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Abstract: Quantum search algorithms provide a way to speed up combinatorial search, and have
found several applications in modern quantum technology. In particular, spatial search on graphs,
based on continuous-time quantum walks (CTQW), represents a promising platform for the imple-
mentation of quantum search in condensed matter systems. CTQW-based algorithms, however, work
exactly on complete graphs, while they are known to perform poorly on realistic graphs with low
connectivity. In this paper, we put forward an alternative search algorithm, based on structuring
the oracle operator, which allows one to improve the localization properties of the walker by tuning
only the on-site energies of the graph, i.e., without altering its topology. As such, the proposed
algorithm is suitable for implementation in systems with low connectivity, e.g., rings of quantum
dots or superconducting circuits. Oracle parameters are determined by Hamiltonian constraints,
without the need for numerical optimization.

Keywords: quantum search algorithm; quantum walks

1. Introduction

Structured databases, as opposed to unstructured ones, are characterized by the
existence of a format or some form of organization, which make them searchable in a
relational fashion. In turn, structured data are amenable to spatial search algorithms, i.e.,
algorithms taking into account the spatial organization of the dataset. Usually this is done
using tools from graph theory, and exploiting the structure of links within the database. In
this framework, quantum spatial search [1] is the problem of finding a marked element in a
structured database using the quantum dynamics of a walker over a graph, as opposed to
a classical one [2]. Quantum spatial search may be thus considered a generalization of the
Grover search algorithm [3] to problems where some form of data structure is available.

Among the possible implementations, it has been shown [4] that continuous-time
quantum walks (CTQWs) over graphs may provide exact solutions to the search problem
for certain graph topologies, i.e., exact localization (with unit probability) of the walker
on some given target state. Additionally, the time needed to have the walker localized
may be of the order T = O(

√
N) [5], where N is the size of the graph. This is largely

outperforming any classical algorithm, where the searching time is at least of the order
T = O(N). Among the different graphs, the class of those achieving exact localization in a
searching time T = O(

√
N) includes the complete and the hypercube graphs of any size,

and the d-dimensional lattice of any size for d ≥ 4. Recently, the star graph has been added
to this short list [6,7]. Quantum search based on CTQWs have received large attention in
the recent years [8–14]. However, although the high connectivity and global symmetry of
the graph have been proven not to be necessary for fast quantum search [15,16], CTQWs are
known to perform poorly on realistic graphs with low connectivity, e.g., the ring graph [17].

Since the ring graph, and other similar graphs with low connectivity, may be of interest
in view of possible implementations, a question arises on whether there exist alternative
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algorithms that make it possible to improve quantum search on simple graphs. In this
paper, we address this problem and put forward an alternative search algorithm, based on
structuring the oracle operator, which allows one to improve the localization properties
of the walker by tuning only the on-site energies of the graph, i.e., without altering the
topology of the graph itself. The proposed algorithm is thus suitable for implementation in
systems with low connectivity, e.g., ring of quantum dots or superconducting circuits, and
may be of interest for implementation of quantum search in condensed matter systems.
As we will see in the following, the novel algorithm provides an overall faster strategy
for quantum search, i.e., it increases the walker’s probability to reach a specific site, while
decreasing the overall time needed to ensure the localization in that target. Besides quantum
search, we foresee applications in the field of quantum probing [18].

The paper is structured as follows. In the next Section, we briefly review quantum
spatial search on graphs and introduce notation. In Section 3 we discuss the use of a
structured oracle to improve the searching performance of CTQW on ring graphs. Section 4
closes the paper with some concluding remarks.

2. Quantum Spatial Search on Graphs

In several systems of interest for condensed matter, the dynamics of particles or quasi-
particle (excitations) may be effectively described using the concept of continuous-time
quantum walks. In CTQW one assumes that the particle may reside only on a discrete set
of sites, which replaces the continuum spatial domain. A graph structure thus naturally
emerges, with the set of possible position states mapped to the vertex set V of some graph
G. The presence of an edge connecting two sites of the graph means that the particle may
tunnel between those two sites.

Quantum spatial search on graphs is usually implemented using quantum walkers
with (dimensionless) Hamiltonians of the form

H = L + λPw (1)

where L is the Laplacian matrix of the graph, Pw is the so-called oracle operator, and λ is
a tunable coupling, whose meaning and use will be discussed later. The Hilbert space of
the walker is H = CN where N is the size of the graph, i.e., the number of vertices. The
standard basis {|j〉}, j = 1, . . . , N is made of localized states, i.e., describing the walker
sitting on a given site of the graph. The Laplacian is defined as L = A− D where A is
the adjacency matrix of the graph, i.e., a square matrix with elements [A]jk = 〈j|A|k〉 ≡ ajk,
with ajk = 1 iff the sites j and k are connected, i.e., the walkers may tunnel between the two
sites, and zero otherwise. The matrix D is instead a diagonal matrix, known as the degree
matrix of the graph, with elements djk = δjk dj, being dj the number of links originating
from site j, i.e., the number of decay channels for a walker localized in j.

