian state, even starting
from a non-Gaussian initial PHAV state. This is due to the
fact that selecting according to “m1 = 0” is the only Gaus-
sian operation among the conditional ones.

The second evident feature in Fig. 8 is the maximum
in ε for the condition “= m1” at a given value of m1. Such
behavior can be understood by considering the analytical
expression of the conditional state given inEq. (14). In fact,
ifm1 is less than the energy of the input state, p(ϕ; k1, k2)
exhibits two peaks, thus containing a larger amount of
non-Gaussianity with respect to that of the unconditioned
PHAV state. As m1 increases and becomes larger than the
energy of the input state, the non-Gaussianity decreases
and approaches zero: in this case p(ϕ; k1, k2) becomes
the normal distribution. Nevertheless, it is worth noting
that the conditional state obtained even for m1 � 1 is
still non-Gaussian. The experimental behavior of the non-
Gaussianity presented in Fig. 8 for the other conditioning
choices can be explained in similar ways.

Fig. 9. (Color online) Values of the non-Gaussianity amount of the
conditional states as a function of the conditioning value, gener-
ated according to di�erent rules: “= m1” (black), “= ̸ m1” (red),
“> m1” (green) and “≤ m1” (blue). Full symbols: α2 = 3 and
|β|2 = 7.13; empty symbols: α2 = 7.13 and |β|2 = 3.

In this context, it is also interesting to address the
issue of the symmetry exhibited by the photon statistics
Pk,DPHAV (〈n〉) [see Eq. (9)] and by the photon-number dis-
tribution of the conditional states. In Fig. 9 we plot the
values of the lower bound ε for two symmetric situations
α2 = 3 and |β|2 = 7.13 and viceversa. The behavior of the

data is very similar for all the considered selection rules,
but the absolute values are di�erent. This con�rms that the
absolute value of the non-Gaussianity of the conditional
states depends on the amount of displacement while the
optimal choice of the conditioning value m1 depends on
the initial PHAV state.

The same conclusion can be reached from the insight
of Fig. 10, where we explore the e�ect on the amount of
non-Gaussianity of changing the values of the displace-
ment amplitude α by keeping the amplitude of PHAV state
�xed. For the selection rule “= m1”, themaximumamount
of non-Gaussianity is achieved for amean value of the con-
ditional state that depends on the overall energy in the
original PHAV state. We note that, by virtue of Fig. 6, the
meanvalue of conditional statemonotonically depends on
the conditioning valuem1. We also note that the same val-
ues of non-Gaussianity can be obtained for di�erent mean
values. This suggests that we can independently tailor the
value of non-Gaussianity and the mean value of the gen-
erated state by simply acting on the initial DPHAV state or
by changing the conditioning operation and/or choosing
a proper conditioning value.

Fig. 10. (Color online) Values of the non-Gaussianity amount of the
conditional states as a function of their mean value, generated
according to di�erent rules (“= m1” (black), “= ̸ m1” (red), “> m1”
(green) and “≤ m1” (blue)) for di�erent values of the displacement
α2 = 0.1, 1, 2, 3|β|2, at �xed |β|2 = 7.13.

7 Discussion and Conclusions
The good quality of the experimental results is mainly
based on the exploitation of hybrid photodetectors, which
are detectors endowed with a good photon-number re-
solving capability able to operate in rather high intensity
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regimes. In a very recent experiment [9] the performance
of the same detectors and setup used in the present anal-
ysis has been exploited in a more sophisticated experi-
ment involving nonclassical states. In more detail, condi-
tional states with sub-Poissonian statistics were obtained
by operating multiple photon subtractions on a two-mode
squeezed vacuum state and their dependence on di�erent
experimental parameters was investigated. These results
shows that hybrid photodetectors can be potentially use-
ful also for the preparation of highly nonclassical states by
multiple photon subtraction.

In conclusion, we have presented the characteriza-
tion of classical non-Gaussian states obtained by operat-
ingmultiple photon subtractions onDPHAV states divided
at a beam splitter. For what concerns the classical con-
ditional states discussed in the present paper, we have
shown that the interesting parameters, that is their mean
values and amount of non-Gaussianity, can be modi�ed
by choosing the initial mean value of the PHAV state and
that of the displacement composing the DPHAV state and
by properly selecting the conditioning value and the con-
ditioning operation. We demonstrated that all the prop-
erties that can be accounted by direct detection are in-
variant upon exchange of the role of displacement and
phase-averaged component of the DPHAV state. Neverthe-
less, the states are di�erent because they are characterized
by di�erent amounts of non-Gaussianity, but this feature
is somehow hidden in the internal structure of the state
and cannot be revealed by direct detectionmeasurements.
To have access to the quanti�cation of non-Gaussianity we
thus need to perform phase-sensitive measurements able
to reconstruct the Wigner function of the states or at least
to recognize the coherent contribution in the state given by
the displacement.
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