Algebraic invariants of algebraic varieties: the case of derived categories

Paolo Stellari

Colloquium - University of California at Santa Cruz
April 25, 2024

UNIVERSITÀ DEGLI STUDI DI MILANO

Table of Contents

1 Geometry

- Geometry
- Cohomology
- Derived categories
- So many categories!

Equations

1 Geometry
$\ln \mathbb{P}^{5}$
The projective space
For any $n>0$ just consider the quotient

$$
\mathbb{P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}
$$

Equations

1 Geometry
In \mathbb{P}^{5} consider the hypersurface described by the equation

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=0 .
$$

Usually called Fermat cubic fourfold.

The projective space

For any $n>0$ just consider the quotient

$$
\mathbb{P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}
$$

The hypersurface

It consists of all the points of \mathbb{P}^{5} whose coordinates satisfy the given equation. In particular:

- It is smooth;
- It has (complex) dimension 4.

Equations

1 Geometry
In \mathbb{P}^{5} consider the hypersurface described by the equation

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=0 .
$$

Usually called Fermat cubic fourfold.
Another similar example is given by the following system of equations in \mathbb{P}^{6} :

$$
\left\{\begin{array}{l}
x_{0}+x_{1}+\cdots+x_{6}=0 \\
x_{0}^{3}+x_{1}^{3}+\cdots+x_{6}^{3}=0
\end{array}\right.
$$

It is usually called Clebsch-Segre cubic fourfold.

The projective space

For any $n>0$ just consider the quotient

$$
\mathbb{P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}
$$

The hypersurface

It consists of all the points of \mathbb{P}^{5} whose coordinates satisfy the given equation. In particular:

- It is smooth;
- It has (complex) dimension 4.

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

This amounts to finding a find a continuous piece of data: a biholomorphic map

$$
f: X_{1} \rightarrow X_{2}
$$

where

- $X_{1}=$ Fermat;
- $X_{2}=$ Clebsch - Segre .

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

This amounts to finding a find a continuous piece of data: a biholomorphic map

$$
f: X_{1} \rightarrow X_{2}
$$

where

- $X_{1}=$ Fermat;
- $X_{2}=$ Clebsch - Segre.

In this special case:

A bit of combinatorics:

- X_{1} contains 405 planes;
- X_{2} contains 357 planes.

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

This amounts to finding a find a continuous piece of data: a biholomorphic map

$$
f: X_{1} \rightarrow X_{2}
$$

where

- $X_{1}=$ Fermat;
- $X_{2}=$ Clebsch - Segre.

In this special case:

A bit of combinatorics:

- X_{1} contains 405 planes;
- X_{2} contains 357 planes.

They cannot be isomorphic!

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

This amounts to finding a find a continuous piece of data: a biholomorphic map

$$
f: X_{1} \rightarrow X_{2}
$$

where

- $X_{1}=$ Fermat;
- $X_{2}=$ Clebsch - Segre.

In this special case:

A bit of combinatorics:

- X_{1} contains 405 planes;
- X_{2} contains 357 planes.

They cannot be isomorphic! But in general this does not work!

Isomorphisms?

1 Geometry

Question 1

Are the Fermat and the Clebsch-Segre cubic fourfolds isomorphic?

This amounts to finding a find a continuous piece of data: a biholomorphic map

$$
f: X_{1} \rightarrow X_{2}
$$

where

- $X_{1}=$ Fermat;
- $X_{2}=$ Clebsch - Segre.

In this special case:

A bit of combinatorics:

- X_{1} contains 405 planes;
- X_{2} contains 357 planes.

They cannot be isomorphic! But in general this does not work!

Question 2

How do we decide if two cubic fourfolds (i.e. smooth zero loci of a homog. polyn. of deg. 3 in \mathbb{P}^{5}) are isomorphic?

Rationality?

1 Geometry
We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Rationality?

1 Geometry
We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets

Rationality?

1 Geometry

We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets (=complements of closed subsets described by finitely many equations \Rightarrow dense).

In our special cases:

$X=$ Fermat or Clebsch-Segre cubic. It contains two disjoint planes $P_{1}, P_{2} \subseteq X$.

Rationality?

1 Geometry

We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets (=complements of closed subsets described by finitely many equations \Rightarrow dense).

