Bridgeland stability for semiorthogonal decompositions, hyperkähler manifolds and cubic fourfolds

Paolo Stellari

UNIVERSITÀ
DEGLI STUDI
DI MILANO

Based on the following joint works:
Bayer-Lahoz-Macrì-S.: arXiv:1703.10839
Bayer-Lahoz-Macri-Nuer-Perry-S.: in preparation
Lecture notes: Macrì-S., arXiv:1807.06169

Outline

1 Setting

Outline

1 Setting

2 Results

Outline

1 Setting

2 Results

3 Applications

Outline

1 Setting

2 Results

3 Applications

The setting

Let X be a cubic fourfold (i.e. a smooth hypersurface of degree 3 in \mathbb{P}^{5}).

The setting

Let X be a cubic fourfold (i.e. a smooth hypersurface of degree 3 in \mathbb{P}^{5}).

Most of the time defined over \mathbb{C} but, for some results, defined over a field $\mathbb{K}=\overline{\mathbb{K}}$ with $\operatorname{char}(\mathbb{K}) \neq 2$.

The setting

Let X be a cubic fourfold (i.e. a smooth hypersurface of degree 3 in \mathbb{P}^{5}).

Most of the time defined over \mathbb{C} but, for some results, defined over a field $\mathbb{K}=\overline{\mathbb{K}}$ with $\operatorname{char}(\mathbb{K}) \neq 2$.

Aim of the talk:

Convince you that, even though X is a Fano 4-fold, it is secretly a K3 surface!

Hodge theory: Voisin + Hassett

Torelli Theorem (Voisin, etc.)

X is determined, up to
isomorphism, by its primitive middle cohomology
$H^{4}(X, \mathbb{Z})_{\text {prim }}$.
(Cup product + Hodge structure!).

Hodge theory: Voisin + Hassett

(A priori) weight-4 Hodge decomposition:

Torelli Theorem (Voisin, etc.)

X is determined, up to
isomorphism, by its primitive middle cohomology
$H^{4}(X, \mathbb{Z})_{\text {prim }}$.
(Cup product + Hodge structure!).

$$
\begin{gathered}
H^{4}(X, \mathbb{C}) \\
\| \\
H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}
\end{gathered}
$$

Hodge theory: Voisin + Hassett

(A priori) weight-4 Hodge decomposition:

Torelli Theorem (Voisin, etc.)

X is determined, up to
isomorphism, by its primitive middle cohomology $H^{4}(X, \mathbb{Z})_{\text {prim }}$.
(Cup product + Hodge structure!).

$$
\begin{gathered}
H^{4}(X, \mathbb{C}) \\
\| \\
H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4} \\
0 \oplus \mathbb{C} \oplus \mathbb{C}^{21} \oplus \mathbb{C} \oplus 0
\end{gathered}
$$

Hodge theory: Voisin + Hassett

(A priori) weight-4 Hodge decomposition:

Torelli Theorem (Voisin, etc.)

X is determined, up to isomorphism, by its primitive middle cohomology
$H^{4}(X, \mathbb{Z})_{\text {prim }}$.
(Cup product + Hodge structure!).

$$
\begin{gathered}
H^{4}(X, \mathbb{C}) \\
\| \\
H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4} \\
2 \| \\
0 \oplus \mathbb{C} \oplus \mathbb{C}^{21} \oplus \mathbb{C} \oplus 0 \\
2 \| \\
\text { 2l }^{(. . \text {not quite right...) }} \\
H^{2,0}(\mathrm{~K} 3) \oplus H^{1,1}(\mathrm{~K} 3) \oplus H^{0,2}(\mathrm{~K} 3) \\
\| \\
H^{2}(\mathrm{~K} 3, \mathbb{C}) .
\end{gathered}
$$

Hodge theory: Voisin + Hassett

(A priori) weight-4 Hodge decomposition:

Torelli Theorem (Voisin, etc.)

X is determined, up to isomorphism, by its primitive middle cohomology $H^{4}(X, \mathbb{Z})_{\text {prim }}$.
(Cup product + Hodge structure!).

$$
\begin{gathered}
H^{4}(X, \mathbb{C}) \\
\| \\
H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4} \\
2 \| \\
0 \oplus \mathbb{C} \oplus \mathbb{C}^{21} \oplus \mathbb{C} \oplus 0 \\
2 \| \\
\text { l...not quite right...) }_{\text {a }} H^{2,0}(\mathrm{~K} 3) \oplus H^{1,1}(\mathrm{~K} 3) \oplus H^{0,2}(\mathrm{~K} 3) \\
\| \\
H^{2}(\mathrm{~K} 3, \mathbb{C}) .
\end{gathered}
$$

...a posteriori, $H^{4}(X, \mathbb{Z})$ has a weight-2 Hodge structure!

Homological algebra

Let us now look at the bounded derived category of coherent sheaves on X (fix H to be a hyperplane section):

$$
\mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(X))
$$

Homological algebra

Let us now look at the bounded derived category of coherent sheaves on X (fix H to be a hyperplane section):

$$
\begin{gathered}
\mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(X)) \\
\mathcal{K} u(X), \mathcal{O}_{X}, \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)
\end{gathered}
$$

Homological algebra

Let us now look at the bounded derived category of coherent sheaves on X (fix H to be a hyperplane section):

$$
\begin{gathered}
\mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}_{\|}^{\mathrm{b}}(\operatorname{Coh}(X)) \\
\mathcal{K} u(X), \mathcal{O}_{X}, \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)
\end{gathered}
$$

$$
\left\{E \in \mathrm{D}^{\mathrm{b}}(X): \begin{array}{l}
\mathcal{K} u(X) \\
\| \\
\begin{array}{l}
\operatorname{Hom}\left(\mathcal{O}_{X}(i H), E[p]\right)=0 \\
i=0,1,2 \forall p \in \mathbb{Z}
\end{array}
\end{array}\right\}
$$

Kuznetsov component of X

Homological algebra

Let us now look at the bounded derived category of coherent sheaves on X (fix H to be a hyperplane section):

$$
\mathrm{D}^{\mathrm{b}}(X):=\underset{\|}{\mathrm{D}^{\mathrm{b}}}(\operatorname{Coh}(X))
$$

$$
\mathcal{K} u(X), \mathcal{O}_{X}, \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)
$$

$$
\left\{E \in \mathrm{D}^{\mathrm{b}}(X): \begin{array}{l}
\mathcal{K} u(X) \\
\| \\
\begin{array}{l}
\operatorname{Hom}\left(\mathcal{O}_{X}(i H), E[p]\right)=0 \\
i=0,1,2 \forall p \in \mathbb{Z}
\end{array}
\end{array}\right\}
$$

Exceptional objects:

$$
\left\langle\mathcal{O}_{X}(i H)\right\rangle \cong \mathrm{D}^{\mathrm{b}}(\mathrm{pt})
$$

Kuznetsov component of X

Homological algebra

Recall that the symbol $\langle\ldots\rangle$ stays for a semiorthogonal decomposition.

