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We address two-level systems (TLSs) arranged in ring con¯gurations a®ected by static disorder.

In particular, we investigate the role of dephasing in the transport of an excitation along the

ring. We compare the e±ciency of the transfer process on isotropic rings and on biomimetic rings

modeled according to the structure of light-harvesting (LH) complexes. Our analysis provides a
simple but clear and interesting example of how an interplay between the coherent dynamics of

the system and the incoherent action of the environment can enhance the transfer capabilities of

disordered lattices.
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1. Introduction

Quantum coherent evolution can provide a substantial advantage with respect to

classical random walks for the task of transferring energy or information between the

selected vertices of a graph.1–4 The latter, in turn, can be used to model the di®erent

parties of a composite system, such as, for example, a communication network or a

biological complex.5,6 Recent experiments have revealed the presence of quantum

coherence in the Exciton Energy Transfer processes (EET) that occur on the pho-

tosyntetic membranes of purple bacteria.7–9 These observations triggered quite a
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large amount of research aimed to understanding whether Nature itself is exploiting

quantum coherence as a resource in EET, which is well known to be a remarkably e±cient

biological processes.10–16 The understanding of the fundamental mechanism that allows

for such e±ciency can provide the design principles for synthetic photovoltaic devices.17

Coherence, on the other side, is usually washed away by the unavoidable inter-

action of the system with the surrounding environment which is therefore expected to

detriment the EET e±ciency. Recent research, however, showed that there are situa-

tions where the presence of a certain amount of decoherence can actually be bene¯cial for

transport.12,13,18–20 In the presence of static disorder, for example, dephasing can help

delocalizing an excitation that would otherwise su®er from Anderson localization. This

phenomenon is known as Dephasing Assisted Transport (DAT).12,13

In this paper we investigate the excitation transfer on a ring, i.e. N-cycle graph, in

the presence of disorder and decoherence. We considerN-cycles graphs with isotropic

and alternate nearest-neighbor coupling. The latter con¯guration resembles the

structure of Light Harvesting (LH) complexes of type 1, called LH1 (see Refs. 21 and

22), and 2, LH2 (see Ref. 23) that can be found on the photosynthetic membrane of

purple bacteria. The aim of the paper is to provide simple but interesting examples of

the possible role of dephasing in transport over disordered N-cycle lattices. In par-

ticular we show that dephasing can assist transport on both types of rings, when the

on-site energies of the cycles are a®ected by static disorder. We moreover ¯nd that

the alternate couplings do not o®er any functional advantage with respect to the

excitation transfer between the two opposite sites of the N-cycle.

The paper is organized as follows. In Sec. 1 we introduce and characterize the ring

models and de¯ne the adopted EET e±ciency measure. In Sec. 2 we de¯ne the

disorder and dephasing and study their relative e®ects on EET. Section 3 presents the

analysis of the combined e®ects of disorder and dephasing. The last section is devoted

to conclusion and outlook.

2. The Model

The quantum system we consider in this paper is a collection of N two-level systems

(TLSs) arranged in a circular structure. Each TLS j, j ¼ 1; 2; . . . ;N, can be in its

ground, j0ij, or excited, j1ij state. We restrict our analysis to the relevant single

excitation case,24 where only one of the TLSs is excited while the others are all in the

ground state. De¯ned jji ¼ �N
n¼1j�j;nin, the set fjjigN

j¼1 is a basis for the Hilbert

space of considered states. In this basis the Hamiltonian of the system reads

H ¼
XN
j¼1

JðjÞðjjþ 1ihjj þ jjihjþ 1jÞ þ "ðjÞjjihjj; ð1Þ

with the condition jN þ 1i ¼ j1i accounting for the closed boundary conditions. The

coe±cients JðjÞ represent the coupling strength between nearest-neighbor sites,
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whereas "ðjÞ is the on-site energy di®erence between the ground and excited states of

the jth TLS.