A quantum spatial search on graphs consists of preparing the walker in an initially
delocalized state

|s〉 = 1√
N

N

∑
j=1
|j〉 (2)

which can be allowed to evolve according to the Hamiltonian in Equation (1). The goal is
that of localizing, in the shortest time, the walker on a specific site |w〉, i.e., the target state
encoding the solution w ∈ V of the search (here, for the sake of simplicity, we focus on the
simple case of a unique solution, but our analysis can be straightforwardly extended to a
general number M of solutions). The task of optimally design quantum spatial search on
graph thus consists of looking for an oracle Pw and a coupling λ quickly maximizing the
localization probability

pw(τ) =
∣∣∣〈w|e−iHτ |s〉

∣∣∣2 . (3)

The figures of merit to assess whether quantum spatial search may be implemented on
a given graph structure are therefore: (1) the maximum achievable value of the localization
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probability in Equation (3), and (2) the search time τs, i.e., the time needed to achieve
the maximum of the localization probability τs = arg maxτ pw(τ). For the localization
probability, the benchmark value is of course pw = 1, whereas for the search time, the
benchmark is given by the Grover (dimensionless) time τg = π

2
√

N
, i.e., Tg = π

2

√
N, taking

into account the optimal value of λ.
For a complete graph of any size, quantum spatial search may be exactly implemented,

i.e., we may achieve pw(τ) = 1, with τs = τg. This is obtained by choosing the oracle as
the projector over the target Pw = |w〉〈w|. In turn, the Laplacian of the complete graph
is given by Lc = −(N − 1)IN + ∑j 6=k |j〉〈k|, and the Hamiltonian in Equation (1) may be
exactly diagonalized. The localization probability in Equation (3) may be thus written as

pwc(τ, λ) =
N2 + 2λ + λ2 − 2λ(N − 1) cos

[
τ
√

N2 + λ(λ− 2N + 4)
]

N[N2 + λ(λ− 2N + 4)]
, (4)

which is maximized, pwc(τ, λ) = 1, for λ = N and τs = τg = π
2
√

N
. Results are of course

independent on the specific choice of the target w, owing to the full symmetry of the
complete graph.

Realistic physical structures, however, are not usually fully connected, and a question
thus arises on whether it is possible to effectively implement quantum spatial search
on graphs with lower connectivity, e.g., the paradigmatic example of the ring (cycle)
graph. Using the same oracle Pw = |w〉〈w|, together with the Laplacian of the ring graph
Lr = −2IN + ∑j |j− 1〉〈j|+ |j + 1〉〈j| (boundary conditions: |0〉 = |N〉 and |N + 1〉 = |1〉)
the resulting search performance is rather poor, and degrades with N. For the sake of
illustration, in Figure 1 we show the localization probability pwr(τ, λ) as a function of t for
two ring graphs with N = 11 and N = 17, and for different values of λ (chosen among
those maximizing the localization probability for short time). Also for the ring graph we
have full symmetry, and thus results do not depend on the choice of the target.

Figure 1. Localization probability for ring graphs. The two panels show pwr(τ, λ) as a function of
τ for two rings with N = 11 (left) and N = 17 (right), and for different values of λ (chosen among
those maximizing the localization probability in the temporal range considered). From bottom to
top (referring to the short time region, where the curves do not intersect) we have pwr(τ, λ) for
λ = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 in the left plot and for λ = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 in the right one.

3. Quantum Search by Structured Oracles

In this Section we explore the possibility of using a structured oracle in order to
improve the searching performance of CTQW on ring graphs. The idea is that of going
beyond the simple projector structure, however without altering the topology of the graph.
In other words, we allow ourselves to tune only the on-site energies of the graph by
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choosing an oracle operator Qw (no longer a projector) that, in general, can be written in
the form

Qw(λ) =
N

∑
j=1

λj|j〉〈j| , λ = (λ1, . . . , λN) , (5)

where w ∈ {1, . . . , N} ≡ V still refers to the unique solution of the search problem. In
principle, the ability of a walker with Hamiltonian H(λ) = L + Qw(λ) to localize at
the target state |w〉 may be assessed by diagonalizing the Hamiltonian H(λ), and then
maximizing the probability pw(τ, λ) by brute force. However, this task becomes quickly
unfeasible as far as N increases, and an educated guess would be very much welcome.