In our special cases:

$X=$ Fermat or Clebsch-Segre cubic. It contains two disjoint planes $P_{1}, P_{2} \subseteq X$. One constructs the (birational) map g as follows:

$$
P_{1} \times P_{2} \rightarrow X \quad\left(p_{1}, p_{2}\right) \mapsto \ell_{p_{1}, p_{2}} \cap X
$$

where $\ell_{p_{1}, p_{2}}$ is the line through p_{1} and p_{2}.

Rationality?

1 Geometry

We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets (=complements of closed subsets described by finitely many equations \Rightarrow dense).

In our special cases:

$X=$ Fermat or Clebsch-Segre cubic. It contains two disjoint planes $P_{1}, P_{2} \subseteq X$. One constructs the (birational) map g as follows:

$$
P_{1} \times P_{2} \rightarrow X \quad\left(p_{1}, p_{2}\right) \mapsto \ell_{p_{1}, p_{2}} \cap X
$$

where $\ell_{p_{1}, p_{2}}$ is the line through p_{1} and p_{2}. Now $P_{1} \times P_{2}$ coincides with \mathbb{P}^{4} on an open subset.

Rationality?

1 Geometry

We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets (=complements of closed subsets described by finitely many equations \Rightarrow dense).

Question 3 (!)

Are cubic fourfolds rational? Or: which cubic fourfolds are rational?

In our special cases:

$X=$ Fermat or Clebsch-Segre cubic. It contains two disjoint planes $P_{1}, P_{2} \subseteq X$. One constructs the (birational) map g as follows:

$$
P_{1} \times P_{2} \rightarrow X \quad\left(p_{1}, p_{2}\right) \mapsto \ell_{p_{1}, p_{2}} \cap X
$$

where $\ell_{p_{1}, p_{2}}$ is the line through p_{1} and p_{2}. Now $P_{1} \times P_{2}$ coincides with \mathbb{P}^{4} on an open subset.

Rationality?

1 Geometry

We can be more flexible: can we find an isomorphism

$$
X_{1} \supseteq U_{1} \xrightarrow{g} U_{2} \subseteq \mathbb{P}^{4} ?
$$

Here: U_{i} are Zariski open sets (=complements of closed subsets described by finitely many equations \Rightarrow dense).

Question 3 (!)

Are cubic fourfolds rational? Or: which cubic fourfolds are rational?

In our special cases:

$X=$ Fermat or Clebsch-Segre cubic. It contains two disjoint planes $P_{1}, P_{2} \subseteq X$. One constructs the (birational) map g as follows:

$$
P_{1} \times P_{2} \rightarrow X \quad\left(p_{1}, p_{2}\right) \mapsto \ell_{p_{1}, p_{2}} \cap X
$$

where $\ell_{p_{1}, p_{2}}$ is the line through p_{1} and p_{2}. Now $P_{1} \times P_{2}$ coincides with \mathbb{P}^{4} on an open subset.
...in general this is one of the major open problems in algebraic geometry!

Table of Contents

2 Cohomology

- Geometry
- Cohomology
- Derived categories
- So many categories!

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group
$H^{4}(X, \mathbb{Z})$;

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;

Singular cohomology:

By the de Rham theorem:

$$
H^{4}(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} \cong H^{4}(X, \mathbb{R}) \cong H_{\mathrm{dR}}^{4}(X)
$$

$H^{4}(X, \mathbb{Z})$ is a discrete (rank-23 free \mathbb{Z}) submod. of the de Rham coho.

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;

Algebraic classes:

$S=X \cap \mathbb{P}^{3} \subseteq \mathbb{P}^{5}$ is a cubic surface.
E.g. X Fermat, then S given by

$$
X \cap\left\{x_{4}=x_{5}=0\right\} .
$$

and eq. $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0$.

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;

Algebraic classes:

S yields a class in $H^{4}(X, \mathbb{Z})$ by the following procedure:

- It provides an element in $H_{\mathrm{dR}}^{4}(X)^{*}$:

$$
\int_{S}: \omega \mapsto \int_{S} \omega ;
$$

- Poincaré duality: $H_{\mathrm{dR}}^{4}(X)^{*} \cong H_{\mathrm{dR}}^{4}(X)$;
- It is an integral class.