In what follows we will study the transfer of the single excitation for two di®erent

parametrizations of the Hamiltonian of the ring H. In the ¯rst one we consider

isotropic couplings JðjÞ ¼ J and equal on-site energies "ðjÞ ¼ " (without loss of

generality we can set, in this case, " ¼ 0). The Hamiltonian corresponding to this

parametrization reduces to

HR ¼ J
XN
j¼1

jjþ 1ihjjþjjihjþ 1j: ð2Þ

The second parametrization is chosen to resemble the con¯guration of the LH1

complex of purple photosynthetic bacteria (Rhodospirillum rubrum).22 This complex

is formed by 32 BChl molecules, bound to 16 � and � polypeptides as ��ðBChlÞ2
subunits organized in a ring geometry. The � and � polypeptides of nearest-neighbor

subunits are interacting with each other with inter-dimer coupling strength

J2 ¼ 377 cm�1, whereas the �� BChls in the same subunit are coupled with the intra-

dimer coupling coe±cient J1 ¼ 600 cm�1. While the on-site energies "� and "� of the

LH1 for the � and � polypeptides are slightly di®erent ("�="� ¼ 0:999), we assume,

for the sake of simplicity, "� ¼ "�. The Hamiltonian for this biomimetic con¯guration

of the ring can be written as

HLH1 ¼
XN=2
j¼0

J1ðj2jþ 2ih2jþ 1j þ j2jþ 1ih2jþ 2jÞ

þ
XN=2
j¼1

J2ðj2jþ 1ih2jj þ j2jih2jþ 1jÞ; ð3Þ

where we have omitted the dynamically irrelevant on-site energies "j, andN ¼ 32. To

allow for a direct comparison between the two ring con¯gurations, we will set for the

system described by (2), N ¼ 32 and J ¼ ðJ1 þ J2Þ=2.
The spectra of HR and HLH1 can both be analytically computed. For the isotropic

case, the eigenvectors of HR are given by the Fourier basis

jeR
k i ¼

1ffiffiffiffiffi
N

p
XN
j¼1

ei
2�k
N jjji; k ¼ 1; 2; . . . ;N ; ð4Þ

with corresponding eigenvalues eR
k ¼ �2J cosð2�kN Þ. To solve the eigenvalue/vector

problem for the LH1 dimerized Hamiltonian (3), it is instead expedient to use a

relabeling of the jth TLS of the ring with the couple ðn ¼ bj=2c; s ¼ ðj mod 2Þ þ 1Þ
and to de¯ne the Fourier basis

jk; si ¼ 1ffiffiffiffiffi
K

p
XK�1

n¼0

ei
2�
Kknjn; si: ð5Þ

Dephasing assisted transport on a biomimetic ring structure
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The Hamiltonian (3) assumes, in this basis, a block-diagonal form whose 2� 2

matrices on the diagonal are

hk ¼
0 J1 þ e�i�kJ2

J1 þ ei�kJ2 0

� �
;

with �k ¼ 2�k=K and K ¼ N=2; each hk has eigenvalues �eLH
k , with eLH

k ¼
J2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 þ 1þ 2� cos�k

p
, where � ¼ J1=J2 indicates the degree of dimerization and is

diagonalized by the transformation

Uk ¼
1ffiffiffi
2

p �k ��k
1 1

� �
;

with �k ¼ ð� þ e�i�kÞ=eLH
k . Figure 1 shows the spectra of the isotropic (circles) and

the biomimetic, or dimerized, (squares) rings: in both cases the spectra have two

bands. In the presence of alternate couplings J1; J2, however, the spectrum shows an

energy gap 2J2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � 2

p
, i.e. directly proportional to the degree of dimerization �. In

order to study the transport through the rings we assume that the excitation is

initially localized on the TLS j ¼ 1, namely j ð0Þi ¼ j1i, and evaluate the probability

of ¯nding the excitation at the opposite site j ¼ 17 at time t, i.e. jh17j ðtÞij2 �def p17ðtÞ.
The result is shown in Fig. 2. Due to the symmetric couplings of site j ¼ 1 to its

nearest-neighbors, in the case of an isotropic ring, the initial condition separates in

two wavefronts of equal amplitudes that propagate at the same rate along the ring in

opposite directions and arrive \simultaneously" at the opposite site. In the presence

of alternate couplings, the broken symmetry is made evident by the two separated

peaks (around Jt ¼ 22 and Jt ¼ 28), formed by the two wavefronts that, in this case,

are not symmetrically evolving.

