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Abstract
Starting from an elementary model and refining it to take into account more realistic effects, we
discuss the limitations and advantages of matter-wave interferometry in different configurations.
We focus on the possibility to apply this approach to scenarios involving antimatter, such as
positrons and positronium atoms. In particular, we investigate the Talbot–Lau interferometer
with material gratings and discuss in details the results in view of the possible experimental
verification.
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1. Introduction

Matter-wave interference is at the heart of the quantum
mechanical nature of particles. While this phenomenon has
been observed for electrons [1–3], neutrons [4, 5], atoms and
molecules [6–8] using a variety of different experimental
tools, no experimental tests exist on elementary antimatter
particles, or matter–antimatter systems. However, beams of
antiparticles at low energy are becoming increasingly avail-
able, as in the case of antiprotons at the CERN antiproton
decelerator [9] or in the case of positrons (and the associated
positronium (Ps) production) in 22Na source systems coupled
with Surko traps [10].

In this paper we discuss the optical analogy and the main
principles of Fraunhofer and Talbot matter-wave interference
regimes, considering material gratings, in order to introduce
the issues and the problems of antimatter interferometry.
Positrons (e+) are proposed as our first antimatter system to
study and Ps is the atom that we will be considering as a
matter–antimatter symmetric system. The antiproton (p) case
will also be shortly discussed.

The paper is structured as follows. In section 2 we review
the basic elements of quantum diffraction theory of particles
from a grating and describe the build-up of the statistical
interference pattern. Section 3 focuses on the incoherence due

to the source, such as the effect of the particle velocity
spectrum and the source geometrical extension. In section 4
we address the interaction between particles and a grating
considering both neutral particles and charged particles.
Section 5 is devoted to Talbot–Lau interferometry: we
describe the geometry, and its advantages with respect to
single grating setups. Furthermore, we numerically show how
the fringe visibility is affected by the particle velocity spread,
when realistic parameters are used to carry out Monte Carlo
(MC) simulated experiments. Finally, we close the paper
drawing some concluding remarks in section 6.

2. Basic quantum model of diffraction

In this section we review the basics of matter-wave inter-
ferometry. We assume that a particle moving along the y-axis
with de Broglie wavelength h mv 1( )l = - , m and v being
respectively its mass and its velocity along the y axis, interacts
with an N-slit grating laying in the x–z plane (see figure 1).
Upon assuming that the slits are sufficiently large along the z-
axis, so that diffraction is negligible along that direction, we
can represent the state just after the grating at time t = 0
and y = 0, being t = y/v, as the following superposition state
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where x t, 0n ( )y = , n N1, ,= ¼ , are the wave functions
describing the particle passed through the nth slit (we assume,
as usual, that the slits are independent). For a system of
identical slits with period D, we can write x, 0n ( )y =

x nD0 ( )y - . Indeed, the actual expression of x t, 0n ( )y =
is dictated by the characteristics of the diffraction grating and
its interaction with the incoming particle. As the grating
prepares the system in the state of equation (1), we can
assume that the motion along the x-axis is governed by the
free Hamiltonian:
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Therefore, the evolved state x t,( )y is obtained by solving the
Schrödinger equation with the Hamiltonian (2). In particular,
the particle probability density distribution along the x-axis on
the screen at position y = L (the interference pattern), is given
by I x x t L v,N 2( ) ∣ ( )∣( )y= = , where:
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that is formally identical to the Fresnel integral of classical
optics [14]. The most common approach found in literature
[12, 13, 15, 16] is to adopt an ‘effective’ point of view and
postulate a convenient form for the initial single-slit wave
function, for example:
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1

