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Quantum state features of the FEL radiation
from the occupation number statistics
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Abstract: The coherence of free-electron laser (FEL) radiation has so far been accessed mainly
through first and second order correlation functions. Instead, we propose to reconstruct the energy
state occupation number distribution of FEL radiation, avoiding the photo-counting drawbacks
with high intensities, by means of maximum likelihood techniques based on the statistics of
no-click events. Though the ultimate goal regards the FEL radiation statistical features, the
interest of the proposal also resides in its applicability to any process of harmonic generation
from a coherent light pulse, ushering in the study of the preservation of quantum features in
general non-linear optical processes.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recent years have seen an increasing interest in the generation of ultra-bright and ultrashort
electromagnetic pulses by means of radiation sources, widely known as Free-Electron Lasers
(FELSs), through self-amplification of spontaneous emission (SASE) from a relativistic electron
bunch wiggling between a series of magnetic poles known as undulators [1]. Despite the growing
experimental and theoretical activity in the field, the issue concerning the nature of statistical
fluctuations in the emitted radiation remains still largely unmet. In the extreme, such a complex
issue boils down to the question: "To what degree is FEL radiation laser radiation?"

The experimental intensity, angular and spectral distributions of the radiation emitted by
SASE-FELs are well predicted by classical electrodynamics. Not surprisingly, also a quantum
field theory approach, such as that firstly proposed in [2], can recover the well-known exponential
growth of the electromagnetic field intensity along with the exponential regime yielding a
satisfactory description of the behavior of a single passage SASE-FEL. Instead, more surprising
theoretical predictions appear in [3] and [4] that the radiation resulting from a SASE-FEL could
show properties typical of squeezed light. Indeed, any quantum description of an electromagnetic
phenomenon also contains a classical description as an approximation. On the contrary, a
phenomenon which can be described by a classical theory, and yet exhibits purely quantum
features, points to a weakness in the classical explanation and requires a quantum theory of
SASE-FEL radiation that is able to reproduce not only its classical features, but also the quantum
characteristics. Although a possible explanation might be found in the fact that the spontaneous

#440198 https://doi.org/10.1364/OE.440198
Journal © 2021 Received 10 Aug 2021; revised 15 Oct 2021; accepted 25 Oct 2021; published 18 Nov 2021


https://orcid.org/0000-0002-9251-0731
https://orcid.org/0000-0003-3639-2504
https://doi.org/10.1364/OA_License_v1#VOR-OA

Research Article Vol. 29, No. 24/22 Nov 2021/ Optics Express 40375 |
Optics EXPRESS A N \

emission of radiation originates from the fluctuations of the electromagnetic vacuum, a solid
theoretical explanation of such an effect is, to the best of our knowledge, still missing.

In this respect, the study provided in [S] made perfect sense; there, in a photon counting
experiment performed on the spontaneous harmonic radiation generated by an infrared, SASE-
FEL using a well-defined ensemble of electron pulses, the authors announced the detection
of genuinely quantum sub-Poissonian intensity fluctuations. However, a more recent work [6]
challenges such findings together with their consequences in that the reported quantum signatures
of the SASE-FEL radiation can be explained, within standard, classical SASE-FEL theory, by
combining detector dead-time effects with photon clustering arising from the FEL gain.

Along the same lines, recent measurements of the undulator radiation statistics reveal no
deviation from a classical Poisson distribution, in agreement with Glauber’s result stating that if
the electronic current is classical, that is without electron recoil during the emission, then the
radiation statistics is purely classical [7,8]. Indeed, from a fully general perspective, quantum
effects in the undulator emission are precluded because the scattering cross-section matrix
element for Dirac-Volkov states is equal to classical Compton scattering, in the limit of negligible
electron recoil [9].

Thus, to bridge the still existing gap between the theoretical predictions of quantum effects
and the experimental evidence, one must develop further a fully consistent quantum explanation
of SASE-FEL radiation production that predicts possible distinctive quantum features in the
statistical fluctuations of SASE-FEL radiation.

A completely different scenario arises if the FEL process is triggered not by the background
radiation of an oscillating relativistic electron bunch, but by a pulse of laser light with intensity
several orders of magnitude larger than the background incoherent shot noise. Underlying this
work there is the conjecture that the coherent features of the "seeding" laser pulse are transferred
to the electrons in the bunch that in turn convey them, at least in part, to the FEL radiation, first
in the modulation phase and then in the radiation phase, thus producing amplified high harmonic
radiation extending up to the X-ray domain and showing a coherent, that is a lasing state, of the
electromagnetic field. Such a conjecture is made more realistic by a recent work [10] showing
that, in the case of the light-matter interaction for a single electron, its wavefunction becomes
sensitive to the photon statistics.

Moreover, to be coherent and thus to describe laser light, the quantum states of seeded-FEL
radiation must satisfy with specific requisites: they must be characterized by all 2n-point
normalized Glauber correlation functions g, equal to 1 in modulus [11, 12] and the occupation
numbers of the available energy states must exhibit a Poisson distribution. Experimental
investigations focussing upon the Glauber correlation functions g; and g, both for SASE-FEL
[13,14] and seeded-FEL light [15,16] revealed typical chaotic light behaviour in the first case,
lg2] = 1 + |g1/%, and values of |g»| being still greater than, but rather close to 1 in the second
one. However, |g;| = |g2| = 1 would only confirm the possibility of lasing features, but does not
guarantee them. For such a purpose, higher order g, should be investigated. In the following,
we instead propose to shift the focus from Glauber correlation functions to reconstructing the
statistical properties of the FEL radiation related to the photon occupation numbers.

2. Concepts and methods

The quantum nature of the FEL radiation can be proved either with specific experiments aimed
at highlighting indirect clues of its granularity [17] or by retrieving the actual photon-number
distribution of the field [18]. In the latter case, photon-counting techniques have many drawbacks,
as evidenced by [6] in the case of [5]. In general, they are limited to the detection of up to few
tens of photons [19-23]. If the average number of photons increases, as in the case of high
intensity sources, photon counting becomes challenging, even for attenuated FEL radiation. For
the reconstruction purposes outlined above, one has then to resort to other approaches, such as
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Maximum Likelihood (ML) [24-26] methods based on no-click probabilities instead of photon
counting. Finally, within the present context, it is interesting to note that the question concerning
the degree to which the statistical occupation of the modes of a laser pulse is preserved after a
nonlinear conversion of the photon energy remains an unknown aspect that could find an adequate
answer via the theory and detection technique reported here.