5 10 15

−1000

−500

500

1000

k

HLH1

HR

ek

Fig. 1. The spectra of HR (circles) and HLH1 (squares) for the parametrization given in the main text.
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In the case of the biomimetic con¯guration it is therefore not immediate to

quantify the transfer e±ciency. Following Ref. 13 we introduce an extra site, that we

indicate by jsi, that acts as a sink to which the population is irreversibly transferred

from the site N=2þ 1. Once the operator is de¯ned as S ¼ jsihN=2þ 1j, the transfer
to the sink is modeled by a Lindblad term

Lsink½�� ¼ � 2S�S † � fS †S; �g� �
: ð6Þ

The e±ciency of the transfer at a given time t will be de¯ned as the occupation

probability of the sink site, i.e.

psinkðtÞ ¼ hsj�ðtÞjsi; ð7Þ

where �ðtÞ is the solution of the Lindblad master equation

d

dt
�ðtÞ ¼ �i½HR=LH ; �ðtÞ� þ Lsink½�ðtÞ�; ð8Þ

with initial condition �ð0Þ ¼ j1ih1j. We now analyze the dependence of psinkðtÞ on the

parameter � looking for an optimal con¯guration. We remark that this measure is

equivalent to other transfer measures (see, for example Ref. 13). As the inset of Fig. 3

shows, the population of the sink at a time Jt ¼ 50, the transfer rate is optimal when

it assumes values in a neighborhood of J . As one may expect, for values of � much

smaller than the (average) coupling strength between the ring sites, the transfer to

the sink site is much slower than the ring evolution; on the other side, for � larger

than the excitation exchange average rate, the evolution of the site j ¼ 17 gets

\frozen" because of a quantum-Zeno-like e®ect.25 In what follows, we therefore adopt

the optimal value � ¼ 2J . In Fig. 3 we show an example of the population of the sink

as a function of time for �=J ¼ 2 for the isotropic and biomimetic ring con¯gurations.

10 20 30 40 50

0.1

0.2

0.3

0.4

p17

Jt

dimerized
ring isotropic

ring

Fig. 2. (Color online) The transfer probability p17ðtÞ ¼ jh17j R=LHiðtÞj2 as a function of time, with

j R=LHðtÞi ¼ e�itHR=HLH j1i. Dotted (red) line: isotropic ring with J ¼ ðJ1 þ J2Þ=2. Solid (blue) line:

dimerized ring. J1 ¼ 600, J2 ¼ 377, J ¼ ðJ1 þ J2Þ=2.
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We observe that the sink populations for the two ring con¯gurations are comparable,

even though the dimerized ring shows a slightly reduced transfer capability.

3. The E®ect of Disorder and Dephasing

The models presented in the previous section are idealized. Any physical realization

of the lattice will in fact be subjected to di®erent kinds of imperfections; for instance,

the on-site energies of the TLSs composing the system might di®er from each other or

the interaction between nearest neighbor can vary from site to site, e.g. because of

di®erent relative distances. Moreover, the system can be a®ected by noise sources: if

the TLSs are embedded in a sca®old, they will experience e®ects due, e.g. to the

vibrations (phonons) of the latter. The speci¯c kind of disorder and noise in°uencing

the dynamics of the system, however, is very dependent on the particular physical

realization. In the case of the LH1 complex our dimerized model is inspired by, even

the mere structure of the complex is still debated.26–28

In this work we adopt a paradigmatic approach and consider the static (i.e. time-

independent) randomly distributed disorder a®ecting only the on-site energies of the

Hamiltonian rings (2) and (3). Such a disorder is represented by a diagonal term

H �
disðEÞ ¼ diagðE1; E2; . . . ; ENÞ; ð9Þ

with Ei independent random variables with zero-mean Gaussian distribution with

standard deviation �, quantifying the amount of disorder. Disorder introduces a

random on-site energy detuning between the di®erent sites of the ring which tends to

localize the eigenstates of the Hamiltonian. This results in a localization of the

evolving state within a typical �-dependent localization length (Anderson localiza-

tion29,30) thus reducing the transfer capabilities of the ring.31

Fig. 3. (Color online) The sink population psinkðtÞ as a function of Jt for the isotropic (red, dashed line)

and the dimerized (blue solid line) ring. Inset: the sink population at ¯xed time Jt ¼ 50 for the isotropic

