THE BASE OF THE ANİSLAN. A CANDIDATE GLOBAL STRATOTYPE SECTION
AND POINT FROM CHİOS ISLAND (GREECE)

G. Muttoni, D. V. Kent and M. Gaetani

Introduction

In recent years there have been reevaluations of a variety of significant stratigraphic sections across the Spärranian/Anîslan (Early/Middle Triassic) boundary (Wang, 1986; Bucher, 1988; Tozer and Talon, 1990; Gradinaru, 1991; Gaetani et al., 1992). At present, sections in Oman, Dobrudja (Romania) and Chios (Greece) appear to be the most relevant sections described in pelagic Tethyan environments. All of them are comprised of pinkish to reddish nodular limestones with low sedimentation rates.

The Himalayan sections do not seem to be suitable, essentially because the boundary occurs within the so-called Nil Limestone (Nicora et al., 1984), where ammonoids are badly preserved and almost impossible to chisel out. As regards magnetostratigraphy it is worth noting that, although a paleomagnetic survey has not been attempted, the Color Alteration Index of conodonts (4 to 5) suggests that the region underwent high regional heating (more than 300 °C) that may have reset the magnetization.

In SE China (Yangtze Platform) the critical interval is condensed and is characterized by mixed ammonoid faunas (Wang, 1986), whereas in Nevada the critical interval around the boundary falls within the poorly fossiliferous “Brown Sandstones” (Silberling and Wallace, 1969). As Bucher (1989) reports, the first ammonoid-bearing level above this terrigenous unit is the J. westeri horizon.

Thus, the most suitable sections for the Global Stratotype Section and Point (GSSP) of the base of the Anîslan seem to be, at present, the western Tethyan Oman, Dobrudja and Chios sections.

(i) The paleontological content of the Oman sections has been described by Tozer and Talon (1990) (ammonoidal and Orchard (1984, in press) (conodonts). A magnetostratigraphic survey performed by Y. Gallet et al. gave no useful results (Gallet, pers. comm., March 1994).

(ii) During the last ten years the Dobrudja sections (Desli Çaira and Agighiol) have been visited by several members of the International Subcommission on Triassic Stratigraphy (ISTS), under the leadership of E. Gradinaru (Bucarest). A summary on the ammonoid and conodont stratigraphic distributions was presented at the ISTS meeting at Lausanne (October 1991) by Gradinaru. Finally, samples for paleomagnetism, presently under study, have been recently collected at Desli Çaira and Agighiol by the French team (Gallet et al., 1993).

Albaniâna 13, May 1994
Fig. 1 (a) Geographic location and (b) simplified geological map of Chios Island (after Gaetani et al., 1992); (c) geological sketch map of the Marathovouno hilltop area (after Lazarouli, 1991).

The Chios sections are located on the Island of Chios (Greece) (Fig. 1). Their paleontological content has been revisited by Gaetani et al. (1992) (ammonoids and conodonts) and Muttoni and Rettoni (1984) (foraminifera). A comprehensive magnetostratigraphic study has been recently carried out by G. Muttoni, D. V. Kent and M. Gaetani (in preparation) at section A+C+D and section G of Gaetani et al. (1992), equivalent to sections CMII and CMI of Bender (1970) (Fig. 2). In this paper we anticipate part of the magnetostratigraphic results and we propose one of the Chios sections as a candidate Global Stratotype Section and Point for the base of the Anisian.

Paleomagnetic analysis

Sections A+C+D and G have been sampled stratigraphically, from base to top, with an average sampling interval of 25 cm. A site located a few hundred meters away and characterized by a different bedding attitude (site I) has also been sampled to perform a fold test which could hopefully constrain the age of acquisition of the characteristic remanence. The total number of thermally demagnetized specimens is 322. Remanence measurements were performed in a 2G 3-axis cryogenic magnetometer located in a magnetically shielded room at the paleomagnetics laboratory of Lamont-Doherty Earth Observatory.

Alberitana 13, May 1994
Vector end point demagnetograms reveal three progressively isolated components. After removal of a low unblocking temperature present-day field or equilous component between 0 and 200 °C, and of a "B" component with north-western declinations and positive inclinations between 300 and 600 °C (which is not discussed here for brevity purposes), a dual polarity north-west-and-down or south-east and up "C" component regarded as characteristic and carried by haematite is revealed between 625°C and 800 °C. At site I the characteristic "C" component has been isolated in only two specimens.