In the following, we pursue the study of the photonic structure of the light emitted by FELs
using the statistics of no-click events in Geiger-like photo detectors [27-29]. Such an approach
has already been successfully investigated and experimentally tested in the optical regime, both
for continuous-wave and pulsed sources [30-32], but still limited to a mean number of only tens of
photons. Therefore, to apply the technique successfully to (attenuated) FEL light, in the following
section we show by simulated experiments that it can be extended to reconstruct the statistics
of hundreds of photons. Notice that such a procedure provides information about the photon
number statistics of the state of the light generated by the FEL, without any assumption about
the nature of the FEL process itself. From this point of view, one expects a nearly Poissonian
distribution of the occupation number in the case of seeded FEL light and a substantially thermal
one in the SASE case. Shifting the focus from photon correlations to the statistics of occupation
numbers would then provide a first step towards a reliable investigation of the quantum signatures
of FEL light, ultimately able to discriminate between Poissonian and non-Poissonian features.

Notice that the experimental evidence of classical, non-Poissonian statistics, such as a thermal
distribution, would exclude lasing properties. On the other hand, the experimental confirmation
of the presence of Poissonian statistics, though not sufficient, would in any case provide solid
ground to attributing "lasing properties” to the mechanism behind the generation of radiation
by relativistic electrons wiggling in a series of magnetic devices. It would also give support
to the conjecture that the lasing properties are imprinted upon the seeded-FEL radiation by
the coherence features of the seeding pulse. Furthermore, an efficient applicability of the
reconstruction mechanism to the diagonal occupation number statistics of the FEL radiation
would boost further steps towards the full reconstruction [29] of the quantum states of the FEL
radiation and prompt the investigation of which quantum features the emitted radiation would
exhibit, should one use squeezed, namely genuinely quantum seeding pulses.

From a more general perspective, the consequences of the confirmation of the lasing properties
of the seeded-FEL light will be of two types: it will open the way to experiments in quantum optics
with X-ray radiation and it will foster the experimental investigation of light-matter interactions
in the high energy quantum regime.

2.1. FEL radiation: quantum states

We start with an overview of the quantum states of light that are most suited to describe SASE
and seeded-FEL radiation.

All light is in principle describable by non-commuting creation and annihilation operators
a and a' of electromagnetic energy modes of frequency w such that [a, a'] = 1. The number
operator is N = a'a and the so-called Fock number states with n photons, |n) = (n!)‘% (a™)"|0y,
satisfy N|n) = n|n) and constitute an orthonormal basis in the Fock Hilbert space associated with
the chosen mode,

Let (X) = Tr{ p X ) denote the expectation value of an electromagnetic field operator X with

respect to the field state (density matrix) p, which, in the number state representation, is in
general a non-diagonal positive matrix of trace 1,

p= ipk{flkﬂﬂ, iPw:l, (1

k,£=0 =0

where prs = (k|p|€). Let us consider a monochromatic field polarized along the z axis and
propagating along the x direction, with energy w (h = 1), wave-vector k = w/c, and right,
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respectively, left moving field components

Ei(on)=i2 ; k=g E_(x,1)=El(x,1). 2)

At a fixed spatial position x, the Glauber correlation functions of order 2n [11], depend on n
varying instants of times and are given by

Gn ({ti 12=nl)
2n
n\Uisiz1) = s 3
& ((002) EN T 3)
with
G ({112) = CE-(0) - E-(@)E+ (1) -+ Ex(120)) @

where we have disregarded the spatial dependence. By suitably choosing the times #;, one also
eliminates the time-dependence and obtains [18]

(N?) = (N)* = (N)
(N)?

Monochromatic coherent states |@) with complex amplitudes a € C such that a|a) = a|a),
exhibit Poissonian occupation number distributions. They are generated by displacing the
vacuum state |’y = D(a)|0) by means of the displacement operator D(e) = exp(aa’ — a*a) (see
Appendix A for some of their properties). Coherent states yield mean-values (@|(a")"a"|a) =
|a)*" whence |g,(0)| = 1 for all n > 1. The same do the uniform averages of projectors onto
coherent states over ¢ in @ = |a|e’ , which are commonly used to describe the quantum states of
laser light for which the phases are not accessible.

Instead, thermal states at temperature T (setting the Boltzmann constant kg = 1),

g1(0)=1, g0)=1+

&)

Z(1+ o nr= (N = ©)

give (N?) — (N) = 2(N)? and thus g,(0) = 2 corresponding to the incoherent character of such
states of radiation.
The randomness of thermal states can be lessened by displacing them:
pra = D(@) pr D¥(a), (7)
whence (N) = Tr (pr.o a'a) = nr + |@|?. Thus,

nr 1 nr 1

20)] = 1+ <
o (T4 27 " P T+

2, ®)

reaches the minimum value 1 when nr = 0, namely for purely coherent states and the maximum
value 2 when a = 0, that is for purely thermal states, or in the limit of infinite ny.

Displaced thermal states are natural candidates to describe the radiation emitted by FELs,
which is due to aggregation in micro-bunches of relativistic electrons wiggling transversally
while passing through a magnetic undulator. The micro-bunching is induced by the electrons
interacting with the electric field they generate. SASE-FELSs undulator radiation is the result of
the interaction between the electrons and the virtual photons of the static magnetic field.