Homological algebra

Recall that the symbol $\langle\ldots\rangle$ stays for a semiorthogonal decomposition.

This means that:

Homological algebra

Recall that the symbol $\langle\ldots\rangle$ stays for a semiorthogonal decomposition.

This means that:
■ $\mathrm{D}^{\mathrm{b}}(X)$ is generated by extensions, shifts, direct sums and summands by the objects in the 4 admissible subcategories;

Homological algebra

Recall that the symbol $\langle\ldots\rangle$ stays for a semiorthogonal decomposition.

This means that:
■ $\mathrm{D}^{\mathrm{b}}(X)$ is generated by extensions, shifts, direct sums and summands by the objects in the 4 admissible subcategories;

■ There are no Homs from right to left between the 4 subcategories:

Homological algebra: properties of $\mathcal{K} u(X)$

Property 1 (Kuznetsov):

The admissible subcategory $\mathcal{K} u(X)$ has a Serre functor $S_{\mathcal{K} u(X)}$ (this is easy!). Moreover, there is an isomorphism of exact functors

$$
S_{\mathcal{K} u(X)} \cong[2]
$$

Because of this, $\mathcal{K} u(X)$ is called 2-Calabi-Yau category.

Homological algebra: properties of $\mathcal{K} u(X)$

Property 1 (Kuznetsov):

The admissible subcategory $\mathcal{K} u(X)$ has a Serre functor $S_{\mathcal{K} u(X)}$ (this is easy!). Moreover, there is an isomorphism of exact functors

$$
S_{\mathcal{K} u(X)} \cong[2] .
$$

Because of this, $\mathcal{K} u(X)$ is called 2-Calabi-Yau category.

Hence $\mathcal{K} u(X)$ could be equivalent to the derived category either of a K3 surface or of an abelian surface.

Homological algebra: properties of $\mathcal{K} u(X)$

Property 2 (Addington, Thomas):

$\mathcal{K} u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K}=\mathbb{C}$):

Homological algebra: properties of $\mathcal{K} u(X)$

Property 2 (Addington, Thomas):

$\mathcal{K} u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K}=\mathbb{C}$):

■ Consider the \mathbb{Z}-module

$$
H^{*}(\mathcal{K} u(X), \mathbb{Z}):=\left\{e \in K_{\mathrm{top}}(X): \begin{array}{l}
\chi\left(\left[\mathcal{O}_{X}(i H)\right], e\right)=0 \\
i=0,1,2
\end{array}\right\}
$$

Homological algebra: properties of $\mathcal{K} u(X)$

Property 2 (Addington, Thomas):

$\mathcal{K} u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K}=\mathbb{C}$):

■ Consider the \mathbb{Z}-module

$$
H^{*}(\mathcal{K} u(X), \mathbb{Z}):=\left\{e \in K_{\mathrm{top}}(X): \begin{array}{l}
\chi\left(\left[\mathcal{O}_{X}(i H)\right], e\right)=0 \\
i=0,1,2
\end{array}\right\}
$$

Remark

$H^{*}(\mathcal{K} u(X), \mathbb{Z})$ is deformation invariant. So, as a lattice:
$H^{*}(\mathcal{K} u(X), \mathbb{Z})$

Homological algebra: properties of $\mathcal{K} u(X)$

Property 2 (Addington, Thomas):

$\mathcal{K} u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K}=\mathbb{C}$):

■ Consider the \mathbb{Z}-module

$$
H^{*}(\mathcal{K} u(X), \mathbb{Z}):=\left\{e \in K_{\mathrm{top}}(X): \begin{array}{l}
\chi\left(\left[\mathcal{O}_{X}(i H)\right], e\right)=0 \\
i=0,1,2
\end{array}\right\}
$$

Remark

$H^{*}(\mathcal{K} u(X), \mathbb{Z})$ is deformation invariant. So, as a lattice:
$H^{*}(\mathcal{K} u(X), \mathbb{Z})=H^{*}(\mathcal{K} u($ Pfaff $), \mathbb{Z})$

Homological algebra: properties of $\mathcal{K} u(X)$

Property 2 (Addington, Thomas):

$\mathcal{K} u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K}=\mathbb{C}$):

■ Consider the \mathbb{Z}-module

$$
H^{*}(\mathcal{K} u(X), \mathbb{Z}):=\left\{e \in K_{\mathrm{top}}(X): \begin{array}{l}
\chi\left(\left[\mathcal{O}_{X}(i H)\right], e\right)=0 \\
i=0,1,2
\end{array}\right\}
$$

Remark

$H^{*}(\mathcal{K} u(X), \mathbb{Z})$ is deformation invariant. So, as a lattice:
$H^{*}(\mathcal{K} u(X), \mathbb{Z})=H^{*}(\mathcal{K} u($ Pfaff $), \mathbb{Z})=H^{*}(\mathrm{~K} 3, \mathbb{Z})=U^{4} \oplus E_{8}(-1)^{2}$

Homological algebra: properties of $\mathcal{K} u(X)$

■ Consider the the map v: $K_{\text {top }}(X) \rightarrow H^{*}(X, \mathbb{Q})$ and set

$$
H^{2,0}(\mathcal{K} u(X)):=\mathbf{v}^{-1}\left(H^{3,1}(X)\right)
$$

This defines a weight-2 Hodge structure on $H^{*}(\mathcal{K} u(X), \mathbb{Z})$.