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;
- A symmetric bilinear form on $H^{4}(X, \mathbb{Z})$;

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;
- A symmetric bilinear form on $H^{4}(X, \mathbb{Z})$;

Cup product:

With the identification

$$
H^{4}(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} \cong H_{\mathrm{dR}}^{4}(X)
$$

it is just the the \wedge of forms.
More geometrically: given S_{1} and S_{2} corresponding to two surfaces in $H^{4}(X, \mathbb{Z})$, we set:

$$
S_{1} \cdot S_{2}=S_{1} \cap S_{2} \in H^{8}(X, \mathbb{Z}) \cong \mathbb{Z}
$$

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;
- A symmetric bilinear form on $H^{4}(X, \mathbb{Z})$;
- The Hodge decomposition

$$
H^{4}(X, \mathbb{C})=H^{3,1}(X) \oplus H^{2,2}(X) \oplus H^{1,3}(X)
$$

Some algebraic/geometric invariants

2 Cohomology
Start with X a cubic fourfold. We can associate to it:

- The singular cohomology group $H^{4}(X, \mathbb{Z})$;
- The special class of a cubic surface $S \in H^{4}(X, \mathbb{Z})$;
- A symmetric bilinear form on $H^{4}(X, \mathbb{Z})$;
- The Hodge decomposition $H^{4}(X, \mathbb{C})=H^{3,1}(X) \oplus H^{2,2}(X) \oplus H^{1,3}(X)$.

The decomposition:

$H^{2,2}(X)$ is generated by algebraic classes as before!
Its orthogonal with respect to the cup product is a 2-dimensional vector space

$$
H^{3,1}(X) \oplus H^{1,3}(X)
$$

where

$$
\overline{H^{1,3}(X)}=H^{3,1}(X) .
$$

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:
X_{1} and X_{2} cubic fourfolds
$X_{1} \cong X_{2}$

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:
X_{1} and X_{2} cubic fourfolds
$X_{1} \cong X_{2}$

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:

$$
\begin{array}{ccc}
X_{1} \text { and } X_{2} \text { cubic fourfolds } & \Longrightarrow & \text { there is an isom. } H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right) \\
X_{1} \cong X_{2} & \text { preserving all the structures. }
\end{array}
$$

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:

$$
\begin{array}{ccc}
X_{1} \text { and } X_{2} \text { cubic fourfolds } & \Longrightarrow & \text { there is an isom. } H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right) \\
X_{1} \cong X_{2} & \text { preserving all the structures. }
\end{array}
$$

Torelli problem:

Is the converse true?

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:

$$
\begin{array}{ccc}
X_{1} \text { and } X_{2} \text { cubic fourfolds } & \Longrightarrow & \text { there is an isom. } H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right) \\
X_{1} \cong X_{2} & \text { preserving all the structures. }
\end{array}
$$

Torelli problem:

Is the converse true?
In other words, does the discrete info in $H^{4}(X, \mathbb{Z})$ encode the continuous information about an isomorphism?

The Torelli problem

2 Cohomology
It is not hard to convince ourselves that we have the following implication:

$$
\begin{array}{ccc}
X_{1} \text { and } X_{2} \text { cubic fourfolds } & \Longrightarrow & \text { there is an isom. } H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right) \\
X_{1} \cong X_{2} & \text { preserving all the structures. }
\end{array}
$$

Torelli problem:

Is the converse true?
In other words, does the discrete info in $H^{4}(X, \mathbb{Z})$ encode the continuous information about an isomorphism?

C. Voisin (1986)

If X_{1} and X_{2} are cubic fourfolds with an isometry $H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ preserving all the structures, then $X_{1} \cong X_{2}$.

...and rationality?

2 Cohomology
We only have a conjectural approach:

...and rationality?

2 Cohomology
We only have a conjectural approach:

Harris, Hassett (roughly):

A cubic fourfold X is rational if and only if it contains at least another surface S^{\prime} whose class is diffrent from the one of S with special intersection properties with S in $H^{4}(X, \mathbb{Z})$.

...and rationality?

2 Cohomology

We only have a conjectural approach:

Harris, Hassett (roughly):

A cubic fourfold X is rational if and only if it contains at least another surface S^{\prime} whose class is diffrent from the one of S with special intersection properties with S in $H^{4}(X, \mathbb{Z})$.

As a consequence the very general cubic fourfolds (i.e. those whose $H^{4}(X, \mathbb{Z})$ contains only the class of S) should not be rational.

...and rationality?

