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We suggest and demonstrate a method to assess entanglement generation schemes based on mixing of Gaussian
states at a beam splitter (BS). Our method is based on the fidelity criterion and represents a tool to analyze the
effect of losses and noise before the BS in both symmetric and asymmetric channels with and without thermal
effects. More generally, our scheme allows one to pre-assess entanglement resources and to optimize the design of

BS-based schemes for the generation of continuous-variable entanglement.
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1. INTRODUCTION

Continuous-variable (CV) entanglement is a powerful resource
for optical quantum technologies, and it is the crucial ingre-
dient for several protocols, including quantum teleportation,
dense coding, and quantum-enhanced metrology. In particular,
Gaussian states and Gaussian entanglement reveal themselves as
the main resource in practical applications [1-9]. In fact, most
CV quantum technology has been developed upon exploiting
Gaussian states and Gaussian operations. In this framework,
techniques for the generation, characterization, and certifica-
tion of Gaussian entanglement play a crucial role and have re-
ceived a large amount of attention in the last two decades.
Among the different schemes to generate CV entanglement,
the mixing of Gaussian states emerged as a convenient choice,
and it has been employed in several applications. In this
scheme, a pair of Gaussian states is mixed at a beam splitter
(BS), and entangled states are obtained at the output as far as
the input signals show some nonclassical features [10-16].
Entanglement certification is usually performed a posteriori, by
means of measurements realized at the outputs of the BS,
e.g., by performing full quantum tomography of the bipartite
state [17,18] or by measuring a suitable entanglement witness.
On the other hand, an 4 priori certification scheme, i.e., involv-
ing measurements before the BS, would be welcome because it
would permit the pre-assessing of entanglement resources and
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the optimization of the generation scheme, e.g., by quantum
state or reservoir engineering at the input.

In this paper, we experimentally address an a priori certif-
ication scheme based on the fidelity criterion for entanglement
generation [19]. In particular, we assess the effects of losses and
noise on the generation of entanglement by Gaussian states
mixing. Upon using a suitably designed experimental setup,
we analyze the effect of signal propagation before the BS and
evaluate threshold values on the transmission coefficient and on
the thermal noise as a function of the parameter of the input
signals. We consider both symmetric and asymmetric channels
with and without thermal noise.

The paper is structured as follows. In Section 2 we introduce
the notation and the tools to describe entanglement generation
by Gaussian states mixing. We also review the fidelity criterion
proposed in [19]. In Section 3 we describe Gaussian state
propagation in lossy and noisy channels. In Section 4 we
describe our experimental apparatus and report results for the
different configurations. Section 5 closes the paper with con-
cluding remarks.

2. FIDELITY CRITERION

As a matter of fact, there are several a posteriori criteria to wit-
ness entanglement of bipartite CV systems [20—-24]. They may
be exploited to assess whether entanglement has been produced
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after a given interaction has taken place. On the other hand, an
a priori criterion has been recently introduced [19] to assess the
entanglement capability of a pair of distinct Gaussian states in-
teracting at a BS. The criterion is based on the mutual fidelity
of two uncorrelated Gaussian states, ¢, and ¢, describing the
preparation of two bosonic modes ¢ and , and is able to predict
whether the state obtained by mixing them at a BS will be
entangled or not. In more detail, this criterion states that the
interaction between the two input states through a bilinear ex-
change Hamiltonian gives rise to entanglement if the fidelity
between the two input states is less than a threshold value F,.
The actual value for the threshold depends on the initial states
purities and on the beam splitter transmissivity [19], upon the
assumption that no phase-shift is imposed at the BS [25].

In order to introduce the criterion, let us first review some
properties of Gaussian states (GS). GS are quantum states with
a Gaussian Wigner function in the phase space. Gaussian states
are prominent resources in CV quantum technology because,
besides being easily produced in laboratories with current tech-
nologies, they preserve their Gaussian character under linear
and bilinear transformations, such as those associated with
beam splitters, phase shifters, and optical amplifiers, e.g., single-
and two-mode squeezing [26], as well as during propagation
through a noisy channel [27]. Gaussian states are completely
characterized by a finite number of parameters, e.g., by the first
and second moments of quadrature mode operators. In particu-
lar, when dealing with the correlation between the two modes
of a bipartite Gaussian state, one may focus only on the phase-
space covariance matrix (CM) because the presence of first
moments does not affect the amount of correlations.