In order to gain some insight into the problem, we start by considering the following
three-site symmetric oracle operator

Q(3)(λ, α) = λ|w〉〈w|+ α
(
|w− 1〉〈w− 1|+ |w + 1〉〈w + 1|

)
, (6)

which is made of the usual oracle plus the projectors over the neighbouring sites. In
particular, we analyze the effect of the sign and amplitude of the on-site energy α on the
localization probability pwr(τ, λ) of the ring graphs. Numerical evidence suggests that
larger localization probabilities are obtained when α is smaller than λ and with opposite
sign. An illustrative example is reported in Figure 2, where we show the localization
probability pwr(τ, λ, α) as a function of τ for the same graphs of Figure 1, i.e., two ring
graphs with N = 11 and N = 17. The black line in both panels denotes the localization
probability pwr(τ, λm, 0), i.e., the result obtained without the additional terms in the oracle,
and corresponding to the value of λ achieving maximum localization probability (i.e.,
λm = 1.3 for N = 11 and λ = 0.8 for N = 17).

The red curves in both panels of Figure 2 denote the results obtained for negative
values of α, whereas the green ones are for positive values of α. Solid lines in the left panel
correspond to |α| = 0.9 and dashed lines to |α| = 0.8. In the right panel we have |α| = 0.2
(solid lines) and |α| = 0.3 (dashed lines). As it is apparent from the plots, the inclusion
of additional terms in the oracle is an effective strategy to achieve larger localization
probability, although at later times. A systematic analysis for graphs of dimensions N . 40
confirms that larger localization probabilities are obtained when α is smaller than λ and
with opposite sign. Another general feature that may be observed is that with α 6= 0 the
maximum value of the localization probability is achieved at later times.

A intuitive explanation of the behaviour of the walker goes as follows. The difference
between the on-site energy of target and those of its neighbouring sites creates a barrier
which slows down the walker. However, the same fact also leads to a trapping effect which
allows the walker to localize more efficiently to the target.
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Figure 2. Localization probability for ring graphs with a three-site symmetric oracle. The two panels
show pwr(τ, λ) as a function of τ for two rings with N = 11 and λ = 1.3 (left) and N = 17 and
λ = 0.8 (right), and for different values of α (chosen among those leading to a localization probability
larger than that for α = 0). The red curves in both panels denote the results obtained for negative
values of α whereas the green ones are for positive values of α. Solid lines in the left panel correspond
to |α| = 0.9 and dashed lines to |α| = 0.8. In the right panel we have |α| = 0.2 (solid lines) and
|α| = 0.3 (dashed lines).

Motivated by the above results and considerations, let us now consider a two-
parameter structured oracle of the form

Qw(λ, c) = λ
[
|w〉〈w|+

N/2

∑
s=1

(−c)s
(
|w− s〉〈w− s|+ |w + s〉〈w + s|

)]
, (7)

and try to optimize the performance by choosing suitable values of λ and c. Instead of
using brute force numerical optimization, we set the values of the two parameters using
the following argument. Since the evolution is unitary, the Hamiltonian is a constant of
motion and we have 〈ψ0|Hk|ψ0〉 = 〈ψt|Hk|ψt〉 for any integer k and any pair of initial |ψ0〉
and evolved |ψt〉 = e−iHt|ψ0〉 states. In our case, the initial state is the fully delocalized
state |s〉, and the desidred final state is the target |w〉. Since the localization is not exact, i.e.,
|w〉 is not the exact final state of the evolution, we cannot hope that the all the equalities
〈s|Hk|s〉 = 〈w|Hk|w〉 are satisfied. However, we may use these constraints to obtain
suitable values of the oracle parameters. In particular, let us consider the value k = 1, 2.
Since 〈s|L|s〉 = 0 for any Laplacian, and that 〈w|Qw(λ, c)|w〉 = λ from Equation (7), the
equalities 〈s|H|s〉 = 〈w|H|w〉, and 〈s|H2|s〉 = 〈w|H2|w〉may be written as

〈s|Qw(λ, c)|s〉 = λ + 〈w|L|w〉 , (8)

〈s|Qw(λ, c)2|s〉 = λ2 + 2〈w|L|w〉+ 〈w|L2|w〉 . (9)

