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We address the exploitation of an optical parametric oscillator (OPO) in the task of mitigating, at least partially,
phase noise produced by phase diffusion. In particular, we analyze two scenarios where phase diffusion is typically
present. The first one is the measurement of the phase of a noisy optical field, while the second involves a quantum
estimation scheme of a phase shift imposed on a noisy probe. In both cases, we prove that an OPO may lead to a
partial or full compensation of the noise. © 2022 Optical Society of America

https://doi.org/10.1364/JOSAB.435488

1. INTRODUCTION

The phase of an optical field is a fundamental degree of free-
dom for several applications in quantum sensing and quantum
communication. Quantum interferometry is exploited in high-
precision measurements to detect fine perturbations through
phase shifts [1–3] and continuous-variable communication
protocols are often based on phase shift keying (PSK) [4–6].
However, the optical phase cannot be described as observable
in a strict sense [7–10], and this result makes it challenging to
provide a detailed description of all the strategies involving the
phase.

In practical contexts, the phase of a field is often affected
by phase noise, especially due to phase diffusion. Indeed, the
presence of phase diffusion may lead to a partial or complete loss
of all the advantages of quantum measurements. In the quantum
optics scenario, phase diffusion efficiently describes the noisy
propagation of quantum light through optical fibers [11], and
its effect has been thoroughly investigated on phase estima-
tion and quantum communication protocols [12–19]. More
generally, its detrimental effects have been also investigated for
different physical platforms, such as Bose–Einstein condensates
[20,21] and Bose–Josephson junctions [22].

Focusing our attention on quantum optical systems, one of
the possible resources to counteract phase noise is provided by a
phase-sensitive amplifier, such as an optical parametric oscillator
(OPO). More precisely, an OPO is not expected to be useful
to improve measurements, i.e., to build receivers, because the
induced phase shift would lead to a modification of the phase
outcome. On the contrary, an OPO may be very effective in
order to improve the properties of the probe state if affected by
phase noise.

In this work, we address the possibility of using an OPO to
compensate, at least partially, the detriments of phase noise.
In particular, we present a theoretical model approaching the
task of removing phase noise of a laser. Our method could
be effective to reduce the laser phase noise at high frequency
(between 100 kHz and 10 MHz). At these frequencies, it is hard
to distinguish between amplitude and phase noise to act on the
phase noise, but our technique acts directly on the phase, and it
is not influenced by the amplitude noise. Hints that squeezing
could help in this scenario have already been shown in [23,24].
Here, we discuss in more detail a realistic experimental imple-
mentation of a squeezing operation via an OPO, taking into
account the most relevant experimental details. Moreover, we
apply the scenario described above to two different cases where
the optical phase is exploited. The first one is a pure quantum
optical context and regards the measurement of the phase of a
quantum state of radiation. On the contrary, the second case
consists of a quantum estimation scheme, where information is
encoded on a phase shift. In both cases, we consider single mode
radiation prepared in a coherent state |α〉, α ∈R+ undergoing
phase diffusion. Just after dephasing, we introduce an OPO and
discuss if its exploitation may lead to noise mitigation.

The paper is structured as follows. First of all, in Section 2,
we present a theoretical model for the OPO, described in the
Schrödinger picture, allowing us to work directly at the level
of quantum states. Bearing that in mind, we apply it to the two
cases examined. In Section 3, we address the measurement of
an optical phase and state, in which the conditions the OPO
are able to counteract phase noise, while Section 4 is dedicated
to describing the estimation scheme with the tools of quantum
estimation theory and to find out the optimal measurement
to detect the value of the encoded phase shift with the highest
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possible precision. We close our investigation drawing some
concluding remarks in Section 5.

