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We address high-precision measurements by active and passive interferometric schemes based on Gaussian states
and operations. In particular, we look for the best states to be injected into their ports according to the quantum
Cramér–Rao bound, i.e., maximizing the quantum Fisher information over all the involved parameters, given a
constraint on the overall mean number of photons entering into the interferometer. We found that for passive
interferometers involving only beam splitters, the optimal input leading to Heisenberg scaling is a pair of identical
squeezed-coherent states with at most one-third of the total energy employed in squeezing. For active interfer-
ometers involving optical amplifiers, input coherent signals are enough to achieve Heisenberg scaling, given an
optimal value of the amplification gain. For passive schemes our results clarify the role of squeezing in improving
both the reference phase and the signal phase of an interferometer. © 2015 Optical Society of America
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1. INTRODUCTION

Optical interferometry is among the most precise measurement
techniques available in physics. Therefore, it got involved in the
most challenging task of modern cosmology, the direct detec-
tion of gravitational waves (GWs) [1]. In an interferometer the
space-time ripples induced by a GW change the optical path of
the light beams traveling along the setup, thus leading to a
measurable fluctuation of the phase shift. The perturbations
induced by a GW are extremely small and interferometers in-
volved in GW detection must resolve tiny phase shifts with
high precision. In the last decades, the technological develop-
ments of laser physics and optical components permitted
mechanical and thermal noise, i.e., the noise of classical origin,
to be largely suppressed. Yet, interferometric precision is lim-
ited by the quantum nature of the radiation field used to probe
the presence of GWs.

The general interferometric problem is that of maximizing
the precision in the estimation of phase-shift fluctuations at a
fixed energy of the involved light beams. Actually, fluctuations
associated with the very quantum nature of light pose bounds
to the precision. On the other hand, the nonclassical features of
the probe beams may also be exploited to improve these bounds
compared to the corresponding classical ones, thus leaving
room for quantum enhanced interferometry. Much work has
been devoted to investigating the ultimate bounds to the

precision in estimating the phase shift in an interferometer and
to find the states that achieve these limits [2–18]. Overall, two
main lines of research have been pursued: the one devoted to
the use of finite superpositions of number states, e.g., the so-
called NOON states [19]; the other involving Gaussian states
and operations, e.g., squeezing [20]. While NOON states may
lead to optimal or near-optimal performances at a fixed number
of particles, they are not considered of practical interest because
they are very sensitive to detection noise and optical losses and
their generation is still experimentally challenging.

For these reasons we focus on interferometric schemes
involving Gaussian states and operations, including active and
passive elements, and analyze in detail the ultimate quantum
bounds to precision. Here the number of particles is not fixed
and optimization is performed at a fixed energy of the beams,
i.e., fixing the average number of photons. This is relevant,
since the energy is directly linked to the radiation pressure,
which should be under control in high precision optical inter-
ferometers.

An interferometer is a device where the phase shift occurring
to one or more modes of the radiation field are mapped onto
the variations of some measurable quantity at the output. In
other words, interferometers aim at monitoring the stability
of a given configuration against perturbations rather than at
estimating the value of an unknown phase shift. The general
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interferometric scheme we consider is depicted in Fig. 1. It may
be described as a unitary operationU int�Θ� acting on two input
modes k � a; b, �k; k†� � 1, excited in the two-mode initial
state jψai ⊗ jψbi, followed by a phase shift U ph�ϕ� �
U �ϕ� ⊗ I, U �ϕ� � exp�−iϕa†a� imposed onto one of them.
Finally, a suitable joint measurement, described by a two-mode
positive operator-valued measure (POVM), fΠg, is performed
on the evolved modes. The vector Θ contains the information
about the parameters characterizing the interferometer.
Overall, the state before the measurement stage is

jΨ�Θ;ϕ�i � U ph�ϕ�U int�Θ�jψ ai ⊗ jψbi:
It depends on the phase shift ϕ and on the specific features

of the interferometer through the set of parameters contained in
the vector Θ.

