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In recent years quantum correlations have received a lot of attention as a key ingredient in advanced

quantum metrology protocols. In this Letter we show that they provide even larger advantages when

considering multiple-interferometer setups. In particular, we demonstrate that the use of quantum

correlated light beams in coupled interferometers leads to substantial advantages with respect to classical

light, up to a noise-free scenario for the ideal lossless case. On the one hand, our results prompt the

possibility of testing quantum gravity in experimental configurations affordable in current quantum optics

laboratories and strongly improve the precision in ‘‘larger size experiments’’ such as the Fermilab

holometer; on the other hand, they pave the way for future applications to high precision measurements

and quantum metrology.
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The dream of building a theory unifying general relativ-
ity and quantum mechanics, the so-called quantum gravity,
has been a key element in theoretical physics research for
the past 60 years. Several attempts in this sense have been
considered. However, for many years no testable prediction
emerged from these studies, leading to the common wis-
dom that this kind of research was more properly a part of
mathematics than of physics, being by construction unable
to produce experimentally testable predictions as required
by the Galilean scientific method. In the past few years
this common wisdom has been challenged [1–6]. More
recently, effects in interferometers connected to noncom-
mutativity of position variables in different directions [7,8]
have been considered for both cavities with microresona-
tors [4] and two coupled interferometers [5], the so-called
‘‘holometer.’’ In particular, this last idea led to the planning
of a double 40 m interferometer at Fermilab [9].

Here, we consider whether the use of quantum corre-
lated light beams in coupled interferometers could lead to
significant improvements allowing an actual simplification
of the experimental apparatuses to probe the noncommu-
tativity of position variables. On the one hand, our results
demonstrate that the use of quantum correlated light can
lead to substantial advantages in interferometric schemes
also in the presence of nonunit quantum efficiency, up to a
noise-free scenario for the ideal lossless case. This repre-
sents a big step forward with respect to the quantummetrol-
ogy schemes reported in the literature [10–13], and paves
the way for future metrology applications. On the other
hand, they prompt the possibility of testing quantum gravity
in experimental configurations affordable in a traditional
quantum optics laboratory with current technology.

The idea at the basis of the holometer is that noncom-
mutativity at the Planck scale (lp ¼ 1:616� 10�35 m) of

position variables in different directions leads to an addi-
tional phase noise, referred to as holographic noise (HN).

In a single interferometer I this noise substantially con-
founds with other sources of noise, even though the most
sensible gravitational wave interferometers are considered
[5], since their HN resolution is worse than their resolution
to gravitational wave at low frequencies. Nonetheless, if
the two equal interferometers I1 and I2 of the holometer
have overlapping spacetime volumes, then the HN between
them is correlated and easier to identify [5]. Indeed, the
ultimate limit for holometer sensibility, as for any classical-
light based apparatus, is dictated by the shot noise; there-
fore, the possibility of going beyond this limit by exploiting
quantum optical states is of the greatest interest [11,14–16].
In the past the possibility of exceeding the shot-noise

limit in gravitational-wave detectors was suggested [17,18]
and, recently, realized [19] by using squeezed light. As
shown in the following, this resource can indeed allow an
improvement of holometerlike apparatuses as well.
Nonetheless, in this case, having two coupled interferome-
ters, the full exploitation of properties of quantum light, and
in particular of entanglement, may lead to much larger
improvements.
In general, the observable measured at the output of

the holometer may be described by an appropriate opera-

tor Ĉð�1; �2Þ, �k being the phase shift (PS) detected

by Ik, k¼1, 2, with expectation value hĈð�1;�2Þi¼
Tr½�12Ĉð�1;�2Þ�, where �12 is the overall density matrix
associated with the state of the light beams injected in
I1 and I2.
In order to observe the HN, one should compare [5]