2. BLOCK-DIAGRAM MODEL FOR THE OPO

A traditional description of the OPO is obtained by exploit-
ing the input–output formalism [25]. As depicted in the top
panel of Fig. 1, the dynamics of the OPO are characterized
by the input and output modes a ic/oc

in/out associated with the
input and output coupler, the input modes associated with
the crystal losses a cr,1/cr,2, and the coherent evolution of the
cavity mode acav generated by the squeezing Hamiltonian
Hs = i 1

2 g (a †2
cav − a2

cav), where we have assumed to fix the laser
pump in order to amplify the quadrature q = (acav + a †

cav)/
√

2
of the field inside the cavity. The input–output opera-
tors satisfy the canonical commutation relations (CCR)
[a ic/oc

in/out, a ic/oc†
in/out] = [a

cr,1/cr,2, a cr,1/cr,2†
] = 1, while the cav-

ity mode evolves such that [acav(t), a †
cav(t

′)] = δ(t − t ′) [25].
We now introduce the parameters ηin and ηesc and the squeezing
parameter d . The input and output parameters depend on the
loss rates at both the input coupler (γic) and the output coupler
(γoc) and the rate of internal losses of the crystal (γcr); see Fig. 1.
We have

ηin = γic/γ, ηesc = γoc/γ, (1)

where γ = γic + γoc + 2γcr. The squeezing parameter d is
proportional to the coupling of the squeezing Hamiltonian and
reads d = g /γ , and the stability condition of the OPO imposes
d < 1 [25].

By considering a roundtrip of the cavity of duration τ , defin-
ing ãcav =

√
τacav, and in the presence of high-reflectivity mir-

rors, the Langevin equation for the cavity mode and its bound-
ary condition reads [25]

dãcav

dt
= g ã †

cav(t)− γ ãcav(t)+
√

2γica ic
in

+
√

2γoc a oc
in +

√
2γcr(a cr,1

+ a cr,2), (2a)

Fig. 1. Top: schematic diagram of an OPO in the input–output
description with a coherent state |αe iφin 〉 entering the input coupler.
Bottom: block scheme. The dynamics of the OPO can be described as
the subsequent application of phase-sensitive amplification g d (φin),
phase-sensitive phase shift δφd (φin), and squeezing S[r (d)].

a ic/oc
out =−a ic/oc

in +
√

2γic/oc ãcav. (2b)

Considering the device in the stationary regime, Eq. (2) can be
exploited to express the output mode in function of the input
ones as

a oc
out = d (a oc†

out + a oc†
in )+ (ηesc − ηin − 2ηcr)a oc

in

+ 2
√
ηinηesca ic

in + 2
√
ηcrηesc(a cr,1

+ a cr,2), (3)

with ηcr = γcr/γ . The last equation is not in closed form; there-
fore, it is convenient to pass to quadratures

qout =
a oc

out + a oc†
out

√
2

, pout =
a oc

out − a oc†
out

√
2 i

. (4)

For an initial coherent state at the input coupler |αe iφin〉, α ∈
R+, and the vacuum in all other ports, the final state at the out-
put couplerρOPO is such that

{〈qout〉, 〈pout〉} =
√

2{α̃q cos φin, α̃p sin φin}, (5a)

Var[qout] =
1

2

[
1+ ηesc

4d

(1− d)2

]
≡62

q , (5b)

Var[pout] =
1

2

[
1− ηesc

4d

(1+ d)2

]
≡62

p , (5c)

with

α̃q = 2
√
ηinηesc α

1− d
, α̃p = 2

√
ηinηesc α

1+ d
. (6)

In Eq. (5c), we clearly have 62
p < 1/2, showing squeezing in

the pout quadrature. Moreover, two other effects induced by the
OPO are a phase-sensitive amplification and a phase-sensitive
phase shift. By computing expectation values on Eq. (3) with the
same input states, we get

〈a oc
out〉 = 2

√
ηinηesc αout e iφout , (7)

where

αout =
α
√

1+ 2d cos(2φin)+ d2

1− d2
, (8a)

tan φout =
1+ d
1− d

tan φin. (8b)

An equivalent description of the OPO may be obtained
working in the Schrödinger picture through the block scheme
sketched in the bottom panel of Fig. 1. We consider a single
mode of radiation a entering the OPO, [a , a †

] = 1. Then, the
block scheme consists of the sequential application of unitary
operations associated with all of the transformations produced
by the OPO, that is beam splitters of transmissivity ηin/esc for
the input and output couplers, respectively, phase-sensitive
amplification g d (φin), phase-sensitive phase shift δφd (φin), and
squeezing S[r (d)] = exp{ 12r (d) [a †2