The sensitivity of an interferometer in revealing fluctuations
of the phase shift ϕ is governed by the quantum Fisher infor-
mation (QFI) of the family of states jΨ�Θ;ϕ�i. In recent years
many efforts have been made to obtain analytical expressions
of the QFI for single- and multimode states in the framework
of single- and multi-parameter estimation [21–24] and inter-
ferometry [25]. However, given the QFI of a family of states,
it is not always straightforward to find the optimal state maxi-
mizing it. In our interferometric scenario, upon evaluating ana-
lytically the QFI we will be able to optimize the interferometer
over all the involved parameters and to find the optimal input
states. As we will see, we found that squeezing is indeed a
resource and then evaluating exactly how much squeezing is
needed to achieve optimal performances in the different con-
figurations. Our analysis extends and generalizes previous
results [26], where a squeezed vacuum has been shown to be
the best state for the second port of a passive interferometer,
when the first port is fed by a laser source, i.e., a coherent state.

In this paper, we investigate the ultimate quantum limit to
the sensitivity of interferometers based on Gaussian states and
operations. In particular, we focus on two classes of interferom-
eters, sometimes referred to as SU�2� and SU�1; 1� interferom-
eters, respectively [3]. In the first case the interaction operator
U int�Θ� belongs to the SU�2� group and describes the action
of passive devices, e.g., beam splitters. The energy is thus
conserved during the evolution. Conversely, SU�1; 1� interfer-
ometers also involve active devices such as optical amplifiers,
which add some energy to the system besides making the two

modes interfere. As we will see, our analysis indicates that for
passive interferometers the optimal input leading to Heisenberg
scaling is a pair of identical squeezed-coherent states with at
most one-third of the total energy employed in squeezing,
whereas for active schemes involving optical amplifiers input
coherent signals are enough to achieve Heisenberg scaling,
given an optimal value of the amplification gain.

The paper is structured as follows. In the next section we
briefly review the quantum Cramér–Rao bound governing the
ultimate precision achievable in quantum interferometry. In
Section 3 we focus on passive interferometers, whereas in
Section 4 we devote attention to active ones. Section 5 closes
the paper by discussing results, with some concluding remarks.

2. QUANTUM CRAMÉR–RAO BOUND

The quantum Cramér–Rao bound [27–30]

δϕ2 ≥
1

MH �ϕ� ; (1)

establishes that apart from the statistical scaling (M is the num-
ber of measurements), the variance of any unbiased estimator of
the phase shift, i.e., the minimum detectable fluctuation in the
estimation of the parameter ϕ, is bound by the inverse of the
QFI H �ϕ�[31,32]. The quantum Cramér–Rao bound is a
convenient tool used to evaluate the performance of an inter-
ferometer since it applies to all quantum measurements on the
two modes, and to all procedures for estimating the phase shifts
from the measurement results. In general, precision depends on
the value of the phase shift itself, since the QFI is given by

H �ϕ� � Tr�RϕL2ϕ�;
where Rϕ is the two-mode state at the output of the interfer-
ometer and Lϕ, the so-called symmetric logarithmic derivative,
is the operator satisfying the Lyapunov-like equation,

∂ϕRϕ � 1

2
�LϕRϕ � RϕLϕ�:

In the present case, where the state of the two modes is
pure, i.e., Rϕ � jΨ�Θ;ϕ�ihΨ�Θ;ϕ�j, the solution of the above
equation is available explicitly as

Lϕ � 2�j∂ϕΨ�Θ;ϕ�ihΨ�Θ;ϕ�j � jΨ�Θ;ϕ�ih∂ϕΨ�Θ;ϕ�j�;
and the QFI turns out to be independent of the value of the
phase shift. In particular, the QFI is proportional to the fluc-
tuations of the phase-shift generator G � a†a ⊗ I, namely,
H � 4�hG2i − hGi2�, where the expectation value h� � �i is
taken over the output state jΨ�Θ;ϕ�i.

3. PASSIVE INTERFEROMETERS

In a typical passive interferometer, such as the Mach–Zehnder
or the Michelson interferometer, the energy of the input
jψai ⊗ jψbi is conserved during the evolution and the inter-
action operator U int�Θ� corresponds to the action of a balanced
beam splitter (BS), namely, U BS ≡ U int�Θ� � exp�π4 �a†b −
ab†��. Unbalanced devices may be also considered, which how-
ever lead to inferior performances [33,34]. The precision of this
kind of interferometer depends on the choice of jψ ai ⊗ jψbi
and on the detection stage. We take the most general pure (and