As schematically shown in Fig. 1, spiky behavior is due to the lack of the causal connection
between segments separated by cooperation length due to the different forward velocity between
the electron bunch and the e.m. radiation field [33]. To lessen the initial randomness of the
electron bunch, seeded-FELs instead use an external laser radiation source to "order" the electrons
before the undulator, with the effect that the various micro-bunches emit in phase within a very
narrow spectral band-width, thus introducing coherence with respect to the thermal case.
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2.2. No-click quantum state reconstruction

As anticipated in the Introduction, this work proposes to shift focus from the Glauber correlation
functions to the occupation number statistics. Such statistics are given by the diagonal entries
Pk = pi of the quantum state of light p in the Fock number state representation (see (1)). The
statistics will be reconstructed by means of the empirically measured probability of no-click
events, thus avoiding the drawbacks of photon counting. The principal tool is a Maximum
Likelihood algorithm, as proposed first by E. Fermi [34], based on the no-click probabilities

Ppatwm) = Y (=0 i, ©)
k=0

where 7 is the detector efficiency, namely the probability that it clicks when impinged by a single
photon. The no-click probability for k impinging photons is given by (1 — 77)¥, whence (9) gives
the total no-click probability.

Since higher photon-number states have reduced populations, one truncates the sum at N
such that Zivzl pr = 1 — € for a sufficiently small e. Photon detection at L different efficiencies
{n[}ézl yields a system of L linear equations

N
Pe({patn) = PUpatnme) = D (1 =n0) pic (10)
k=0

that can be used to infer the unknown parameters p,, via a Maximum Estimation method (see
Appendix B for more details). The number of efficiencies L being in general much smaller than
N, the ensuing underestimation and the existence of more than one solution can be overcome by
applying an external energy constraint 8 as explained in Appendix B.

In the non-monochromatic case with M>1 different independent modes, the quantum state of
the beam is of the form p = ®11v:11 p, where pU) denotes the state of the j-th mode. Then, the
joint probability for # impinging photons and no clicks reads

M

WMy = > |[Ja-wrel|. (1)

ny+ny+-+ny=n | j=1

where 7; is the occupation number of mode j and p&{j) is the probability of having n; photons
given the state p{). Then, the total multi-mode no-click probabilities become

Py(n) = ) TIa(M, 7). (12)
n=0

The reconstruction algorithm described in Appendix B is such that, in the monochromatic
case, once fed with the no-click probabilities P¢({p, },) measured for sufficiently many detector
efficiencies ¢, 1 < € < L, it returns the populations p; of the k-photon Fock states of light, from
k = 0up to k = N (see the right plot in Fig. 2). Instead, in the case of multi-mode radiation,
from the no-click probabilities Py (7) the algorithm is able to reconstruct the probabilities
in (11), denoted by I1,, on the y axis of the right plots in Figs. 3—5. To retrieve the single-mode
probabilities p,({j) and thus the diagonal elements of the multi-mode state p, further considerations
are needed based on suitable physical assumptions about the structure of the radiation quantum
state.
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Fig. 1. Left: cartoon of lasing in SASE and HGHG mode. In SASE, energy and density
modulation of electrons at the scale of the resonant FEL wavelength happen simultaneously
along the undulator. The spectrum of the amplified spontaneous radiation is an ensemble of
spikes whose intensity varies shot to shot, each spike being individually coherent. In HGHG,
the energy modulation generated by the electron-laser interaction in the modulator translates
into density modulation via the magnetic chicane. The FEL spectrum is a narrow band
single spike. Right: intensity profile of consecutive shots of the spectrum of the FERMI
FEL, run in SASE (top) and HGHG mode (bottom), for the same setting of the accelerator.

a) b)35 <107
—Theoretical —Theoretical
0.9 ; 3
¢ Simulated —Reconstructed
0.8 * Reconstructed
o 25
0.6
=} c £ F =0.9995
05 S
1.5
0.4
0.3 !
0.2 0.5
0.1 "
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 200 400 600 800 1000 1200 1400
n n

Fig. 2. Single-mode displaced thermal state, M = 1 & = 16, ny = 30. Figure a: simulated
no-click probabilities (blue dots), outputs of the reconstruction algorithm (red dots), plot
of (9) (solid line). Figure b: reconstructed photon distribution (red line), photon distribution
from (9) (black line). Fidelity F also shown.

3. Numerical simulations

To check the reconstruction algorithm, one starts from known population distributions {pi"},,
them simulates the no-click probabilities for chosen efficiencies, and feeds them to the algorithm
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thus obtaining the reconstructed {p3"'},,, from which the fidelity

Wl )

J=1

can be evaluated. In the following we focus on the simulation of two types of radiation quantum
states: a single-mode displaced-thermal state and a multi-mode displaced-thermal state of the

form
M o
- 0
j=1

with a common temperature 7" and different amplitudes «;.

As previously discussed, the first kind of quantum state should represent well the light produced
by a seeded FEL. For SASE-FELs instead, the common physical context at the origin of the
micro-bunches suggests describing the corresponding quantum state of light by the multi-mode
state (14) with a same degree of randomness and hence the same temperature 7', but with different
coherent biases and thus with different displacement amplitudes ;.

Due to the one-dimensional feature of the problem, the generation of a vector of no-click
probabilities can be obtained by generating events according to the probabilities P,({p,},) by
means of the rejection sampling technique [35]. Then, the occurrences of the generated points,
normalized to the total number of data, coincide with the desired no-click probabilities that, for
sake of simplicity, are denoted by P on the y axis of the left plots in Figs. 2—5. From datasets
of thousands of values, we extract a subset of L elements with the corresponding efficiencies.
In the following, L is chosen to be equal to 20. Such choice is consistent with previous tests of
the algorithm [32,36] and with possible experimental set-ups, as described below. The range
of selected efficiencies is chosen taking particular care to avoid regions of  where the no-click
probabilities are flat. This condition leads to the exclusion of points with low Fisher information.

To mimic a realistic experiment, random perturbations have been added to the no-click
probabilities. The stability of the algorithm has also been tested by corrupting the simulated
no-click probabilities with systematic perturbations. The iteration procedure described in
Appendix B has then been fed with the no-click probabilities and the initial occupation numbers
0n(0) taken all equal: p,(0) = 1/N.

Finally, the consistency of the photon distribution reconstructed by the algorithm with the
theoretical one is evaluated by means of the fidelity (13). As mentioned above, the algorithm
has been applied to two distinct dataset scenarios. The dataset parameters have been chosen
in adherence to the performance of a short wavelength high gain FEL operating in the SASE
[37,38] and in an external seeding [39] regime, respectively. The FEL pulse photon distribution
has been assumed to be taken close to power saturation in both regimes.

