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Equations
1 Geometry

In P5

consider the hypersurface
described by the equation

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.

Usually called Fermat cubic fourfold.

Another similar example is given by the
following system of equations in P6:{

x0 + x1 + · · ·+ x6 = 0
x3

0 + x3
1 + · · ·+ x3

6 = 0

It is usually called Clebsch–Segre cubic
fourfold.

The projective space
For any n > 0 just consider the quotient

Pn := (Cn+1 \ {0})/C∗.

The hypersurface

It consists of all the points of P5 whose
coordinates satisfy the given equation. In
particular:

• It is smooth;
• It has (complex) dimension 4.
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Isomorphisms?
1 Geometry

Question 1
Are the Fermat and the Clebsch–Segre
cubic fourfolds isomorphic?

This amounts to finding a find a
continuous piece of data: a
biholomorphic map

f : X1 → X2

where
• X1 = Fermat;
• X2 = Clebsch − Segre.

In this special case:
A bit of combinatorics:

• X1 contains 405 planes;
• X2 contains 357 planes.

They cannot be isomorphic! But in
general this does not work!

Question 2
How do we decide if two cubic fourfolds
(i.e. smooth zero loci of a homog. polyn.
of deg. 3 in P5) are isomorphic?
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Rationality?
1 Geometry

We can be more flexible: can we find an
isomorphism

X1 ⊇ U1
g−→ U2 ⊆ P4?

Here: Ui are Zariski open sets
(=complements of closed subsets
described by finitely many equations ⇒
dense).

Question 3 (!)
Are cubic fourfolds rational?

Or: which
cubic fourfolds are rational?

In our special cases:
X =Fermat or Clebsch–Segre cubic. It
contains two disjoint planes P1,P2 ⊆ X.

One constructs the (birational) map g as
follows:

P1 × P2 99K X (p1, p2) 7→ ℓp1,p2 ∩ X

where ℓp1,p2 is the line through p1 and p2.
Now P1 × P2 coincides with P4 on an
open subset.

...in general this is one of the major open
problems in algebraic geometry!
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Some algebraic/geometric invariants
2 Cohomology

Start with X a cubic fourfold. We can associate to it:

• The singular cohomology group
H4(X,Z);

• The special class of a cubic surface
S ∈ H4(X,Z);

• A symmetric bilinear form on
H4(X,Z);

• The Hodge decomposition

H4(X,C) = H3,1(X)⊕H2,2(X)⊕H1,3(X).
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Singular cohomology:
By the de Rham theorem:

H4(X,Z)⊗Z R ∼= H4(X,R) ∼= H4
dR(X).

H4(X,Z) is a discrete (rank-23 free Z)
submod. of the de Rham coho.
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Start with X a cubic fourfold. We can associate to it:
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• The Hodge decomposition

H4(X,C) = H3,1(X)⊕H2,2(X)⊕H1,3(X).

Algebraic classes:

S yields a class in H4(X,Z) by the
following procedure:

• It provides an element in H4
dR(X)

∗:∫
S
: ω 7→

∫
S
ω;

• Poincaré duality: H4
dR(X)

∗ ∼= H4
dR(X);

• It is an integral class.
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Cup product:
With the identification

H4(X,Z)⊗Z R ∼= H4
dR(X)

it is just the the ∧ of forms.
More geometrically: given S1 and S2
corresponding to two surfaces in
H4(X,Z), we set:

S1 · S2 = S1 ∩ S2 ∈ H8(X,Z) ∼= Z.
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• The singular cohomology group
H4(X,Z);

• The special class of a cubic surface
S ∈ H4(X,Z);

• A symmetric bilinear form on
H4(X,Z);

• The Hodge decomposition

H4(X,C) = H3,1(X)⊕H2,2(X)⊕H1,3(X).

The decomposition:

H2,2(X) is generated by algebraic classes
as before!
Its orthogonal with respect to the cup
product is a 2-dimensional vector space

H3,1(X)⊕ H1,3(X)
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The Torelli problem
2 Cohomology

It is not hard to convince ourselves that we have the following implication:

X1 and X2 cubic fourfolds

=⇒ there is an isom. H4(X1,Z) ∼= H4(X2,Z)

X1 ∼= X2

preserving all the structures.

Torelli problem:
Is the converse true?

In other words, does the discrete info in H4(X,Z) encode the continuous
information about an isomorphism?

C. Voisin (1986)

If X1 and X2 are cubic fourfolds with an isometry H4(X1,Z) ∼= H4(X2,Z) preserving
all the structures, then X1 ∼= X2.
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...and rationality?
2 Cohomology

We only have a conjectural approach:

Harris, Hassett (roughly):

A cubic fourfold X is rational if and only if it contains at least another surface S′

whose class is diffrent from the one of S with special intersection properties with S
in H4(X,Z).

As a consequence the very general cubic fourfolds (i.e. those whose H4(X,Z)
contains only the class of S) should not be rational.