Let us now consider the phase-space description of the two
involved modes and of their dynamics. As previously men-
tioned, we can focus the evolution of the 4 x 4 CM X, of the
input states ¢, ® ¢, (without loss of generality, we can focus on
states with vanishing first-moment values of the quadrature
operators). If o, refers to the CM of the mode # = ¢, d, then
Y, =0, ® o, After the evolution, characterized by the
parameter 7 € [0, 1] (the BS transmissivity), the evolved CM
can be written in the following block-matrix form [9,19]:

% Zu)
Zoue = , 1
whose elements are
Y =10, 4+ (1-7)0, (2a)
%, =10, + (1 -17)0, (2b)
Z, =17(1-17)(0, -0,). (2¢)

The presence of the non-zero off-diagonal terms X, suggests
the presence of correlations between the two output modes,
whose amount depends on how much the incoming single
mode matrix is different. It is worth noting that, if 6, = o,
then the evolved states is uncorrelated: this effect has been theo-
retically [26,28] and experimentally investigated for different
kind of Gaussian states [29,30]. Therefore, the correlations
arise if and only if 6, # 6. This can be translated into a more
quantitative expression by introducing the fidelity of the two
initial Gaussian states written for their covariance matrices [31]:

1

F cd = A+ 5 «/— (3)
where
A = det[o, + 0], (4)

= {det[o‘c] - %} {det[o'ﬂr] - %} (®)

In [19] it has been proved that, if this quantity falls under the

following threshold,
4luclua' V T(l B T) (6)
\/gf +4r(1-1)g, - \/41(1 -17)g_

Frh:

where

ge=g:ions) = [T £,

k=c,d

Uy, k = ¢, d being the purities of the two local states, then
entanglement is generated, and the bipartite system emerging
from the mixing is not separable. The inequality

Foy<Fy (7

thus represents a necessary and sufficient criterion to pre-assess
entanglement resources, i.c., to assess them before they are
actually employed in generation of entanglement by mixing
at a beam splitter. The threshold depends on the input states’
purities 4; and on the BS transmissivity .

3. PROPAGATION IN NOISY CHANNELS

As a matter of fact, pure quantum states cannot be effectively
produced in a laboratory. The unavoidable technical imperfec-
tions and the interaction with the environment induce
decoherence on any state, which evolves into a statistical mix-
ture, even if pure at the time of its generation. Pure quantum
features, such as entanglement, are strongly affected by this
mechanism; therefore, it is of fundamental interest to know
how the interaction with the environment alters the parameters
determining the quantumness of a state.

In quantum optical systems, loss of photons is a relevant
source of decoherence. In addition, one may model the envi-
ronment as a thermal bath made of infinite modes at thermal
equilibrium and, in the most general case, each containing
some residual squeezing [32-35]. In the context of an open
systems approach [36], upon assuming weak coupling with
the environment and the absence of any memory effect, the
evolution of a single-mode propagating through a Gaussian
noisy transmission channel is well described by a master equa-
tion (ME) in the Lindblad form. The ME may be then rewrit-
ten in terms of a Fokker—Planck (FP) equation for the Wigner
quasi-probability distribution [3]. Because we are dealing with
(zero mean) Gaussian states, the full information about the
evolved state is contained in the time evolution of the CM,
which reads

o(1) = VG,0(0)V/G, + (I-G))o, @)
where ¢(0) is the initial CM, G, = ¢ 7’1 @ ¢TI, T, being
the damping rate of mode # = ¢, 4, and 6, =0, B 6,4
with
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Im[M]
G+ Ny - /iie[Mk] ) ©)

which represents the diffusion matrix and the asymptotic CM
of the system, i.e., the CM for # - 0. In Eq. (9) N, and M,
represent the effective photon number and the squeezing
parameter of the bath interacting with mode 4, respectively.
It is worth noting that, to ensure the positivity of the density
matrix associated with the evolved state, one should have
|M 4> < Nu(1 4+ Ny). Equation (8) suggests that the action
of the lossy channel with damping rate on the CM character-
izing each single system is equivalent to the action of a fictitious
BS that couples each mode £ = ¢, 4 to the corresponding envi-
ronment through its transmission coefficient T; = ¢™1*. This
simple picture does not depend on the property of the bath.

