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Abstract

We address phase-shift estimation by means of squeezed vacuum probe and homodyne
detection. We analyse Bayesian estimator, which is known to asymptotically saturate the
classical Cramér–Rao bound to the variance, and discuss convergence looking at the
a posteriori distribution as the number of measurements increases. We also suggest two
feasible adaptive methods, acting on the squeezing parameter and/or the homodyne local
oscillator phase, which allow us to optimize homodyne detection and approach the ultimate
bound to precision imposed by the quantum Cramér–Rao theorem. The performances of our
two-step methods are investigated by means of Monte Carlo simulated experiments with a
small number of homodyne data, thus giving a quantitative meaning to the notion of
asymptotic optimality.

1. Introduction

Quantum phase measurements cannot be described by means
of a proper observable, and different operational approaches
have been introduced over the years [1–6]. On the other hand,
from a practical point of view, phase detection of quantum
fields is generally associated with interferometric devices,
i.e., detection schemes aimed at the estimation of phase by
measuring field- or intensity-based quantities with phase-
dependent statistics [7–13]. The art of interferomety, in turn,
consists of answering two questions: (a) How can the unknown
phase be effectively retrieved from the data sample? and (b)
Which is the resulting precision? The first point amounts
to the choice of an estimator, i.e., a function from the data
sample to the set of possible values of the phase shift. Among
possible estimators Bayes [14] and maximum likelihood ones
[15, 16] play a special role due to their asympotic (i.e., for large
number of measurements) properties. The second point may
be properly addressed in the framework of quantum estimation
theory, which addresses the inference of a physical quantity
which is not directly accessible by means of the measurement
of a different observable, or a set of observables, somehow
related to the quantity of interest. Quantum estimation is a
powerful tool to infer a single parameter, as well to a set
of parameters, up to the full reconstruction of the density
matrix of an unknown quantum state, with or without the

use of prior information [17–19]. Precision of any unbiased
estimator is bounded by the inverse Fisher information of
the probability distribution of the measurement outcomes,
whereas the ultimate limit is written in terms of the inverse
quantum Fisher information (QFI).

In quantum optical systems, homodyne measurements
of field quadratures and Gaussian signals play a leading
role. Indeed, measurement of quadratures has been shown
to achieve phase estimation for coherent states with precision
bounded by the (classical) Fisher information [16]. This result
has been further improved by looking for the optimal state
achieving the ultimate bound related to the QFI [20]. Among
the pure Gaussian states, squeezed vacuum has been found
to be the most sensitive state at fixed energy and homodyne
detection [21]. Furthermore, it has been shown that the
same signal allows optimal estimation of loss in bosonic
channels [22] and of interaction parameters of single- and
two-mode bilinear bosonic Hamiltonians [23]. Motivated
by these results, in this paper we address optimal phase
estimation by using Gaussian states, homodyne measurements
and Bayesian estimation. We analyse the behaviour for
increasing number of measurements and show that optimality
may be approached also with a limited number of runs upon
using two-step methods acting on the squeezed vacuum probe
and/or on the homodyne reference. Moreover, we prove that,
in principle, the performances of double homodyne detection

0953-4075/09/055506+07$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0953-4075/42/5/055506
http://stacks.iop.org/JPhysB/42/055506


J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 055506 S Olivares and M G A Paris

cannot beat the homodyne measurement ones, thus validating
the conclusions of [21].

This paper is structured as follows. In section 2, we
briefly review local quantum estimation theory and the ultimate
bounds to precision in the phase-shift estimation with Gaussian
states. In section 3, homodyne and double homodyne statistics
are explicitly calculated for the phase shifted squeezed vacuum
as input: this leads us to conclude that performances of the
double homodyne detection cannot reach the limit imposed by
the QFI, while single homodyne does. Then, after describing
our inference scheme, based on homodyne detection and
Bayesian inference, the asymptotic limit for large number
of collected data is studied in detail, as well as the validity
of the Gaussian approximation. Since the performances of
this kind of inference protocol depend on the actual value of
the (unknown) phase shift, we suggest two feasible two-step
adaptive methods [24, 25], the first acting on the squeezing
parameter, the other on the squeezing and local oscillator
phases, that allow us always to reach the optimal estimation.
The results of simulated Monte Carlo experiments are reported
in order to check convergence also for small data sample and
give a quantitative meaning to the notion of the asymptotic
regime. Section 4 summarizes our results and draws some
concluding remarks.

