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A simple and efficient method for characterization of multidimensional Gaussian states is suggested and
experimentally demonstrated. Our scheme shows analogies with tomography of finite-dimensional quantum
states, with the covariance matrix playing the role of the density matrix and homodyne detection providing
Stern-Gerlach-like projections. The major difference stems from a different character of relevant noises: while
the statistics of Stern-Gerlach-like measurements is governed by binomial statistics, the detection of quadrature
variances corresponds to �2 statistics. For Gaussian and near Gaussian states the suggested method provides,
compared to standard tomography techniques, more stable and reliable reconstructions. In addition, by putting
together reconstruction methods for Gaussian and arbitrary states, we obtain a tool to detect the non-Gaussian
character of optical signals.
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I. INTRODUCTION

Gaussian states are building blocks of quantum informa-
tion processing with continuous variables. In fact, Gaussian
states can be generated and processed by means of linear
operations. On the other hand, successful implementation of
quantum information protocols requires efficient tools for the
analysis and characterization of the quantum states involved
in the experiment �1�. The standard approach to characterize
optical continuous variables states is to perform homodyne
measurements �2� and reconstruct the measured quantum
state on a subspace of the infinitely dimensional space de-
scribing a multimode quantum harmonic oscillator �3�. This
approach is rather general and, in principle, can be used for
reconstructing both Gaussian �2,4–7� and non-Gaussian
�8–11� states. On the other hand, such a general procedure
becomes inherently inefficient once the set of possible states
is restricted. For example, the knowledge about the Gaussian
character of the measured state contributes a lot of prior in-
formation about the measured subject. This information can
be used for reducing the number of relevant unknown param-
eters, making the reconstruction �data inversion� much sim-
pler, also avoiding problematic issues of the standard ap-
proach, such as the rapid growth of reconstruction errors
with the size of the reconstruction space �12,13�.

The main idea of the present contribution is to point out
and exploit formal analogies between the description of
Gaussian states and that of finite-dimensional quantum
states. Based on this analogy we put forward a simple and
efficient method for reconstructing Gaussian states from ho-
modyne data. Since by definition the result of Gaussian to-
mography is a Gaussian state, the quality of Gaussian fit can

also be used to assess how far is the measured state from the
family of Gaussian states, thus providing an operational defi-
nition of Gaussianity for quantum states �14�. This will be
demonstrated upon the application of the method to homo-
dyne data taken on states produced by an optical parametric
oscillator close to threshold �15�.

The paper is structured as follows. In Sec. II we review a
few basic facts related to Gaussian states and homodyne de-
tection. This will be used in Sec. III for the formulation of a
reconstruction method based on the detection of rotated
field-quadrature operator. The theory is then generalized to
multidimensional Gaussian states in Sec. IV. Experimental
results and data analysis are reported in Sec. V, whereas Sec.
VI closes the paper with some concluding remarks.

II. HOMODYNING GAUSSIAN STATES

For the sake of simplicity we start by formulating the
problem of reconstruction for single mode Gaussian field �,
with Wigner function given by

W�X� =
exp�− 1

2 �X − X�TG−1�X − X��
2��Det�G�

, �1�

with XT= �x ,y� and covariance matrix G given by

G �
1

2
	 2��X�2 ��X,�Y�

��X,�Y� 2��P�2 
 � � �
1

2
	0 − i

i 0

 , �2�

where X= �a+a†� /�2 and Y = i�a†−a� /�2 are the quadrature
operators, a and a† being mode operators. If the homodyne
detector is set to measure the quadrature X���=X cos �
+Y sin �, the positive operator-valued measure �POVM�
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���x ,�� associated with its realistic measurement is the
Gaussian convolution of the quadrature projectors,