− a2
]}. In order to obtain

an output state with the expectations given in Eq. (5), we should
set

g d (φin)= 2

√
1− 2d cos(2φin)+ d2

1− d2
, (9a)
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δφd (φin)= arctan

(
1+ d
1− d

tan φin

)
− φin, (9b)

exp[r (d)] =
1+ d
1− d

. (9c)

The block scheme defines a quantum completely positive
(CP) map EOPO such that EOPO(|αe iφin〉〈αe iφin |)= ρOPO,
and this approach proves to be equivalent to the input–output
one. Moreover, since the block scheme involves the subsequent
application of unitary operations associated with linear or bilin-
ear Hamiltionians [26], we conclude that ρOPO is a Gaussian
state, and EOPO is a Gaussian CP map. Therefore, prime and
second moments suffice for a full description of the output
state.

3. CASE I: PHASE MEASUREMENT USING A
NOISY PROBE

Let us now address case I of Fig. 2. We consider as a probe of a
coherent state ρ0 = |α〉〈α|, α ∈R+, assuming, without loss of
generality, the average value of its phase to be fixed. Indeed, it is
typically possible to control the average phase by employing a
suitable feedback protocol [18,27]. The coherent seed under-
goes phase noise (Fig. 2) whose overall effect is the application
of a random phase shift is Gaussian distributed [14,23,24].
That is

ρD = Eσ (|α〉〈α|)=
∫
R

dψ
e−ψ

2/(2σ 2)

√
2πσ 2

Uψ |α〉〈α|U
†
ψ , (10)

where Uψ = e−iψa†a is a phase shift operation, and σ is the
amplitude of the noise. Then, following case I of Fig. 2, we let
the dephased state pass through an OPO, described by the map
EOPO, obtaining the final state ρout = EOPO(Eσ (|α〉〈α|)). The
task is to find a feasible strategy to measure the optical phase and
to state whether the OPO is able to compensate the effects of
phase noise by comparing the results obtained with states ρD

andρout.
Figure 3 shows the effects of such transformations at the

level of quantum states. In the phase space, dephasing causes
an inhomogeneous spread of the coherent state, which makes
state ρD not Gaussian anymore. Then, the action of the OPO
squeezes quadrature p at the expense of magnifying the variance
of q .

To give an estimate of the phases of ρD and ρout and to assess
whether the OPO can squeeze the noise, we will consider two
different approaches. First of all, we perform a direct measure-
ment of the phase, exploiting a phase positive operator-valued
measure (POVM). Then, we present an indirect measurement
procedure based on post processing of the data of two separate

Fig. 2. Schematic diagram of the two scenarios discussed in this
paper.

Fig. 3. Top: phase space representation of ρ0, ρD, and ρout, where
we plot the level curves at the level of the standard deviation. Bottom:
phase distributions p0(φ), pD(φ), and pout(φ). We set α = 2,
σ = π/4, and d = 0.4, and we used the realistic parameters ηin = 0.01,
ηesc = 0.93.

homodyne detections, which will prove to give the same qualita-
tive results in the regime of α� 1. Actually, given this scenario,
we have a priori information that the value of the phase is zero.
However, the purpose of both strategies is not the estimation
of the phase value, but rather to state whether or not the OPO
is able to reduce a proper figure of merit representing the phase
uncertainty. Furthermore, we want to underline that the goal
of this section is not to make a direct comparison between the
two measurements proposed. The basic idea is to show that
a realistic OPO may be a convenient resource to mitigate the
noise, and that this convenience is guaranteed with different
phase measurement strategies employed.

A. Direct Measurement of the Phase

A convenient way to perform phase measurement is to employ
a genuine phase POVM [9,10,28]. Among all possible choices,
here, we consider a feasible POVM, implemented through a
heterodyne detection, namely,

5φ =
1

π

∫
∞

0
dζ ζ |ζ e iφ

〉〈ζ e iφ
|, (11)

where |ζ e iφ
〉 is a coherent state. The corresponding phase prob-

ability for a given stateρ reads
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p(φ)=Tr[ρ5φ], (12)

=

∫
∞

0
dζ ζ Q[ρ](ζ e iφ), (13)

that is the marginal in phase of the Husimi Q-function
Q[ρ](z)= 〈z|ρ|z〉/π , z ∈C.