2. Estimation of a phase shift

Let us now consider a field mode undergoing a phase shift
described by the unitary operator U(φ) = exp(−iφG), with
G = a†a, a and a† being the annihilation and creation field
operators, respectively. Usually φ itself cannot be measured
and a phase estimation problem appears. In order to infer the
value of φ some phase-dependent observable X is measured
and an estimator for φ, i.e., a function of the data sample {x}
is used. The aim of interferometry is to optimize the inference
strategy by minimizing the uncertainty. In general, the lower
bound to the variance Var[φ] of any unbiased estimator is given
by the Cramér–Rao theorem, which reads

Var[φ] � [F(φ)]−1, (1)

where F is the Fisher information

F(φ) =
∑

x

p(x|φ)[∂φ log p(x|φ)]2, (2)

p(x|φ) being the conditional probability of obtaining the
outcome x when the parameter has the value φ. Since
the conditional probabilities are given by p(x|φ) =
Tr(�φEx), �φ = U(φ)�0U

†(φ) being the quantum state of the
system (actually depending on the initial preparation �0) and
Ex is the positive operator-valued measure (POVM) describing
the measurement, equation (2) rewrites as

F(φ) = Re
∑

x

[Tr(�φEx�φ)]2

Tr(�φEx)
, (3)

where �φ denotes the symmetric logarithmic derivative (SLD)
operator

∂φ�φ = 1
2 (�φ�φ + �φ�φ). (4)

Upon using Schwartz inequality in the Hilbert space one easily
shows that the Fisher information in equation (3) is upper
bounded by the QFI H(φ) [20], i.e.

F(φ) � H(φ) ≡ Tr
(
�φ�2

φ

)
. (5)

The above equation, together with the Cramér–Rao theorem
sets the ultimate, measurement-independent, bound to
precision of any unbiased estimator involving quantum
measurements.

In order to calculate the SLD �φ , we first observe that if
�0, and, in turn, �φ are pure states, then �φ = �2

φ and ∂φ�2
φ =

(∂φ�φ)�φ + �φ(∂φ�φ), thus, by comparison with equation (4),
one finds �φ = 2∂φ�φ . More in general, we can expand �0 in
its eigenvector basis {|ψn〉}, i.e., �0 = ∑

n pn|ψn〉〈ψn| (if �0

is a pure state, then pn reduces to a Kronecker delta), to write

�φ =
∑
hk

〈ψh|�φ|ψk〉|ψh〉〈ψk|. (6)

Then, since

∂φ�φ = i
∑
hk

Ghk(ph − pk)|ψ̃h〉〈ψ̃k| (7)

with Ghk = 〈ψh|G|ψk〉, where |ψ̃n〉 = U(φ)|ψn〉, we have

�φ�φ + �φ�φ

2
= 1

2

∑
n

pn(�φ|ψ̃n〉〈ψ̃n| + |ψ̃n〉〈ψ̃n|�φ).

(8)

By taking the matrix elements of both sides in equation (4) we
obtain

〈ψ̃h|�φ|ψ̃k〉 = 〈ψh|�0|ψk〉 = 2iGhk

ph − pk

ph + pk

, (9)

where �φ ≡ U(φ)�0U
†(φ). As a consequence, H(φ) =

Tr(�φ�2
φ) = Tr

(
�0�

2
0

)
, i.e., the QFI does not depend on the

value of the unknown shift φ. The explicit evaluation of the
QFI H = H(φ) = H(0) leads to

H = 4
∑
ns

pn

(pn − ps)
2

(pn + ps)2
G2

ns, (10)

where we used Gns = Gsn. The maximum is obtained for the
probe excited in a pure state. In this case, as described above,
�φ = 2∂φ�g and, by substitution into equation (5), we obtain
H = 4�G2, i.e., the QFI is proportional to the fluctuations of
the Hamiltonian G and the ultimate bound of Var[φ] becomes

Var[φ] = (4�G2)−1. (11)

It is worth noticing that besides the number operator the above
considerations hold for a general Hamiltonian generator G
[23].