���x,�� =� dy

�2���
2

exp�−

	y −
x

��

2

2��
2

�y����y� , �3�

where ��
2 = �1−�� /2�, and � is the quantum efficiency of the

involved �linear� photodetectors. In the Fock basis we have

�y�	 = 	 1

�

1/4

e−�1/2�y2�
k=0



Hk�y�

2k/2�k!
e−ik	�k� , �4�

and the distribution of homodyne outcomes is given by

p��x,�� = Tr�����x,��� �5�

=
exp�− �x − �R�X�1�2/�2��

2��
�2���

2
, �6�

where ��
2 =��M22Det�G�+��

2�, M22= �M�22, with M
=R�G−1R−�, and the rotation matrix is defined as

R� = 	 cos � sin �

− sin � cos �

 .

III. ESTIMATION OF COVARIANCE MATRIX

In this section, we address the problem of how to estimate
efficiently the covariance matrix G. For the sake of simplic-
ity let us set the coherent part of the signal to zero and �
=1. Introducing a unit vector �u�= �cos � , sin �� parametrized
by the phase of the local oscillator and noticing that
�u�G�u�=M22Det�G�, the sampled probability density �6�
may be conveniently expressed in the form

p�x,�� =
1

�2��u�G�u�
exp�−

x2

2�u�G�u�� . �7�

There are several striking similarities between the recon-
struction of spin 1/2 states and covariance matrices. Indeed,
in both cases the state is described by 2�2 matrices. The
density matrix of the spin 1/2 state is a Hermitian, unit trace,
semipositive matrix, thus leaving three free parameters for its
full description. The covariance matrix is real, symmetric
matrix, again fully described by three parameters, con-
strained to relation �2�. Projections of a spin-density matrix
are conveniently sampled in a Stern-Gerlach experiment.
Similarly, detections of quadrature variables in a homodyne
experiment provide sampling of quadrature variances repre-
senting projections of a covariance matrix. Indeed, estimated
matrix G appears only in the variance of distribution �7�. A
single detected event does not say too much, but repeated
detections do. Provided that homodyne detection is repeated
n times for the same setting, xi being the detected results, the
likelihood of G reads

L�G��xi�� 
1

�2��u�G�u��n/2exp�−

�
i

xi
2

2�u�G�u�
� . �8�

Consider now the statistics of the random variable

y = �
i

xi
2,

which is given by

PG�y� =� dx1 ¯ dxn�	y − �
i

xi
2
L�G��xi�� . �9�

It is easy to see that for Gaussian states the fluctuations of the
y variable are governed by the well-known �2 distribution

PG�y� =
2−n/2

��n/2�
yn/2−1

��2�G��n/2exp�−
y

2�2�G�� . �10�

Upon maximizing the likelihood �10�, the quadrature vari-
ance, which plays the role of a projection of the covariance
matrix, �2�G�= �u�G�u�, is estimated as

�2�G� =
1

n
�

i

xi
2. �11�

This establishes a formal analogy between estimations of
spin states and Gaussian covariance matrices. In the former
case the probability of finding the spin “up” is sampled by
the number of particles deflected upward in a Stern-Gerlach
apparatus. Similarly, for Gaussian states the variance of a
quadrature distribution �i.e., a projection of the covariance
matrix� is sampled by a properly normalized sum of squares
of the detected quadrature values.

Having mentioned similarities between the two problems
let us also identify three important differences between the
estimation of a spin 1/2 system and estimation of a Gaussian
state.

�i� The two problems have different underlying statics:
binomial statistics for yes-no spin data and �2 distribution for
sampled variances.

�ii� There are slightly different constraints on the esti-
mated quantities: semipositivity of density matrix for spins
and uncertainty relations constraint, stated in the form of the
matrix inequality �2�, for Gaussian states.

�iii� The measured quantities have different nature: for
spins the sampled probabilities are expectation values of
Stern-Gerlach outcomes whereas for Gaussian states we need
sampled variances of the homodyne data, i.e., the informa-
tion is contained in the data noise.

Notice that properties �ii� and �iii� will be important for
the discussion of our main result below.