...recent progress by Katzarkov–Kontsevich–Pantev–Yu and Iritani!
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Categorify!
3 Derived categories

General principle of derived algebraic geometry:
Actual varieties should be replaced by categories enriched with additional
structure(s). And algebraic invariants should be replaced by some categorical
counterparts.

Thus, in our case, we need to wind the correct replacements:

• A cubic fourfold X 7→ ?

• The 4th-cohomology of X (with its additional structures) 7→ ??

We are going to make some choices! By no means canonical (but working in most
of the examples).
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?=derived categories
3 Derived categories

Start with X a cubic fourfold.

One can consider vector
bundles on X.

We can further take bounded
complexes of vector bundles.

Such complexes are the objects
of the derived category

Db(X).

More general:
One can take any smooth complex variety Y
admitting an embedding in a suitable embedding
in a projective space Pn.

Other examples to keep in mind:
• Quintic threefold: Given by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 0 in P4;

• Quartic surface: Given by
x4

0 + x4
1 + x4

2 + x4
3 = 0 in P3.

Examples of Calabi–Yau threefolds and K3
surfaces.

Bounded complexes:
They are just (infinite) sequences:

E• · · · → 0 → Ei di

→ . . .
di+n−1

→ Ei+n → 0 → . . .

where
• Each Ej is a vector bundle;

• Only finitely many of them are non-trivial;

• If we compose the maps in the diagram we
get

dj+1 ◦ dj = 0;
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Start with X a cubic fourfold.

One can consider vector
bundles on X.

We can further take bounded
complexes of vector bundles.

Such complexes are the objects
of the derived category

Db(X).

Examples to keep in mind:
• Structure sheaf: If we regard X as a

complex analytic variety, we a sheaf OX such
that, for any open subset U,

OX(U) = {f : U → C : f holomorphic};

• (Holomorphic) tangent bundle: TX;

• (Holomorphic) cotangent bundle: ΩX;

• The canonical bundle: KX := ∧4ΩX

(fundamental invariant in our case).
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• Each Ej is a vector bundle;

• Only finitely many of them are non-trivial;

• If we compose the maps in the diagram we
get

dj+1 ◦ dj = 0;
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Morphisms in Db(X) :

• For E• and F• take
morphisms of complexes;

• We can then single out
quasi-isos;

• Finally take finite sequence of roofs

D•
1quis
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. . . D•
nquis

}} ��
E• A•

1 . . . A•
n−1 F•.

Here quis=quasi-isomorphism

Warning/take-home message:
Confused?

...you are not the only one!
Db(X) is complicated. And its complexity grows according to two factors:

• The dimension of X;
• How close the canonical bundle is to be trivial (i.e. close to OX).
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Easy cases
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Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Easy cases
3 Derived categories

Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Easy cases
3 Derived categories

Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Easy cases
3 Derived categories

Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Easy cases
3 Derived categories

Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Easy cases
3 Derived categories

Note: We have a natural operations on complexes E 7→ E[1] (shift to the left!).

There are few cases where the computations are doable:

• X = pt. Then we have a natural identification

Db(X) = Db(vectC).

Thus a complex is a graded vector space of finite dimension.

• X = curve. Then any complex in Db(X) is finite direct sum of shifted complexes
all sitting in degree zero.

Finding a classification in higher dimension is out of reach.



Good news
3 Derived categories

Bondal and Orlov (special case):

If X1 and X2 are cubic fourfold, then Db(X1) ∼= Db(X2) if and only if X1 ∼= X2.

More general: Let X be a smooth
projective variety such that KX is either
ample or antiample. Let Y be a smooth
projective variety such that
Db(X) ∼= Db(Y). Then X ∼= Y.

Examples (in the negative)
Let X be the Fermat quintic 3-fold or a K3
surface.
Then Db(X) does not determine X!

Db(X) could be a good replacement for the cohomology but it is too complicated!
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??=semiorthogonal components
3 Derived categories

As Db(X) is too complicated, we can actually decompose it as follows:

Db(X) = ⟨DX,OX,OX(1),OX(2)⟩
where OX(1) is the (rank-1) vector bundle associated to the algebraic class of a
hyperplane section (X ∩ P4) and OX(2) is ‘twice’ OX(1).

• Db(X) is generated by the various pieces;

• There are no morph. from right to left between the 4 pieces:

DX

,
%%
OX

,
''

/
dd OX(1)

,
((

/
ff OX(2)

/
hh

DX is the important semiorthogonal block ↭ H4(X,Z)



??=semiorthogonal components
3 Derived categories

As Db(X) is too complicated, we can actually decompose it as follows:

Db(X) = ⟨DX,OX,OX(1),OX(2)⟩
where OX(1) is the (rank-1) vector bundle associated to the algebraic class of a
hyperplane section (X ∩ P4) and OX(2) is ‘twice’ OX(1).

• Db(X) is generated by the various pieces;

• There are no morph. from right to left between the 4 pieces:

DX

,
%%
OX

,
''

/
dd OX(1)

,
((

/
ff OX(2)

/
hh

DX is the important semiorthogonal block ↭ H4(X,Z)



??=semiorthogonal components
3 Derived categories

As Db(X) is too complicated, we can actually decompose it as follows:

Db(X) = ⟨DX,OX,OX(1),OX(2)⟩
where OX(1) is the (rank-1) vector bundle associated to the algebraic class of a
hyperplane section (X ∩ P4) and OX(2) is ‘twice’ OX(1).