_ ( G+ Ny) + Re[M]
Thee = (( Iri?[Mk] k

4. EXPERIMENT AND RESULTS

The a priori entanglement criterion discussed in Section 2 has
been experimentally tested for a balanced BS, i.e., forz = 1/2
in Eq. (2). In particular, we have analyzed the mixing of pairs of
squeezed modes, which are subject to different transmission
channels. The two initial fields are obtained by optically
manipulating the output of a frequency degenerate type-II
optical parametric oscillator (OPO) working below threshold.
The experimental setup [37] is based on a continuous-wave
(cw) Nd:YAG laser (Innolight-Diabolo dual wavelength) inter-
nally frequency doubled. The second harmonic (532 nm) is
employed as the OPO pump. The nonlinear crystal of the
OPO isa 1 mm x 1.5 mm x 25 mm periodically poled a-cut
KTP crystal (PPKTP) manufactured by Raicol Crystals Ltd. on
custom design. The use of the a-cut PPKTP allows implement-
ing a type II phase matching with cross-polarized signal and
idler waves. The frequency-degeneracy condition, 4; = A, =
22, = 1064 nm (IR), is achieved at 7"~ 326 K. The crystal
temperature is actively controlled, while a Pound—Drever—Hall
system [38] controls the OPO length in order to ensure pump-
cavity resonance.

Our device generates an entangled bipartite Gaussian state
consisting of two collinear beams (signal and idler) correspond-
ing to two orthogonally polarized modes # and 4, each excited
in a thermal state [39]. Because the Hamiltonian underlying
the process is H « (a'6" + h.c.), which is the Hamiltonian
of two-mode squeezing, by suitably manipulating the polariza-
tion of the modes # and 4 and letting them interfere as de-
scribed in [40], it is possible to obtain two independent
squeezed fields, corresponding to the states of the modes

c=(a+b/vV2 d=(a-b/V2

In particular, the modes ¢ and & show squeezing in orthogonal
phase quadrature and, thus, represent a pair of single-mode
squeezed states able to generate entanglement in a mixing proc-
ess, in a scheme already exploited in the first implementation of
the CV teleportation protocol [15]. Because modes ¢ and 4 are,
in general, uncorrelated squeezed states, characterized by the

single-mode CMs,
o. = (2u.)7" diag[e””, ], (10a)

64 = (2uy) ! diagle™, e*], (10b)

respectively, 7 being the so-called squeezing parameter and y,,
the purity of mode # = ¢, d, they can be used to test the fidelity
criterion. However, aiming at a more general overview of
the above-mentioned criterion, we have considered different
scenarios that have been investigated both theoretically and ex-
perimentally.

Experimental tests have been conducted by considering
different sets of squeezed thermal states at the output of the
type—1I OPO (see [27,41] for details). In particular, we have
selected pairs of squeezed states satisfying different conditions
on their squeezing parameter and/or thermal contribution,
depending on the different investigated scenarios.

A. Symmetric Passive Damping

The simplest scenario is a symmetric damping. The two uncor-
related modes undergo the same passive damping (see Fig. 1).
In such a case, the evolution of the threshold and the fidelity
among the two states depends on the squeezing parameter of
the ancestor pure squeezed state [42]. In Fig. 2 we show the
expected behavior of the threshold fidelities (solid lines) and
of the actual fidelities (dashed lines) as a function of T (the
channel transmission) for different values of the initial squeez-
ing parameter 7. Theoretical behaviors have been obtained by
considering the single mode CM evolution of Eq. (8) that, in
our case, reads (for the sake of simplicity we drop the subscripts

¢ and 4)
5(T) = To(0) + (1 —T)%]I (11)

T =, being the transmission coefficient and %]I being the
vacuum state CM.

symmetric damping

Fig. 1. Diagram of the symmetric damping channel. Modes ¢ and &
propagate through identical passive channels of transmissivity T.
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Fig. 2. Plot of the theoretical behavior of F,,; (dashed lines) and the
corresponding threshold condition Fy, (solid lines) at the output of
two identical transmission channels as functions of transmission T
of the channels, for three different values of initial squeezing 7 of
the initial pure states (4, = py = 1).
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Figure 2 shows that fidelities approach 1 when the two
modes are maximally attenuated (T — 0): in this case, as is
clear from Eq. (11), they become two vacuum states; in addi-
tion, we can see that the maximum of difference between the
two fidelities occurs in correspondence of fully transmitted pure
states (T — 1). Moreover, we can see that attenuation alone is
not enough to prevent initially pure squeezed states to give rise
to an entangled pair because Fy, > F.;, VT € (0, 1] [27].
As we will see later, only by setting the system in contact with
a thermal reservoir can we observe the violation of the entan-
glement condition.