2 Cohomology

We only have a conjectural approach:

Harris, Hassett (roughly):

A cubic fourfold X is rational if and only if it contains at least another surface S^{\prime} whose class is diffrent from the one of S with special intersection properties with S in $H^{4}(X, \mathbb{Z})$.

As a consequence the very general cubic fourfolds (i.e. those whose $H^{4}(X, \mathbb{Z})$ contains only the class of S) should not be rational.
...recent progress by Katzarkov-Kontsevich-Pantev-Yu and Iritani!

Table of Contents

3 Derived categories

- Geometry
- Cohomology
- Derived categories
- So many categories!

Categorify!

3 Derived categories

General principle of derived algebraic geometry:

Actual varieties should be replaced by categories enriched with additional structure(s). And algebraic invariants should be replaced by some categorical counterparts.

Categorify!

3 Derived categories

General principle of derived algebraic geometry:

Actual varieties should be replaced by categories enriched with additional structure(s). And algebraic invariants should be replaced by some categorical counterparts.

Thus, in our case, we need to wind the correct replacements:

Categorify!

3 Derived categories

General principle of derived algebraic geometry:

Actual varieties should be replaced by categories enriched with additional structure(s). And algebraic invariants should be replaced by some categorical counterparts.

Thus, in our case, we need to wind the correct replacements:

- A cubic fourfold $X \mapsto$?

Categorify!

3 Derived categories

General principle of derived algebraic geometry:

Actual varieties should be replaced by categories enriched with additional structure(s). And algebraic invariants should be replaced by some categorical counterparts.

Thus, in our case, we need to wind the correct replacements:

- A cubic fourfold $X \mapsto$?
- The $4^{\text {th }}$-cohomology of X (with its additional structures) \mapsto ??

Categorify!

3 Derived categories

General principle of derived algebraic geometry:

Actual varieties should be replaced by categories enriched with additional structure(s). And algebraic invariants should be replaced by some categorical counterparts.

Thus, in our case, we need to wind the correct replacements:

- A cubic fourfold $X \mapsto$?
- The $4^{\text {th }}$-cohomology of X (with its additional structures) \mapsto ??

We are going to make some choices! By no means canonical (but working in most of the examples).

?=derived categories
 3 Derived categories

Start with X a cubic fourfold.

More general:

One can take any smooth complex variety Y admitting an embedding in a suitable embedding in a projective space \mathbb{P}^{n}.

Other examples to keep in mind:

- Quintic threefold: Given by $x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}=0$ in \mathbb{P}^{4};
- Quartic surface: Given by $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0$ in \mathbb{P}^{3}.

Examples of Calabi-Yau threefolds and K3 surfaces.
?=derived categories
3 Derived categories

Start with X a cubic fourfold

One can consider vector bundles on X.

Examples to keep in mind:

- Structure sheaf: If we regard X as a complex analytic variety, we a sheaf \mathcal{O}_{X} such that, for any open subset U,

$$
\mathcal{O}_{X}(U)=\{f: U \rightarrow \mathbb{C}: f \text { holomorphic }\} ;
$$

- (Holomorphic) tangent bundle: T_{X};
- (Holomorphic) cotangent bundle: Ω_{X};
- The canonical bundle: $K_{X}:=\wedge^{4} \Omega_{X}$ (fundamental invariant in our case).

?=derived categories

3 Derived categories
Start with X a cubic fourfold.

One can consider vector bundles on X.

We can further take bounded complexes of vector bundles.

Bounded complexes:

They are just (infinite) sequences:

$$
E^{\bullet} \ldots \rightarrow 0 \rightarrow E^{i} \xrightarrow{d^{i}} \ldots \xrightarrow{d^{i+n-1}} E^{i+n} \rightarrow 0 \rightarrow \ldots
$$

where

- Each E^{j} is a vector bundle;
- Only finitely many of them are non-trivial;
- If we compose the maps in the diagram we get

$$
d^{j+1} \circ d^{j}=0
$$

?=derived categories

3 Derived categories
Start with X a cubic fourfold.

One can consider vector bundles on X.

We can further take bounded complexes of vector bundles.