Within this scenario, we have to compare the probabilities
p0(φ), pD(φ), and pout(φ) associated with the initial state ρ0,
the dephased state ρD, and the output state ρout, respectively,
and we have to assess in which conditions the OPO leads to a
reduction of the width of the distribution. Figure 3 shows the
three phase distributions. Compared to the input probability
density, dephasing broadens the distribution, while squeezing
introduces two secondary peaks at±π : a border effect caused by
the π periodicity of the squeezing phase. Because of this latter
effect, the proper figure of merit for the phase uncertainty shall
be the half-width at half-maximum (HWHM) of the central
peak.

Numerical evaluation of p(φ) in different regimes allows
us to understand the role of the different parameters. We fix
the OPO parameters d , ηin, ηesc considering realistic values
[23] and consider several values for α and σ . Then, we com-
pute and compare the HWHMs of the dephased distribution
0D(α, σ ) and of the squeezed one 0out(α, σ, d , ηin, ηesc). As
shown in Fig. 4, if the coherent signal α is small enough, 0out

is constantly inferior to 0D, therefore the OPO proves to be
always helpful regardless the values of σ . The reason is that even
with zero noise, σ = 0, there exists a regime where the squeezed
HWHM 0S(α, d , ηin, ηesc)= 0out(α, σ = 0, d , ηin, ηesc)

is smaller than the HWHM of the seed probability distribu-
tion 00(α), since for small α the border peaks of the squeezed
distribution centered in ±π induce a non-negligible reduc-
tion of the width of the central peak centered in zero. As a
consequence, there exists a threshold coherent amplitude
αth(d , ηin, ηesc), such that if α < αth(d , ηin, ηesc) the OPO
is always useful. The threshold is obtained by imposing the
equality 00(αth)= 0S(αth, d , ηin, ηesc). On the contrary, if
α > αth(d , ηin, ηesc), we observe a σ dependency. For small
noise σ , we have 0out >0D, and so the OPO is revealed to
be useless, but, on the contrary for large noise σ , the situa-
tion is reversed and 0out <0D. There exists a threshold noise
σth(α, d , ηin, ηesc) such that the OPO stays useful only for
σ > σth(α, d , ηin, ηesc). Formally, such threshold noise is
obtained by imposing0D(α, σth)= 0out(α, σth, d , ηin, ηesc).

B. Indirect Measurement of the Phase

The second possible method involves two different and inde-
pendent homodyne measurements of q and p to avoid the
unavoidable excess noise induced by joint measurements. The
value of the phase is then obtained as [23]

ϕ̂ = arctan
〈p〉
〈q〉

. (14)

The exploitation of average values guarantees that squeezing
border effects are absent, and we choose the variance of ϕ̂ as a
good figure of merit. By exploiting the variance propagation law,
we have

Fig. 4. Top: 3D plot of the dephased HWHM0D and the squeezed
HWHM 0out as function of α and σ , with d = 0.4. There exists a
threshold signal αth such that for smaller α, 0out <0D for all σ , while
for larger α the intersection between the two surfaces identifies the
threshold noise σth. Bottom: plot of the HWHMs 00 of the seed and
0S for different values of d as functions of α in the absence of noise
(σ = 0). The intersection between00 and0S defines the thresholdαth,
which appears to be an increasing function of d . We used the realistic
parameters ηin = 0.01, ηesc = 0.93.