Fig. 1. Schematic diagram of a two-mode interferometric setup.
The two modes, prepared in the factorized state jψai and jψ bi, are
coupled by the unitary operator U int�Θ�. Then, one of the modes
is phase-shifted by an amount ϕ and, finally, the two-mode state
undergoes a measurement described by the POVM fΠg.
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factorized) Gaussian signals as input jψai ⊗ jψbi � jα; ξi ⊗
jγ; ζi, where jz; si � D�z�S�s�j0i is a squeezed-coherent state
D�z� � exp�zk† − z	k� and S�s� � expf12 �s�k†�2 − s	k2�g are
the displacement and squeezing operators of modes k � a; b,
respectively. Without loss of generality, we can assume
α; ξ; γ ∈ R and ζ � re−iθ ∈ C, and for this choice the QFI
H ≡H �α; γ; ξ; r; θ� is given by

H � 1

4
f4�α� γ�2�e2ξ � cosh 2r� � cosh 4ξ

� cosh 4r�2 cos θ sinh 2r�2�α� γ�2 � sinh 2ξ�
� cosh 2�r − ξ� � cosh 2�ξ� r� − 4g: (2)

In order to characterize the interferometer and maximize the
QFI with respect to the input state it is useful to introduce
the following parameterization: the total number of photons
in the initial state,

N tot � α2 � γ2 � sinh2 r � sinh2 ξ;

the signal fraction,

Δ � α2∕�α2 � γ2�;
and the total and partial squeezing fractions,

βtot � �sinh2 r � sinh2 ξ�∕N totβ � sinh2 ξ∕N tot;

respectively. Note that 0 ≤ Δ ≤ 1, 0 ≤ βtot ≤ 1, and 0 ≤ β ≤
βtot. Thereafter, given N tot and βtot, the maximum QFI is
achieved for Δ � 1∕2, β � βtot∕2, and θ � 0, namely, the in-
puts have the same coherent amplitude α � γ, and the squeez-
ing parameter ξ � r, and explicitly reads

Hmax�N tot; βtot� � 2N tot�2� N totβtot�2 − βtot�
�2�1 − βtot�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N totβtot�2� N totβtot�

p
�; (3)

where N tot � 2�α2 � sinh2 r� and N totβtot � 2 sinh2 r. We
may perform a further numerical maximization of Eq. (3) with
respect to βtot and the results are reported in the upper panel of
Fig. 2, where one sees that the optimal value of βtot increases
with N tot. In the large energy regime N tot ≫ 1, we have
βtot ≃ 2∕3, corresponding to

Hmax ≃
8

9
N 2

tot�2� �1� 3N −1
tot�1∕2� � 4N tot ≃

8

3
N 2

tot:

Notice that Heisenberg scaling H ∝ N 2
tot is achieved with

an improved proportionality constant (compared to known re-
sults, see, e.g., [2]) due to the fact that we have optimized the
input signals over all the state parameters.

It is worth noting that, for the optimal input states leading
to Eq. (3), we have

U BSjα; ri ⊗ jα; ri � j
ffiffiffi
2

p
α; ri ⊗ j0; ri;

that is, the state undergoing the phase shift is still factorized
and, in particular, the single mode acquiring the phase is
the displaced-squeezed state j ffiffiffi

2
p

α; ri. This result may be better
appreciated upon recalling previous findings for the single-
mode case [35]. In that case, an optimal estimation of a phase
shift imposed onto a Gaussian state is achieved when all the
energy is used to squeeze the vacuum, i.e., the displacement
is useless. The corresponding QFI reads H sm � 8N tot�1�
N tot� [35]. One could have naïvely expected that, for an inter-
ferometric setup involving two modes, energy has be used to

generate squeezing as well, leading to βtot � 1 and β � 1∕2,
where the last condition ensures that U BSj0; ri ⊗ j0; ri �
j0; ri ⊗ j0; ri [34]. Actually, this is not the case since it would
lead to H 0

max � 4N tot�1� 1
2N tot�, which follows from H sm

halving N tot (just one mode undergoes the phase shift). The
need of a displacement is due to the realistic description of
the phase reference (the other mode of the interferometer),
which is neglected in the single-mode analysis, where the exist-
ence of a stable classical reference is somehow assumed. It also
shows that the quantum enhancement coming from the use of
squeezing results from the improvement of both the reference
phase and the signal phase within the interferometric setup.