Such complexes are the objects of the derived category

$$
\mathrm{D}^{b}(X)
$$

Bounded complexes:

They are just (infinite) sequences:

$$
E^{\bullet} \ldots \rightarrow 0 \rightarrow E^{i} \xrightarrow{d^{i}} \ldots \xrightarrow{d^{i+n-1}} E^{i+n} \rightarrow 0 \rightarrow \ldots
$$

where

- Each E^{j} is a vector bundle;
- Only finitely many of them are non-trivial;
- If we compose the maps in the diagram we get

$$
d^{j+1} \circ d^{j}=0
$$

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;

Morphisms:

A morphism between the complexes E^{\bullet} and F^{\bullet} is a sequence of vertical morphisms in the diagram:

All squares commute!

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;

Cohomologies \& quasi-isomorphisms:

Give a complex E^{\bullet}, we can compute its cohomologies

$$
H^{j}\left(E^{\bullet}\right)=\frac{\operatorname{ker}\left(d^{j}\right)}{\operatorname{Im}\left(d^{j-1}\right)}
$$

A morphism of complexes is a quasi-iso if it induces isomorphisms on all cohomologies.

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;
- Finally take finite sequence of roofs

Here quis=quasi-isomorphism

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;
- Finally take finite sequence of roofs

Here quis=quasi-isomorphism

Warning/take-home message:
Confused?

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;
- Finally take finite sequence of roofs

Here quis=quasi-isomorphism

Warning/take-home message:
Confused? ...you are not the only one!

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;
- Finally take finite sequence of roofs

Here quis=quasi-isomorphism

Warning/take-home message:
Confused? ...you are not the only one!
$\mathrm{D}^{b}(X)$ is complicated.

?=derived categories

3 Derived categories
Morphisms in $\mathrm{D}^{b}(X)$:

- For E^{\bullet} and F^{\bullet} take morphisms of complexes;
- We can then single out quasi-isos;
- Finally take finite sequence of roofs

Here quis=quasi-isomorphism

Warning/take-home message:
Confused? ...you are not the only one!
$\mathrm{D}^{b}(X)$ is complicated. And its complexity grows according to two factors:

- The dimension of X;
- How close the canonical bundle is to be trivial (i.e. close to \mathcal{O}_{X}).

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).
There are few cases where the computations are doable:

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).
There are few cases where the computations are doable:

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).
There are few cases where the computations are doable:

- $X=$ pt. Then we have a natural identification

$$
\mathrm{D}^{b}(X)=\mathrm{D}^{b}\left(\boldsymbol{v e c t}_{\mathbb{C}}\right) .
$$

Thus a complex is a graded vector space of finite dimension.

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).

There are few cases where the computations are doable:

- $X=\mathrm{pt}$. Then we have a natural identification

$$
\mathrm{D}^{b}(X)=\mathrm{D}^{b}\left(\boldsymbol{v e c t}_{\mathbb{C}}\right)
$$

Thus a complex is a graded vector space of finite dimension.

- $X=$ curve. Then any complex in $\mathrm{D}^{b}(X)$ is finite direct sum of shifted complexes all sitting in degree zero.

Easy cases

3 Derived categories
Note: We have a natural operations on complexes $E \mapsto E[1]$ (shift to the left!).

There are few cases where the computations are doable:

- $X=\mathrm{pt}$. Then we have a natural identification

$$
\mathrm{D}^{b}(X)=\mathrm{D}^{b}\left(\boldsymbol{v e c t}_{\mathbb{C}}\right)
$$

Thus a complex is a graded vector space of finite dimension.

- $X=$ curve. Then any complex in $\mathrm{D}^{b}(X)$ is finite direct sum of shifted complexes all sitting in degree zero.

Finding a classification in higher dimension is out of reach.

Bondal and Orlov (special case):

If X_{1} and X_{2} are cubic fourfold, then $\mathrm{D}^{b}\left(X_{1}\right) \cong \mathrm{D}^{b}\left(X_{2}\right)$ if and only if $X_{1} \cong X_{2}$.

Good news

3 Derived categories

Bondal and Orlov (special case):

If X_{1} and X_{2} are cubic fourfold, then $\mathrm{D}^{b}\left(X_{1}\right) \cong \mathrm{D}^{b}\left(X_{2}\right)$ if and only if $X_{1} \cong X_{2}$.

More general: Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Good news

3 Derived categories

Bondal and Orlov (special case):

If X_{1} and X_{2} are cubic fourfold, then $\mathrm{D}^{b}\left(X_{1}\right) \cong \mathrm{D}^{b}\left(X_{2}\right)$ if and only if $X_{1} \cong X_{2}$.