,a a
2 2

( ) ( ) ( )y c= -
- + +⎡⎣ ⎤⎦

where a is the slit width and

x x1 if ,
0 otherwise.{( )c = Î W

W

This is the quantum mechanical analog of assuming uniform
illumination in the treatment of light diffraction. Another
useful choice for the initial single-slit wave function is a
Gaussian function centered on the slit interval with a suitable

variance s, namely (we drop the overall normalization
constants);
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This choice is more convenient, as many calculations can be
easily carried out analytically on Gaussian functions. In this
case, the parameter σ is usually set to a 2 2( )s p= . Upon
introducing the rescaled variables:
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and considering a two-slit setup, the time evolved wave
function outgoing from a double slit setup reads
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where x D 21̂
ˆ= - and x D 22ˆ ˆ= + . The generalization for

a set of N equally separated slits is straightforward. We have
introduced the relative normalization constants Cn, to account
for a possible asymmetry in the beam preparation [13]. In the
following we assume perfect symmetry C C 11 2= = . After
simple algebraic manipulations, defining
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which clearly shows the appearance of an interference pattern
due to the oscillating term (see figure 2). It is worth noting
that the condition for observing the interference maxima in far
field turns out to be the usual relation of classical optics. Thus
in the limit L 1ˆ  , the condition for observing a maximum
reduces to
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L
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2
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which is indeed the expected classical relation. The formal
analogy with classical optics (see equation (3)) also ensures
that the choice of the initial single slit profile impacts only the

Figure 1. A single particle of momentum p = mv impinging on an
N-slit grating (G); detection will take place on a screen, placed at a
distance (L). The grating has a period D and the width of each slit is
a. The z-axis is orthogonal to the x–y plane.

Figure 2. The evolution of the interference pattern (7) shown with its
dependence on the screen distance L.
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envelope of the intensity pattern and not its oscillatory
behavior. The classical Fraunhofer field outgoing a double slit
setup reads
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while starting from (7) it easy to recover a Fraunhofer-like
expression by taking the far field limit in the form L 1ˆ  and
x Dˆ ˆ , so that
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and finally, in order to highlight the similarity with the
classical expression in the Fraunhofer limit, we use
equations (6) in equation (7), obtaining:
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So, much alike the classical case, in a quantum treatment
based on the free evolution of single-slit wave functions, the
latter factorizes and determines the envelope of the pattern.

3. Incoherence due to the source

In order to describe a real experiment, the model introduced
so far is not enough, since many relevant departures from the
ideal situation arise. For instance, the particles’ speeds vary
according to a given distribution, the particle source has a
finite size and the collimation stage unavoidably introduces
transverse momenta. Furthermore, focusing on the scenario
we are interested in, unstable antimatter atoms like Ps can
decay in flight. All of these issues lead to incoherence effects.
In general, if q qq , ,1 2( )= ¼ is the vector of the physical
parameters qk which can classically fluctuate in a real
experiment, we can describe the overall incoherence effect by
averaging the ideal intensity I x t q,( ∣ ) given a suitable dis-
tribution p q( ), that is:

I x t I x t pq q q, , d 9¯ ( ) ( ∣ ) ( ) ( )ò=

There are two relevant examples of incoherence: the one due
to a finite transverse coherence length, the other due to the
presence of a non-monochromatic beam. In this section we
focus on the first one, whereas the effects of a non-
monochromatic beam will be considered in section 5 in the
context of the Talbot–Lau interferometry.

The experimental results show that the patterns of matter-
wave experiments with multi-slit gratings can be described by
considering a limited number of slits [15, 17]. We define an
experimental parameter l0, the coherence length, as the typical
transverse length scale on the plane of the grating that sets
how many slits can coherently take part to the interference
process. From the physical point of view, a finite coherence
length is a result of both the spatial extension and the intrinsic

incoherence of the sources typically employed in matter-wave
experiments. In order to take into account this effect, we add a
(common) random transverse momentum kx along x-direction
to the wave function x t, 0n ( )y = associated with each slit,
namely, x t xk, 0 exp in x( ) ( )y = . If we assume that kx is dis-
tributed according to a Gaussian distribution with zero mean
and variance l1 0

2, one obtains the following analytical result
for the intensity, valid in the Fraunhofer limit [17]:
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is an envelope corresponding to the rescaled Fourier trans-
form of the single-slit wave function x x t, 00( ) ( )y y= = .
Since for nD l0 , the corresponding exponential term
suppresses the interference, l0 can be regarded as the
coherence length predicted in [17], which is inversely
proportional to the transverse momentum spread. This could
allow to determine the coherence length a priori, without
resorting to a fit of the model to experimental data. However
the transverse momentum distribution is not always easily
guessed. For example, if two successive slits are used as
collimators, a bound on the maximum transverse momentum
could be established with a geometrical construction [17].
Nevertheless, since we are interested in more compact
geometries as in the presence of in-flight decay of unstable
antimatter, limiting the dimensions of the apparatus will be of
the utmost importance. So we would need an estimate on the
coherence length for an apparatus of the kind of figure 3.