• Db(X) is generated by the various pieces;

• There are no morph. from right to left between the 4 pieces:

DX

,
%%
OX

,
''

/
dd OX(1)

,
((

/
ff OX(2)

/
hh

DX is the important semiorthogonal block ↭ H4(X,Z)



Why DX?
3 Derived categories

• DX is simpler: it behaves like a K3 surface (cohomologically and
homologically)! Easier to handle!

• Kuznetsov conjecture: X is rational iff DX is (equivalent to) the derived
category of a K3 surface.

• X1 and X2 cubic fourfolds: if X1 ∼= X2, then DX1
∼= DX2 (+ some extras).

Derived Torelli problem:
What about the converse? Does DX determine X?
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A step back to rationality
3 Derived categories

Something funny happens when we keep intersecting X with hyperplanes in P5:

Variety Equations Der. Cat. Rationality

Cubic 4-folds X
∑5

i=0 x3
i = 0 DX geom./non geom rational/not rational

Cubic 3-folds
∑4

i=0 x3
i = 0 DX never geom. irrational

Cubic surfaces
∑3

i=0 x3
i = 0 geom. semiorth. comp. rational

Elliptic curve
∑3

i=0 x3
i = 0 DX = Db(X) irrational

The celebrated case of cubic 3-folds is due to Clemens–Griffiths.
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Derived Torelli
3 Derived categories

We can actually answer the Derived Torelli Problem in the positive:

Bayer–Lahoz–Macrı̀-S.–Zhao, Li–Pertusi–Zhao:
If X1 and X2 are cubic fourfolds such that there is an equivalence

DX1
∼= DX2

‘preserving some symmetry’, then X1 ∼= X2.

‘Preserving some symmetry’ = commuting with some special autoequivalence
∼ the choice of the special class S.

Enough to reprove easily Voisin’s (cohomological) Torelli theorem!
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The idea: add more structure!
3 Derived categories

While planes are rare in cubic fourfolds, lines are always there!

Beaubille–Donagi: Lines form a 4-dimensional family which is itself a smooth
variety F(X).

Chow’s trick: A cubic fourfold X can be reconstructed from F(X) (+ its Plücker
polarization).

Idea/problem:
Lines ℓ ⊆ X correspond to objects in DX.

But how do we make sure that an
equivalence DX1

∼= DX2 sends lines to lines?

Solution: Note that DX carries more structure! It carries a stability condition with
respect to which F(X) parametrizes stable objects. And equivalences preserve
stability.
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polarization).

Idea/problem:
Lines ℓ ⊆ X correspond to objects in DX. But how do we make sure that an
equivalence DX1

∼= DX2 sends lines to lines?

Solution: Note that DX carries more structure! It carries a stability condition with
respect to which F(X) parametrizes stable objects. And equivalences preserve
stability.



The idea: add more structure!
3 Derived categories

While planes are rare in cubic fourfolds, lines are always there!

Beaubille–Donagi: Lines form a 4-dimensional family which is itself a smooth
variety F(X).

Chow’s trick: A cubic fourfold X can be reconstructed from F(X) (+ its Plücker
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4 So many categories!

Given a variety (actually a quasi-compact and quasi-separated scheme) X we
have many categories associated to it:

Dqc(X)
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qc(X)
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2 R
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coh(X)
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Perf(X)? _oo

So far we chose Db(X).

Classical question 1:
Could other choices better to do
geometry?
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Indeed, just to mention a few features:

• Dqc(X) is nicely generated and well suited in order to get nice resolutions (by
injectives for example);

• D?
qc(X), for ? = +,−, b combines the advantages above with the presence of a

t-structure;

• The quotient Db
coh(X)/Perf(X) is called singularity category and measures how

singular X is.

Classical question 2:
Is the category of singularities a derived invariant?
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They are all the same
4 So many categories!

Recently we have been working on this questions. The answers are then:

Canonaco–Neeman–S.:
All the categories in the diagram can be recovered one from the others.

This means that the choice of one of the many categories in the diagram is
conceptually irrelevant: we choose the one which is more suitable for
computations but each of them carries the same amount of geometric information.

Canonaco–Neeman–S.:
The category of singularities is indeed a derived invariant.
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The idea: (again) add more structure!
4 So many categories!

Going down: Purely triangulated question!

Going up: How do we reconstruct a bigger category from a smaller one (e.g.
Dqc(X) from Perf(X))?

Higher categorical structure:
observe that

Db(X) = H0(Db
dg(X)

)
That is: Db(X) is just the
homotopy category of a
category with richer structure.

Example: injective resolutions
Let X be a smooth projective scheme. Take
Inj(X) to be the category such that

• Objects: bounded below complexes of
injective objects with bounded coherent
cohomology;

• Morphisms: morphisms of complexes.
Then:

H0(Inj(X)) = Db(X).
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