More general: Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Examples (in the negative)

Let X be the Fermat quintic 3-fold or a K3 surface.
Then $\mathrm{D}^{b}(X)$ does not determine X !

Good news

3 Derived categories

Bondal and Orlov (special case):

If X_{1} and X_{2} are cubic fourfold, then $\mathrm{D}^{b}\left(X_{1}\right) \cong \mathrm{D}^{b}\left(X_{2}\right)$ if and only if $X_{1} \cong X_{2}$.

More general: Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Examples (in the negative)

Let X be the Fermat quintic 3-fold or a K3 surface.
Then $\mathrm{D}^{b}(X)$ does not determine X !
$\mathrm{D}^{b}(X)$ could be a good replacement for the cohomology but it is too complicated!

??=semiorthogonal components

3 Derived categories
As $\mathrm{D}^{b}(X)$ is too complicated, we can actually decompose it as follows:

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{D}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

where $\mathcal{O}_{X}(1)$ is the (rank-1) vector bundle associated to the algebraic class of a hyperplane section $\left(X \cap \mathbb{P}^{4}\right)$ and $\mathcal{O}_{X}(2)$ is 'twice' $\mathcal{O}_{X}(1)$.

??=semiorthogonal components

3 Derived categories
As $\mathrm{D}^{b}(X)$ is too complicated, we can actually decompose it as follows:

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{D}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

where $\mathcal{O}_{X}(1)$ is the (rank-1) vector bundle associated to the algebraic class of a hyperplane section $\left(X \cap \mathbb{P}^{4}\right)$ and $\mathcal{O}_{X}(2)$ is 'twice' $\mathcal{O}_{X}(1)$.

- $\mathrm{D}^{b}(X)$ is generated by the various pieces;
- There are no morph. from right to left between the 4 pieces:

??=semiorthogonal components

3 Derived categories
As $\mathrm{D}^{b}(X)$ is too complicated, we can actually decompose it as follows:

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{D}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

where $\mathcal{O}_{X}(1)$ is the (rank-1) vector bundle associated to the algebraic class of a hyperplane section $\left(X \cap \mathbb{P}^{4}\right)$ and $\mathcal{O}_{X}(2)$ is 'twice' $\mathcal{O}_{X}(1)$.

- $\mathrm{D}^{b}(X)$ is generated by the various pieces;
- There are no morph. from right to left between the 4 pieces:

\mathcal{D}_{X} is the important semiorthogonal block $\leadsto H^{4}(X, \mathbb{Z})$

Why \mathcal{D}_{X} ?

3 Derived categories

- \mathcal{D}_{X} is simpler: it behaves like a K3 surface (cohomologically and homologically)! Easier to handle!

Why \mathcal{D}_{X} ?

3 Derived categories

- \mathcal{D}_{X} is simpler: it behaves like a K3 surface (cohomologically and homologically)! Easier to handle!
- Kuznetsov conjecture: X is rational iff \mathcal{D}_{X} is (equivalent to) the derived category of a K3 surface.

Why \mathcal{D}_{X} ?

3 Derived categories

- \mathcal{D}_{X} is simpler: it behaves like a K3 surface (cohomologically and homologically)! Easier to handle!
- Kuznetsov conjecture: X is rational iff \mathcal{D}_{X} is (equivalent to) the derived category of a K3 surface.
- X_{1} and X_{2} cubic fourfolds: if $X_{1} \cong X_{2}$, then $\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}$ (+ some extras).

Why \mathcal{D}_{X} ?

3 Derived categories

- \mathcal{D}_{X} is simpler: it behaves like a K3 surface (cohomologically and homologically)! Easier to handle!
- Kuznetsov conjecture: X is rational iff \mathcal{D}_{X} is (equivalent to) the derived category of a K3 surface.
- X_{1} and X_{2} cubic fourfolds: if $X_{1} \cong X_{2}$, then $\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}$ (+ some extras).