In order to get a unique reconstruction of the measured
Gaussian state, quadrature measurement should be repeated
with different settings of phases �h of the strong local oscil-
lator. Let us assume that each quadrature X��h� is sampled nh
times with the results xh,1 ,xh,2 , . . . ,xh,nh

, and denote yh

=�kxh,k
2 . The corresponding ln-likelihood reads
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ln L�G� = −
1

2�
h

nh ln �h
2�G� − �

h

yh

2�h
2�G�

, �12�

where �h
2�G�= �uh�G�uh�. A reconstruction of the signal cova-

riance matrix is then obtained by maximizing the likelihood
function subject to the constraint G��. Let us first consider
the extremal equation for the covariance matrix. It is easily
found by taking a derivative of ln L�G� with respect to ma-
trix G. This yields

RG = DG , �13�

where

D = �
h

nh

�uh�G�uh�
�uh��uh� , �14�

R = �
h

yh

�uh�G�uh�2 �uh��uh� . �15�

As there is again a direct analogy between the extremal equa-
tion for G and the corresponding extremal equation for the
maximum-likely spin state, methods developed for generic
quantum estimation can be employed, with some caution, to
solve the extremal equation �13� by iterations �16�. A form
suitable to iterations can be found noting that by Hermicity
of G, R, and D both G=D−1RG and G=GRD−1 simulta-
neously hold and may be combined into a single extremal
matrix equation

G = D−1RGRD−1, �16�

which is our main formal result. This matrix equation may be
iterated starting, e.g., with the covariance matrix of the
vacuum state. In addition the form of Eq. �16� guarantees
that semipositivity, G�0, of the covariance matrix is pre-
served after each iteration step.

Some discussion of this algorithm is now in order. As we
have already mentioned above condition G�0 would be
typical for density matrices. Covariance matrices obey a
more complicated relation G��. Though in principle the
algorithm �16� may converge to a covariance matrix violat-
ing Heisenberg uncertainty relations, we will present physi-
cal arguments showing that in practice this almost never
happens.

First, let us discuss the estimation of a spin state from
noisy data. Ignoring for a while the constraint ��0, the
probability that the best fit of measured data is provided by a
nonphysical matrix that depends on the distance of � from
the boundary of the convex set of density matrices and also
on the character of the noisy data. When the true state lies
close to the boundary and/or the measured relative frequen-
cies differ a lot from the theoretical probabilities the chances
are high that the data are best explained by a “density ma-
trix” having at least one negative eigenvalue. In addition,
states close to the boundary are easy to produce, e.g., by a
projection. Hence the condition ��0 is an essential part of
the spin state tomography, which must be incorporated in any
meaningful state reconstruction protocol.

The situation is quite different in Gaussian state tomogra-
phy where the boundary of physical covariance matrices is

made by minimum-uncertainty states, which rarely appear in
practice. In fact, in order to generate a minimum-uncertainty
state one has to eliminate all the sources of noise from the
preparation procedure. In addition, variances �noise� rather
then probabilities are fitted from data in Gaussian tomogra-
phy. Hence, any additional noise, being of statistical origin or
due to some imperfection in the measurement, will have the
effect of moving the reconstructed state further away from
the boundary. For these reasons the condition G�� is not
likely to be violated by G reconstructed from real data. This
justifies the use of the simple reconstruction algorithm of Eq.
�16�. Cast in another way, a possible violation of the condi-
tion G�� can be seen as a challenge for experimenters.
Indeed, to obtain such a data set, one must be able to prepare
and control quantum states lying very close to the minimum-
uncertainty states, and to measure them with sufficient pre-
cision. This requirement is obviously much more demanding
then, for example, the generation and observation of squeez-
ing in one quadrature without paying attention to the excess
noise introduced in the conjugated observable. In case of
such an advanced experiment the condition G�� can taken
into account by means of a simple two-step strategy. Pro-
vided G�� the reconstructed covariance matrix is physi-
cally sound and the search is over. In the opposite case a
search for the maximum-likely covariance matrix should be
repeated among the set of minimal uncertainty states.