Extreme ultraviolet seeded FELs are ideally capable of producing Fourier-transform limited
light pulses, hence a single transverse and longitudinal mode. The natural relative spectral
bandwidth can be as low as 10~% [40,41]. Thus, micron-scale modulations of the electron energy
distribution, accumulated during the acceleration process, can add a statistically significant
pedestal to the FEL spectrum [42-45].

The ideal and the perturbed seeded FEL performance is represented in our algorithm through a
single mode-displaced thermal state (M = 1, @ = 16), and a multi-mode-displaced thermal state
(M =3,a =17,8,12). In both cases, the mean occupation number has been chosen ny = 30. The
reconstructed no-click frequencies and photon distributions are compared with the theoretical
and simulated data in Figs. 2 and 3.

SASE-FELs are driven by shot noise in the electron distribution. Spontaneous undulator
radiation is amplified and, eventually, a large number of longitudinal modes - each individually
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coherent - is emitted. A single transverse mode is instead selected by the amplification process in
the exponential gain regime, close to saturation [46].

The number of longitudinal modes is basically given [36] by the portion of bunch length
contribution to FEL emission (~ 100 pum) divided by the FEL coherence length (~ 1 — 3 p in the
extreme ultraviolet regime).

The SASE-FEL radiation has therefore been modelled choosing M = 30 and randomly
distributed displacements. Moreover, two thermal configurations were considered to test the
algorithm: in the first example the amplitudes a; are chosen in the interval 1 — 8 with ny = 10
and in the interval 1 — 5 with n7 = 100 in the second one. Results are shown in Figs. 4 and 5.
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Fig. 3. Multimode-displaced thermal state: M = 30, with a; chosen randomly in the range
[1,8] and ny = 10. Figure a: simulated no-click probabilities (blue dots), outputs of the
reconstruction algorithm (red dots), plot of (12) (solid line). Figure b: reconstructed photon
distribution (red line), photon distribution from (12) (black line). Fidelity F also shown.
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Fig. 4. Multimode-displaced thermal state: M = 30, with a; chosen randomly in the range
[1,8] and ny = 10. Figure a: simulated no-click probabilities (blue dots), outputs of the
reconstruction algorithm (red dots), plot of (12) (solid line). Figure b: reconstructed photon
distribution (red line), photon distribution from (12) (black line). Fidelity F also shown.

The overall procedure requires less than 200 iterations, to reach a fidelity level, 1 — F, smaller
than 10™*. Similarly high fidelities have been obtained for a larger number of datasets, thus
demonstrating the capability of the algorithm to retrieve the input diagonal statistics in a wide
range of configurations. In Figs. 2-5, the left plots display a comparison between simulated,
reconstructed and theoretical no-click frequencies, while the right ones compare reconstructed
and theoretical photon distributions. More specifically, the left plots in each figure show the
dependence of no-click probabilities on the efficiency n where the blue dots denote the simulated
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Fig. 5. Multimode-displaced thermal state: M = 30, @; chosen randomly in the range
[1,5] and ny = 100.Figure a: simulated no-click probabilities (blue dots), outputs of the
reconstruction algorithm (red dots), plot of (12) (solid line). Figure b: reconstructed photon
distribution (red line), photon distribution from (12) (black line). Fidelity F" also shown.

probabilities obtained with the sampling rejection technique. The red dots are outputs of the
reconstruction algorithm; the solid line corresponds to the expression (12) with chosen values for
the parameters M and . In the right plots of each figure, the red line shows the reconstructed
photon distribution while the black line shows the photon distribution given by (11). The fidelity
F of the reconstruction is also reported.

The figures show the ability of the no-click reconstruction algorithm to efficiently reproduce
the occupation number state statistics not only for low average photon numbers, as already
demonstrated in the range of visible light, but also for higher ones as required by the FEL scenario.
This numerical evidence points to the feasibility of an experiment where, without incurring the
difficulties inherent in photon counting with many photons, one may access the diagonal entries
of the quantum state of FEL radiation in the energy representation.

4. Discussion and conclusion

We have illustrated a novel approach to the study of the laser properties of the radiation emitted by
an FEL by accessing not the electromagnetic correlation functions, but rather the diagonal photon
statistics of the quantum state of the radiation in the energy representation. The occupation
numbers are expected to follow thermal statistics in the case of SASE-FELs and that of a displaced
thermal distribution in the case of seeded-FELs. The latter statistics are closer to that of laser
light, with its the higher coherence with respect to its thermal features.

Due to the large average number of photons expected in concrete experimental set-ups, the
occupation number statistics can be hardly accessed via photon counting. Therefore, we suggest
the use of a Maximum Likelihood reconstruction algorithm based on no-click probabilities at
multiple, variable detector efficiencies. The reconstruction power of the algorithm has been
tested in numerical experiments and proved to extend well to the high photon numbers typical of
FEL light.

The numerical evidence points to the feasibility of an experimental implementation of the
strategy described in the previous sections. As regards this future possibility, here we only observe
(some more details are provided in Appendix C) that monolithically integrated, complementary
metal-oxide-semiconductor (CMOS) single photon avalanche photodiodes (SPADs) appear
particularly well-suited to measure no-click probabilities due to their fast response and short
dead-times, especially in the case of FELs with high repetition rates. Furthermore, arrays of
photon counting pixels can be easily integrated on chip allowing pixels to be selectively turned
off thus directly controlling the detection efficiency. Though our method cannot discriminate the
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origin of the reconstructed statistics, it can however be fruitfully associated with other approaches
and theoretical models (see, e.g. [44]) to better understand the physical mechanisms at the roots
of the FEL radiation and of its properties.