The precision parameter of the three site-mean "C" directions increases by a factor of 9.8 with full (100%) correction for bedding tilt. Although site I is represented by only two sample directions, the fold test on the site-means is positive at the 95% level of confidence according to the criteria of McFadden and Jones (1980). Thus, the available data seem to suggest that the reversal-bearing characteristic component pre-dates tilting which, according to Jakobshagen (pers. comm., 1993), must have been caused by the Late Cretaceous and/or Eocene compression related to the structuration of the Hellinidies mountain range.

The overall mean direction after full (100%) tilt correction is Dec. 274.3°, Inc. = 33.1° (a95 = 11.4°, k = 118, N = 3) and points to a paleolatitude of 18°N for the characteristic magnetization.

The polarity option chosen (i.e., north west and down = normal) and the derived paleolatitude are compatible with the paleogeographic reconstruction of the western Tethys of Marcoux et al. (1993), where the Serbo-Pelagonian zone, to which Chios belongs, was located north of the equator during the Middle Triassic, between 10° and 20°N.

A normal-reversed normal polarity sequence has been recognized at both sections A+C+D and G. Following the nomenclature introduced by Alvarez et al. (1977), the polarity zones have been named, in ascending stratigraphic order, Chios A+, Chios B and Chios C−.

At sections A+C+D and G the ChiosA+/ChiosB− boundary occurs at the base of a cm-thick condensed horizon. The overlying ChiosB−/ChiosC− boundary is affected by a minor fault at section A+C+D, whereas at section G occurs at the base of a cm-thick hard ground (Fig. 2). Palaeontological observations suggest that the hiatuses present at both the condensed horizons and the hard grounds are not very important.

The position of the Early/Middle Triassic boundary during Triassic time, biochronology of pelagic limestones is mainly based on ammonoids and conodonts.

At the Marathovouno sections, the appearance of the conodont Gondolella tinonensis Nogami slightly predates the first occurrence of the ammonoid assemblage with Aegilicerat, Paracinychi ceratites, Paradinabites and Japanites (Fig. 2). In Gaetani et al. (1992), the position of the Early/Middle Triassic boundary was placed at the base of this ammonoid assemblage mainly for two reasons.
Fig. 2 Lower-Middle Triassic boundary-drawing sections A+C+D and G of Gastani et al. (1993). The central columns show the VGP latitude plotted as function of stratigraphic thickness and the derived polarity sequence. The occurrence/appearance of the most important conodonts and ammonoids used to define the boundary are indicated by solid bars. Polarity zones are designated by letters with the prefix "Chips" in ascending alphabetical order, followed by "+" (normal) or "−" (reversed). The Lower-Middle Triassic boundary is marked close to the base of the polarity zone "Chips C−". In the lithology logs, "HT" stands for hard ground and "C" for conglomerate.

Albireo 13, May 1994
1) The ammonoid assemblage marks a real change in the ammonoid evolution. Several Anisian genera first appear, whilst most typically Spastian forms are absent. The *Aegiceras, Paracrochodioceras, Pareodoblites* and *Japanites* assemblage is the oldest so far described in Anisian sections, and is considered coeval with the J. *welleri* horizon of Nevada (Bucher, 1989). A similar assemblage characterizes the earliest Anisian sediments of Oman (Tozer, and Talon, 1980) and of Dobrudjia (Romania) (Gradinaru, 1981). In the central part of the Tethys, ammonoids of this assemblage are present in the so-called mixed fauna described by Wang (1985).

2) For historical reasons, in Triassic stratigraphy an ammonoid-based boundary is preferred to a conodont-based boundary, if the two are not coincident.

The ammonoid record is however not continuous in the Marathovouno sections, due to poor preservation conditions, whereas conodonts, although less abundant, constitute a more continuous record and their stratigraphic range may be described in terms of "appearance" rather than of "first occurrence", which is more appropriate for the ammonoid distribution.

The Early/Middle Triassic boundary traced at the occurrence of the Anisian ammonoid assemblage, and hence the base of the Anisian, lies close to the base of the normal polarity interval "Chios C"*. However, the transition between the polarity intervals "Chios B" and "Chios C"* is close also to the appearance of *Gondolella timorensis* (Fig. 2).