IV. RECONSTRUCTION OF MULTIMODE
GAUSSIAN STATES

The reconstruction method illustrated in Sec. III may be
straightforwardly generalized to the problem of estimating
the covariance matrix of multimode Gaussian states. The
strategy is the following. The modes will be mixed by means
of controlled beam splitter and the homodyne detection will
be done on the selected output mode. Provided that covari-
ance matrix has been sampled by sufficient number of pro-
jections, it can be reconstructed. In order to apply the ML
procedure developed above it is enough to show how vari-
ances of the detected modes can be derived from the generic
covariance matrix. Without loss of generality the method will
be illustrated on the example of two-mode case since the
extension of the model to higher dimensional case is straight-
forward.

Let Gin be the 4�4 covariance matrix of a two-mode
Gaussian state with entries

Gkl � �Gin�kl = 1
2 ��Qk,Ql�� − �Ql��Qk� , �17�

where Q= �X1 ,Y1 ,X2 ,Y2�, �Qk ,Ql�=QkQl+QlQk, and Xk

= 1
�2

�ak+ak
†� and Yk= 1

i�2
�ak−ak

†� are the quadrature operators
of mode k. Moreover, one should have

Gin � � � � = 	� 0

0 �

 , �18�

0 being the 2�2 null matrix. If the two modes are mixed at
a beam splitter with transmissivity �=cos2 �, then the
emerging two-mode state is still Gaussian and its covariance
matrix is given by
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Gin → Gout = SBS���GinSBS
T ��� , �19�

where

SBS��� = 	 cos � 12 sin � 12

− sin � 12 cos � 12

 �20�

is the symplectic transformation associated with the beam
splitter and 12 is the 2�2 identity matrix. In the case of a
balanced beam splitter ��=� /4� the two output modes, say
b1 and b2, correspond to b1= �a1+a2� /�2 and b2

= �a1−a2� /�2, respectively. In this case we can write the
evolved covariance matrix as follows:

Gout = 	A�+� C

CT A�−� 
 �21�

with

A��� = 1
2 �G1 + G2 � �G3 + G4�� , �22�

C = 1
2 �G2 − G1 + �G3 − G4�� , �23�

where

G1 = 	G11 G12

G12 G22

, G2 = 	G33 G34

G34 G44

 , �24�

G3 = 	G13 G14

G23 G24

, G4 = G3

T, �25�

and the elements Gkl are defined by Eq. �17�. Matrices G1
and G2 correspond to the covariance matrices of the reduced
single-mode input states, i.e., when the other one is ne-
glected. We have chosen the notation in such a way that A�+�

and A�−� are the covariance matrices of the single-mode
states corresponding to modes b1 and b2, respectively. Ho-
modyne detection on mode b1 can be simply described by
extension of vector �u� into higher dimension as ��u��
= �cos � , sin � ,0 ,0�; similarly, in the case of mode b2 one has
to use the vector ��v��= �0,0 ,cos � , sin ��. Hence the de-
tected variance can be easily represented by expression
��w��SBS���GinSBS

T �����w��, with w=u ,v. Consequently, the
reconstruction can be done by means of the same reconstruc-
tion algorithm as above considering index h as multi-index
for phase of homodyne detection �k and the beam splitter
transmissivity �=cos2 �,

�uh� → SBS
T �����uk�� . �26�

In particular, two configurations of beam splitter are suffi-
cient for successful reconstruction of two-mode covariance
matrix, namely, the detection on the free �uncoupled� modes
with SBS�0�=1 �corresponding to covariance matrices �24��
and mixing with symmetric beam splitter �corresponding to
covariance matrices �22��. Taking into account the efficiency,
the extremal equation for covariance matrix reads

D�w�G = R�w�G, w = u,v , �27�

where

D�w� = �
k,�

1

��wk��SBS���GSBS
T �����wk�� + ��

2

�SBS
T �����wk����wk��SBS��� , �28�

and

FIG. 1. Experimental setup.