(red squares) and the biomimetic (blue circles) con¯gurations as a function of �=J . For both con¯gurations
the optimal sink rate � is achieved for �=J � 2.
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We now quantify the e®ect of the disorder on the transfer process for a ¯xed value

of �. In order to make the results independent of the particular realization of the

diagonal term (9), we need to simulate the evolution of the system for a large number

M of realizations of the stochastic Hamiltonian part. For each realization Hdisð"mÞ
we numerically determine the states �mðtÞ; m ¼ 1; 2; . . . ;M, as the solution of (12)

with " ¼ "m. The transfer e±ciency is de¯ned as

�pM
sinkðtÞ ¼

1

M

XM
m¼1

hsj�mðtÞjsi: ð10Þ

In Fig. 4(a) we plot the sink population as a function of the ratio �=J for the isotropic

and dimerized ring con¯gurations at a time Jt ¼ 100. The transfer e±ciency, com-

puted over an average ofM ¼ 50 random realizations is a decreasing function of �, as

expected. We point out that the transport over the dimerized ring is much more

a®ected by disorder than in the case of a ring with isotropic couplings.

The interaction of the system with very large number of degrees of freedom, i.e.

an environment, can induce di®erent e®ects to the system. As mentioned above the

vibration of the trapping lattice or, in the case of LH1, the protein sca®old sur-

rounding the TLSs, however, can change their relative positions thus making the

coupling coe±cients time-dependent. In this case the coupling coe±cients would be

functions of time. Another noise source is the interaction of each TLS with its local

environment, leading to °uctuations of its on-site energy. Such °uctuations lead to a

broadening of the line-shape spectrum of each TLS.32–34 Following Ref. 35, here we

adopt a Markovian e®ective description of the interaction of each TLS with its local

environment and consider only the pure dephasing local terms. Such an e®ective

description can be seen as a coarse-graining of the stochastic random °uctuations of

the on-site energies and results in the suppression of the phase coherences of any

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

psink
M−

/J

M = 50

(a)

0.5 1.0 1.5 2.0

0.4

0.5

0.6

0.7

0.8

0.9

psink

/J

(b)

Fig. 4. (Color online) (a) The transfer e±ciency �pM
sinkðtÞ as de¯ned in (10) at time Jt ¼ 100 as a function

of the ratio �=J for the isotropic and dimerized rings and M ¼ 50. (b) The transfer e±ciency (7) in the

presence of dephasing alone as a function of �=J . In both frames red circles refer to the isotropic ring
whereas blue squares refer to the biomimetic con¯guration.
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superposition state of the system. The dephasing process can be modeled by the

Lindblad-form super-operator

Ldeph½�� ¼ �
XN
j¼1

2jjihjj�jjihjj � fjjihjj; �g; ð11Þ

where we considered the dephasing rates equal for all sites. Figure 4(b) shows the

transfer e±ciency (7) at the same time Jt ¼ 100 as in Fig. 4(a) for the isotropic and

dimerized rings in the absence of disorder (� ¼ 0) as a function of the ratio �=J . The

loss of coherences detriments the transfer process by making it much slower. It is easy

to show, moreover, that in the limit � � J the excitation spreads on the lattice at a

rate that is close to a purely di®usive process. However, for longer times, pure

dephasing leads to a higher population of the sink site with respect to the purely

coherent evolution. In Fig. 5 we show an example of the e®ect of dephasing for both

small and large values of the ratio �=J . We observe that dephasing a®ects the ex-

citation transfer to the sink more in the case of a biomimetic ring con¯guration than

in the case of a isotropic ring and such a di®erence becomes more pronounced for

larger values of � with respect to J.