Homological algebra: properties of $\mathcal{K} u(X)$

■ Consider the the map v: $K_{\text {top }}(X) \rightarrow H^{*}(X, \mathbb{Q})$ and set

$$
H^{2,0}(\mathcal{K} u(X)):=\mathbf{v}^{-1}\left(H^{3,1}(X)\right)
$$

This defines a weight-2 Hodge structure on $H^{*}(\mathcal{K} u(X), \mathbb{Z})$.

Definition

The lattice $H^{*}(\mathcal{K} u(X), \mathbb{Z})$ with the above Hodge structure is the Mukai lattice of $\mathcal{K} u(X)$ which we denote by $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$.

Homological algebra: properties of $\mathcal{K} u(X)$

■ Consider the the map v: $K_{\text {top }}(X) \rightarrow H^{*}(X, \mathbb{Q})$ and set

$$
H^{2,0}(\mathcal{K} u(X)):=\mathbf{v}^{-1}\left(H^{3,1}(X)\right)
$$

This defines a weight-2 Hodge structure on $H^{*}(\mathcal{K} u(X), \mathbb{Z})$.

Definition

The lattice $H^{*}(\mathcal{K} u(X), \mathbb{Z})$ with the above Hodge structure is the Mukai lattice of $\mathcal{K} u(X)$ which we denote by $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$.

$$
\Downarrow
$$

$\mathcal{K} u(X)$ can only be equivalent to the derived category of a K3 surface

Homological algebra: properties of $\mathcal{K} u(X)$

$$
\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}):=\tilde{H}(\mathcal{K} u(X), \mathbb{Z}) \cap \tilde{H}^{1,1}(\mathcal{K} u(X))
$$

Homological algebra: properties of $\mathcal{K} u(X)$

$$
\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}):=\tilde{H}(\mathcal{K} u(X), \mathbb{Z}) \cap \tilde{H}^{1,1}(\mathcal{K} u(X))
$$

UI primitive

$$
A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Homological algebra: properties of $\mathcal{K} u(X)$

$$
\begin{aligned}
& \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}):=\tilde{H}(\mathcal{K} u(X), \mathbb{Z}) \cap \widetilde{H}^{1,1}(\mathcal{K} u(X)) \\
& \quad U_{\text {pinititue }} \\
& A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=\left\langle\lambda_{1}:=\left[\mathcal{O}_{\text {line }}(H)\right], \lambda_{2}:=\left[\mathcal{O}_{\text {line }}(2 H)\right]\right\rangle
\end{aligned}
$$

Homological algebra: properties of $\mathcal{K} u(X)$

$$
\begin{aligned}
& \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}):=\widetilde{H}(\mathcal{K} u(X), \mathbb{Z}) \cap \widetilde{H}^{1,1}(\mathcal{K} u(X)) \\
& \quad \cup \text { l primitive } \\
& \quad A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=\left\langle\lambda_{1}:=\left[\mathcal{O}_{\text {line }}(H)\right], \lambda_{2}:=\left[\mathcal{O}_{\text {line }}(2 H)\right]\right\rangle
\end{aligned}
$$

Remark

If X is very general (i.e. $H^{2,2}(X, \mathbb{Z})=\mathbb{Z} H^{2}$), then

$$
\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})=A_{2}
$$

Hence there is no K3 surface S such that $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S)$!

Homological algebra: properties of $\mathcal{K} u(X)$

$$
\begin{aligned}
& \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}):=\widetilde{H}(\mathcal{K} u(X), \mathbb{Z}) \cap \widetilde{H}^{1,1}(\mathcal{K} u(X)) \\
& \quad \cup \text { primitive } \\
& \quad A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=\left\langle\lambda_{1}:=\left[\mathcal{O}_{\text {line }}(H)\right], \lambda_{2}:=\left[\mathcal{O}_{\text {line }}(2 H)\right]\right\rangle
\end{aligned}
$$

Remark

If X is very general (i.e. $H^{2,2}(X, \mathbb{Z})=\mathbb{Z} H^{2}$), then

$$
\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})=A_{2}
$$

Hence there is no K 3 surface S such that $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S)$!
$\mathcal{K} u(X)$ is a noncommutative $K 3$ surface.

Outline

1 Setting

2 Results

3 Applications

Stability conditions

Bridgeland

If S is a K 3 surface, then $\mathrm{D}^{\mathrm{b}}(S)$ carries a stability condition.

Stability conditions

Bridgeland

If S is a K3 surface, then $\mathrm{D}^{\mathrm{b}}(S)$ carries a stability condition.
Moreover, one can describe a connected component Stab $^{\dagger}\left(\mathrm{D}^{\mathrm{b}}(S)\right)$ of the space parametrizing all stability conditions.

Stability conditions

Bridgeland

If S is a K 3 surface, then $\mathrm{D}^{\mathrm{b}}(S)$ carries a stability condition.
Moreover, one can describe a connected component $\operatorname{Stab}^{\dagger}\left(\mathrm{D}^{\mathrm{b}}(S)\right)$ of the space parametrizing all stability conditions.

In the light of what we discussed before, the following is very natural:

Question 1 (Addinston-Thomas, Huybrechts,...)

Is the same true for the Kuznetsov component $\mathcal{K} u(X)$ of any cubic fourfold X ?

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

■ Let T be a triangulated category;

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

■ Let T be a triangulated category;

- Let Γ be a free abelian group of finite rank with a surjective map $v: K(\mathbf{T}) \rightarrow \Gamma$.

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

Example

■ Let T be a triangulated category;

- Let Γ be a free abelian group of finite rank with a surjective map $v: K(\mathbf{T}) \rightarrow \Gamma$.

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

Example

- Let \mathbf{T} be a triangulated category;
$\mathbf{T}=\mathrm{D}^{\mathrm{b}}(C)$, for $C \mathrm{a}$ smooth projective curve.
- Let Γ be a free abelian group of finite rank with a surjective map $v: K(\mathbf{T}) \rightarrow \Gamma$.

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

Example

- Let \mathbf{T} be a triangulated category;
- Let Γ be a free abelian group of finite rank with a surjective map $v: K(\mathbf{T}) \rightarrow \Gamma$.

$$
\Gamma=N(C)=H^{0} \oplus H^{2}
$$

$$
\begin{gathered}
\text { with } \\
v=(\mathrm{rk}, \operatorname{deg})
\end{gathered}
$$ smooth projective curve.

Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability conditions.

Example

- Let \mathbf{T} be a triangulated category;
- Let Γ be a free abelian group of finite rank with a surjective map $v: K(\mathbf{T}) \rightarrow \Gamma$.

$$
\Gamma=N(C)=H^{0} \oplus H^{2}
$$ smooth projective curve.

with

$$
v=(\mathrm{rk}, \mathrm{deg})
$$

A Bridgeland stability condition on \mathbf{T} is a pair $\sigma=(\mathbf{A}, Z)$, where:

Stability conditions: a quick recap

- A is the heart of a bounded t-structure on \mathbf{T};

Stability conditions: a quick recap

■ \mathbf{A} is the heart of a bounded t-structure on \mathbf{T};
$\square Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Stability conditions: a quick recap

- A is the heart of a

Example

 bounded t-structure on \mathbf{T};■ $Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Stability conditions: a quick recap

- \mathbf{A} is the heart of a bounded t-structure on \mathbf{T};

Example

$$
\mathbf{A}=\operatorname{Coh}(C)
$$

■ $Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Stability conditions: a quick recap

- \mathbf{A} is the heart of a bounded t-structure on \mathbf{T};
$\square Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Example

$\mathbf{A}=\operatorname{Coh}(C)$
$Z(v(-))=-\operatorname{deg}+\sqrt{-1} \operatorname{rk}(-)$.

Stability conditions: a quick recap

- \mathbf{A} is the heart of a bounded t-structure on \mathbf{T};
$\square Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Example

$\mathbf{A}=\operatorname{Coh}(C)$
$Z(v(-))=-\operatorname{deg}+\sqrt{-1} \operatorname{rk}(-)$.
such that, for any $0 \neq E \in \mathbf{A}$,

Stability conditions: a quick recap

- \mathbf{A} is the heart of a bounded t-structure on \mathbf{T};
$\square Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Example

$\mathbf{A}=\operatorname{Coh}(C)$
$Z(v(-))=-\operatorname{deg}+\sqrt{-1} \operatorname{rk}(-)$.
such that, for any $0 \neq E \in \mathbf{A}$,
$1 Z(v(E)) \in \mathbb{R}_{>0} e^{(0,1] \pi \sqrt{-1}}$;

Stability conditions: a quick recap

■ A is the heart of a bounded t-structure on \mathbf{T};

■ $Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

Example

$\mathbf{A}=\operatorname{Coh}(C)$
$Z(v(-))=-\operatorname{deg}+\sqrt{-1} \operatorname{rk}(-)$.
such that, for any $0 \neq E \in \mathbf{A}$,
$1 Z(v(E)) \in \mathbb{R}_{>0} e^{(0,1] \pi \sqrt{-1}}$;
$2 E$ has a Harder-Narasimhan filtration with respect to

$$
\lambda_{\sigma}=-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}(\text { or }+\infty) ;
$$

Stability conditions: a quick recap

- A is the heart of a bounded t-structure on \mathbf{T};
$\square Z: \Gamma \rightarrow \mathbb{C}$ is a group homomorphism

$$
\mathbf{A}=\operatorname{Coh}(C)
$$

Example

$Z(v(-))=-\operatorname{deg}+\sqrt{-1} \operatorname{rk}(-)$.
such that, for any $0 \neq E \in \mathbf{A}$,
$1 Z(v(E)) \in \mathbb{R}_{>0} e^{(0,1] \pi \sqrt{-1}}$;
$2 E$ has a Harder-Narasimhan filtration with respect to $\lambda_{\sigma}=-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}($ or $+\infty)$;

3 Support property (Kontsevich-Soibelman): wall and chamber structure with locally finitely many walls.

Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in dimension 1!

Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in dimension 1!

We denote by

$$
\operatorname{Stab}_{\Gamma}(\mathbf{T})\left(\text { or } \operatorname{Stab}_{\Gamma, v}(\mathbf{T}) \text { or } \operatorname{Stab}(\mathbf{T})\right)
$$

the set of all stability conditions on \mathbf{T}.

Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in dimension 1!

We denote by

$$
\operatorname{Stab}_{\Gamma}(\mathbf{T})\left(\text { or } \operatorname{Stab}_{\Gamma, v}(\mathbf{T}) \text { or } \operatorname{Stab}(\mathbf{T})\right)
$$

the set of all stability conditions on \mathbf{T}.

Theorem (Bridgeland)

If non-empty, $\operatorname{Stab}_{\Gamma}(\mathbf{T})$ is a complex manifold of dimension $\operatorname{rk}(\Gamma)$.

The results: existence of stability conditions

We are now ready to answer Question 1:

The results: existence of stability conditions

We are now ready to answer Question 1:

Theorem 1 (BLMS, BLMNPS)

1 For any cubic fourfold X, we have $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.

The results: existence of stability conditions

We are now ready to answer Question 1:

Theorem 1 (BLMS, BLMNPS)

1 For any cubic fourfold X, we have $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.
2 There is a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ of $\operatorname{Stab}(\mathcal{K} u(X))$ which is a covering of a period domanin $\mathcal{P}_{0}^{+}(X)$.

The results: existence of stability conditions

We are now ready to answer Question 1:

Theorem 1 (BLMS, BLMNPS)

1 For any cubic fourfold X, we have $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.
2 There is a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ of $\operatorname{Stab}(\mathcal{K} u(X))$ which is a covering of a period domanin $\mathcal{P}_{0}^{+}(X)$.
$■ \ln (1), \Gamma=\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$;

The results: existence of stability conditions

We are now ready to answer Question 1:

Theorem 1 (BLMS, BLMNPS)

1 For any cubic fourfold X, we have $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.
2 There is a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ of $\operatorname{Stab}(\mathcal{K} u(X))$ which is a covering of a period domanin $\mathcal{P}_{0}^{+}(X)$.
$■ \ln (1), \Gamma=\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$;
■ (1) holds over a field $\mathbb{K}=\overline{\mathbb{K}}, \operatorname{char}(\mathbb{K}) \neq 2$. (2) holds over \mathbb{C}.