The experimental confirmation of a thermal distribution of the occupation numbers of the
energy states of the SASE-FEL radiation would indicate its classical features in agreement
with the fact that its purported squeezing is an artefact due to photon counting drawbacks,
as demonstrated in [47,48]. On the other hand, the experimental evidence of a Poissonian
distribution of seeded-FEL radiation would have two main consequences. In the first place it
would represent a first step towards the development of an X-ray quantum optics in connection
with high-energy light-matter interactions. In the second place, it would spur the investigation
of the very mechanism behind the seeded-FEL radiation, whether and how the seeding laser
imprints its coherence on the emitted light and whether a sub-Poissonian seeding might induce
the appearance of genuinely quantum features in it. Such scenario is made more realistic and
effective in view of the experimental observations reported in [10]: indeed, the recording by free
electrons of the statistical properties of the radiation impinging on them opens new opportunities
for research in free-electron lasers and X-ray quantum optics, suggesting new perspectives that
might unlock the way to create new quantum light sources in the X-ray spectral region.

Appendix A. Quantum states of light

In this section we present quantum states of light that are relevant for describing the SASE and
seeded-FEL radiation.

A monochromatic, linearly polarized plane-wave of frequency w is described by single-mode
creation and annihilation operators a and a' satisfying the commutation relations [a, a'] = 1. The
absence of photons of frequency w is associated with the vacuum state |0) which is annihilated by
the annihilation operator: a|0) = 0, whereas the so-called number state, or Fock state, describing
n photons with frequency w is obtained by acting n times on the vacuum with the creation
operator a':

(a'y'
Vn!

The number states are orthogonal (n|m) = J,,, and such that

In) = 0 . 15)
aln) = \nlny, d'lny = Vn+1ln+1), (16)

whence they possess definite photon number N = a'a and thus definite energy E = wN (h = 1):
Nn) = njn) . 17

To the other extreme with respect to Fock states, one finds the so-called coherent states |a),
with complex amplitudes @ € C; they are eigenstates of the annihilation operator and their
intensities are given by the their mean photon number:

ala) =ala), |af® =(ala’dla). (18)

Any quantum state of light described by mode-operators a and a' is representable as a density
matrix p acting on the Fock space space spanned by the number states, which in that representation
reads:

p= e kN, pre = (Klple) - (19)
Kt
In turn, any such density matrix can always be written as [11]:

p= /dza Pola) |a){a| with /dza Pola) =1 20)
c c
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where $, () is the so-called Glauber-Sudarshan P-function (see e.g. [12] for details) associated
with the quantum state p and the integration is performed with respect to the real and imaginary
parts of @ = a, + iy, d*a = da, da,.

Therefore any single-mode state of light reads as a linear combination of projectors |a){«|
onto coherent states with a function #,(«) that, though being normalized, need not necessarily
amount to a smooth probability distribution over the complex plane. Indeed, $,(a) may not only
degenerate into a highly singular distribution, but even become non-positive. As a consequence,
a quantum state of light is said to be

* classical if the Glauber—Sudarshan P-function is a bona fide distribution
Pola) 20, 21
with $,(a) a smooth function or no more singular than a Dirac delta.

For instance, as we shall see in Section 5, for coherent states, that is when p = |8)(8|, P,(a)
reduces to a Dirac delta 6*(e) = 0(ax)d(ay) on the complex plane, while, for thermal states
P, () reduces to a Gaussian distribution. Instead, a quantum state of light is called

* non-classical or, in other words, genuinely quantum, if the function #,(«) is either
non-positive
Po(@) 20, (22)
or more singular than a Dirac delta distribution.

Indeed, the non-classical behaviour of Fock number states is accompanied by a highly singular
distributional Glauber-Sudarshan %, function, as shown in Section A.1,

e|a|2 0211

Pl == aan
I ona.

5%(a) . (23)

The P-function being an increasingly (with n) singular distribution, its behaviour has to be
tested by integration against suitably differentiable trial functions g(«, @*) vanishing at infinity,
that is by computing

elol® 82”g(cx, a’)
n! 040,

Pl = [ Pade Pi(a)gla.a’) - (24
C

Evidently, these integrations can yield negative values even for positive trial functions, thus
the P-function #,(a) cannot be a positive distribution, whence the Fock number states are highly
non-classical.

We shall now examine some quantum states associated with different degrees of coherence and
discuss which ones among them are good candidates for the quantum description of the radiation
emitted by SASE and seeded-FELs. Technical details on how to derive their mathematical
properties are given in the Appendices.

Coherent states and laser radiation. As we have seen in (18), coherent states are eigenstates
of the annihilation operator and have thus the following expansion over the orthonormal basis of
number states (15):

[o0]

_ ol 3 @
a)y=¢€ —1n)y, aeC, 25
) ZO w1 (25)
whence the associated number or energy distribution is Poissonian:
i |(X|2"
Kl = 7ol = (26)

Though their quantum granularity is embodied by the Poissonian distribution (26), coherent
states p, = |y)(y| are nevertheless classical according to the definition comprising Eq. (21).
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Indeed, (see Section A.1), their Glauber-Sudarshan P-function £, (a) (20) is a Dirac delta at the
point vy in the complex plane:

Py(@) = 2@ -7y). 27

Given the complex amplitude @ = @ + ia,, its phase-angle ¢ = arctana,/a, cannot be
determined; therefore, the states of monochromatic laser light are obtained by averaging
uniformly over all possible ¢. Such a procedure yields a uniform mixture of coherent states, but
also a Poissonian mixture of number state projectors [49]. Writing a,, = « e¥, a>0,

1 2 ) b QM 1 2 o )
3 |l = Y sl 3 [ agee

mn=0 Y In!
©2n
—a? @
e Y — Inyal.
n=0 "’

Single mode thermal light. A single mode thermal state of light at temperature 7 is described
by the Gibbs density matrix (setting the Boltzmann constant kg = 1)

PL
(28)

B ~ 1 oS }’lT n 1
(- w/T) w/Ta'a _ 5 =(N)=—— . (2
pr ( ¢ © Vtnp g\l +ng Iyl = (N) ew/T — 1 9)

Then, one computes

e@/T 41

2 b
)

As regards the thermal Glauber-Sudarshan P-function, one gets a P-function which is a
Gaussian distribution (see (47) in Section A.1) so that the corresponding quantum state can thus
be interpreted as a classical one:

(N?) = (N?) = (N) = 2(N)*. (30)