(b)

(a)

FIG. 2. Raw homodyne data for the vacuum state �top� and for
the OPO output close to threshold �bottom�.

0 5 10 15 20 25
N

0

0.1

0.2

d H
S

FIG. 3. Hilbert-Schmidt distances of state reconstructions done
in N-dimensional Fock spaces with respect to the reference state
reconstructed in dimension N=30.
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R�w� = �
k,�

xk,�
2

���wk��SBS���GSBS
T �����wk�� + ��

2�2

�SBS
T �����wk����wk��SBS��� . �29�

V. EXPERIMENTS AND DATA ANALYSIS

The method exposed in Sec. IV has been applied to ho-
modyne data samples acquired for two different kind of input
state: a �definitely Gaussian� reference vacuum state and
slightly non-Gaussian state, close to squeezed thermal
vacuum state, generated by an I-type optical parametric os-
cillator �OPO� that operates close to the threshold. In the
following, we give a brief description of the experimental
setup �15� with particular attention paid to the homodyne
detector and the data-acquisition system. The setup can be
divided into three distinct blocks: the state source, a below
threshold fully degenerated OPO, the detector, a quantum
homodyne and related electronics, and the PC-based acqui-
sition board �see Fig. 1�.

The source is a below threshold fully degenerate OPO
based on a type-I LiNbO3:MgO crystal and pumped at 532
nm �18�. The quantum homodyne detector, whose reliability
has been proved in different experiments �6,15�, shows an
overall quantum efficiency of �=0.88�0.02. To avoid any
influence on the statistics of the data, the electronic noise
floor is kept �15 dB below the shot noise. Mode matching
at the BS has been accomplished by spatially filtering the
local oscillator �LO� beam by a mode cleaner cavity whose
geometrical properties match the OPO’s ones. The relative
phase between the LO and the beam exiting the OPO is
scanned by a piezomounted mirror to which a linear voltage
ramp is applied; the ramp is adjusted so to have a 2� phase
span in the acquisition time. The 2� variation necessary for a
full state reconstruction is selected in the central region of
the piezorange so to optimize the linear response of the
piezostack.

Data sampling is moved away from the laser carrier fre-
quency by mixing the homodyne current with a sinusoidal

signal of frequency �=3 MHz. The resulting current is low-
pass filtered with a bandwidth B=1 MHz, and eventually
sampled by a digital acquisition PC-based module �Gage
14100� able to acquire up to 1�106 points per run with 14
bits resolution. For each state, 1 048 308 quadrature values
were measured.

Measured quadrature values normalized with respect to
vacuum fluctuations are shown in Fig. 2. To facilitate our
analysis the data were grouped into 31 phase bins prior to
reconstruction. The purpose of the experiment was to per-
form Gaussian tomography and compare the results with that
of the standard homodyne tomography �17� where no as-
sumption about the Gaussianity of the measured state were
made. The comparison of the reconstructed states may be
seen as a test of Gaussian behavior. Such an approach is
superior to a test based on evaluating certain quadrature mo-
ments due to the fact that all the relevant moments are en-
coded in the reconstructed state.