12ϕ =
〈q〉212 p + 〈p〉212q(
〈q〉2 + 〈p〉2

)2 . (15)

The input stateρ0 is Gaussian with

〈q〉0 =
√

2α, 〈p〉0 = 0, 12q0 =1
2 p0 = 1/2, (16)

therefore,12ϕ0 = 1/4α2. For the dephased stateρD, we have

〈q〉D = e−σ
2/2
√

2α, 〈p〉D = 0, (17)

and

12qD =
1

2
+ α2

(
1− e−σ

2
)2
, 12 pD =

1

2
+ α2

(
1− e−2σ 2

)
,

(18)
leading to

12ϕD =
e σ

2

4α2
+ sinh σ 2 >12ϕ0. (19)

Finally, the squeezed dephased stateρout has
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〈q〉out = e−σ
2/2
√

2α̃q , 〈p〉out = 0, (20)

and

12qout =6
2
q + α̃

2
q

(
1− e−σ

2
)2
, 12 pout =6

2
p + α̃

2
p

(
1− e−2σ 2

)
,

(21)
thereafter, we obtain

12ϕout =
e σ

2

2α̃2
q
62

p +
α̃2

p

α̃2
q

sinh σ 2. (22)

The variance of ϕ̂ is given by two contributions, the former is
correlated to the signal-to-noise ratio12 p/〈q〉2 of the noiseless
state ρ0, the latter is a pure excess noise term. The excess noise
term is always reduced after the OPO since α̃p/α̃q < 1. On the
contrary, the signal-to-noise term after the OPO turns out to be
lower than before only if62

p/α̃
2
q < 1/2α2. This latter condition

defines a threshold squeezing dth at fixed values ofηin andηesc via
the equation

f (dth)≡
4ηinηesc

(1− dth)
2

[
1+

dth

ηin
e−2r (dth)

]
− 1= 0, (23)

where r (d) is defined in Eq. (9c). If d > dth(ηin, ηesc), the OPO
proves always useful, otherwise, if d < dth(ηin, ηesc), the OPO
amplifies the signal-to-noise ratio on quadratures but reduces
the excess noise. For small σ , it is the signal-to-noise term to
dominate, therefore the OPO is useless. When σ is large, the
situation is reversed. There is a trade-off between the two contri-
butions leading to the existence of a threshold noise σth, above
which squeezing shows a benefit. The threshold condition leads
to

σ 2
th =

1

2
ln

[
2α2(α̃2

q − α̃
2
p)

α̃2
q + 2α2(α̃2

q − α̃
2
p −6

2
p)

]
, (24)

and it agrees, at least qualitatively, to that obtained with a genu-
ine phase measurement in the regime α� 1 (see Fig. 4). We
notice that this agreement is only qualitative, since the two
strategies presented here cannot be directly compared because
they require a different number of measurements. In order to
make a direct comparison between them, one has to decrease
α by a factor 1/

√
2 in the indirect case to compensate the fact

that two distinct measurements are performed on two copies of
the state. Beside it all, the agreement between the two strategies
also provides a validation for the post-processing method of
Section 3.B, which itself represents a convenient practical choice
for experiments [23].

4. CASE II: ESTIMATION OF A PHASE SHIFT
USING A NOISY PROBE

The second scenario, in which we discuss the exploitation of
an OPO, is related to the estimation of a phase shift applied to
a noisy probe. In particular, we analyze the protocol depicted
in Fig. 2, case II within the framework of quantum estimation
theory (see Appendix A). We consider as the probe the state

ρn = EOPO(Eσ (|α〉〈α|)), (25)

on which we encode a phase shift θ through the unitary
Uθ = e−iθa†a . After the encoding stage, the quantum state
of radiation is sent into a channel until it reaches a receiver that
performs measurements. In this case, the task is to decide the
optimal POVM {5x } to infer the value of θ . Here, we decide
to restrict to a subclass of feasible measurements, i.e., homo-
dyne measurements. We investigate how the exploitation of
the OPO modifies the quantum Fisher information (QFI) H
and the Fisher information (FI) F of a homodyne detection
of xφ = cos φ q + sin φ p . By comparing the two of them, we
decide whether homodyne measurements can be optimal and,
in particular, which is the best quadrature xφmax that maximizes
the FI. In the following, first of all, we analyze the case in absence
of phase diffusion as a benchmark, and, secondly, we discuss the
noisy case.