Jer)?
le nr
Pr(a) = -

T nr

3D

Indeed, thermal light can be seen as a mixture of coherent states with respect to a Gaussian
distribution in the amplitude modulus || = y/a? + @7 of the amplitude & = |a|e¥ = ay + iay
and a uniform distribution with respect to the phase-angle ¢ = arctan a,/a;:

e—((tf+a)2,)/n1

or = / doday ———— |a, + iay ) (ax + iy . (32)
R2 nnr

Displaced thermal states. The randomness of thermal states expressed by their Gaussian
Glauber-Sudarshan P-function can be diminished by displacing them via the displacement
operators D(«) in (39) of Section A.1:

Pra :=D(@) pr D' (). 33)

Indeed, coherent states can also be obtained by displacing the vacuum state, |@) = D(@)|0);
therefore, by means of D(«a), thermal states acquire a coherent contribution; this is particularly
evident for vanishing temperatures, when ny vanishes as well and thermal states behave as the
vacuum state which is turned into a fully coherent state by D(«) as in (38). A more formal
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characterization of this interpretation follows by using (32) and (40) in the next section; indeed,

one gets

, e 1812 /n7 , e |B-a|?/nr
Wﬂ=/dﬁ m+mw+m=/kﬁ————wmwu (34)
C iy C nnr

where one sees that the displacement introduces a coherent bias into the Gaussian distribution
that originates chaotic thermal light.

A concrete consequence of this coherent bias emerges when one looks at the mean energy
which also gets a coherent contribution; indeed, using (39) in Section A.1, one computes

(a'a)y =Tr (pTﬂ aTa) =nr+ |a|?. (35)
A.1. P-function: coherent, thermal and number states
Coherent states form a continuous non-orthogonal family,
(a|B) = e 2ol HlpF20p) (36)

which is however over-complete in the sense that the corresponding projectors integrate to the
identity operator

d’a
/—Ia)(a| =1. 37
c T
Coherent states are obtained by displacing the vacuum |0),
D()|0) = |a) , (38)

by means of the displacement operators
D(a) = e @@ = ¢lal2gad gmata (39)
which are such that
D(B) D(a) =¥ P2 D@ + B), D'(B)D(a)D(B) = * P D(a).  (40)

whence DY (@) aD(@) = a + a.
Let p be the density matrix of a monochromatic light beam; its Glauber-Sudarshan representa-
tion reads as a continuous linear combination of coherent-state projectors

pzfcd%@p(a) la)(al .

Using the scalar product (36), with @ = x + iy and 8 = u + iv, one obtains

elﬁ\2 (=BlplB) = /CdQQ,Pp(a) e—\a|2—nﬁ*+a*ﬁ

41
2 .2 .
= / dxdy Po(x + iy)e™ ™ g2ilwv—yu)
R2
whence, by anti-Fourier transformation,
dQ2u)d(2 .
/ d@u)d(2v) et (—u — iv]plu + iv) 2V = e’ Polx +iy) . (42)
R2 471'2

Then, the Glauber-Sudarshan P-function #,(a) can be expressed by means of the matrix
elements (—f|p|B):

2
clel

Pt = S [ @B P Cplplp) 3)

where | + ) are coherent states.
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If p is itself a coherent state p, = |y)(y|, the scalar product (36) yields

(~Bloy|B) = e—lﬁlz—l}’lz—’)’ﬁ*ﬂ*ﬁ ) (44)

Using (43) and the fact that, with @ = x + iy and 8 = u + iv,

1 " R +o0 +00 dxd .
; ) dzﬁ eafﬁ -a*B — / 7?yeb(yufxv) — 6()(:)(5()7) — 62(0) , (45)
one then obtains
la=ly[? e
Poy(@) = —5— /C @ eV WS = 2 - y). (46)

For thermal states as in (29), by Gaussian integration one obtains

_|B|2 1+2n7 _\(Y\z
e L+np l e T
(=BlerlB) = Tia Pr(e) = — 47
+ nr T nr
On the other hand, when p = |n)(n|, one computes
-lB1? 2
€ n 1Bl
(-Blplp) = ——(-)"E (48)
Fis n!
whence, using (45), the P-function becomes a highly singular distribution:
lar? 2 la2 g2
P.(a) = i/dZﬂ (_)nﬂeftﬁ*—a*ﬁ = e 8% /d2lgeftﬁ*—a*ﬁ
2 Jo n! n2n! 030, Je
5 (49)
elal 82n
=— §*(a).
n! 0500,

A.2. Displaced thermal states representation

Sometimes, instead of their Glauber-Sudarshan representation in terms of projectors onto coherent
states, it proves convenient to represent quantum states by means of their characteristic function
Tr(p D(—a)) and of the displacement operators. In the case of thermal states, this representation
reads

1
or = /dzﬁ e IBP (3+nr) D(B), (50)
C /4
whence, using the algebraic relation (40), it yields

1 +_pt
Ol = /dzﬁ _e_‘ﬁ|2(%+nr) eﬂa -B aD(ﬁ) (51)
C T

for displaced thermal states. These representations are obtained by firstly noticing that any
single-mode density matrix p can be written as

o= ‘/C (127'8 Tr (pD*(a)) D(a) . (52)

This follows from using (40) and the overcompleteness relation (37) to prove that

2
T (0'(8) D) = /c T ' (B (@)l = n (@~ ).
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Then, using the P-function (31) and the Glauber-Sudarshan representation together with the
coherent state overcompleteness and Gaussian integration, yield

(D@ pr) = o [ty e D @) = e (18P (5 o)) 9

nnr

Given a displacement operator D(«) and a coherent state |3) = D(B)|0) (see (38)), using (37)
and then (25), one computes in two ways the scalar products with Fock number states |n),
a'aln) = n|n):

(ID@)|B) = B B2 (niD(a + )0y = LB -ttt ripr 202
Vil

= o P2 r;) % (n|D(@)|m) .