Let us now come back to the problem of estimating φ by
measurements on �φ . Our aim is to effectively estimate the
phase shift at fixed energy upon optimizing the measurement
over detection strategies and probe states �0. Of course, the
ultimate precision is bounded by the quantum Cramér–Rao
relation (11), which depends on the probe state we employ.
In turn, the first stage of the optimization procedure is to find
the best probe, which maximizes the QFI at fixed energy.
We focus our attention onto the set of pure states and, more
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Figure 1. Scheme of phase estimation via homodyne detection: an
input state �0 undergoes a phase shift φ. The quadrature xψ of the
shifted state �φ = U(φ)�0U

†(φ) is then measured by means of
homodyne detection.

precisely, on Gaussian pure states, whose generic element is a
squeezed-displaced vacuum state given by

�0 = D(α)S(ξ)|0〉〈0|S†(ξ)D†(α), (12)

D(α) = exp(αa† − α∗a) and S(ξ) = exp
(

1
2ξa†2 −

1
2ξ ∗a2

)
, α, ξ ∈ C, being the displacement and squeezing

operators, respectively. In order to maximize the QFI we
look for the state maximizing the energy fluctuations at fixed
probe energy Tr[�0a

†a] = sinh2 r + |α|2,

�G2 = 1
2 sinh2(2r) + e2r{Re[α] cos ϕ + Im[α] sin ϕ}2

− e−2rRe[α] sin ϕ − Im[α] cos ϕ}2, (13)

where we put ξ = r e−2iϕ . By using Lagrange multipliers
one easily finds |α| = 0: the maximum sensitivity is achieved
when all the available energy is used to squeeze the vacuum.
Then we have �G2 = 1

2 sinh2(2r) and thus

Varopt[φ] = [2 sinh2(2r)]−1, (14)

which represents the ultimate bound on precision of phase-shift
estimation posed by quantum mechanics (for Gaussian probes)
[21]. Note that equation (14) does not depend on the argument
ϕ of the complex squeezing parameter ξ : without loss of
generality we will assume ϕ = π/2. In the following section,
we will show how it is possible to attain the ultimate precision
by means of homodyne detection and Bayesian inference.

3. Phase-shift estimation via homodyne detection
and Bayesian inference

We consider a general scheme (see figure 1) where the probe
state �0 undergoes a phase shift and then the quadrature xψ is
measured by homodyne detection on the outgoing state, �φ .
The aim of our scheme is to infer the actual value φ of the phase
shift by processing the homodyne data. In order to evaluate the
homodyne probability distribution we use the Wigner function
formalism to describe our system. The Gaussian Wigner
function associated with the state (12) is (we put α = 0 and
ϕ = π/2):

W0(X) = exp
[ − 1

2XT σ−1
0 X

]
2π

√
Det[σ0]

, (15)

where σ0 = 1
4 Diag(e−2r , e2r ) is the 2 × 2 covariance matrix.

After the phase shift (see figure 1), the state �φ is still described
by a Gaussian Wigner function Wφ(X) of the form (15), but
with covariance matrix σφ given by

[σφ]11 = 1
4 (e2r cos2 φ + e−2r sin2 φ), (16)

[σφ]22 = 1
4 (e−2r cos2 φ + e2r sin2 φ), (17)

[σφ]12 = [σφ]21 = 1
4 sinh(2r) sin(2φ). (18)

At this point the quadrature xψ = 1
2 (e−iψa + eiψa†) is

measured by means of homodyne detection on repeated
preparation of the probe state, thus obtaining a data sample
{x}. Each outcome is distributed according to the homodyne
probability distribution, which can be calculated starting from
the Wigner function Wφ(X) as follows:

pφ(x, ψ) =
∫

R

dyWφ(RψX), (19)

where Rψ is a rotation matrix and XT = (x, y). Since we put
ϕ = π/2, we choose to measure the quadrature with ψ = 0.
We have

pH(x|φ) ≡ pφ(x, 0) = 1√
2π�2

φ

exp

(
− x2

2�2
φ

)
, (20)

where

�2
φ = 1

4 [e−2r cos2 φ + e2r sin2 φ]. (21)