We can obtain the intensity within the framework of the
model given in equation (9) as follows. We assume that at
random time a particle is emitted with a speed v from a point
xs of the source (located at the distance ys from the grating),
following a distribution p x v,s( ) that is determined by the
nature of the source itself. After its emission the particle
crosses the grating and produces an interference intensity
pattern that depends parametrically on these quantities. Under

Figure 3. Sketch of an interferometer operating in the far field, where
an incoherent extended source (transverse size ss ) illuminates an
N-slit grating G (period D and slit width a) from a distance ys.
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the same assumption there discussed, the overall intensity at
the screen is thus given by equation (9), that now reads:

I x L I x L x v p x v x v, , , , d d . 12s s s( )¯ ( ) ( ) ( )ò=

The integration can be performed via MC method, as it scales
well with the dimension of the parameter space. Moreover,
we can refine our analysis, e.g., taking into account the
instability of the particles and their lifetime. As a first
approximation, we could simply discard the particles that do
not reach the detector plane. This corresponds to employ a
detector able to discriminate between a true event and the
background noise induced by the decay in flight.

In order to obtain the same results as in equation (10) for
a suitable choice of l0 and in the Fraunhofer approximation,
we should consider a monochromatic beam and average only
over the source dimension xs, assuming a uniform probability
density p x xs s

1
2, 2s s[ ]( ) ( )s c= s s

-
- , ss being the source

dimension. It is worth noting that in our simulations the
average intensities are computed retaining the full accuracy of
the Fresnel integral, i.e., without the Fraunhofer approxima-
tion. In a setup like the one shown in figure 3 a comparison
between equations (10) and (12) shows that the coherence
length l0 can be estimated as [18]:
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. 13s

s
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The dependence on the physical parameters is in agreement
with the naive estimate associating the coherent illumination
region in this kind of setup with the width of the central
diffraction peak for a slit of size ss , where ss is the transverse
extension of the source [18]. In figure 4 we show the MC
simulations of the far field interference pattern for different
values of the source dimension ss and a particular choice of
the other involved parameters. For the simulations we
considered a typical Ps velocity v 10 m s5 1= - [19], which
leads to 3.6 nml = . We note that as the coherence length
approaches the critical value D, we observe a decrease in the
contrast or visibility of the pattern (see figure 4):

C
I I

I I
14max min

max min
( )=

-
+

defined as the difference between the intensity of a maximum
and its adjacent minimum. We will reconsider the implication
for the design of an experiment in section 5.

4. Interaction with material gratings

In the previous section we addressed the interferometry pro-
blem assuming that the particle did not interact with the
grating. As physical quantum mechanical objects the particles
interact in various ways with the walls of the material grating.
The formalism we developed so far is sufficiently general to
account for this effect by modifying the initial wave function
accordingly.

In the previous sections we have seen that the funda-
mental building block for quantum models of diffraction from

a grating is the single slit outgoing wave function , 0n ( )y x ,
which is usually postulated to be of either Gaussian or rec-
tangular shape. If the potential V y,( )x acting on the particle
is known in the region within one slit, we can account for the
interaction by treating the slit as a phase mask, producing a
transmission function of the form t eA

i( ) ( )x = j x [20–22],
implying the substitution (see figure 5)

, 0 , 0 e . 15n n
i( ) ( ) ( )( )y x y x j x

The standard approach [20, 22, 23] is now to determine
the phase shift ( )j x via the semiclassical eikonal approx-
imation. Denoting with v the particle speed we can write:

v
V y y

1
, d . 16( ) ( ) ( )

 òj x x= -

As discussed, the Fourier transform ŷ of the single slit wave
function sets the envelope of the diffraction pattern [see
equation (11)], which in the absence of interactions depends
on the nominal (geometrical) width of the slit a. We will show
that as a first order approximation the effect of a potential is a
reduction of the effective slit width; this has been observed in
various situations [20], a notable example being the C60