It thus follows that

(a s By e = el 3 [T o D(a)
m=0 ’

By setting 8 = @y, the equality reads

(el =3 (e'“'2/2 o \/g (n| D(@) |m>) v

m=0

whose right hand side is recognizable as one of the generating functions of the associated
Laguerre polynomials L' (y) [50],

(1+0)te™ = Z LA™ ()
m=0

The identification

2 _ n! —
elal?/2 m—n /% (n|D(a)|m) =L5:ll m)(|a|2) 54)
finally yields
!
nID@)m) = &1 2 =Ll (53)

From (50) and (55) one gets
1 .
pra() = Glprain) = [ & LIPS0 g
C

1 21 *_B* 2 (56)
= /Cdzﬁ —e WG o a2 L (o),

where L,(x) = Lﬁlo)(x) are the Laguerre polynomials.
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By passing to polar coordinates, d* = rdrdy and setting & = |a|e”, one rewrites

| 2 ) .
Pr.a(n) = / ; re—r2(1+nr) L,,(r2) / dg 2irlasin(p—y)) (57)
0 0

The last integral equals the Bessel function Jo(2r|a|) so that one can use the relation [50]

+oo 5 - B)" 2 2
| e R g o = e (B

and get

n o lel® )
nr e lnr |a|
pT,a(”) = ( ) L, ( ) .

1+I’lT 1+I’ZT _I’ZT(1+HT)

Appendix B. No-click quantum state reconstruction

We now illustrate how the structure of a photon state diagonal with respect to the number
representation can be reconstructed by means of the empirically measured probability of no-click
events from photodetectors in on/off experiments with varying detector efficiencies 7.

B.1. Monochromatic light

We first consider the case of a single mode radiation, a monochromatic beam of photons of
frequency w described by a density matrix as in (19). If photons are detected by L detectors with

different efficiencies 11,72, . . ., 771, one collects L linear equations
N
P[({Pn}n):Z(l_Tlf)kpks 52132""31" (58)
k=0

that, as we shall presently show, can be used to infer the N unknown parameters p,, via a Maximum
Likelihood method.

Remark 1. The number L of efficiencies to be considered has to be evaluated in reference
with the specific reconstruction problem: in the case of visible light, as well as in the case of the
simulations discussed in the main text, L = 20 appears to be sufficient. The fact that the number
N of unknowns is larger than the number of equations L makes the problem underestimated with
a non-unique solution, in general. This issue can be overcome with an external energy constraint
as discussed below.

For each efficiency 7, one counts the no-click events N, out of a total number A of impinging
photons coming from a radiation beam described by a state p, thus collecting L empirical
frequencies
fe:= Ne :

N

Usually, once the empirical frequencies f, of a set of independent events x, are measured, the

event probabilities p, := p(x,) are derived from the log-likelihood function

(59)

Lltpab Ui 0 = oz [ |00+ 2( Yo =1). (60)
t 4

where the Lagrange multiplier A ensures normalization. Then, maximizing with respect to the
unknown p, one gets

Jfe

apr({pn}n, ntn, A) = P_[’ +4=0, 61)

whence, from ), fr = 1 = 3}, p¢, one retrieves A = —1 and p, = f7, as expected.
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In the case of (58), the unknown parameters to be found by optimization are the populations
pn of the n-photon states, given the overall radiation state p. Then, one firstly introduces the
normalized no-click probabilities

Pultputn) = 2 e b = S Patipnl ©
¢\ Pnsn) = P({pn}n) > Pnin) ‘= £ t\\Pnisn) >
and then the log-likelihood
L . N
L({pabos ik D) 1= Y fe TogPe(lpata) +A( Y o —1) - (©3)
¢=1 n=1

Setting 0, L ({on}n> {fn}ns 4) = 0, from Zﬁ:o pr = 1, one obtains A = 0 and the following N
equalities

P({pn}n) Z (1 - 771’)" ft’

L
=1, F:=Sf n=12....N. (64
245 =y Pellpan) ;ﬁ’ "

Setting
Ph = s p = Pel(pfh) = 5 Pell{pu}) (65)
= 5 3~ Pk t nin t’ nin
k P({pn}tn) P({ ntn)
one recasts (64) as
L
1 _ n
Z L( ne) fel -1, 66)
= Zk:l(l — )" Pe({pntn)
where the quantities p; are positive but not normalized:
N
(67)
Zl Pk ({pn}n
Notice that the equality (64) can be turned into a fixed point relation
SR 4 fe
—p) = P} (68)
; Zé:l(l — T]k)p Pé’({pn}n) P P
whence the probabilities
pl
=y (69)
k=0 P
can be achieved by the iteration procedure
(= fe (0
Z pp(h+ 1), (70)
(1 - )P Pe({on(h)})n pk(h)
pp(h) e . .
where — are the probabilities at the A-th iteration step.
Zk:() Pk(h)

Due to the fact that in general the number of efficiencies L is much smaller than the number N
of probabilities to be determined, the linear problem (58) is underestimated. Especially in the
multi-mode case to be treated in the next section, it could happen that more than one diagonal
distribution {p,}, may fit the same experimental no-click probabilities. In order to sort the



Research Article Vol. 29, No. 24/22 Nov 2021/ Optics Express 40391

=

Optics EXPRESS

true distribution out, it proves convenient to constrain the energy through one more Lagrange
multiplier 8, changing the functional L ({ o, }., {fy }n, 4) in (63) into

N
LB ({pn}ns {fn}nv/l) = L({pn}ns {fn}n’/l) + ﬁ( Z k pr — E) . (71)
k=1

The optimization procedure leads to the following constrained version of (64)

P({pn}n) (1 —=ney fr
FoooH sk (1 -my - 2edd g, — gy Pe({patn)

Then, the reconstruction algorithm proceeds as above, iteratively tuning S starting from S = 0
as suggested in [32], in order to eliminate configurations not compatible with the mean energy E.