The Gaussian analysis starts with evaluating quantities
yh=� jxh,j

2 for each phase bin �h, h=1,31. These are used to
construct operator R appearing in the extremal equation for
covariance matrix Eq. �13�. The following covariance matri-
ces were found for measured vacuum �V� and OPO �O� data:

GV = 	0.50 0.00

0.00 0.50

, GO = 	 2.38 − 0.53

− 0.53 0.55

 . �30�

Matrix GO indicates that the reconstructed Wigner function
of the OPO state is slightly rotated with respect to the x-p
axes, which are defined by the phase of the local oscillator.
The squeezed nature of the input signal is revealed by diago-
nalizing matrix GO. With that variances of 0.40 and 2.53 are
found for the squeezed and antisqueezed quadratures, respec-
tively. Notice that the reconstructed state is not a minimum-
uncertainty state, Det GO=1.02�1 /4 and so the recon-
structed covariance matrix is located well inside the set of
physical covariance matrices, GO��. To summarize the
Gaussian analysis, a squeezed Gaussian state is inferred from
experimental data whose antisqueezed quadrature has been
contaminated by some classical excess noise. Now it is in-

FIG. 4. Wigner functions �upper row� and cuts along the y axis �bottom row� of the OPO state reconstructed in Fock spaces of dimensions
�a� N=8, �b� N=15, and �c� N=25, respectively.
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teresting to compare the result of Gaussian analysis with that
of the generic quantum tomography applied to the same data
set. In this case, no assumption is made about the Gaussian
character of the measured signal and the reconstruction is
done on an N-dimensional truncated Fock space using the
maximum-likelihood technique �17�. Data have been
grouped into 31 phase bins. In addition, detections within
each phase bin have been divided into 31 quadrature bins.
The set of quadrature projectors corresponding to the 31
�31=961 pairs of phase and quadrature values comprises a
POVM describing the tomography scheme. Prior to recon-
struction, the dimension N of the reconstruction space must
be chosen. Notice that this parameter has no analogy in the
Gaussian analysis above.

In order to see the effects of the truncation on the recon-
structed state, the procedure has been repeated for different
values of N. The convergence of the generic reconstruction
with growing reconstruction space is shown in Fig. 3, where
the Hilbert-Schmidt distance dHS=Tr���N−�30�2� between a
reconstruction from a truncated space and a reference recon-
struction from a large space is plotted as a function of N.
This figure indicates that from N=10 on the reconstructed
state does not change significantly when the reconstruction
space is enlarged. This conclusion, however, turns out to be
incorrect when one is interested in qualitative, rather than

quantitative properties of the reconstructed state. For in-
stance, the shape of the reconstructed Wigner function may
help to classify the signal as being Gaussian or non-
Gaussian. Similarly, the presence of negative values of W
may be taken as a sign of nonclassical behavior. In turn,
making qualitative statements from quantitative results of to-
mography may be delicate and challenging. This is illus-
trated in Fig. 4, where we report the Wigner function and the
corresponding y cut for different values of the truncation
dimension for the reconstruction in the Fock space. Notice
that what may seem as a sign of nonclassical interference in
Fig. 4�a� is actually an artifact due to small value of the
reconstruction dimension. Remarkably, this happens even
though the inspection of the elements of �15 and �25 in the
Fock basis shows negligible differences �see also Fig. 3�,
since these tiny differences get amplified when switching to
Wigner representation. Also plots in Fig. 4�b� distinctly
shows non-Gaussian shapes and the artifacts are present until
dimension of N�25 is reached. In this region the generic
reconstruction starts to be consistent with the Gaussian re-
sults yielding very similar values of quadrature variances.
More than 600 free parameters must be introduced in the
standard tomography to achieve the quality of the simple
Gaussian fit of OPO data.

There remains a question of whether the deviations from
Gaussian character that may be observed in the generic re-
construction even for large dimensions N are real features of
the measured state or not. This possibility may be confirmed
or discarded by analyzing the scores �likelihoods� achieved
by the Gaussian and generic reconstructions, respectively.
Here, a direct comparison is not possible due to different
natures of involved data. Instead, one may determine how
much the quality of the fit degrades by replacing vacuum
data with the more noisy OPO signal. For Gaussian analysis
we find that the logarithmic likelihood of the OPO recon-
struction is smaller by a factor 3.66 compared to the vacuum
reconstruction. Standard tomography yields a smaller factor
of 3.16, which indicates that a better fit of the OPO signal
generated near the threshold is obtained by abandoning the
Gaussian hypothesis.