A. Noiseless Estimation Scheme

In the absence of phase noise (but with the OPO still present),
the probe state of the protocol in Fig. 2, case II is the state ρOPO

derived in Section 2. Then, the encoded state reads

ρnl,θ =Uθ ρOPO U †
θ . (26)

ρOPO is a Gaussian state with prime moments ROPO ≡ 〈r̂〉 =
(
√

2α̃q , 0) and covariance σOPO ≡ 〈{(r̂−ROPO), (r̂−
ROPO)

T
}〉/2=Diag[62

q , 6
2
p ], r̂= (q , p). Therefore, the

statistical model ρnl,θ is still Gaussian with prime moments
Rθ =RθROPO and covariance σθ =RθσOPORT

θ , where Rθ is
the rotation matrix

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
. (27)

In general, for a generic Gaussian state ρλ with prime
moments Rλ and covariance σλ, the QFI has the following
analytical expression:

H(λ)=
1

2

Tr[(σ−1
λ σ ′λ)

2
]

1+µ2
λ

+ 2
µ′2λ

1−µ4
λ

+R′Tλ σ
−1
λ R′λ, (28)

where A′ = ∂λA, and µλ = (2
√

det σλ)−1 is the purity of the
Gaussian stateρλ [29–32].

In the very case examined, Eq. (34) leads to

Hnl = 4
(62

q −6
2
p)

2

1+ 462
p6

2
q
+ 2

α̃2
q

62
p
, (29)

which is independent of θ . The QFI depends on both α and d .
However, the α dependence is only polynomial, and so it is less
relevant than the squeezing one. Therefore, in the following, we
keep α fixed and study the QFI dependence on the squeezing
factor r = ln[(1+ d)/(1− d)]. As depicted in Fig. 5, the QFI
is a growing function on r . Thus, the most sensitive probe is
obtained for r � 1, i.e., d ≈ 1. It is also worth finding out the
asymptotic scaling of the QFI by evaluating its dependence on
the energy,

N =Tr[ρnl,θ a †a ] =
62

q +6
2
p + α̃

2
q − 1

2
, (30)
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Fig. 5. Top: QFI and optimized FI as a function of r for α = 1. For
r ≥ r th(α, ηin, ηesc), the optimized quadrature is φ(2), and Fnl coin-
cides with F (2), whereas if r < r th(α, ηin, ηesc) Fnl is equal to F (1) (see
the text for details). Bottom: QFI and optimized FI as a function of N
for α = 0.2 (plot in log scale). The dashed lines refer to the Heisenberg
scaling∼N2 and shot-noise one∼N. We used the realistic parameters
ηin = 0.01, ηesc = 0.93.

by keeping α fixed and varying only d . Eventually, the QFI Hnl

shows shot noise scaling,

Hnl ≈
4

1− ηesc

1+ 4ηinα
2

1+ 2ηinα2
N, (31)

whose origin can be addressed to the non-negligible losses char-
acterizing the OPO dynamics.

In regards to the analysis of the FI, it is helpful to write the
probe state ρOPO in the form of a displayed squeezed thermal
state [26,33],

ρOPO = D(β) S(ξ) νth(n̄) S(ξ)† D(β)†, (32)

where D(β)= exp(βa †
− β∗a) is the displacement opera-

tor, S(ξ)= exp[ 12ξ(a
†2
− a2)] is the squeezing operator, and

νth(n̄)= n̄a†a/(n̄ + 1)a
†a+1 is a thermal state with mean num-

ber of photons n̄. For the stateρOPO, the values of the parameters

areβ = α̃q , exp(2ξ)=
√
62

q/6
2
p , and (1+ 2n̄)2 = 462

q6
2
p .

Actually, it is proved that for a displayed squeezed thermal
state the optimal measurement is not Gaussian [34], and no
homodyne can exactly reach the QFI. Nevertheless, it is still

Fig. 6. Top: FI of the measurement of xφ as a function of φ for
different values of the squeezing parameter r . Bottom: optimized
quadrature φmax as a function of r . We set α = 1, and we used the
realistic parameters ηin = 0.01, ηesc = 0.93.

worth it to construct an optimized homodyne measurement
since it becomes nearly optimal (i.e., FI≈QFI) in the best
working regime r � 1.