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

■ Let $\sigma=(\mathbf{A}, Z) \in \operatorname{Stab}(\mathcal{K} u(X))$. Then $Z(-)=\left(v_{Z},-\right)$, for $v_{Z} \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$. Here $(-,-):=-\chi(-,-)$ is the Mukai pairing on $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$;

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

■ Let $\sigma=(\mathbf{A}, Z) \in \operatorname{Stab}(\mathcal{K} u(X))$. Then $Z(-)=\left(v_{Z},-\right)$, for $v_{Z} \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$. Here $(-,-):=-\chi(-,-)$ is the Mukai pairing on $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$;
$■$ Let $\mathcal{P}(X)$ be the set of vectors in $\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$ whose real and imaginary parts span a positive definite 2-plane;

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

■ Let $\sigma=(\mathbf{A}, Z) \in \operatorname{Stab}(\mathcal{K} u(X))$. Then $Z(-)=\left(v_{Z},-\right)$, for $v_{Z} \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$. Here $(-,-):=-\chi(-,-)$ is the Mukai pairing on $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$;
$■$ Let $\mathcal{P}(X)$ be the set of vectors in $\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$ whose real and imaginary parts span a positive definite 2-plane;

■ Let $\mathcal{P}^{+}(X)$ be the connected component containing v_{Z} for the special stability condition in part (1) of Theorem 1 ;

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

■ Let $\sigma=(\mathbf{A}, Z) \in \operatorname{Stab}(\mathcal{K} u(X))$. Then $Z(-)=\left(v_{Z},-\right)$, for $v_{Z} \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$. Here $(-,-):=-\chi(-,-)$ is the Mukai pairing on $\mathcal{H}(\mathcal{K} u(X), \mathbb{Z})$;
\square Let $\mathcal{P}(X)$ be the set of vectors in $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$ whose real and imaginary parts span a positive definite 2-plane;
\square Let $\mathcal{P}^{+}(X)$ be the connected component containing v_{Z} for the special stability condition in part (1) of Theorem 1 ;

■ Let $\mathcal{P}_{0}^{+}(X)$ be the set of vectors in $\mathcal{P}^{+}(X)$ which are not orthogonal to any (-2)-class in $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$;

The results: existence of stability conditions

The period domain $\mathcal{P}_{0}^{+}(X)$ is defined as in Bridgeland's result about K3 surfaces:

■ Let $\sigma=(\mathbf{A}, Z) \in \operatorname{Stab}(\mathcal{K} u(X))$. Then $Z(-)=\left(v_{Z},-\right)$, for $v_{Z} \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$. Here $(-,-):=-\chi(-,-)$ is the Mukai pairing on $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$;
\square Let $\mathcal{P}(X)$ be the set of vectors in $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \otimes \mathbb{C}$ whose real and imaginary parts span a positive definite 2-plane;
\square Let $\mathcal{P}^{+}(X)$ be the connected component containing v_{Z} for the special stability condition in part (1) of Theorem 1 ;

■ Let $\mathcal{P}_{0}^{+}(X)$ be the set of vectors in $\mathcal{P}^{+}(X)$ which are not orthogonal to any (-2)-class in $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$;

■ The map $\operatorname{Stab}^{\dagger}(\mathcal{K} u(X)) \rightarrow \mathcal{P}_{0}^{+}(X)$ sends $\sigma=(\mathbf{A}, Z) \mapsto v_{Z}$.

The results: moduli spaces

Once we have stability conditions on $\mathcal{K} u(X)$, we can define and study moduli spaces of stable objects in the Kuznetsov component:

The results: moduli spaces

Once we have stability conditions on $\mathcal{K} u(X)$, we can define and study moduli spaces of stable objects in the Kuznetsov component:

■ Let $0 \neq v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ be a primitive vector;

The results: moduli spaces

Once we have stability conditions on $\mathcal{K} u(X)$, we can define and study moduli spaces of stable objects in the Kuznetsov component:

■ Let $0 \neq v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ be a primitive vector;
■ Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ be v-generic (here it means that σ-semistable $=\sigma$-stable for objects with Mukai vector v).

The results: moduli spaces

Once we have stability conditions on $\mathcal{K} u(X)$, we can define and study moduli spaces of stable objects in the Kuznetsov component:

■ Let $0 \neq v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ be a primitive vector;
■ Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ be v-generic (here it means that σ-semistable $=\sigma$-stable for objects with Mukai vector v).

Let $M_{\sigma}(\mathcal{K} u(X), v)$ be the moduli space of σ-stable objects (in the heart of σ) contained in $\mathcal{K} u(X)$ and with Mukai vector v.

The results: moduli spaces

Once we have stability conditions on $\mathcal{K} u(X)$, we can define and study moduli spaces of stable objects in the Kuznetsov component:

■ Let $0 \neq v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ be a primitive vector;
■ Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ be v-generic (here it means that σ-semistable $=\sigma$-stable for objects with Mukai vector v).

Let $M_{\sigma}(\mathcal{K} u(X), v)$ be the moduli space of σ-stable objects (in the heart of σ) contained in $\mathcal{K} u(X)$ and with Mukai vector v.

Warning

$M_{\sigma}(\mathcal{K} u(X), v)$ has a weird geometry, in general!

The results: moduli spaces

The results: moduli spaces

Theorem 2 (BLMNPS)

$1 M_{\sigma}(\mathcal{K} u(X), v)$ is non-empty if and only if $v^{2}+2 \geq 0$. Moreover, in this case, it is a smooth projective irreducible holomorphic symplectic manifold of dimension $v^{2}+2$, deformation-equivalent to a Hilbert scheme of points on a K3 surface.

The results: moduli spaces

Theorem 2 (BLMNPS)

$1 M_{\sigma}(\mathcal{K} u(X), v)$ is non-empty if and only if $v^{2}+2 \geq 0$. Moreover, in this case, it is a smooth projective irreducible holomorphic symplectic manifold of dimension $v^{2}+2$, deformation-equivalent to a Hilbert scheme of points on a K3 surface.

2 If $v^{2} \geq 0$, then there exists a natural Hodge isometry

$$
\theta: H^{2}\left(M_{\sigma}(\mathcal{K} u(X), v), \mathbb{Z}\right) \cong \begin{cases}v^{\perp} & \text { if } v^{2}>0 \\ v^{\perp} / \mathbb{Z} v & \text { if } v^{2}=0\end{cases}
$$

where the orthogonal is taken in $\widetilde{H}(\mathcal{K} u(X), \mathbb{Z})$.