Numerical counterexamples show that for a given n, the solutions of Equations (8)
and (9) do not, in general, coincide the exact values found by numerical maximization of
pwr(τ, λ, c). However, they represent a suitable approximation and, as we will see in the
following, they improve the localization probability, and the search time, in comparison
to the case of a simple unstructured oracle. For these reasons, we refer to Qw(λ, c) in
Equation (7) with the parameters found by the Hamiltonian constraints Equations (8)
and (9) as a pretty good oracle (PGO). The solutions of Equations (8) and (9), denoted by
λPG and cPG, are reported in the left panel of Figure 3 as a function of N. The value of
λPG oscillates around the value λPG = 2 (the oscillation amplitude decreases with N),
whereas cPG increases with N, approaching the limiting value cPG = 1 from below. The
corresponding localization probability, i.e.,

pPG = max
τ

pwr(τ, λPG, cPG) , (10)
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is reported, as a function of the graph size N, in the right panel of Figure 3, together with the
localization probability obtained with an unstructured oracle. The improvement is apparent.
In the range of N considered, the localization probability decreases as maxτ pwr(τ, λ, 0) '
4/N with an unstructured oracle and only as pPG ' 1.6/N0.31 for a structured PGO.

Figure 3. (Left): The solutions of Equations (8) and (9), denoted by λPG and cPG, as a function
of N. The two horizontal dashed lines denote the values λPG = 2 and cPG = 1, respectively.
(Right): The red squares denote the pretty good oracle (PGO) localization probability pPG, defined in
Equation (10), as a function of N. The blue circles denote the corresponding localization probability
for an unstructured oracle. The upper and lower dashed curves correspond to the functions 1.6/N0.31

and 4/N, respectively.

Let us now address the performance of our structured PGO in terms of the search
time. If one consider search algorithm where localization is not exact, i.e., the localization
probability is not one, localization should be intended in statistical sense, i.e., obtained in
average by repeating experiments. In this framework, a suitable figure of merit to compare
different algorithms and regimes is given by the equivalent time

τe = τ/pwr(τ) , (11)

obtained by renormalizing time by the corresponding localization probability. In the
two panels of Figure 4, we show the equivalent time τ/pPG of PGO compared to the
corresponding equivalent time τ/pwr(τ, λ, 0) of an unstructured oracle for two ring graphs
with sizes N = 11 and N = 21.

In both panels, the red squares denotes τe for our PGO, and the blue circles τe for an
unstructured oracle. The vertical dashed line indicates the time at which the maximum
PGO localization probability is obtained. The interpretation of the results reported in
Figure 4 is the following: the equivalent time of PGO is not always lower than that of an
unstructured oracle, but it becomes much smaller for times corresponding to the maximum
localization probability. Overall, this means that despite the dynamics of the walker is
slower with a PGO (see above), the gain in the localization probability make it convenient
also in terms of the equivalent search time, which is closer to the Grover time compared to
the corresponding quantity evaluated for an unstructured oracle.
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Figure 4. The equivalent search time τe of Equation (11) for a structured PGO (red squares) and for
an unstructured oracle (blue circles) as a function of the evolution time for two ring graphs with sizes
N = 11 (left) and N = 21 (right). The vertical dashed line indicates the time at which the maximum
PGO localization probability is obtained.

Physical implementations of quantum search on graphs may require going beyond
the projector structure, since acting on single sites may be difficult to implement. Our
analysis shows that taking into account some modification of the on-site energies of the sites
neighbouring the target one, it is still possible to obtain some effective improvement up to
suitably control the phase and coupling of the different involved sites, as we highlighted in
Equation (7).

4. Conclusions

In this paper, we have addressed spatial quantum search with quantum walks on
graphs, and put forward an alternative search algorithm based on structuring the oracle
operator. Our protocol allows one to improve the localization properties of the walker
by tuning only the on-site energies of the graph, i.e., without altering its topology. In
particular, we have analyzed the use of a structured oracle in order to improve the searching
performance of CTQW on ring graphs, as a paradigmatic example of structure with low
connectivity.

We have employed a two-parameter oracle operator and instead of using brute force
numerical optimization, we have set the values of the two parameters using Hamiltonian
constraints. The resulting oracle is not necessarily the optimal one, but it nevertheless
provides improved performance compared to that of an unstructured oracle. We thus refer
to our design as a pretty good oracle (PGO). We have considered ring graphs with size N < 45
and, in the range of N considered, have found that the localization probability decreases as
maxτ pwr(τ, λ, 0) ' 4/N with an unstructured oracle and only as pPG ' 1.6/N0.31 for a
structured PGO.

The proposed algorithm is suitable for implementation in systems with low connec-
tivity, e.g., ring of quantum dots or superconducting circuits, whereas characterization of
oracle parameters may be achieved by quantum probing [19–21].
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