L

=1. (72)

B.2. Multi-mode case

In the non-monochromatic case, let us suppose the beam contains M>1 different independent

modes corresponding to photons with M different frequencies wy, wo, . ..,wy. The quantum
state of the beam is then factorized:
M
0= ® o9, (73)
j=1

where p¥) denotes the state associated with the j-th mode. Given a same detector efficiency 7 for
all modes, the joint probability of having 7 photons distributed over the M modes together with

no clicks reads
M

WM = ) L=y | , (74)
ny+no+-+ny=n | j=1
where n;, j = 1,2,...,M, is the occupation number of the mode of frequency wj, p,(,/j) is the

probability of having n; photons with that frequency in the state pY) and the summation is over all
possible occupation numbers of those modes conditioned on the total number of photons being 7.
Then, the total probability of no-clicks is given by

Py(n) = Y Ta(M. 7). (75)
=0
Notice that normalization asks for

>y

n=0 ni+ny+---+ny=n | j=

M -
p%-)=1,
1

whence as in the one-mode case, one chooses a suitable accuracy parameter € and truncates the
summation at #,,,, such that

Mmax

> ﬁp,(,?ZI—e. (76)

n=0 ny+ny+--+ny=n j=1
Then, varying over a number of quantum efficiencies 11,72 . ..,nL, L > fyqyx, One obtains the
following multimode system of equations similar to (58):

Mmax

Py(n) = ) TaM.n), j=12....L. (77)
n=0

The recursive algorithm can then reproduce the probabilities I1;(M, 17;) by means of the no-click
probabilities Py (»;) after renormalization as in (62).
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Notice that, by recursion, the probabilities I1;(77) can be turned into discrete nested convolutions

1
(M) = > (1= )" ply) T, (M = 1,1) (78)
n]=0
She @
= 0 > =y ol ol T,y (M = 2,1) (79)
Il]IOIlz:O
LA dem N Mo M-1
=(1—77)"ZZ--- Z ﬂpﬁ,’), ny=n—- ) nj. (80)
n1=0np=0 ny-1=0 j=1 j=1

B.2.1. Multi-mode coherent states.

As a concrete case, let us imagine that the photons are in coherent states of amplitudes a; relative
to the modes in the beam; namely, from (26), the occupation numbers read
2n;
N 071
py) = el (81)
n;.

In such a case, from (80) and (75) one obtains

w1, NN =S e M |aj| >
Mi(M.) = (1 =)™ 2m 190 37 %o [155 (82)
Vl]=0 n2=0 nM,1=0 j=1 nj.
M _ M-1
_ 2 (l=-n)" it
=e I Loy ? (_—'TI) (Z |a/j|2) , ny=n-— n, (83)
n k=1 =1

namely a damped Poisson distribution, whence the no-click probabilities are the multimode
Gaussians

Nmax

Py(n) = ZHﬁ(M, n)~e’l ij'lil |a;
n=0

|2

(84)

It is important to emphasize that the above result also holds when the coherent state projections
pY) are replaced by the uniform phase-averages p; in (28); indeed, both these states have the same
diagonal elements in the Fock number state representation. Therefore, Py;(77) in (84) represents
the no-click probability for a multi-mode laser beam.

B.2.2. Multimode-displaced thermal states.

Let us suppose that the M-mode state consist of thermal states pr,o, at a same temperature 7" but
displaced by different amplitudes ;. The single-mode occupation probability of the n-th Fock
number state is (see Section A.2)

_ |(1\2

n Tang 2
pm(n)=( l ) c Ln( la] ) (85)

1+nr) 1+nr _nr(1+nr)

where L,(x) = LSZO)(x) are the Laguerre polynomials.
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Insert the displaced thermal states pr o, in the place of all p% in (78) and consider the last sum

over ny_1:

A=Y 2 ny
M-1) (M
2M = Z pf’LM 1 )pf‘t )ZM 1
VLM,|=O
Using (85), one obtains
1 5 o2 nr n—Zk *12 ng
ZM L+ng X
(1 + nT)2 1+nr
M-2
= 2=y Mk 2 2
laa-1] ||
X L ——— | L. M- -— .
Zo e ( np(1+ng) | R e T g (1 )
ny-1=
Using the sum rule [50]
a 1
L P e+ y) = ZL“”(x) o), (86)
one finally gets
I Yie 2 2
g, o e (o VTR ) P lowP) o
(1+nT)2 1+nr i— Zk | Mk~ -1 nT(1+nT)
Iterating this procedure yields
M 2
1 Zf L 5 (A =\ e [ Zim ]
(M, n) = ——— — Y | L -— . 88
n( T]) (] + I’lT)M ¢ ( 1+ny ) n nT(l + }’lT) ( )
Thence the no-click probability at efficiency 7 results
) M 2
(M) 1 n 2j=1 |aj|
Putn) =y PP = ——— exp (- — ). (89)
" ; n S Wy P L+nnr

The last equality follows from using the associated Laguerre polynomials generating equation
(1-p12 exp(— —) ZL(’D(x)t (90)
n=

Appendix C. Detectors

When considering the detectors that should measure no-click probabilities, several requirements
need be satisfied. The detector should have fast response (<1 ns) and a relatively small dead time
(ideally <100 ns) to accommodate for the laser dynamics, especially in the case of FELs with
high repetition rates. The quantum efficiency should be high (>10). One of the most employed
single photon detectors are photomultiplier tubes [S1]. The figures of merit for photomultipliers
are close to those specified above, even if response times are often larger than 1 ns and dead times
in the range between 100 ns and 1 us. One disadvantage of photomultiplier tubes is the need to
bias the devices at voltages of the order of 1 kV, making gated operation extremely difficult.
Recent years have seen the development of monolithically integrated CMOS detectors.
Monolithic integration of the photosensitive area with the readout electronics offers unprecedented
accuracy in the processing of the detected signal and engineering freedom on the sensor
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characteristics in term of size and electronic response. Fully depleted p-n junctions have been
used for X-ray detection and have sensitivities that can reach the single photon level [52,53].
Different materials can be employed for the sensor area via wafer bonding [54].

Monolithic CMOS detectors can operate in Geiger mode in the case of CMOS single photon
avalanche photodiodes (SPADs) [55]. CMOS SPADS have very fast response times (generally
<100 ps) with short dead times (of the order of some tens of ns) and can be operated at low
voltage of the order of 10 V. Furthermore their integration can ensure that arrays of photon
counting pixels can be easily integrated on chip to the side of the electronic circuits used for
counting [56]. Such pixels can be as small as 10 um in size, giving the possibility of engineering
arrays comprising tens or hundreds of single photon counting pixels within the FEL spot diameter.
The counts from such an array can then be summed by the on-chip electronics (in a configuration
similar to silicon photomultipliers [57]) and pixels can be selectively turned off thus directly
controlling the detection efficiency.
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