The results: moduli spaces

A couple of comments are in order here:

The results: moduli spaces

A couple of comments are in order here:

1 Theorem 2 generalizes classical results for moduli spaces of stable sheaves (O'Grady, Huybrechts, Yoshioka, Mukai,...) and of stable objects (Bayer-Macrì,...) on 'geometric' K3 surfaces. We extend these results to noncommutative K3 surfaces;

The results: moduli spaces

A couple of comments are in order here:

1 Theorem 2 generalizes classical results for moduli spaces of stable sheaves (O'Grady, Huybrechts, Yoshioka, Mukai,...) and of stable objects (Bayer-Macrì,...) on 'geometric' K3 surfaces. We extend these results to noncommutative K3 surfaces;

2 The (painful) proof is based on a completely new theory of stability conditions and moduli spaces of stable objects in families;

The results: moduli spaces

A couple of comments are in order here:

1 Theorem 2 generalizes classical results for moduli spaces of stable sheaves (O'Grady, Huybrechts, Yoshioka, Mukai,...) and of stable objects (Bayer-Macrì,...) on 'geometric' K3 surfaces. We extend these results to noncommutative K3 surfaces;

2 The (painful) proof is based on a completely new theory of stability conditions and moduli spaces of stable objects in families;

3 The most intriguing part in the proof is the non-emptiness statement!

Outline

1 Setting

2 Results

3 Applications

The general picture

The applications of Theorems 1 and 2 motivate the relevance of Question 1:

The general picture

The applications of Theorems 1 and 2 motivate the relevance of Question 1:

The precise statement

The setting:

The precise statement

The setting:

■ Let $\mathcal{X} \rightarrow S$ be a family of cubic fourfolds;

The precise statement

The setting:
$■$ Let $\mathcal{X} \rightarrow S$ be a family of cubic fourfolds;
■ Let v be a primitive section of the local system given by $\widetilde{H}\left(\mathcal{K} u\left(\mathcal{X}_{s}\right), \mathbb{Z}\right)$ such that v stays algebraic on all fibers;

The precise statement

The setting:

■ Let $\mathcal{X} \rightarrow S$ be a family of cubic fourfolds;
■ Let v be a primitive section of the local system given by $\widetilde{H}\left(\mathcal{K} u\left(\mathcal{X}_{s}\right), \mathbb{Z}\right)$ such that v stays algebraic on all fibers;

■ Assume that, for $s \in S$, there exists a stability condition $\sigma_{s} \in \operatorname{Stab}^{\dagger}\left(\mathcal{K} u\left(\mathcal{X}_{s}\right)\right)$ such that these pointwise stability conditions organize themselves in a family $\underline{\sigma}$. Assume that σ_{s} is v-generic for very general s (+some invariance of Z...).

The precise statement

Theorem 3 (BLMNPS)

1 There exists a finite cover $\widetilde{S} \rightarrow S$, an algebraic space $\widetilde{M}(v)$, and a proper morphism $\widetilde{M}(v) \rightarrow \widetilde{S}$ that makes $\widetilde{M}(v)$ a relative moduli space over \widetilde{S} (i.e. the fiber $M_{\sigma_{s}}\left(\mathcal{K} u\left(\mathcal{X}_{s}\right), v\right)$ of stable objects in the Kuznetsov component of the corresponding cubic fourfold).

The precise statement

Theorem 3 (BLMNPS)

1 There exists a finite cover $\widetilde{S} \rightarrow S$, an algebraic space $\widetilde{M}(v)$, and a proper morphism $\widetilde{M}(v) \rightarrow \widetilde{S}$ that makes $\widetilde{M}(v)$ a relative moduli space over \widetilde{S} (i.e. the fiber $M_{\sigma_{s}}\left(\mathcal{K} u\left(\mathcal{X}_{s}\right), v\right)$ of stable objects in the Kuznetsov component of the corresponding cubic fourfold).

2 There exists a non-empty open subset $S^{0} \subset S$ and a variety $M^{0}(v)$ with a projective morphism $M^{0}(v) \rightarrow S^{0}$ that makes $M^{0}(v)$ a relative moduli space over S^{0}.

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

- Take S^{0} to be a suitable open subset in the moduli space of cubic fourfolds (...see the next examples!);

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

■ Take S^{0} to be a suitable open subset in the moduli space of cubic fourfolds (...see the next examples!);
\square We observed that, for any cubic fourfold X, we have a primitive embedding $A_{2} \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$.

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

- Take S^{0} to be a suitable open subset in the moduli space of cubic fourfolds (...see the next examples!);
\square We observed that, for any cubic fourfold X, we have a primitive embedding $A_{2} \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$.
■ In A_{2} one finds primitive vectors v with arbitrary large v^{2}.

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

- Take S^{0} to be a suitable open subset in the moduli space of cubic fourfolds (...see the next examples!);

■ We observed that, for any cubic fourfold X, we have a primitive embedding $A_{2} \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$.

- In A_{2} one finds primitive vectors v with arbitrary large v^{2}.

■ We can then apply Theorem 3. By Theorem 2, the dimension of the fibers can be arbitrary large.

The families of HK manifolds

The construction of the locally complete 20-dimensional families of hyperkähler manifolds goes as follows:

- Take S^{0} to be a suitable open subset in the moduli space of cubic fourfolds (...see the next examples!);

■ We observed that, for any cubic fourfold X, we have a primitive embedding $A_{2} \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$.

- In A_{2} one finds primitive vectors v with arbitrary large v^{2}.

■ We can then apply Theorem 3. By Theorem 2, the dimension of the fibers can be arbitrary large.

Remark

These families have polarization of arbitrary large degree. The family we construct are automatically unirational.

$v^{2}=0:$ K3 surfaces

Let us start with some easy applications which generalize and complete some existing (very nice!) results:

$v^{2}=0:$ K3 surfaces

Let us start with some easy applications which generalize and complete some existing (very nice!) results:

Corollary 4 (BLMNPS=Huybrechts)

$v^{2}=0:$ K3 surfaces

Let us start with some easy applications which generalize and complete some existing (very nice!) results:

Corollary 4 (BLMNPS=- Huybrechts)

Let $X \underset{\sim}{\mathcal{H}}$ be a cubic fourfold. Then there exists a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$ if and only if there is a K3 surface $S, \alpha \in \operatorname{Br}(S)$ and an equivalence $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$.