According to these observations, two options for the position of the base of the Anisian can be considered, either to maintain the base of the Anisian at the occurrence of the new Anisian ammonoid stock, or to start the Anisian at the first occurrence of *G. timorensis*. This latter option, useful in those sections where ammonoids are not present, implies the definition of a stage boundary cutting across an ammonoid zone but would make it almost coincident with a paleomagnetic polarity reversal.

Conclusions

The sections A + C + D and G provide a consistent pattern of magnetic reversals which can be correlated to the Early/Middle Triassic boundary, either placed on the basis of ammonoids or conodonts. Thanks to the rich paleontological content, the Marathovouno section A + C + D of Assereto et al. (1980) (= section CMII of Bender, 1970) is a good candidate as a GSSP for the base of the Anisian. The narrow sampling rate adopted tends to exclude the presence of undetected short polarity intervals.

The magnetostratigraphy from the Marathovouno hillock sections has been tentatively correlated to the Early Triassic South China sequence of Steiner et al. (1989) and the composite Early Triassic stratotype sections from the Canadian Arctic of Ogg and Steiner (1991).

As concerns the bioclastic correlations between Chios and the Arctic sections, according to Gastani et al. (1982) and Bucher (1988) the *Prolugn/routes/Subcolumbites* Zone of Chios is correlatable with the *Subrobustus* Zone in the Canadian Arctic-British Columbia, whilst the *Aegiceras/Japanites* beds partly overlap, in the Canadian Arctic-British Columbia, with the Caurus Zone. For these observations we may conclude that the polarity zones Chios A* and Chios B correlate, respectively, with the polarity zones SpH1 and SpH2 of the Arctic stratotypes. On the other hand, the normal interval Chios C* does not have a correlatable in the Arctic sections, where the presence of a hiatus affecting essentially the Aegean (first substage of the Anisian) is

Albiteriana 13, May 1994
testified by the occurrence of the Middle Anisian Varium Zone immediately above the Spathian Subrobusius Zone.

References

BUCHER, H., 1989. Lower Anisian Ammonoids from the northern Humboldt Range (northwestern Nevada, USA) and their bearing upon the Lower-Middle Triassic boundary. Ecl. Geol. Helvetiae, 82: 945-1002.

MUTTONI, G., KENT, D.V. and GAETANI, M., in preparation for Earth Pl. Sc. Lett. Magnetostratigraphy of a candidate Global Stratotype Section and Point for the base of the Anisian from Chios Island (Greece).

Albertiana 13, May 1994
TOWARD A NONMARINE TRIASSIC TIMESCALE

Spencer G. Lucas

Introduction

In August 1992, at the 29th International Geological Congress in Kyoto, Japan, the STS approved a proposal by S. G. Lucas, V. Lozovskiy and Cheng Zhengwu to form a working group on the nonmarine Triassic timescale (the proposal was published in Albertiana 10, p. 311). The working group thus formed contains eight members: Spencer G. Lucas, Albuquerque, New Mexico, U.S.A. (chairman); Vladlen Lozovskiy, Moscow, Russia (vice-chairman); Cheng Zhengwu, Beijing, China (vice-chairman); Ilana Cohenkranz, Jerusalem, Israel; Haim Kozur, Budapest, Hungary; Roberto Molina-Garza, Albuquerque, New Mexico, U.S.A.; Paul Olsen, Palisades, New York, U.S.A.; and R. S. Tiwari, Lucknow, India. I hope that one or two more members will be added to the working group, preferably from South America or Africa. Expertise and research interests of the members of the working group encompass sequence stratigraphy, cyclostratigraphy, radiometric dating, magnetostratigraphy, palynology, megafossil paleobotany, invertebrate micropaleontology (ostracods, charophytes and conchostracans), paleoecology and vertebrate paleontology.

The working group first met in Albuquerque last October during the International Symposium and Fieldtrip on the Nonmarine Triassic (see report by Lucas and Morales elsewhere in this issue). During this meeting, the group discussed five issues raised by the chairman: (1) nomenclature of Triassic time intervals based on nonmarine chronology; (2) relative significance of different fossil groups to nonmarine Triassic biochronology; (3) nonmarine type sections (standards) for intervals of Triassic time; (4) integration of radiometric ages and magneto-chronology with biochronology; and (5) relationship of the working group’s efforts to current work on the EGCBS (standard global chronostratigraphic scale) for the marine Triassic. This discussion demonstrated general consensus on key matters of philosophy and procedure early in the history of the working group. Here, I discuss these issues briefly and present the consensus of the working group.

Albertiana 13, May 1994