In order to test the null hypothesis for our samples �i.e.,
data normally distributed� we grouped homodyne data into
phase bins made of 10 000 outcomes each and applied “nor-
mality tests” to both the samples of Figs. 2. In particular, we
have used the Jarque-Bera �JB� �19� and the Shapiro-Wilk
�SW� normality tests �20�. The JB test is based on both the
skewness S and the kurtosis �excess� K of the sample, i.e.,

S =
�3

��2�3/2 , K =
�4

��2�2 − 3, �31�

where �k� 1
N�h=1

N �xh− x̄�k is the kth central moment, N is the
number of data, and x̄ their mean. The JB statistics is then
defined as

WJB =
N

6
	S2 +

1

4
K2
 . �32�

Since WJB has an asymptotic �2 distribution with two de-
grees of freedom �19�, one can use it to test the null hypoth-

(a)

(b)

FIG. 5. �Color online� Variance �circles�, WJB �triangles�, and
the p value of WSW �p�WSW�, squares� associated with the homo-
dyne data of Figs. 2. Top: vacuum data. Bottom: OPO close to
threshold data �here p�WSW� has been magnified by a factor �1.5�.
The dashed line is the threshold value 0.05 for p�WSW� ��1.5 in the
bottom plot�; the dot-dashed line is the threshold value 5.99 for
WJB. If WJB�5.99 and/or p�WSW��0.05, then the null hypothesis
�Gaussian states� is rejected. See the text for details. Results indi-
cate that vacuum data �top� are consistent with the Gaussian hy-
pothesis whereas for data coming from the OPO close to threshold
the Gaussian hypothesis should be rejected.
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esis of normality. In particular, by choosing a significance
level 0.05, one rejects the null hypothesis if WJB�5.99. The
test statistics WSW of the SW test reads as follows:

WSW =

	�
h=1

N

ahx�h�
2

�
h=1

N

�xh − x̄�2

, �33�

where x�h� are the ordered sample values �x�h� is the hth
smallest value� and ah are constants generated from the
means, variances, and covariances of the order statistics of a
sample of size N from a normal distribution �20�. In this case
one rejects the null hypothesis of normality within a signifi-
cance interval of 0.05, if p�WSW��0.05, where the p�WSW�
is the p value of WSW, i.e., the probability of obtaining a
result at least as extreme as the one that was actually ob-
served, given that the Gaussian hypothesis is true. The two
test statistics are shown in Fig. 5, where we plotted the vari-
ance, WJB and p�WSW� associated with the data of Figs. 2. As
one can see, the vacuum data are normally distributed,
whereas those coming from the OPO close to threshold show
clear deviations from the Gaussian behavior �see also �15��,
thus justifying the rejection of Gaussian hypothesis.

VI. CONCLUSIONS

In this paper, upon exploiting the formal analogies be-
tween the description of Gaussian states and that of finite-

dimensional quantum states, we have proposed and demon-
strated a simple and efficient method for the reconstruction
of Gaussian states. The method has been tested numerically
and applied to the reconstruction of the quantum state of the
signal generated by an optical parametric oscillator. As a
matter of fact, under the Gaussian hypothesis there is a dras-
tic reduction in the number of parameters needed to charac-
terize a quantum state, and this leads to a robust reconstruc-
tion technique. Indeed, our results indicate that on Gaussian
and near Gaussian states the proposed method provides a
more stable and reliable reconstructions than standard to-
mography techniques. We have also shown that putting to-
gether results coming from the Gaussian method with those
coming from standard tomography, we obtain a reliable tool
to detect the non-Gaussian character of optical signals. We
conclude that the present method provides a reliable and ro-
bust tool for the characterization of quantum states which
may be of interest for a rather broad community working in
continuous-variable quantum information processing and
quantum state reconstruction.
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