To construct the optimized homodyne, we again keep α
fixed and let only the squeezing parameter r vary. For every
r , we compute the FI associated with xφ = cos φ q + sin φ p
as a function of φ and find the value φmax maximizing it, as
depicted in Fig. 6. In the end, the optimized FI Fnl, displayed in
Fig. 5, turns out to be a piecewise-defined function, since two
quadrature candidates exist for the choice ofφmax [34]:

1. φ(1) = π/2− θ , whose corresponding FI is

F (1)
=

2α̃2
q

62
p
, (33)

2. φ(2) = π/2− θ − χ/2, whereχ satisfies

cos χ =
(62

q −6
2
p)

3
+62

q α̃
2
q (6

2
q +6

2
p)

(62
q +6

2
p)(6

2
q −6

2
p)

2 +62
q α̃

2
q (6

2
q −6

2
p)

(d 6= 0),

(34)
for which the corresponding value of the FI reads

F (2)
=
[(62

q −6
2
p)

2
+62

q α̃
2
q ]

2

262
q6

2
p(6

2
q −6

2
p)

2 . (35)
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The second measurement is well defined only if | cos χ | ≤ 1,
namely,

α̃q ≤ (6
2
q −6

2
p)/

√
62

q , (36)

providing a threshold squeezing r th(α, ηin, ηesc), such that for
smaller r the function F (2) has no physical meaning, and the
optimized quadrature is φ(1), while for larger r , the homodyne
measurement of quadrature φ(2) is well defined, and the opti-
mized quadrature becomes φ(2). The physical explanation of
such behavior becomes clear by observing the φ dependence of
the FI displayed in Fig. 6. For small r , the function has a single
maximum at π/2− θ , but, for larger r , the maximum splits
into two symmetric peaks, and π/2− θ turns into a local min-
imum. Then, by increasing r further, the position of the peaks
asymptotically converges to π/2− θ . Regarding the energy
scaling of Fnl, by rearranging Eq. (35), we again get shot noise
scaling,

Fnl ≈ 2
1+ 2ηinα

2

1− ηesc
N. (37)

B. Noisy Estimation Scheme

If phase noise is present, the statistical model reads

ρn,θ =Uθ ρn U †
θ , (38)

where ρn is still given in Eq. (25). The presence of this kind of
noise prevents us from obtaining analytical solutions. Therefore,
we keep the results of Section 4.A as a benchmark and consider
how the noise affects a specific case. We perform a homo-
dyne of xφmax , where φmax is the optimized quadrature of
Fig. 6. For several values of σ , we analyze the dependence of
the FI,

Fn =

∫
dx
[∂θ p(x |θ)]2

p(x |θ)
, p(x |θ)=Tr[ρn,θ xφmax ],

(39)
on the energy N of Eq. (30). Moreover, to compare the noise-
less and noisy cases, we introduce the relative fluctuations
parameter

ε =
|Fn − Fnl|

Fnl
. (40)

The numerical results of ε, depicted in Fig. 7, show that the
exploitation of the OPO is able to compensate almost com-
pletely the detriments of phase noise. In particular, using an
OPO is crucial to maintain the shot noise regime for all values
of σ . Otherwise, if we consider the protocol of Fig. 2, case II
without the OPO, an upper bound exists for the QFI [35],
namely,

Hwithout OPO ≤ HUB =
4N

1+ 4Nσ 2
, (41)

saturating for large N to the value 1/σ 2.

Fig. 7. Top: relative fluctuations given in Eq. (46) as a function of
N for different values of the noise parameter σ . Bottom: plot of the Fn

and HUB as functions of N for σ = π/8. We set θ = 0,α = 0.2, and we
used the realistic parameters ηin = 0.01, ηesc = 0.93.

5. CONCLUSIONS

In summary, we have studied several scenarios where phase
noise prevents the use of optical phase as a degree of freedom
for quantum information tasks and discussed whether an OPO
may be employed to mitigate, or even compensate, the effects
of noise. Such a method could be interesting with the intent of
reducing the noise of the laser in a regime of high frequency.

Firstly, we have developed a block-diagram model to describe
an OPO in the form of a subsequent application of Gaussian
operations: beam splitters, phase-sensitive amplification, phase-
sensitive phase shift, and squeezing. Such a description in the
Schrödinger picture allows us to give an explicit expression for
the output state of radiation. Indeed, given an initial coherent
state, the output state is a Gaussian state with well-defined prime
moments and covariance.