$v^{2}=0:$ K3 surfaces

Let us start with some easy applications which generalize and complete some existing (very nice!) results:

Corollary 4 (BLMNPS=Huybrechts)

Let $X \underset{\sim}{\mathcal{H}}$ be a cubic fourfold. Then there exists a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$ if and only if there is a K3 surface $S, \alpha \in \operatorname{Br}(S)$ and an equivalence $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$.

Corollary 5 (BLMNPS= $\overline{\text { Addington-Thomas) }}$

$v^{2}=0:$ K3 surfaces

Let us start with some easy applications which generalize and complete some existing (very nice!) results:

Corollary 4 (BLMNPS=Huybrechts)

Let X be a cubic fourfold. Then there exists a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$ if and only if there is a K3 surface $S, \alpha \in \operatorname{Br}(S)$ and an equivalence $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$.

Corollary 5 (BLMNPS= $\overline{\text { Addington-Thomas) }}$

Let X be a cubic fourfold. Then there exists a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ if and only if there is a K3 surface S and an equivalence $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S)$.

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:

- If $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$, then there is a Hodge isometry $\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}) \cong \widetilde{H}_{\mathrm{alg}}(S, \alpha, \mathbb{Z})$. Take for v the Mukai vector of a skyscraper sheaf.

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:

- If $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$, then there is a Hodge isometry $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \cong \widetilde{H}_{\text {alg }}(S, \alpha, \mathbb{Z})$. Take for v the Mukai vector of a skyscraper sheaf.

■ Assume we have v. Pick $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ which is v-generic (it exists by the Support Property!).

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:

- If $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$, then there is a Hodge isometry $\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}) \cong \widetilde{H}_{\mathrm{alg}}(S, \alpha, \mathbb{Z})$. Take for v the Mukai vector of a skyscraper sheaf.

■ Assume we have v. Pick $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ which is v-generic (it exists by the Support Property!).

■ $M_{\sigma}(\mathcal{K} u(X), v)$ is a K 3 surface by Theorem 2. Call it S.

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:

- If $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$, then there is a Hodge isometry $\widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z}) \cong \widetilde{H}_{\mathrm{alg}}(S, \alpha, \mathbb{Z})$. Take for v the Mukai vector of a skyscraper sheaf.

■ Assume we have v. Pick $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ which is v-generic (it exists by the Support Property!).

■ $M_{\sigma}(\mathcal{K} u(X), v)$ is a K 3 surface by Theorem 2. Call it S.
■ The (quasi-)universal family induces a functor $\mathrm{D}^{\mathrm{b}}(S, \alpha) \rightarrow \mathrm{D}^{\mathrm{b}}(X)$ which is fully faithful (because S parametrizes stable objects) and has image in $\mathcal{K} u(X)$ (because S is a moduli space of objects in this category).

$v^{2}=0:$ K3 surfaces

Let us prove Corollary 4:
■ If $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$, then there is a Hodge isometry $\widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z}) \cong \widetilde{H}_{\text {alg }}(S, \alpha, \mathbb{Z})$. Take for v the Mukai vector of a skyscraper sheaf.

- Assume we have v. Pick $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X))$ which is v-generic (it exists by the Support Property!).

■ $M_{\sigma}(\mathcal{K} u(X), v)$ is a K3 surface by Theorem 2. Call it S.

- The (quasi-)universal family induces a functor $\mathrm{D}^{\mathrm{b}}(S, \alpha) \rightarrow \mathrm{D}^{\mathrm{b}}(X)$ which is fully faithful (because S parametrizes stable objects) and has image in $\mathcal{K} u(X)$ (because S is a moduli space of objects in this category).

■ Since $\mathcal{K} u(X)$ is a 2-Calabi-Yau category, we are done.

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:

$■$ having a primitive vector $v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:

■ having a primitive vector $v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;
■ having a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$,

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:

■ having a primitive vector $v \in \widetilde{H}_{\mathrm{alg}}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;
■ having a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$, are divisorial in the moduli space \mathcal{C} of cubic fourfolds.

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:
■ having a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;
$■$ having a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$, are divisorial in the moduli space \mathcal{C} of cubic fourfolds.

Hassett, Huybrechts: they identify countably many Noether-Lefschetz loci in \mathcal{C} which can be completely classified.

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:
$■$ having a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;
■ having a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$, are divisorial in the moduli space \mathcal{C} of cubic fourfolds.

Hassett, Huybrechts: they identify countably many Noether-Lefschetz loci in \mathcal{C} which can be completely classified.

Conjecture (Kuznetsov)

X is such that $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S)$, for a K3 surface S, if and only if X is rational.

$v^{2}=0:$ K3 surfaces

The conditions in Corollaries 4 and 5:
$■$ having a primitive vector $v \in \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$ with $v^{2}=0$;
$■$ having a primitive embedding $U \hookrightarrow \widetilde{H}_{\text {alg }}(\mathcal{K} u(X), \mathbb{Z})$, are divisorial in the moduli space \mathcal{C} of cubic fourfolds.

Hassett, Huybrechts: they identify countably many Noether-Lefschetz loci in \mathcal{C} which can be completely classified.

Conjecture (Kuznetsov)

X is such that $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S)$, for a K3 surface S, if and only if X is rational.

Question 2

What's the geometric meaning of having $\mathcal{K} u(X) \cong \mathrm{D}^{\mathrm{b}}(S, \alpha)$?

$v^{2}=2$: the Fano variety of lines

For a cubic fourfold X, let $F(X)$ be the Fano variety of lines in X.

$v^{2}=2:$ the Fano variety of lines

For a cubic fourfold X, let $F(X)$ be the Fano variety of lines in X.

Beauville-Donagi: $F(X)$ is a smooth projective hyperkähler manifold of dimension 4. Moreover, it is deformation equivalent to $\operatorname{Hilb}^{2}(\mathrm{~K} 3)$.