The Fisher information of the distribution (20) is given by

FH(φ) =
∫

R

dxpH(x|φ)[∂φ log pH(x|φ)]2

= sinh2(2r) sin2(2φ)

8
(
�2

φ

)2 . (22)

Remarkably, from equation (22) we have that the Fisher
information of homodyne distribution may be equal to the
QFI upon the choice of a suitable squeezing of the probe state

r = − 1
2 log tan φ (23)

or, at fixed squeezing, for a specific value of the phase shift

φH = 1
2 arcos tanh 2r. (24)

Correspondingly, the minimum variance VarH[φ] achievable
by a suitable processing of homodyne data may saturate ∀φ

to the ultimate bound (14).
Before going to the Bayesian inference from of homodyne

data, we note that if we use double homodyne detection
we have no improvement in phase-shift estimation. Double
homodyne statistics is described by the coherent state POVM
z = π−1|z〉〈z|, z ∈ C; the probability distribution is thus
given by pD(z|φ) = π−1|〈z|U(φ)S(ξ)|0〉|2, i.e.

pD(z|φ) = exp{−|z|2 − tanh rRe[z2 e2iφ]}
π cosh r

, (25)

where we already set ξ = −r . The corresponding Fisher
information reads as follows:

FD(φ) =
∫

C

d2zpD(z|φ)[∂φ log pD(z|φ)]2 = 4 sinh2 r,

that is FD(φ) � FH(φ),∀φ: the use of double homodyne
detection does not bring any improvement of the phase-shift
measurement. This result agrees with the conclusions of [21],
where the author considered double homodyne detection with
squeezed vacuum as probe and an auxiliary squeezed state in
the other input port.
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Figure 2. A posteriori distribution p(φ|M) for different values the number of data M and squeezing parameter r. The vertical line is the
actual value of the phase shift φ∗ = 0.3.

We stress that p(x|φ) allows us to infer the probability
of the homodyne outcome x once the value of φ is assigned.
In our case, the value of φ is just the quantity we want to
estimate and, in turn, we are interested in the conditional a
posteriori probability distribution pM(φ|{x}) of φ given the
sample {x} = {x1, . . . , xM} of homodyne data. This can be
obtained by means of Bayesian inference, as we will see in the
following.

3.1. Bayesian inference

If x is the random variable associated with the outcome of the
homodyne detection, then the Bayes’ theorem states that

p(x|φ)p(φ) = p(φ|x)p(x), (26)

where p(·|·) are the conditional probabilities, p(φ) = 2/π

is the prior assuming no a priori information and p(x) is
the overall probability to observe x. In turn, upon inverting
equation (26) we obtain the conditional a posteriori probability
p(φ|x) of φ given the outcome x. After M independent
homodyne measurement the a posteriori probability is given
by

pM(φ|{x}) = 1

N

M∏
k=1

p(xk|φ), (27)

N being the normalization factor

N =
∫ π

2

0
dφpM(φ|{x}). (28)

If M 	 1, then (1) rewrites as

pM(φ|{x}) M	1
 1

N
∏
x

p(x|φ)Mp(x|φ∗) ≡ p(φ|M), (29)

where φ∗ stands for the actual (unknown) value of the phase
shift. In order to write equation (2) we have used the law of
large numbers and written the number of occurrences of the
outcome x as Mp(x|φ∗). In this limit probability (2) can be
explicitly calculated as follows:

p(φ|M) = 1

N
exp

{
M

∫
dxp(x|φ∗) log p(x|φ)

}
(30)

= 1

N
1(

2π�2
φ

)M/2 exp

{
−M�2

φ∗

2�2
φ

}
, (31)

where we used log x → ∫
dx. We note that the

quantity S(φ|φ∗) = − ∫
dx p(x|φ∗) log p(x|φ) in (30) may be

regarded as the relative entropy between the two distributions
[16]. In figure 2, the a posteriori distribution p(φ|M) is plotted
for different values of the involved parameters as a function of
φ. It is worth noting that because of the asymmetric form of the
distribution, a suitable estimator for the actual value φ∗ of the
phase shift is given by the maximum of the distribution (its

mode, Mode[φ]) and not to its mean φ = ∫ π
2

0 dφφp(φ|M).
This can be easily seen by differentiating p(φ|M) with respect
to φ:

∂φp(φ|M) = Mp(φ|M)F(φ)

8 sin(2φ)
[cos(2φ) − cos(2φ∗)], (32)

i.e., P(φ|M) has a maximum at φ = φ∗. However, as
M increases the mode and the mean become the same and
equation (3) can be approximated by a Gaussian distribution
[26] with mean φ∗ and variance �2

g given by

�2
g = −

[
1

p(φ∗|M)

d2p(φ|M)

dφ2

∣∣∣∣
φ=φ∗

]−1

(33)

= 1

M

[∑
x

1

p(x|φ∗)
d2p(x|φ)

dφ2

∣∣∣∣
φ=φ∗

]−1

= 1

MF(φ∗)
, (34)

where we substituted equation (30) into equation (33) and
F(φ∗) is the Fisher information of the probability distribution
p(x|φ∗). The factor M−1 follows from taking the data sample
as a collection of M mutually independent measurements,
which, indeed, leads to an ensemble average over M different
copies of the system. Finally, we note that, as one may expect,
the variance and, thus, the precision of the estimation depends
on the true value φ∗ itself.

Overall, the Bayes estimator is asymptotically unbiased
and efficient, i.e., the variance Var[φ] saturate the Cramér–Rao
bound of equation (1): this is a consequence of the asymptotic
normality of the a posteriori distribution (Laplace–Bernstein–
von Mises theorem) [27, 28]. However, two questions arise.
The first concerns the range of validity of the Gaussian
approximation, which depends on both φ∗ and the squeezing
parameter r. This aspect is illustrated in figure 3 where
we plot the ratio � = �2

B

/
�2

g,�
2
B being the variance of

the asymptotic distribution p(φ|M). For fixed r, one finds
that the smaller the difference between φ∗ and the optimal
phase φH given r (see equation (24)), the larger the range of
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Figure 3. Plots of the ratio � = �2
B/�2

g for two values of the squeezing parameter r and different φ∗. The range of validity of the Gaussian
approximation strongly depends on the involved parameters. In particular, the smaller the difference between φ∗ and the optimal phase φH

given r (see equation (24)), the larger the range of validity of this approximation (in the plots we have r = 0.2 → φH = 0.59 and
r = 0.6 → φH = 0.29).

validity of this approximation. On this observation is also
based the two-step adaptive method we will describe below.
The second question is whether the Bayes estimator may
saturate also the quantum Cramér–Rao bound, i.e., whether
the Fisher information of p(x|φ) may be equal to the QFI, thus
leading to phase-shift estimation with precision at the ultimate
quantum limit. Concerning this point we note that, being the
variance of Bayes estimator dependent on the true value of
the phase shift, some kind of feedback should be unavoidably
involved. In the following, we will describe two possible
adaptive mechanisms, acting on the squeezing parameter of
the probe or on the homodyne local oscillator and squeezing
phase, respectively.

3.2. Examples of two-step methods to achieve ultimate
precision

Adaptive methods for Bayesian estimation allow us to
always attain the ultimate bound on precision and have been
investigated in the case of large ensembles and qubit systems
[29, 30]. Here we propose two realistic and feasible set-ups
exploiting the interferometric features of homodyne detection.

The first scheme is based on the fact that the variance
�2

g(r) may achieve the optimal value M−1Varopt[φ∗] of
equation (14) employing a squeezed vacuum probe with
parameter ropt = − 1

2 log tan φ∗. Of course, setting r = ropt

requires the knowledge of the actual (unknown) value of the
phase shift. However, one may obtain a rough estimate of
φ∗ upon building the distribution p(φ|M ′) with a fraction of
the M, taking its maximum (Mode[φ]) and then modify the
probe state, tuning its squeezing to ropt. In figure 4, we show
the ratio R(r) = M�2

g(r)/Varopt[φ∗] for the case φ∗ = 0.3:
the smooth behaviour of R(r) ensures the convergence of the
above mechanism. Tuning the squeezing parameter, however,
could be a challenging task. On the other hand, also when
r and, thus, the energy are fixed, it is possible to achieve
the optimal variance by tuning the squeezing phase ϕ of the
probe state or the phase ψ of the homodyne quadrature. In
fact, previously we set ϕ = π/2 and ψ = 0; if, in contrast,
we assign to these phases the generic values ϕ and ψ , then
we should simply apply the following change of variable in
all the previous equations: φ → φ +