With the new description of the OPO, we have addressed the
first case under investigation: the measurement of the phase of
a quantum state of radiation. We have introduced two possible
approaches. A first standard approach involves the introduction
of a phase POVM (implemented through heterodyne detec-
tion). It leads to the conclusion that the OPO reduces phase
noise, i.e., the width of the probability distribution associated
with the POVM, for small signal amplitude or large signal
amplitude and large dephasing. The second approach consists of
a post-processing method based on the outcomes of two distinct
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homodyne detections and brings the same phenomenology
as before in the regime of large coherent amplitudes. In both
cases, according to the value of parameters α, σ, d , there exists a
regime where the procedure gives a phase outcome with a larger
uncertainty than the one of the initial coherent state and another
regime in which the uncertainty is smaller. This leads to the
conclusion that in such a regime the OPO is able to fully, or at
least partially, compensate the noise.

The second scenario discussed has been an estimation scheme
based on the encoding of a phase shift θ on the probe state. We
have considered a dephased coherent state passed through an
OPO as the probe state and searched for the optimal POVM
to detect θ within the subclass of homodyne measurements.
We have studied in detail the noiseless protocol, obtaining the
optimized quadrature φmax that allows us to infer θ with negli-
gible uncertainty. Passing to the noisy case, such a situation is
still maintained. The noise weakly affects the FI, and shot noise
scaling, i.e., the proper scaling of the input coherent state, is
conserved. Therefore, in such a case, the noise mitigation by the
OPO is complete in regards to the scaling with the probe average
photon number.

Our results confirm that it is possible to develop suitable
OPO-based strategies to compensate phase noise with current
technology and, thus, pave the way for the full exploitation of
optical phase in quantum technologies.

APPENDIX A: ELEMENTS OF QUANTUM
ESTIMATION THEORY

The estimation of a parameter is a frequent task in quantum
mechanics, since several physical quantities cannot be directly
measured. Here, we present the basic features of the theory
behind it [36,37]. We consider a family of quantum states
labeled by a parameter λ, {ρλ}λ, usually called the statisti-
cal model . Usually, we perform a generalized measurement
described by a POVM {5x }, obtaining a statistical sample of
M outcomes x= {x1, . . . , xM}. This sample is processed by
means of a map λ̂(x), called an estimator, to infer the value of the
parameter λ. The task is to find the optimal POVM that allows
us to estimate the value ofλwith the lowest possible uncertainty,
i.e., the maximum precision. The conditional probability of the
outcome x givenλ is

p(x |λ)=Tr[ρλ5x ]. (A1)

If the estimator is unbiased, there exists a lower bound to its vari-
ance, depending on the FI of the distribution p(x |λ),

F (λ)=
∫

dx
[∂λ p(x |λ)]2

p(x |λ)
. (A2)

The bound is the so called the Cramér–Rao bound and reads

Var[λ̂] ≥
1

MF (λ)
, (A3)

where we introduced the variance Var[λ̂] = E[λ̂2
] − E[λ̂]2 with

E[λ̂k
] =

∫
dx p(x |λ)λ̂(x )k, k ∈N. (A4)

However, a stricter bound, independent of the particular mea-
surement performed, may be obtained [38–41]. We define the
symmetric logarithmic derivative (SLD) Lλ by the Ljapunov
equation 2∂λρλ = Lλρλ + ρλLλ and the QFI as [37]

H(λ)=Tr[ρλL2
λ]. (A5)

The QFI leads to the quantum Cramér–Rao bound

Var[λ̂] ≥
1

MH(λ)
. (A6)

In assessing a quantum estimation scheme, both the QFI and
the FI are important tools. The QFI identifies the ultimate lim-
its on precision allowed by quantum mechanics, independent
of the measurement, while the FI fixes the minimum possible
uncertainty given a particular measurement strategy, namely,
a POVM. In this present work, we will address a subclass of
possible measurements, that is homodyne measurements, and
determine their performance by comparing the QFI and FI.
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