hĈð�1; �2Þi in two different experimental configurations
of I1 and I2, namely, parallel (k) and perpendicular (?)
(Fig. 1). In configuration k , the interferometers are ori-
ented so that the HN induces the same random fluctuation
of their PSs, leading to a substantial correlation between
them, since they occupy overlapping spacetime volumes
[5,20]. Thus, by measuring the correlation of the
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interference fringes, one can highlight the presence of the
HN. Configuration ? serves as a reference measurement,
namely, it corresponds to the situation where the correla-
tion due to HN is absent, since their spacetime volumes are
not overlapping [5,20]; in other words, it is equivalent to
the estimation of the ‘‘background.’’ The statistical prop-
erties of the PS fluctuations due to HNmay be described by
a suitable probability density function, fxð�1;�2Þ, x¼k ,
? . In turn, the expectation of any operator Ôð�1; �2Þ, or
function of the PSs, should be averaged over fx; namely,

hÔð�1; �2Þi ! Ex½Ôð�1; �2Þ�
�

Z
hÔð�1; �2Þifxð�1; �2Þd�1d�2: (1)

As in the holometer, the HN arises as a correlation
between two phases, the appropriate function to be esti-
mated is their covariance in the parallel configuration
Ek½��1��2�, where ��k ¼ �k ��k;0, and �k;0 are the

mean PS values measured by Ik, k ¼ 1, 2. Since the holo-

graphic noise is supposed to be small, we can expand the Ĉ
operator in terms of small fluctuation ��k. According
to Eq. (1) we are able to directly relate the covariance of
the PSs to the observable quantities (see Supplemental
Material, Sec. I, for details [21]):

Ek½��1��2� � Ek½Ĉð�1; �2Þ� � E?½Ĉð�1; �2Þ�
h@2�1;�2

Ĉð�1;0; �2;0Þi
;

ð��1; ��2 � 1Þ: (2)

Equation (2) states that the covariance can be estimated
by measuring the difference between the expectation val-

ues of the operator Ĉ in the two configurations. Thus, this
difference represents the measured signal, while the coef-
ficient at the denominator is the sensitivity.
One has to reduce as much as possible the uncertainty

associated with its measurement:

Uð��1��2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vark½Ĉð�1; �2Þ� þ Var?½Ĉð�1; �2Þ�

½h@2�1;�2
Ĉð�1;0; �2;0Þi�2

vuut ;

ð��1; ��2 � 1Þ; (3)

where Varx½Ĉð�1;�2Þ��Ex½Ĉ2ð�1;�2Þ��Ex½Ĉð�1;�2Þ�2
[22]. We observe that the sum of variances derives from
the independence of the two measurement configurations.
Thanks to the same expansions leading to Eq. (2), we can

write Varx½Ĉð�1;�2Þ�¼Var½Ĉð�1;0;�2;0Þ�þOð��2Þ for

both x ¼k , ? . Therefore, the zero-order contribution to
the uncertainty is

Uð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Var½Ĉð�1;0; �2;0Þ�

q
�����h@2�1;�2

Ĉð�1;0; �2;0Þi
����� ; (4)

where Var½Ĉð�1;0; �2;0Þ� ¼ hĈð�1;0; �2;0Þ2i �
hĈð�1;0; �2;0Þi2 does not depend on the PSs’ fluctuations

due to the HN, but it represents the intrinsic quantum
fluctuations of the measurement described by the operator

Ĉð�1; �2Þ and depends on the optical quantum states sent
in the holometer. In particular, our aim is to look for a
suitable choice of quantum optical state �12 and an opera-

tor Ĉð�1; �2Þ that reduces this zero-order contribution to
the uncertainty. In the following we will demonstrate that
the use of quantum resources, like squeezing or, much
more, entanglement, provides huge advantages in terms
of achieved accuracy with respect to classical light.
As a first examplewe consider a configuration (SQ)where

the two input modes of each interferometer Ik, k ¼ 1, 2, are
excited in a coherent state and a squeezed vacuum state
with mean number of photons �k and �k, respectively
(see Fig. 1). Since the difference of the number of photons

in the two output ports of each interferometer, N̂k�ð�kÞ ¼
N̂ckð�kÞ � N̂dkð�kÞ, can be used to estimate the correspond-

ing�k with sub-shot-noise resolution [10,11,17], reasonably
the covariance Ek½��1��2� can be efficiently evaluated

from the covariance between N̂1�ð�1Þ and N̂2�ð�2Þ.
Therefore, we define Ĉð�1;�2Þ¼�N̂1�ð�1Þ�N̂2�ð�2Þ,
with �N̂k�ð�kÞ¼N̂k�ð�kÞ�E½N̂k�ð�kÞ� [we note that