In order to experimentally assess the a priori fidelity cri-
terion, we have evaluated the fidelities for pairs of modes with
orthogonal squeezing phases, after they had experienced the
same passive damping, the noisy channel being simulated by
a variable attenuator (mimicking the BS) and the characteriza-
tion obtained by a homodyne detector [43]. In Fig. 3 (upper
panel) we report the experimental behavior obtained for two
modes undergoing the same attenuation. Experimental states
have been selected from a larger set by calculating for each state
the initial squeezing parameter 7 [44] and the actual value for the
transmission T. Then, pairs of states having the same value of »
within the experimental uncertainties have been used for the
plot. Contrarily to other CV separability criteria, the one inves-
tigated here depends on the states themselves. So, also the behav-
ior of the threshold value has been experimentally verified.

In the lower panel of Fig. 3 we show a zoom of the high
absorption region (T < 0.1) to show that, by applying «
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Fig. 3. Upper panel: plot of the theoretical F,, (dashed line),
threshold condition 'y, (solid line), and corresponding experimental
data (symbols) as functions of T when the two modes ¢ and 4 pass
through two identical transmission channels (see Fig. 1). Experimental
data refer to pairs of states showing the same value for the squeezing
parameter (7 ~ 0.92) of the initial pure state. Lower panel: magnifi-
cation of the region highlighted in the upper-left corner of the upper
panel. Experimental error bars are cropped at F = 1.00.

posteriori criteria, CV entanglement can be set between very
low energy states, as also verified in [43]. The plots show good
agreement between the reported data and the theoretical
expectation. Experimental uncertainties have been evaluated
by means of the usual propagation formula. According to
the theorem, if noise only springs from the photon loss, mixing
two orthogonally squeezed modes in a BS always gives rise to
entangled bipartite states exploitable for quantum communica-
tion tasks independently from the squeezing level [13,14].

B. Symmetric Damping with Thermal Noise

Here we consider the case where one couples one of the two
modes to a thermal bath with non-zero mean photon number,
i.e., characterized by a non-zero effective temperature. As
sketched in Fig. 4, mode ¢ travels a Gaussian transmission
channel devoid of thermal noise; thus its evolution is described
by Eq. (11). Differently mode & besides attenuation is coupled
to a thermal bath with a given average number of thermal
photons Ny,. To model its evolution, we have to replace
the vacuum CM in Eq. (11) by the CM corresponding to a
thermal state 6, = (% + Ny)L so that

64(T) =To,(0) + (1 - T)o. (12)

We stress that, in this case, the lower the transmission the
higher the number of thermal photons that couple into the
mode from the unused port of the BS.

The introduction of a thermal bath dramatically changes
the scenario. As shown in Fig. 5, the channel may now be
entanglement breaking [45], and, given the initial squeezing

o.(T)

Oc

T7 Nth

o s> 04 (T, Nin)

symmetric damping and thermal bath

Fig. 4. Diagram of the symmetric damping channel with thermal
noise. Modes ¢ and 4 propagate through identical passive channels
of transmissivity T. One of the modes is also coupled to a thermal
bath with NV, = 1.0 average thermal photons.
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Fig. 5. DPlots of F,, and Fy, (dashed and solid lines) as functions of
T for different values of initial squeezing 7 in the presence of a thermal
bath with NV j, = 1.0 coupled to only one of the two modes.
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parameter, we find a limiting value for the transmissivity. For
lower transmissivity, the thermal photons coupled to one of the
modes prevent the birth of entanglement (see Fig. 5). Indeed,
for each of the three squeezing parameters we have selected, we
can identify a well-defined region where entanglement would
not be attainable by mixing the two modes: the higher the
squeezing parameter the smaller such a region.

In Fig. 6 we report the value for the critical transmission,
i.e., the value T at which an intersection happens between
the fidelity and the threshold as a function of 7 the initial
squeezing parameter for a thermal bath with three different val-
ues of Ny,. The curves split the parameter space into two re-
gions above the curve entanglement, where it may be obtained,
whereas in the lower colored regions it cannot. As one may
expect, the value of the transmission coefficient, associated with
the transition, is lower for higher 7, so the more the modes are
squeezed the larger is the interval in which they are good as
entanglement resources. We also note that, in the limit of
large squeezing (r > 1), the critical transmission tends to the
following asymptotic values depending only on the number of
thermal photons of the bath N,:

_ \/1 +Nth(2+9Nth)_ 1 +Nth
2N (1 + 2Ny,)

T -1 (r>1).