The lower panel of Fig. 2 shows the behavior of the phase
sensitivity δϕ � �Hmax�−1∕2 as a function of N tot. We clearly
observe two regimes: for N tot ≲ 1 sensitivity is shot-noise lim-
ited, namely, δϕ ∝ N −1∕2

tot , while the Heisenberg limit δϕ ∝
N −1

tot is reached for N tot ≫ 1. Overall, our result shows that
in order to achieve optimal estimation of a phase shift using
a passive interferometer and Gaussian states, we should excite
the two input modes with identical signals and distribute the
coherent and the squeezing photons according to the value
of βtot maximizing Eq. (3). On the one hand, this choice
allows one to obtain a precise phase reference [36,37], i.e.,
the squeezed vacuum after the interaction. On the other hand,
it shows that a coherent amplitude is always needed.

The optimization over all the state parameters allows one to
improve the proportionality constant in the Heisenberg scaling.
In order to see this explicitly, let us consider the case where the
input signals are given by jα; 0i ⊗ j0; ζi, with ζ � re−iθ, which
is a coherent state and a squeezed vacuum state (we still assume
α ∈ R). This is a configuration often considered for GW de-
tectors [38] and has been recently addressed in [26] (see also
[2,39]). In Ref. [26] the coherent amplitude is fixed and the

Fig. 2. Top: optimal value of the total squeezing fraction βtot,
maximizing the QFI for a passive interferometer, as a function of
N tot. Bottom: corresponding phase sensitivity δϕ as a function of N tot

(blue solid line). The shot-noise limit N −1∕2
tot (red dashed line) and the

Heisenberg limit N −1
tot (green dotted line) are also reported.
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optimality of a squeezed vacuum for the second port has been
shown. Here, we optimize the QFI:

H �gw��N tot; β� � 2N tot

�
1�

�
1

2
� N tot

�
β

� �1 − β�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N totβ�1� N totβ�

p �
; (4)

also over the squeezing fraction β � sinh2 r∕N tot at fixed
N tot � α2 � sinh2 r. We found the maximum for β � 1,
corresponding to

H �gw�
max � 2N tot

�
3

2
� N tot

�
≃

N tot≫1
2N 2

tot:

4. ACTIVE INTERFEROMETERS

As a paradigmatic example of interferometers involving ampli-
fication we consider the so-called coherent-light-boosted
interferometer (CLBI) [40], in which U int�Θ� � exp�ξa†b†−
ξ	ab�, i.e.,Θ � ξ � re−iθ (see Fig. 1). The interaction imposes
phase-sensitive amplification (i.e. two-mode squeezing) and in-
troduces quantum correlations between the two modes, which
suggests that quantum enhancement may already be achieved
starting from classical input signals. In order to check this
conjecture we consider as input just a couple of coherent states
jψai ⊗ jψbi � jαi ⊗ jγi, with α; γ ∈ R. This also makes
the interferometer feasible with current technology, since it
minimizes the impact of phase-matching imperfections at
the input of the amplifier [41–43]. The QFI H �CLBI� ≡
H �CLBI��α; γ; r; θ� for the CLBI is given by

H �CLBI� �
�
α2�γ2�1

2

�
�1�cosh 4r�−1

�2αγ cos θ sinh 4r�2�α2 −γ2�cosh 2r: (5)

In order to simplify the notation, we observe that the maxi-
mum over θ is obtained for θ � π, and introduce the following
parameters characterizing the interferometer: the signal fraction
Δ � α2∕�α2 � γ2�, the total number of photons after the in-
teraction, namely,

N tot � �α2 � γ2 � 1� cosh�2r� � 2αγ cos�θ� sinh�2r� − 1;

and the squeezing fraction β � 2 sinh2 r∕N tot. The analytical
expression of the corresponding H �CLBI��N tot;Δ; β� is clumsy
and is not explicitly reported here. If we fix the value of N tot

and focus on Δ > 1∕2, then it is possible to find numerically
the values Δmax and βmax maximizing H �CLBI�. These are re-
ported in the upper panel of Fig. 3, where we can see that they
are both an increasing function of N tot, with Δmax → 1∕2 and
βmax → 2∕3 for N tot ≫ 1.