(
ϕ − ψ − π

2

)
, that is a

translation of φ by the amount ϕ − ψ − π
2 . Since the optimal

angle φH at fixed r is given by equation (24), optimality is
always achieved by choosing

0.5 0.0 0.5 1.0 1.5

2

4

6

8

10
R(r)

r

Figure 4. Plot of the ratio R(r) = M�2
g(r)/Varopt[φ∗] (see the text)

as a function of r and for φ∗ = 0.3. The vertical dashed line
indicates ropt.

ϕ − ψ = φH − φ∗ +
π

2
. (35)

As described above, we may obtain a rough estimate of φ∗

by taking the maximum (Mode[φ]) of p(φ|M), and, thus, we
can tune the quantity ϕ − ψ by means of adaptive control on
the homodyne detection and/or the probe state, whose energy
does not depends on ϕ.

In order to confirm convergence also for small data
sample, we performed a set of Monte Carlo simulated
experiments with the latter adaptive scheme. The results are
shown in figure 5 for r = 0.6 and φ∗ = 0.7 (upper panel) and
with reduced energy, r = 0.3 (lower panel). In the experiment
without adaptive method the whole sample of M homodyne
data, obtained as described in the first part of this section,
is used to estimate φ and Var[φ] (the dashed lines in figure
5). With the adaptive scheme (solid lines), Nr = 3

√
M�

of the M data sample are used to argue the phase-shift rough
estimate, then the phase difference ϕ − ψ is tuned according
to equation (35) and the left homodyne data are processed to
assess φ and Var[φ]. Each point in figure 5 corresponds to
the average over 20 repetitions. Of course, the effectiveness
of the adaptive method depends on the value of the rough
estimate: in this view, an increasing number of the outcomes
devoted to the rough estimation, as the data sample becomes
larger, allows the reduction of the Var[φ] fluctuations, as one
may verify, for example, by using a fixed value for Nr. It
is worth to note that in our simulations the rough estimate
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Figure 5. Bayesian estimation of the phase shift from Monte Carlo simulated homodyne measurements: on the left the ratio A = φ/φ∗ and
on the right V = √

Var[φ]/Varopt[φ] (right). The solid lines denote results obtained with the adaptive method acting on the homodyne local
oscillator and squeezing phases; the dashed lines are obtained without the adaptive method. We set r = 0.6 and φ∗ = 0.7. In the case of the
adaptive method, we used 3

√
M� of the M data to argue the phase-shift rough estimate (dotted line), then the left homodyne data are

processed to assess φ and Var[φ]. In both experiments we use the same total number M of data. Lower panel: the same as in the top panel
for r = 0.3.

is obtained as Mode[φ], whereas the mean φ is used for the
final results: this is justified for the small Nr considered in the
rough estimate and the larger number of the final estimation
(the error introduced by this choice does not sensitively affect
our results, as we verified also assessing the Pearson skewness
coefficient |φ − Mode[φ]|/√Var[φ]).

4. Conclusions

In this paper we have shown how Bayesian inference
techniques represent useful tools for phase estimation. Our
analysis is based on homodyne detection with squeezed
vacuum as a probe state, and Bayesian post-processing to infer
the phase shift. In the asymptotic limit of a large number of
measurements, our scheme saturates the Cramér–Rao bound to
precision, i.e., the variance of the phase shift achieves the lower
bound imposed by the inverse Fisher information. Moreover,
we have shown that optimality may be approached also with
a limited number of measurements by means of two-step
methods acting on the squeezed vacuum probe and/or on the
homodyne reference. These have been investigated by means
of Monte Carlo simulated experiments, which show excellent
results also in the case of small data samples. Our results,
together with the recent advances in homodyne detection [31]
lead us to conclude that the estimation protocol described
in our paper may be suitable for experimental investigation,
opening the way to information technology based on Gaussian
states and phase encoding.
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