4. Dephasing Assisted Transport

As shown in the previous section, disorder and dephasing both decrease the transfer

capability over a circular graph. The physical mechanisms behind such an e±ciency

reduction, however, are completely di®erent. On the one hand, disorder induces

random phases in the state of the system, that lead to the destructive interference

that inhibits the spreading of the excitation over the lattice; on the other hand, pure

dephasing destroys the phase relations between the di®erent sites of the same lattice

that determine the super-di®usive propagation of the excitation typical of quantum

walks.6 In this section we show that dephasing can indeed enhance the transfer

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

psink

Jt

/J = 0.15

dimerized ring

isotropic ring

no dephasing

(a)

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

psink

Jt

dimerized ring

isotropic ring

/J = 1

no dephasing

(b)

Fig. 5. (Color online) (a) The transfer e±ciency psink in the presence of pure dephasing for the isotropic

ring (red ¯lled triangles) and the dimerized ring (blue empty triangles) as a function of Jt for (a) �=J ¼
0:15 and (b) �=J ¼ 1. For comparison purposes we also report the population of the sink without dephasing

(see Fig. 3).
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e±ciency in the presence of disorder and we address a characterization of DAT over

the two ring models we are considering.

The complete master equation determining the evolution of the density matrix of

the system is now

d

dt
�ðtÞ ¼ �i½HR=LH1 þH �

disðEÞ; �ðtÞ� þ Ldeph½�ðtÞ� þ Lsink½�ðtÞ�: ð12Þ

We will consider an initial condition �ð0Þ ¼ j1ih1j as in the previous sections and

study the behavior of the sample transfer probability (10) for di®erent ratios �=J and

�=J . Figure 6 shows the �pM
sinkðtÞ for M ¼ 50 and Jt ¼ 100. It is evident that for both

the isotropic and dimerized rings, for any ¯xed value of �=J there is a range of values

�=J that leads to improved transfer capabilities. For any choice of �=J and �=J ,

moreover, the transfer over the isotropic ring is always more e±cient than the

transfer over the dimerized con¯guration. An intuitive explanation can be given as

follows: disorder introduces random phases between adjacent sites that would be

responsible of the localization of the excitation in the neighborhood of its initial

condition, while dephasing tends to \washaway" the ensuing interference patterns. In

Fig. 7 we show a comparison between the sink population in the presence of the sole

disorder (�=J ¼ 0:5) and in the presence of the same amount of disorder and

dephasing (�=J ¼ 0:1). The selected parametrization is suggested by an inspection of

Fig. 6. Dephasing, therefore, enhances the transport in the presence of disorder al-

ready at a time-scale comparable to the propagation time of the excitation from its

initial location to the opposite site j ¼ 17. The suppression of the localization of the

excitation is made more evident by the faster increase of the sink population. Even in

the presence of disorder, moreover, dephasing still allows, in the long-time limit, to

increase the sink population beyond the value reached in the absence of both

dephasing and disorder.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

/J /J

/J/J

Fig. 6. Contour-plots of the transfer e±ciency �pM
sinkðtÞ (10) at time Jt ¼ 100 as a function of the ratio �=J

and of �=J for (a) the isotropic ring and (b) the dimerized ring.
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5. Conclusion and Outlook

DAT is an example of how an interplay between the coherent and incoherent part of

system dynamics can lead to an improvement of the energy transfer between the

di®erent points of graph. In this work we have investigated DAT over a circular

graph with isotropic and alternate couplings between the nearest-neighbor sites in

the presence of disorder and dephasing. Our analysis con¯rmed the existence of

regimes where DAT occurs.

We showed that dimerization does not provide an advantage for the energy

transfer process over disordered systems a®ected by decoherence. While the models of

the system and the e®ects induced by the system-environment interaction we

adopted are highly simpli¯ed and might not capture some key features of the LH

complexes, our results hint that the functional advantage of the dimerized structure

of LH1/2 complexes cannot be captured by a quantum-walk perspective.

Future work will address the inclusion of losses, dissipation and thermalization, as

to understand whether the time-scales on which DAT occurs are compatible with the

exciton loss and relaxation rates of the system. More re¯ned models,32–34 where the

e®ective Markovian dynamics is replaced by the scattering processes on the lattice

hosting of the TLSs will be considered as well.
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