(13)

This sheds some light on the fundamental role of squeezing
in producing entanglement by mixing two independent modes.
As we have seen (Fig. 2), in the case of two pure states (T = 1)
we had Fy, = 1; thus any pair of even slightly different pure
Gaussian states is a good entanglement resource. On the con-
trary the presence of thermal noise requires that at least one of
the two modes is squeezed by some amount in order to produce
entanglement.

The same critical transmission has been evaluated for a given
squeezing parameter and a variable number of thermal photons
of the bath (see Fig. 7). The increase of the thermal photons

1.0

entangled states

0.8

0.6
T()
0.4
0.2
0.0
00 05 1.0 1.5 20 25 30
r

Fig. 6. Critical transmission T(® as a function of r for different val-
ues of Ny, (from top to bottom Ny, = 1.0, 0.5, and 0.2). Colored
regions below the curves show where entanglement cannot be
achieved, whereas above the curves one obtains always an entangled
output state.
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Fig. 7. Critical transmission T'© as a function of Ny,, the average
thermal photon number of the bath, for different values of the squeez-
ing parameter, from top to bottom r = 0.5, 0.7, and 1.5. Curves
divide the parameter plane into two regions: above the lines entangle-
ment can be achieved, below (colored regions) it cannot.

would reduce the possibility of obtaining entanglement in mix-
ing the two modes.

C. Asymmetric Damping

In entanglement distribution schemes [46—49] it may happen
that the channels have different transmissivities. In our case,
this means that the two squeezed fields arrive at the mixing
BS after having suffered different attenuations. This situation
is sketched in Fig. 8, where we assume that mode & travels
along a channel with a transmission 0.9T, if T is the value
corresponding to mode c.

The effects of such an asymmetry can be seen in Fig. 9. It is
evident that the transmission asymmetry does not play any ef-
fective role in corrupting the two states’ properties. Compared
with the symmetric case discussed in Fig. 2, the only clear dif-
ference can be found in the threshold fidelity Fyy, for modes
affected by lower losses (T 2 0.9): mode ¢ purity is close to
1, while mode & has already suffered an effective decoherence.

This effect can be more clearly understood considering a
scenario in which one of the two modes stays pure, while
the other mode experiences a passive channel of transmission
T (as sketched in Fig. 10). The results, shown in Fig. 11, prove

o.(T)

09T
R 74(0.9T)

L asymmetric damping
Fig. 8. Diagram of the asymmetric damping channel. Modes ¢ and
d propagate through two channels of different transmissivity. In
particular, for any value of T we assume that mode ¢ is transmitted
through a channel with transmission T, whereas mode & propagates
through a channel with transmission 0.97T.
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Fig. 9. DPlot of the theoretical behavior of F,; and F, (dashed and
solid lines, respectively) as functions of T for different values of the
initial squeezing 7. Modes ¢ and & propagate through different chan-
nels with transmissivities T and 0.9T, respectively.

once more that the two modes outing a balanced BS illumi-
nated by a single squeezed field (with the vacuum entering
through its unused port) are entangled. As shown in Fig. 11
for any value of initial squeezing at T = 0 (namely, mode &
is in the vacuum state) we have F.; < Fy . This scenario also
has been investigated experimentally. We have addressed the
fidelity among a single pure ancestor state, retrieved from the
experiment, and the whole set of the mixed states correspond-
ing to the same pure ancestor but for different effective channel
transmissions. The experimental curve has been obtained by
selecting, among the measured CMs, all those corresponding
to the transmission of a pure squeezed state with » = 0.57

Oc > Oc

a4(T)

fully asymmetric damping

Fig. 10. Diagram of the fully asymmetric damping channel. Mode
¢ propagates in an ideal lossless channel (and stays pure), whereas
mode d travels a passive transmission channel with transmission
coefficient T.
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Fig. 11. Plot of the theoretical behavior of 7, (dashed line) and
Fy, (solid line) as functions of T and different values of the initial
squeezing r for the fully asymmetric damping scheme of Fig. 10.
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Fig. 12. DPlot of the theoretical (lines) and experimental (squares
and circles) fidelity F.; (dashed line) and the threshold condition
(solid line) as functions of T, when one of the two modes remains
pure, while the other travels a passive transmission channel (see
Fig. 10). Experimental data refer to a set of measured CMs showing
the same value of the squeezing parameter (» = 0.57) for the ancestor
pure state.