In Fig. 3 we show the behavior of the phase sensitivity
δϕ � �H �CLBI�

max �−1∕2 as a function of N tot. Two regimes may
be easily identified: for N tot ≲ 1 we find shot-noise-limited
precision δϕ ∝ N −1∕2

tot , while forN tot ≫ 1 we obtainH �CLBI�
max ≃

4
3N tot�N tot � 2� and thus the Heisenberg scaling δϕ ∝ N −1

tot.
The comparison between the lower panels of Figs. 2 and 3
reveals that for N tot ≫ 1 passive interferometers offer better
performance compared to the active ones, at least for the class

of setup considered here. On the other hand, active interferom-
eters are worth being investigated because there is evidence that
the amplification mechanism is suitable to fight the possible
photon loss occurring in the interferometer [44].

5. DISCUSSION AND CONCLUSIONS

One may wonder whether and how the ultimate bound to pre-
cision may be achieved in practice, i.e., whether there exists a
feasible measurement in the final stage of the interferometer
whose Fisher information is equal to the QFI or approaches
it in some limit. In principle, an observation of this kind is
provided by the spectral measure of the symmetric logarithmic
derivative Lϕ. However, even for pure states where the solution
is available explicitly it is usually very challenging to implement
this kind of measurement. As a consequence, the performance
of feasible measurements, e.g., photodetection after a further
mixing or amplification stage, have been explored. Also, in
these realistic scenarios, squeezing has been shown to represent
a resource in achieving the Heisenberg limit [45], or at least to
beat the shot-noise limit in some regimes [46]. It should also
be mentioned that the use of Bayesian analysis [47,48] or
maximum-likelihood estimators [49,50] allows one to achieve
the Cramér–Rao bound (either classical or quantum) for any
value of the phase shift itself, not only for a specific setting.

Our results show that precision may be indeed improved by
optimizing over all the degrees of freedom and indicates which
parameters are relevant in the different scenarios. Our results
also provide a set of general benchmarks for Gaussian interfer-
ometry, which are independent of the measurement scheme
used at the output and may be compared to performances of
realistic interferometric schemes.

Fig. 3. Top: optimal value of the signal fraction Δmax (red dashed
line) and of the squeezing fraction βmax (blue solid line), maximizing
the QFI for the CLBI, as functions of N tot. Bottom: corresponding
sensitivity δϕ as a function of N tot. The shot-noise limit N −1∕2

tot (red
dashed line) and the Heisenberg limit N −1

tot (green dotted line) are also
reported.
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In conclusion, we have analyzed two-mode interferometers
based on Gaussian states and operations and found the best
input states, optimizing the precision given a constraint on
the total mean number of photons entering the setup. For pas-
sive interferometers, e.g., Mach–Zehnder-like devices, the op-
timal input is made of a pair of identical squeezed-coherent
states with at most one-third of the energy used in squeezing.
Our results clarify the role of squeezing, which improves both
the reference phase and the signal phase in the interferometer.
For active interferometers, i.e., setups involving optical ampli-
fiers, we focused on the CLBI. In this case coherent signals at
the input are enough to achieve Heisenberg scaling, provided
that the amplification gain is tuned to an optimal value. Our
results go beyond the traditional analysis of laser interferometry
and may be relevant for the development of novel quantum-
enhanced interferometric schemes.

Ministry of Education, Universities and Research (MIUR) FIRB
project “LiCHIS” (RBFR10YQ3H); European Union (EU)
Collaborative Project QuProCS (641277); University of
Milan (UniMI) (H2020 Transition Grant 15-6-3008000-625).

REFERENCES AND NOTES

1. R. X. Adhikari, “Gravitational radiation detection with laser interferom-
etry,” Rev. Mod. Phys. 86, 121–151 (2014).

2. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys.
Rev. D 23, 1693–1708 (1981).

3. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) inter-
ferometers,” Phys Rev. A 33, 4033–4054 (1986).

4. M. J. Holland and K. Burnett, “Interferometric detection of optical
phase shifts at the Heisenberg limit,” Phys. Rev. Lett. 71, 1355–1358
(1993).

5. M. G. A. Paris, “Small amount of squeezing in high-sensitive realistic
interferometry,” Phys. Lett. A 201, 132–138 (1995).

6. T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence
of decorrelation on Heisenberg-limited interferometry with quantum
correlated photons,” Phys. Rev. A 57, 4004–4013 (1998).

7. C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers
operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000).