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X			

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds			

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces			

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve			

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$		
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$		
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$		
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$	geom. semiorth. comp.	
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$	geom. semiorth. comp.	rational
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$		

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$	geom. semiorth. comp.	rational
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$	$\mathcal{D}_{X}=\mathrm{D}^{b}(X)$	

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$	geom. semiorth. comp.	rational
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$	$\mathcal{D}_{X}=\mathrm{D}^{b}(X)$	irrational

A step back to rationality

3 Derived categories
Something funny happens when we keep intersecting X with hyperplanes in \mathbb{P}^{5} :

Variety	Equations	Der. Cat.	Rationality
Cubic 4-folds X	$\sum_{i=0}^{5} x_{i}^{3}=0$	\mathcal{D}_{X} geom./non geom	rational/not rational
Cubic 3-folds	$\sum_{i=0}^{4} x_{i}^{3}=0$	\mathcal{D}_{X} never geom.	irrational
Cubic surfaces	$\sum_{i=0}^{3} x_{i}^{3}=0$	geom. semiorth. comp.	rational
Elliptic curve	$\sum_{i=0}^{3} x_{i}^{3}=0$	$\mathcal{D}_{X}=\mathrm{D}^{b}(X)$	irrational

The celebrated case of cubic 3-folds is due to Clemens-Griffiths.

Derived Torelli

3 Derived categories
We can actually answer the Derived Torelli Problem in the positive:

Derived Torelli

3 Derived categories
We can actually answer the Derived Torelli Problem in the positive:

Bayer-Lahoz-Macri-S.-Zhao, Li-Pertusi-Zhao:

If X_{1} and X_{2} are cubic fourfolds such that there is an equivalence

$$
\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}
$$

'preserving some symmetry', then $X_{1} \cong X_{2}$.

Derived Torelli

3 Derived categories
We can actually answer the Derived Torelli Problem in the positive:

Bayer-Lahoz-Macrì-S.-Zhao, Li-Pertusi-Zhao:

If X_{1} and X_{2} are cubic fourfolds such that there is an equivalence

$$
\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}
$$

'preserving some symmetry', then $X_{1} \cong X_{2}$.
'Preserving some symmetry' = commuting with some special autoequivalence
\sim the choice of the special class S.

Derived Torelli

3 Derived categories
We can actually answer the Derived Torelli Problem in the positive:

Bayer-Lahoz-Macrì-S.-Zhao, Li-Pertusi-Zhao:

If X_{1} and X_{2} are cubic fourfolds such that there is an equivalence

$$
\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}
$$

'preserving some symmetry', then $X_{1} \cong X_{2}$.
'Preserving some symmetry' = commuting with some special autoequivalence \sim the choice of the special class S.

Enough to reprove easily Voisin's (cohomological) Torelli theorem!

The idea: add more structure!
3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!

The idea: add more structure!

3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!
Beaubille-Donagi: Lines form a 4-dimensional family which is itself a smooth variety $F(X)$.

The idea: add more structure!

3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!
Beaubille-Donagi: Lines form a 4-dimensional family which is itself a smooth variety $F(X)$.

Chow's trick: A cubic fourfold X can be reconstructed from $F(X)$ (+ its Plücker polarization).

The idea: add more structure!

3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!
Beaubille-Donagi: Lines form a 4-dimensional family which is itself a smooth variety $F(X)$.

Chow's trick: A cubic fourfold X can be reconstructed from $F(X)$ (+ its Plücker polarization).

Idea/problem:

Lines $\ell \subseteq X$ correspond to objects in \mathcal{D}_{X}.

The idea: add more structure!

3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!
Beaubille-Donagi: Lines form a 4-dimensional family which is itself a smooth variety $F(X)$.

Chow's trick: A cubic fourfold X can be reconstructed from $F(X)$ (+ its Plücker polarization).

Idea/problem:

Lines $\ell \subseteq X$ correspond to objects in \mathcal{D}_{X}. But how do we make sure that an equivalence $\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}$ sends lines to lines?

The idea: add more structure!

3 Derived categories
While planes are rare in cubic fourfolds, lines are always there!
Beaubille-Donagi: Lines form a 4-dimensional family which is itself a smooth variety $F(X)$.

Chow's trick: A cubic fourfold X can be reconstructed from $F(X)$ (+ its Plücker polarization).

Idea/problem:

Lines $\ell \subseteq X$ correspond to objects in \mathcal{D}_{X}. But how do we make sure that an equivalence $\mathcal{D}_{X_{1}} \cong \mathcal{D}_{X_{2}}$ sends lines to lines?

Solution: Note that \mathcal{D}_{X} carries more structure! It carries a stability condition with respect to which $F(X)$ parametrizes stable objects. And equivalences preserve stability.