Ek½N̂k�ð�kÞ� ¼ E?½N̂k�ð�kÞ� ¼ E½N̂k�ð�kÞ�, as a conse-

quence of the properties of fxð�1; �2Þ; see Supplemental
Material, Sec. I [21]).
Figure 2 shows the corresponding uncertainty at the zero

order given in Eq. (4): assuming identical input states
(�k ¼ � and �k ¼ �, k ¼ 1, 2), the minimum is achieved

(a) (b)

FIG. 1 (color online). Sketch of the holometer. (a) The two
involved interferometers, Ik, k ¼ 1, 2, have input modes ak and
bk and output modes ck � ckð�kÞ and dk � dkð�kÞ, where two
detectors are placed for measuring the number of photons
N̂ck ð�kÞ and N̂dk ð�kÞ, respectively. (b) The interferometers are

set in the configurations k and ? according to the picture. The
input modes bk, k ¼ 1, 2, are always excited in two coherent
states labeled as jCOHi1jCOHi2, while the modes ak are excited
in two uncorrelated squeezed vacua labeled as jSQi1jSQi2
[configuration (SQ)] or in a maximally entangled two-mode
squeezed vacuum marked as jTWBi12 [configuration (TWB)].
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for �1;0 ¼ �2;0 ¼ �=2, and reads (see Supplemental

Material, Sec. II [21])

Uð0Þ
SQð�;�Þ � ffiffiffi

2
p �þ�

�
1þ 2�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ�2

p �

ð���Þ2 : (5)

In perfect analogy with the PS measurement for a single
interferometer [17,18], if � � � � 1, then we have the

optimal accuracy Uð0Þ
SQ � ð2 ffiffiffi

2
p

��Þ�1. This represents a

strong advantage in terms of uncertainty reduction [of the

order ð4�Þ�1] with respect to classical case Uð0Þ
CL � ffiffiffi

2
p

=�,

i.e., when only coherent states are employed. Nevertheless,
an important difference between the single interferometer PS
measurement, involving a first-order moment of the photon
number distribution, and the covariance estimation, involv-
ing the second-order momenta, arises: while in the first case
the uncertainty scales as the usual standard quantum limit

one,/ ��1=2, in the second case it scales/ ��1 (neglecting
the little relative contribution of the squeezing to the inten-
sity). We remark that the advantage of the present scheme
is based on the independent improvement of the resolution
of each interferometer which is itself limited by the amount
of squeezing (see Supplemental Material, Sec. II [21]).
However, the aim of the holometer is to couple I1 and I2

minimizing the noise on their outputs correlation, namely,
regardless of the noise in the single interferometer. This
suggests that quantum correlated states, coupling I1 and
I2, could further enhance the performance of the holometer.

To this aim, we consider a new configuration (TWB)
where modes a1 and a2 of Fig. 1 are excited in a continuous
variable maximally entangled state, i.e., a two-mode
squeezed vacuum state or twin-beam state, jTWBiia1;a2 ¼
S12ð�Þj0ia1;a2 ¼

P1
n¼0 cnð�Þjnia1 jnia2 , where S12ð�Þ ¼

expð�ay1ay2 � ��a1a2Þ is the two-mode squeezing operator.
This state can be easily produced experimentally, for ex-
ample, by the parametric down-conversion process [23].
If we set � ¼ j�jei�� and introduce the mean photon num-

ber per mode � ¼ sinh2j�j, then cnð�Þ ¼ ð1þ �Þ�1=2½ð1þ
��1Þe�i2�� ��n=2 [24]. The input modes b1 and b2 are still
excited in two coherent states, so that the four-mode input
state is jc i ¼ jTWBiia1;a2 	 j	ib1 	 j	ib2 .
One of the peculiarities of the state jTWBiia1;a2 is

the presence of the same number of photons in the
two modes [14,25–27], then each power of the photon
number difference of the two modes is identically null,

a1;a2hhTWBjðN̂a1 � N̂a2ÞMjTWBiia1;a2 ¼ 0, 8 M> 0.