Figure 4. Monte Carlo simulation of the far field setup (figure 3)
from equation (12) for a monochromatic beam of Ps atoms with

3.6 nml = (m m2 ePs = , v 10 m s5 1= - ) and different values of the
source dimension 900, 90ss = and 9 mm , corresponding to the
coherence length l 1, 100 = and 100 mm (as shown in the plot). We
also set D 10 mm= , a 3 mm= , N = 10, y 0.5 ms = and L 1 m= .
Interference disappears when l D0 < , and the contrast starts to
decrease when l D0 » . The dashed curves refers to the corre-
sponding single-slit diffraction envelopes.
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experiments [6]. We find:
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where x denotes the transversal coordinate on the screen
plane, consistently with our notation. As suggested by [20],
we approximate the above Fourier transform using a
cumulants expansion [24] (a normalization of ( )y x ensuring

d 1
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where the cumulants nk are defined in terms of the raw
moments km of ( )y x , namely,
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In order to give a physical meaning to the expansion
parameters, we analyze the case of no interaction, with a
rectangular wave function a a a0

1
2, 20 0[ ]( )y x c= -

- . The first
raw moment (the mean) of this distribution vanishes due to
parity ( ) ( )y x y x= - , and in general we expect this to be true
in any realistic situation, as both a reasonable interaction
potential and the wall geometry will be symmetric with
respect to x x - . The second moment is simply evaluated
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As one may expect, the exact expression is the well known
x ax Lsincˆ ( ) [ ( )]y p l= , the central peak of the sinc function

coincides with the Gaussian approximation, suggesting to
identify an effective slit width as follows:

a 12 e . 22eff 2[ ] ( )k= R

We will now distinguish the two cases of neutral and charged
particles in term of the potential.

4.1. Neutral particles

The nonretarded van der Waals atom-surface potential [20],
which affects all types of neutral polarizable particle, is
expressed in terms of the distance from the surface and the
coefficient C3 as

V r
C

r
r, 10 . 23vdW

3
3

( ) ( Å) ( )= - >

It has been shown with direct electron microscope ima-
ging, that diffraction gratings of the type commonly used for
matter-wave experiments can have a trapezoidal (see figure 5)
slit profile [20, 22, 23, 25, 26], as a result of the fabrication
process. Therefore it is useful to study this immediate gen-
eralization, from which the trivial parallel-plane profile is
recovered in the limit 0b  . Calculations also show that the
introduction of even a small wedge angle has a significant
impact on the effective width of the slits compared to parallel-
planes approximation at the same thickness and interaction
strength.

The potential can be written in terms of the distance of
the generic point y,( )x from the right and left grating walls,
respectively d1 and d2. The symmetry of the system implies
that these quantities are related by d y d y, ,2 1( ) ( )x x= - .
Since d y a y, 2 tanm1( )x x b= - + , as it is evident from
figure 5, the projection of the distance on the normal vector to
the side wall is simply obtained by multiplying d y,2 ( )x for
the cosine of the wedge angle β. The integration in
equation (16) is straightforward, and yields for the phase shift
of the potential (23)

C

v a y
,

2 cos tan

2 tan
. 24

m
y

y

1
3

3 1

2

0

( )
[ ]

( )
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( )
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j x b
b b

x b
=

- -

d-

=
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Taking both surfaces into account we obtain:

, , , . 251 1( ) ( ) ( ) ( )j x b j x b j x b= + -

We note that at fixed geometry the ratio R C v3= sets the
overall scale of the interaction strength, as C v, 3( )j x b µ .
Numerical estimates of equation (22) with the phase shift (25)
are in good agreement with the experimental and theoretical
results in [20]. Therefore, this kind of interactions can be
accounted for by a reduction in effective slit width, at least up
to the highest interaction strength tested experimentally, that

Figure 5. Trapezoidal bars cross section with the narrower side of the
slit facing the beam, displayed for a wedge angle β and nominal
maximum and minimum widths aM and a a 2 tanm M d b= - ,
respectively.
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is R C v 2.74 10 meV nmmax
3