(within experimental uncertainty). The corresponding plot is
reported, together with the corresponding theoretical curve,
in Fig. 12: even at very low transmission the measured fidelity
is well below the threshold value, revealing the generation of
entanglement at the output of a balanced BS illuminated by
a single mode squeezed field.

D. Asymmetric Damping with Thermal Noise

The last case we have investigated is the situation where asym-
metric damping is associated with thermal noise affecting one
of the squeezed modes (see Fig. 13). The expected behavior of
the fidelities is reported in Fig. 14. In this case the left end of
the plot (i.e., for T — 0) corresponds to mixing one squeezed
mode to a thermal state with an average photon number
Ny, = 1.0. Upon comparing the plot in Fig. 14 to that of
Fig. 11, one may appreciate the effect of adding a thermal bath,
i.e., coupling thermal photons to a squeezed field. In this case,
both the value of the threshold and the fidelity between the two
modes decrease with T. In particular, for small values of the
initial squeezing (e.g., » = 0.3) the overall effect of the thermal
contribution is to prevent entanglement generation.

We have experimentally investigated the role of thermal
photons coupled to one of the squeezed modes by selecting
reconstructed states with the same measured value of squeezing
7 (i.e., the residual squeezing parameter of the state after the
transmission) but different thermal contents. We note that,
experimentally, this amounts to considering states coming from
different pure ancestors and undergoing different levels of

Oc > Oc

Tthh

0 - woe> 04(T, Nip)

fully asymmetric damping
and thermal bath

Fig. 13. Diagram of the fully asymmetric damping channel.
Compared with the scheme of Fig. 10 now mode 4 is also coupled
to a thermal bath.
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Fig.14. Dlotof F; (dashed lines) and the threshold Fy, (solid lines)
as functions of T for the scheme of Fig. 13. We consider three different
values of the initial squeezing 7. Mode ¢ is prepared in a pure squeezed
state, whereas mode 4 travels through a damping channel, also coupled
to a bath having N, = 1.0 average thermal photons.

transmission. In this way for the same residual squeezing
(r = 0.26 in Fig. 15) the effective average number of thermal
photon is different. In the upper panel of Fig. 15 we show the
fidelity F,4, compared with the corresponding threshold Fy,, as
functions of thermal photons Ny, effectively coupled into
mode d. Actually, these thermal photons are obtained by letting
mode 4 propagate in a lossy channel. In fact, in such a case, it is
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Fig. 15. Upper panel: theoretical threshold fidelity Fy, (solid) and
actual fidelity F,; (dashed) together with the corresponding experi-
mental data (open squares and open circles, respectively) as a function
of the average number of bath thermal photons /Vy, for the scheme
sketched in Fig. 13. Experimental data correspond to a set of states
with the same value of the squeezing parameter (r = 0.26) after
the transmission. Lower panel: plot of the difference between Fy,
and F,, (those shown in the upper panel) together with the corre-
sponding experimental data.
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well known that a squeezed field transforms into a squeezed
thermal state [44]. The results, as reported in Fig. 15, show
that the distance to the threshold decreases as the thermal con-
tribution increases. This behavior may be seen more clearly in
the lower panel of the same figure, where we show the differ-
ence between the two fidelities.

5. CONCLUSIONS

We have experimentally implemented an a priori certification
scheme based on the fidelity criterion for entanglement gener-
ation and exploited our scheme to assess the effects of losses and
noise on the generation of entanglement by Gaussian states
mixing. In particular, we have analyzed the effect of signal
propagation before the BS and evaluated threshold values on
the transmission coefficient and on the thermal noise as a func-
tion of the parameters of the input signals. We have considered
both symmetric and asymmetric channels with and without
thermal noise.

Our results show that the fidelity criterion represents a
reliable tool for entanglement certification and allows us to ac-
curately take into account the imperfections of the generation
scheme, including asymmetries and background noise. More
generally, our results allow one to pre-assess entanglement re-
sources and to optimize the design of BS-based schemes for the
generation of entanglement for continuous variable quantum

technology.
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