We also observe that, in the absence of the HN and
choosing the optimal working regime �k;0 ¼ 0, k ¼ 1, 2,
I1 and I2 behave like two completely transparent media
for their input fields [see again Supplemental Material,
Sec. II, Eq. (4) [21]]. In particular, output modes c1
and c2 exhibit perfect correlation between the number of
photons, which directly comes from the input modes a1
and a2, leading to the the natural choice of the observable
as the fluctuation of the photon numbers’ difference,

Ĉð�1; �2Þ ¼ �2½N̂c1 � N̂c2�. Indeed, the numerator of

Eq. (4),Varf�2½N̂c1ð0Þ � N̂c2ð0Þ�g is identically null, while
the denominator reads

hc j@2�1;�2
�2½N̂c1ð�1;0Þ � N̂c2ð�2;0Þ�jc i

¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þ

p
� cos½2ð�� � �	Þ�; (6)

which is nonzero for both �, � � 0 and it is maximized
for �� � �	 ¼ 0. This quantity represents also the coeffi-

cient of proportionality in Eq. (2) between the covariance
of the HN and the measured signal. It is worth noting that,
even though for �k;0 ¼ 0 the coherent state gives no con-

tribution to the output modes c1 and c2, being completely
transmitted to the complementary modes d1 and d2, when
fluctuations of the PS occurs a little portion will be
reflected to the monitored ports and this guarantees the
sensitivity to the HN PSs’ covariance.
Thus, the correlation property of the TWB state leads to

the amazing result that the contribution to the uncertainty
coming from the photon number noise shown in Eq. (4) is

Uð0Þ
TWB ¼ 0 (when �, � � 0), representing an ideal accu-

racy of the interferometric scheme to the PS’s covariance
due to HN and the main achievement of the present study.
The question that now arises is how and to what extent

our conclusions are affected by a nonunity overall
transmission-detection efficiency 
 (see Supplemental

FIG. 2 (color online). The uncertainty of the phase covariance

log10U
ð0Þ
SQ when the holometer is fed by two independent

squeezed states plus two coherent fields. Here �1;0 ¼ �2;0 ¼
�0 is the central PS of the interferometers, �1 ¼ �2 ¼ � is the
intensity of each squeezing, �1 ¼ �2 ¼ � is the intensity of
each coherent beam, and their phase difference is set to zero.
(a) �
 �, when the coherent and squeezed beams have similar
intensities the noise reduction is lower bounded. (b) � � �, in
this regime quantum noise reduction increases with the amount
of squeezing, offering a strong noise suppression if high level of
squeezing can be reached. The region of the minimum runs at
�0 ¼ �=2.
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Material, Sec. III [21]). In Fig. 3 we plot Uð0Þ for the SQ,
TWB and classical coherent state (CL) approaches, as a
function of 
 (assumed to be the same for both the inter-
ferometers) for a modest level of nonclassical resources
(� ¼ 0:5). As one may expect, SQ exhibits a small advan-
tage in this regime. However, in the high efficiency region
(albeit with values reasonably achievable with current
technologies) the TWB-based approach provides a signifi-
cant improvement not only with respect to classical setup,
but also with respect to SQ.

Focusing on the limit of very small quantum resources,

i.e., � � 1 and � � 1, Uð0Þ
SQ=U

ð0Þ
CL � 1� 2


ffiffiffiffi
�

p
and

Uð0Þ
TWB=U

ð0Þ
CL � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� 
Þ=
p
. For a small amount of

squeezing, the quantum noise Uð0Þ
SQ not surprisingly

approaches the classical case, while for TWB, we have a
degradation of the performances with respect to the ideal
case (
 ¼ 1). Anyway, an improvement with respect to the
classical case is kept for 
> 2=3, demonstrating that a
relatively faint TWB can provide an interesting improve-
ment in the HN detection.