12 2= » ´ - (this is obtained
for Kr atoms at v 400 m s 1= - with a SiNx grating, and a
measured C 1.1 meV nm3

3= ). Hoinkes’ empirical rule [27],
which has been confirmed experimentally [20], states that for
a given material C3 is linear in the particle static polarizability
α. The static polarizability of Ps atoms, Ps( )a , in the ground
state (estimated treating it as an hydrogen-like atom with the
appropriate reduced mass) is 8 5.33Ps H 3Å( ) ( )a aº » ,
roughly twice that of the Kr atoms. In turn, Ps atoms have
an interaction scale R Rmax< down to speeds of
v 800 m smin

Ps 1( ) » - , corresponding to a very low
energy E 3.6 10 meV3» ´ - , while the lower speed limit
for an experiment with antihydrogen atoms (assuming

H H( ) ( )a a= ) would be v 100 m smin
H 1( ) » - . Therefore, we

can safely conclude that a treatment of the van der
Waals interaction in terms of equation (22) is fully
adequate to describe experiments involving current Ps sources
[28, 29].

4.2. Charged particles

The above procedure is easily generalized to all potentials
depending on the distance from the surface as r nµ - . Relevant
examples are the retarded van der Waals interaction (n = 4)
and the electrostatic potential (n = 1). In the AEgIS
experiment at CERN [30], the production of antihydrogen and
Ps atoms also involves, as an intermediate step, the realization
of a steady beam of charged antimatter, specifically e+ and p.
It will be interesting to carry out interferometry experiments
on these objects as well, because no successful demonstration
of interference has been obtained for these systems, yet.
Moreover, to the best of our knowledge, this statement also
applies to any kind of charged system heavier than an
electron.

It is a standard result in electrostatics that the potential
acting on a point charge q sitting at an orthogonal distance r
from a dielectric surface (relative permittivity ò) is that of a
point charge q q 1 1 1( )( ) ¢ = - + - located on the axis of
symmetry with respect to the plane of the surface. Therefore,
for the same geometry represented in figure 5, we can argue
that the potential will be given by
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where r the distance from the grating wall. By using
equation (16) we find:
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where am, δ and β are the same as in figure 5. Once the total
phase shift , , ,1

el
1
el( ) ( ) ( )j x b j x b j x b= + - is obtained, as

in equation (25), we can follow the same procedure and
account for the electrostatic interaction introducing an
effective slit width, given by (22). However, the orders of
magnitude involved might be very different. If we compare

the potential strengths at the center of a slit of width
a a am M= = (for the sake of simplicity we set 0b = ), then
we obtain the following expression for the ratio:

V

V

q a

C4

1

1
,el

vdW

2

0

2

3

p

=
-
+

which shows a quadratic dependence on the slit width,
descending from the different power-law scaling of the
potentials. Assuming that q = e, the electron charge, we also
have e 4 1439.964 meV nm2

0
1( )p =- . Consistently, we

recall from the previous section, that C3 is of the order of a
few meV nm3, in turn we have V V a 10 nmel vdW

2 3 ( )~ .
Though the difference seems very large, this is only a
pointwise estimate, while the effective slit width is deter-
mined by the behavior of the phase shift over the whole range
of ξ. Nevertheless, we can see that there are realistic situations
where the calculated impact of electrostatic interactions is
indeed very high, as discussed in table 1. We see that in view
of the higher typical potential strength in comparison with the
van der Waals interaction, for low energy antiprotons
equation (22) predicts sizeable reduction in effective slit
width, i.e., 50% . It turns out that probably the interaction is
too strong in this regime to be treated with this
approximation.

Exact numerical calculation of the envelope function
(still using the eikonal approximation for the phase shift (16))
shows that for low energy particles there is indeed a stark
departure from the sinc shape expected for weak interactions.
Experimental data with electrons in the 0.5 4 keV¸ energy
range exist [22]: they refer to the same grating geometry
described here, where although no explicit information on the
effective slit width is reported, a model for an envelope
function is developed and an analysis of the plotted data
seems compatible with our theoretical predictions based on
(27), which yield a small a a a 10%eff 0 0∣ ∣ - for that
energy range.