Table of Contents

4 So many categories!

- Geometry
- Cohomology
- Derived categories
- So many categories!

A wealth of categories

4 So many categories!
Given a variety (actually a quasi-compact and quasi-separated scheme) X we have many categories associated to it:

A wealth of categories

4 So many categories!
Given a variety (actually a quasi-compact and quasi-separated scheme) X we have many categories associated to it:

A wealth of categories

4 So many categories!
Given a variety (actually a quasi-compact and quasi-separated scheme) X we have many categories associated to it:

So far we chose $\mathrm{D}^{b}(X)$.

A wealth of categories

4 So many categories!
Given a variety (actually a quasi-compact and quasi-separated scheme) X we have many categories associated to it:

So far we chose $\mathrm{D}^{b}(X)$.

Classical question 1:
Could other choices better to do geometry?

A wealth of categories

4 So many categories!
Indeed, just to mention a few features:

A wealth of categories

4 So many categories!
Indeed, just to mention a few features:

- $\mathrm{D}_{\mathrm{qc}}(X)$ is nicely generated and well suited in order to get nice resolutions (by injectives for example);

A wealth of categories

4 So many categories!
Indeed, just to mention a few features:

- $\mathrm{D}_{\mathrm{qc}}(X)$ is nicely generated and well suited in order to get nice resolutions (by injectives for example);
- $\mathrm{D}_{\mathrm{qc}}^{?}(X)$, for $?=+,-, b$ combines the advantages above with the presence of a t-structure;

A wealth of categories

4 So many categories!
Indeed, just to mention a few features:

- $\mathrm{D}_{\mathrm{qc}}(X)$ is nicely generated and well suited in order to get nice resolutions (by injectives for example);
- $\mathrm{D}_{\mathrm{qc}}^{?}(X)$, for $?=+,-, b$ combines the advantages above with the presence of a t-structure;
- The quotient $\mathrm{D}_{\text {coh }}^{b}(X) / \operatorname{Perf}(X)$ is called singularity category and measures how singular X is.

Classical question 2:

Is the category of singularities a derived invariant?

They are all the same

4 So many categories!
Recently we have been working on this questions. The answers are then:

They are all the same

4 So many categories!
Recently we have been working on this questions. The answers are then:

Canonaco-Neeman-S.:
All the categories in the diagram can be recovered one from the others.

They are all the same

4 So many categories!
Recently we have been working on this questions. The answers are then:

Canonaco-Neeman-S.:

All the categories in the diagram can be recovered one from the others.

This means that the choice of one of the many categories in the diagram is conceptually irrelevant: we choose the one which is more suitable for computations but each of them carries the same amount of geometric information.

They are all the same
4 So many categories!
Recently we have been working on this questions. The answers are then:

Canonaco-Neeman-S.:

All the categories in the diagram can be recovered one from the others.

This means that the choice of one of the many categories in the diagram is conceptually irrelevant: we choose the one which is more suitable for computations but each of them carries the same amount of geometric information.

Canonaco-Neeman-S.:
The category of singularities is indeed a derived invariant.

The idea: (again) add more structure!
4 So many categories!
Going down: Purely triangulated question!

The idea: (again) add more structure!

4 So many categories!
Going down: Purely triangulated question!
Going up: How do we reconstruct a bigger category from a smaller one (e.g. $\mathrm{D}_{\mathrm{qc}}(X)$ from $\left.\operatorname{Perf}(X)\right)$?

The idea: (again) add more structure!

4 So many categories!
Going down: Purely triangulated question!
Going up: How do we reconstruct a bigger category from a smaller one (e.g.
$\mathrm{D}_{\mathrm{qc}}(X)$ from $\operatorname{Perf}(X)$)?
Higher categorical structure:
observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

The idea: (again) add more structure!

4 So many categories!
Going down: Purely triangulated question!
Going up: How do we reconstruct a bigger category from a smaller one (e.g.
$\mathrm{D}_{\mathrm{qc}}(X)$ from $\operatorname{Perf}(X)$)?

Higher categorical structure: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

Example: injective resolutions

Let X be a smooth projective scheme. Take $\mathbf{I n j}(X)$ to be the category such that

- Objects: bounded below complexes of injective objects with bounded coherent cohomology;
- Morphisms: morphisms of complexes.

Then:

$$
H^{0}(\mathbf{I n j}(X))=\mathrm{D}^{b}(X)
$$