In the opposite limit of high quantum resources explo-

ited, i.e., � � � � 1, Uð0Þ
SQ=U

ð0Þ
CL�ð1�
Þþ
=ð4�Þ and

Uð0Þ
TWB=U

ð0Þ
CL � 2

ffiffiffi
5

p ð1� 
Þ reveal that the performances

of the quantum strategies are limited by the presence of
the terms (1� 
). Here the main difference between SQ
and TWB is that for 
 � 1 SQ exhibits an uncertainty
lower bounded to ð4�Þ�1, i.e., depending on the squeezing
intensity. On the other hand, the TWB approach beats
the classical one for 
> 0:683, while for 
 � 1 it goes

to zero: this demonstrates that the use of quantum light
can largely improve the performances of a holometer
addressed to test quantum gravity models.
A last source of noise, which could affect our results,

may derive from the radiation pressure (RP) [17,28,29].
However, our model is perturbative in phase fluctuations
��k and, according to Eq. (4), the main noise contribution
should come from the zeroth-order term corresponding to
the photon noise. RP is assumed to introduce a second-
order contribution to the uncertainty (see Supplemental
Material, Sec. IV for details [21]) that is related to the light
fluctuation in the arms of the interferometers and to the
phase shift induced by the mirror’s recoil [the latter is given
by ð!�=2mcÞP , where ! and P are the central frequency
of the light and the momentum of the photon, respectively,
� the measurement time, and m the mirrors mass [17]]. In
the case of a single interferometer fed by squeezed light,
the amplitude of the RP noise varies with the squeezing
parameter at the opposite of the photon noise, namely, if
one decreases, the other increases and vice versa; thus, an
optimum regime must be found. In the context of our
proposal the behavior is similar, but for reasonable values
of the involved parameters RP noise is completely negli-
gible (justifying our perturbative approach). Figure 3
shows how RP noise starts to affect the uncertainty for an
average coherent field intensity � * 1023 for � ¼ 10�3 s
(the photons introduced by the quantum modes are negli-
gible), which is a power larger than @!�=�¼3:3�107W.
Since the HNmust be sought in the region of the MHz, i.e.,
for a short measurement time (� � 10�6 s), the RP con-
tribution would be significant for power values larger than
1013 W, a value well far away from the current and
future interferometry technology. One can be surprised
that in the present scheme the radiation pressure is negli-
gible, while it is not always the case for the standard phase
measurement involving a single interferometer. However,
we stress that here we are measuring a phase covariance
between two interferometers, instead of the phase values in
single ones.
In conclusion, in addition to our analysis concerning the

use of two independent squeezed states, which substan-
tially confirms the advantages already demonstrated for
gravity wave detection, the investigation carried out
exploiting entanglement leads to the unprecedented result
that, in an ideal situation, the background noise can be
completely washed out. This achievement not only paves
the way for reaching much higher sensibility in the
holometer under construction at Fermilab or for the real-
ization of a tabletop experiment to test quantum gravity,
but also sheds some first light on new unexpected
opportunities offered by the use of quantum states of light
for a fundamental reduction of noise in interferometric
schemes.
The research leading to these results has received fund-
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FIG. 3 (color online). Uncertainty reduction normalized to the

classical limit Uð0Þ
CL [30]. The solid lines represent the uncer-

tainties only due to the photon noise, corresponding to the zero-
order contribution [see Eq. (4)]. The coherent field intensity is
set to � ¼ 2� 1023, while the twin beams and independent
squeezed beam intensities are �1 ¼ �2 ¼ � ¼ 0:5. The dashed
lines represent the second-order uncertainties including the
RP contribution. For its calculation the measurement time is
chosen � ¼ 10�3 s, the mirror mass m ¼ 102 kg, and the central
angular frequency of the light ! ¼ 3:14� 1015 Hz (a wave-
length of 600 nm.)
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Č. Brukner, Nat. Phys. 8, 393 (2012).
[5] G. Hogan, Phys. Rev. D 85, 064007 (2012).
[6] J. D. Bekenstein, Phys. Rev. D 86, 124040 (2012).
[7] P. Aschieri and L. Castellani, J. Geom. Phys. 60, 375

(2010).
[8] P. Aschieri and L. Castellani, J. High Energy Phys. 06

(2009) 086.
[9] www.holometer.fnal.gov, accessed 03/23/2012.
[10] K. Banaszek, R. Demkowicz-Dobrzański, and I. A.
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