5. Talbot–Lau interferometry

In section 3 we have discussed how the contrast of inter-
ference patterns is affected by the ratio between the coherence
length l0 and the grating period D. This imposes technical
constraints on the design of an interferometer using the geo-
metry shown in figure 3. First of all the finite resolution of the

Table 1. Calculated effective width for realistic parameters (order of
magnitude) applicable to possible experiments, a 0.5 m0 m= ,

5b = , 4 = , for e+ and p of varying energy. The grating thickness
is set to 500 nmd = and 160 nmd = respectively, reflecting the
typical scale necessary to absorb the particles completely outside the
slits for silicon at 1 keV reference energy.

Energy keV( ) a e nmeff ( )+ a p nmeff ( )

0.1 401.3 148.1
1 477.2 285.8
10 497.1 397.4
100 499.7 460.0
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detector has to be taken into account. This parameter greatly
depends on the kind of detector and on the particles involved.
For example, in the case of anti-hydrogen, e+ and p emulsion
detectors could be employed, which are capable of a spatial
accuracy up to 0.6 1 mm¸ [30, 31]. Being L the grating to
detector distance and D the grating period, the Fraunhofer
diffraction orders are separated by

x
L

D
.

l
D =

If xd is the experimental sensitivity, in order to resolve each
maximum of the diffraction pattern within at least an interval
M xd , with M integer, we should have

L

D
M x L MD

x
, l

d
d
l



which imposes a constraint on L. It is clear that for a fixed
wavelength and geometry both increasing M and reducing the
distance L, which is of utmost importance with decaying
particles, requires a decrease in the grating period D.

Moreover, starting from equation (13) and requiring that
the coherence length l0 is at least M̃ times the grating spacing
D, we obtain the following condition on the source-grating
distance:

y MD
2

.s
s˜ s

l
Therefore, to obtain a good coherence either the distance ys
has to be increased or the source dimension ss reduced as
much as possible. Note that, apparently, by reducing the
period D we can satisfy both conditions on L and ys, however
a reasonable small value for D is fixed by the grating
construction constraints. This poses technical challenges due
to the particle decay in the first case (for ortho-Ps atoms with
a lifetime 142 nst = [32] and realistic thermal speeds
v 10 m s5 1» - [19], ys should be in the range of a few
centimeters), and to difficulties in manipulating the beam size
in the latter. In view of these consideration, we suggest that a
different kind of interferometer would be best suited for
experiments with antimatter, namely a Talbot–Lau setup
[33, 34], which is sketched in figure 6.

It is worth noting that the usual Talbot–Lau configuration
involves a third grating as a scanning mask [33, 35], that is
not necessary in our case since we assume that the high
resolution of the detector will allow to directly resolve the
diffraction pattern. The fundamental property of this geo-
metry is that it produces high contrast fringes regardless of the
coherence and spatial extension of the illuminating beam.
There are two physical phenomena governing this apparatus:
the Talbot self-imaging effect [34], stating that in the Fresnel
region of a coherently illuminated periodic grating self-ima-
ges of the grating transmission function will appear at
L nT nDL

2 l= = (as well as rescaled sub-images with a
fractional period for half-integer multiples ), and the so called
Lau effect [36]. This effect can be understood as arising from
an incoherent superposition of patterns produced by laterally
displaced, mutually independent, point sources, the role of
which in the apparatus of figure 6 is played by the slits of the
first grating [34]. The periodic images thus produced can

overlap ‘constructively’ if the first grating has a suitable
periodicity; under these conditions the elementary displace-
ment on the screen plane produced by moving between
adjacent sources equals the Talbot image period or an arbi-
trary integer multiple of the latter. In particular, this ‘reso-
nance’ condition is met in the configuration of figure 6 when
L TL= . Geometrically, this setup bears a strong similarity to
a classical moiré deflectometer [37]. What discriminates
between the purely classical and the quantum interference
regime is the condition for diffraction to be negligible, namely
[37]:

L

D
D. 28( )l 

A moirè deflectometer and a Talbot–Lau interferometer
as defined in figure 6 have in common that they produce a
fringe pattern with period D. The question that now naturally
arises is: how can the experimental results prove that the
observed fringes are a true interference effect and not simple
classical geometrical shadow patterns produced by ballistic
particles? As mentioned, high contrast fringes are expected
only if the grating separation is an integer multiple of the
Talbot length, while for ‘classical projectiles’ the contrast
does not depend on this condition. This property ultimately
descends from the longitudinal periodicity of the so-called
Talbot carpet, which is a distinctive feature of diffraction in
the Fresnel region. Therefore, the observation of this kind of
pattern is a proof of the wave character of the interfering
particles. From the experimental point of view, this can be
done by continuously adjusting the grating separation or
changing the particle energy (hence the Talbot Length) in a
monochromatic beam, and measuring the modulation in
contrast as a function of the parameter L TL. If the apparatus
is truly operating as an interferometer and not as a classical
device, distinct peaks in contrast should be detected, as shown
in figure 7 [38]. Recalling (28), we see that the classical limit
corresponds to L TL , as it is confirmed by numerical cal-
culations showing a weak dependence of the contrast on L in
this region. This is clear from figure 7: as the grating distance
L falls below TL = 77.9 mm (given by the simulated period
and energy) the contrast peaks disappear thus revealing a
classical behavior of the particles. We note that in the

Figure 6. Sketch of a Talbot–Lau interferometer. The first grating
(G1) is illuminated by an incoherent beam of mean wavelength λ,
and acts as an intensity mask providing the necessary coherence for
illuminating the second grating (G2). Their separation L is set to the
observation distance from G2 and the gratings have the same period
D and slit width a. If L matches the Talbot Length T DL

2 l= , this
setup produces on the detector plane high contrast fringes with
period D.
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simulation of figure 7 we assumed an incoherent particle
beam, thus we applied equation (12) treating the slits of the
first grating as a collection of extended incoherent sources.

Another advantage of Talbot–Lau configuration is its
robustness with respect to external stray fields. Suppose for
example that the interferometer is subjected to uniform
external electric and magnetic fields which exerts a force F on
the charged particles: this force will be negligible if the cor-
responding deviation from a straight trajectory is smaller than
the typical size of the finest structure in the observable pat-
tern. Let us call this quantity Δ, and introduce the flight time
of the particle L vt = . Using the identity F mcrit

2tD = , we
obtain the following relation:

F
h D

mL
,crit

2

2 2l
=

where for a Talbot–Lau geometry DD = . If we set
L T DL

2 l= = , we have:

F
h

mD
, 29crit

2

3
( )=

that is independent of the particle energy. Furthermore, from
the Lorentz force F q E vB( )= + one can deduce the critical
values of the involved electric and magnetic fields by the
simple relations E F qcrit crit= and B F qvcrit crit= . It is worth
noting that in the case of Fraunhofer interferometry (far field)
a similar calculation with L DlD = leads to a critical force
F h mLD vF

crit
2 ( )( ) l= µ which is thus affected by the particle

energy.
Overall, the Talbot–Lau geometry has several advantages

which are especially relevant for anti-matter interferometry.
In particular, it allows to minimize the total length of the
apparatus, a crucial requirement for decaying Ps, and to
employ a larger source with weak coherence requirements,
significantly increasing the particle flux.

5.1. Realistic application

We now present a realistic estimate of the expected contrast
signal in an e+ experiment, following the experimental

methodology outlined in this section (see figures 6 and 7). We
assume that the particle mean energy E0 can be tuned between
5 keV and 20 keV (reasonable for current continuous e+

beams) with a narrow Gaussian energy distribution
( E 2%0 s ). By varying the energy we scan the ratio L TL,
where the Talbot length reads:

T
D mE

h

2
. 30L

2
0 ( )=

A contrast peak is expected around L TL» . The above
formula makes it clear that to scan this region there are
specific complications related to each choice of which
parameter to vary: the energy is bounded by technical
constraints and furthermore provides a sub-linear scaling,
whereas the grating distance can be varied arbitrarily. There
are however technical complications in physically moving an
apparatus sensitive to alignment over considerable lengths.