8. R. A. Campos, C. C. Gerry, and A. Benmoussa, “Optical interferom-
etry at the Heisenberg limit with twin Fock states and parity measure-
ments,” Phys. Rev. A 68, 023810 (2003).

9. F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo,
“Experimental demonstration of phase measurement precision
beating standard quantum limit by projection measurement,” EPL
82, 24001 (2008).

10. L. Pezzé and A. Smerzi, “Mach-Zehnder interferometry at the
Heisenberg limit with coherent and squeezed-vacuum light,” Phys.
Rev. Lett. 100, 073601 (2008).

11. M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, K.
Banaszek, and I. A. Walmsley, “Experimental quantum-enhanced
estimation of a lossy phase shift,” Nat. Photonics 4, 357–360
(2010).

12. H. Cable and G. A. Durkin, “Parameter estimation with entangled
photons produced by parametric down-conversion,” Phys. Rev.
Lett. 105, 013603 (2010).

13. S. Knysh, V. N. Smelyanskiy, and G. A. Durkin, “Scaling laws for
precision in quantum interferometry and the bifurcation landscape
of the optimal state,” Phys. Rev. A 83, 021804(R) (2011).

14. M. G. Genoni, S. Olivares, and M. G. A. Paris, “Optical phase estima-
tion in the presence of phase diffusion,” Phys. Rev. Lett. 106, 153603
(2011).

15. S. Pirandola, “Quantum reading of a classical digital memory,” Phys.
Rev. Lett. 106, 090504 (2011).

16. A. Bisio, M. Dall’Arno, and G. M. D’Ariano, “Tradeoff between energy
and error in the discrimination of quantum-optical devices,” Phys. Rev.
A 84, 012310 (2011).

17. S. Pirandola, C. Lupo, V. Giovannetti, S. Mancini, and S. L.
Braunstein, “Quantum reading capacity,” New J. Phys. 13, 113012
(2011).

18. L. Pezzè, P. Hyllus, and A. Smerzi, “Phase-sensitivity bounds for
two-mode interferometers,” Phys. Rev. A 91, 032103 (2015).

19. J. P. Dowling, “Quantum optical metrology at the lowdown on high-
N00N states,” Contemp. Phys. 49, 125–143 (2008).

20. S. Olivares, “Quantum optics in the phase space,” EPJ-ST 203, 3–24
(2012).

21. A. Monras, “Phase space formalism for quantum estimation of
Gaussian states,” arXiv:1303.3682 (2013).

22. O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, “Quantum param-
eter estimation using general single-mode Gaussian states,” Phys.
Rev. A 88, 040102(R) (2013).

23. Z. Jiang, “Quantum Fisher information for states in exponential form,”
Phys. Rev. A 89, 032128 (2014).

24. D. Šafránek, A. R. Lee, and I. Fuentes, “Quantum parameter estima-
tion using multi-mode Gaussian states,” arXiv:1502.07924 (2015).

25. G. Adesso, “Gaussian interferometric power,” Phys. Rev. A 90,
022321 (2014).

26. M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interfero-
metry using a laser power source,” Phys. Rev. Lett. 111, 173601
(2013).

27. C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, 1976).

28. D. C. Brody and L. P. Hughston, “Statistical geometry in quantum
mechanics,” Proc. R. Soc. London A 454, 2445–2475 (1998).

29. D. C. Brody and L. P. Hughston, “Geometrization of statistical
mechanics,” Proc. R. Soc. London A 455, 1683–1715 (1999).

30. M. G. A. Paris, “Quantum estimation for quantum technology,” Int. J.
Quantum Inform. 7, 125–137 (2009).

31. S. L. Braunstein and C. M. Caves, “Statistical distance and the geom-
etry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).

32. S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized
uncertainty relations: Theory, examples, and Lorentz invariance,”
Ann. Phys. 247, 135–173 (1996).

33. S. Olivares and M. G. A. Paris, “Optimized interferometry with
Gaussian states,” Opt. Spectrosc. 103, 231–236 (2007).

34. S. Olivares and M. G. A. Paris, “Fidelity matters: The birth of entan-
glement in the mixing of Gaussian states,” Phys. Rev. Lett 107,
170505 (2011).

35. A. Monras, “Optimal phase measurements with pure Gaussian
states,” Phys. Rev. A 73, 033821 (2006).

36. M. Jarzyna and R. Demkowicz-Dobrzański, “Quantum interferometry
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