We recall that in this configuration D sets the periodicity
of the interference pattern, which should be larger than the
detector resolution. However as evident from (30), the Talbot
length scales quadratically with D. Thus it rapidly becomes
very large, and too long an apparatus poses additional chal-
lenges related both to grating alignment and shielding of a
larger region from stray fields. We set D 2 mm= corre-
sponding to a Talbot Length T 0.326 mL = at the median
energy of the considered energy range, namely E 10 keV0 = .
Using equation (29) we obtain E 0.2 V mcrit

1» - and
B 0.3 mGcrit » for the maximum tolerable electric and mag-
netic field, respectively, evaluated at a E 5 keV0 = , which
corresponds to the worst scenario.

The maximum magnetic field is particularly critical, as
the requirement is smaller than the natural magnetic field of
the Earth, however considering that experiments with elec-
trons and similar length scales involved have been success-
fully carried out [39], we believe that an appropriate mu-metal
based shielding will be enough to circumvent the problem.
Moreover an uniform constant magnetic field will only rigidly
shift the pattern in space [40], in fact the above limits indicate
the maximum allowed fluctuations (either in time or in space)
of the E and B.

Another problem our theoretical analysis allows to
account for is the electrostatic interaction with the grating
walls. First of all we have to set the slit width, and thus the
open fraction of the grating; this is best set at a D 30%» ,
implying a 0.6 mm= . Higher values could improve the total
particle flux minimizing the losses inside the material grating,
but will also reduce the contrast due the overlapping dif-
fraction peaks. We remark that for the gratings to work as true
intensity masks, their thickness must be sufficient to stop all
the positrons outside the slits. For such low energies few
microns of SiNx will be sufficient. Therefore, assuming these
parameters and a small wedge angle 10b = , a grating
thickness 800 nmd = and E 5 keV0 = , equation (22) pre-
dicts an effective slit width a 0.598 meff m= . This deviation
is very small ( 0.5%» ), thus the effect will be completely
negligible for the considered choice of parameters.

Figure 7. Monte Carlo simulation of the fringe visibility modulation
(contrast) as a function of L TL (Log scale), for a well defined
particle velocity. For definiteness the following parameters (realistic
for an experiment with 1 keV antiprotons) were chosen
D D D 265 nm1 2= = = , N = 40 and a 90 nm= . The calculated
Talbot length for this period and energy is T 77.9 mmL = . Note that
the typical contrast peaks disappear when L T 1L  : this corre-
sponds to a classical behavior of the particles.
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Having evaluated the most relevant effects and set the
geometry of the apparatus, we can now use equation (12) to
predict the measured contrast modulation [38]. The result is
shown in figure 8, which contains interesting indications. On
the one hand we can see that a particle energy between 5 and
20 keV is enough to observe a full peak. On the other hand,
we see that also a broader energy distribution ( 0.25s = keV
or 0.5s = keV in figure 8) still allows for a good visibility of
the contrast modulation.

6. Conclusion and outlook

In this paper we reviewed the basic elements of diffraction
theory applied to matter-wave interferometry. In particular,
we focus our analysis on the possible issues arising from the
use of charged or neutral antimatter particles. To sustain our
investigation we also performed MC simulated experiments
based on realistic parameters. In particular, we have con-
sidered the effect due to a realistic source (extended and non-

monochromatic) and the interaction with the grating as well
as the influence of stray electromagnetic fields. We also found
that van der Waals interactions with the material grating
become critical for highly polarizable particle systems. In this
scenario a possible solution could be resorting to light grat-
ings [41, 42]. We have shown that the better configuration to
carry out matter-wave interferometry with decaying particles
is given by the Talbot–Lau setup also in the presence of a
Gaussian distribution of the particle energy, which realisti-
cally describes the actual e+ and p beams. Furthermore,
exploiting the high resolution capabilities of the antiparticle
detectors, such as the nuclear emulsions, we have shown that
the typical Talbot–Lau setup involving three gratings can be
reduced to a two-grating configuration which indeed sim-
plifies the experimental implementation. Our analysis paves
the way to further investigations in order to design an
experiment to demonstrate antimatter-wave interference also
in view of possible applications in the emerging field of
gravity experiments using antimatter [41, 43, 44].
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