$v^{2}=2$: the Fano variety of lines

For a cubic fourfold X, let $F(X)$ be the Fano variety of lines in X.

Beauville-Donagi: $F(X)$ is a smooth projective hyperkähler manifold of dimension 4. Moreover, it is deformation equivalent to $\operatorname{Hilb}^{2}(\mathrm{~K} 3)$.

To see a line $\ell \subseteq X$ as an object in the Kuznetsov component:

$v^{2}=2$: the Fano variety of lines

For a cubic fourfold X, let $F(X)$ be the Fano variety of lines in X.

Beauville-Donagi: $F(X)$ is a smooth projective hyperkähler manifold of dimension 4. Moreover, it is deformation equivalent to $\operatorname{Hilb}^{2}(\mathrm{~K} 3)$.

To see a line $\ell \subseteq X$ as an object in the Kuznetsov component:

$$
0 \rightarrow F_{\ell} \rightarrow \mathcal{O}_{X}^{\oplus 4} \rightarrow \mathcal{I}_{\ell}(H) \rightarrow 0
$$

$v^{2}=2$: the Fano variety of lines

For a cubic fourfold X, let $F(X)$ be the Fano variety of lines in X.

Beauville-Donagi: $F(X)$ is a smooth projective hyperkähler manifold of dimension 4. Moreover, it is deformation equivalent to $\operatorname{Hilb}^{2}(\mathrm{~K} 3)$.

To see a line $\ell \subseteq X$ as an object in the Kuznetsov component:

$$
0 \rightarrow F_{\ell} \rightarrow \mathcal{O}_{X}^{\oplus 4} \rightarrow \mathcal{I}_{\ell}(H) \rightarrow 0
$$

Kuznetsov-Markushevich: F_{ℓ} is in $\mathcal{K} u(X)$ and it is a Gieseker stable sheaf. $F(X)$ is isomorphic to the moduli space of stable sheaves with Mukai vector $v\left(F_{\ell}\right)$.

$v^{2}=2:$ the Fano variety of lines

Theorem (Li-Pertusi-Zhao)

For any cubic fourfold X, we have an isomorphism $F(X) \cong M_{\sigma}\left(\mathcal{K} u(X), \lambda_{1}\right)$, for all natural stability conditions σ.

$v^{2}=2:$ the Fano variety of lines

Theorem (Li-Pertusi-Zhao)

For any cubic fourfold X, we have an isomorphism $F(X) \cong M_{\sigma}\left(\mathcal{K} u(X), \lambda_{1}\right)$, for all natural stability conditions σ.

A stability condition σ is natural if:
■ $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(X)$;
\square Under the map $\operatorname{Stab}^{\dagger}(\mathcal{K} u(X)) \rightarrow \mathcal{P}_{0}^{+}(X), \sigma$ is sent to $A_{2} \otimes \mathbb{C} \cap \mathcal{P}(X) \subseteq \mathcal{P}_{0}^{+}(X)$.

$v^{2}=6:$ twisted cubics

For X a cubic fourfold not containing a plane, we have the following beautiful construction due to Lehn-Lehn-Sorger-van Straten:

$v^{2}=6:$ twisted cubics

For X a cubic fourfold not containing a plane, we have the following beautiful construction due to Lehn-Lehn-Sorger-van Straten:

- Let $M_{3}(X)$ be the component of the Hilbert scheme Hib $^{3 t+1}(X)$ containing all twisted cubics which are contained in $X . M_{3}(X)$ is a smooth projective variety of dimension 10;

$v^{2}=6:$ twisted cubics

For X a cubic fourfold not containing a plane, we have the following beautiful construction due to Lehn-Lehn-Sorger-van Straten:

- Let $M_{3}(X)$ be the component of the Hilbert scheme $\operatorname{Hilb}^{3 t+1}(X)$ containing all twisted cubics which are contained in $X . M_{3}(X)$ is a smooth projective variety of dimension 10;

■ $M_{3}(X)$ admits a \mathbb{P}^{2}-fibration $M_{3}(X) \rightarrow Z^{\prime}(X)$, where $Z^{\prime}(X)$ is a smooth projective variety of dimension 8 ;

$v^{2}=6:$ twisted cubics

For X a cubic fourfold not containing a plane, we have the following beautiful construction due to Lehn-Lehn-Sorger-van Straten:

- Let $M_{3}(X)$ be the component of the Hilbert scheme $\operatorname{Hilb}^{3 t+1}(X)$ containing all twisted cubics which are contained in $X . M_{3}(X)$ is a smooth projective variety of dimension 10;

■ $M_{3}(X)$ admits a \mathbb{P}^{2}-fibration $M_{3}(X) \rightarrow Z^{\prime}(X)$, where $Z^{\prime}(X)$ is a smooth projective variety of dimension 8 ;

■ We can contract a divisor $Z^{\prime}(X) \rightarrow Z(X)$, where $Z(X)$ is a smooth projective hyperkähler manifold of dimension 8 which contains X as a Lagrangian submanifold.

$v^{2}=8:$ twisted cubics

Question (M. Lehn):

Is there a modular interpretation for $Z^{\prime}(X)$ and $Z(X)$?

$v^{2}=8:$ twisted cubics

Question (M. Lehn):

Is there a modular interpretation for $Z^{\prime}(X)$ and $Z(X)$?

Theorem (M. Lehn-Lahoz-Macrì-S. and Li-Pertusi-Zhao)

For any cubic fourfold X not containing a plane,

- $Z^{\prime}(X)$ is isomorphic to a component of a moduli space of Gieseker stable torsion free scheaves of rank 3;
- We have an isomorphism $Z(X) \cong M_{\sigma}\left(\mathcal{K} u(X), 2 \lambda_{1}+\lambda_{2}\right)$, for all natural stability conditions σ.

$v^{2}=8:$ twisted cubics

Question (M. Lehn):

Is there a modular interpretation for $Z^{\prime}(X)$ and $Z(X)$?

Theorem (M. Lehn-Lahoz-Macrì-S. and Li-Pertusi-Zhao)

For any cubic fourfold X not containing a plane,
■ $Z^{\prime}(X)$ is isomorphic to a component of a moduli space of Gieseker stable torsion free scheaves of rank 3;

- We have an isomorphism $Z(X) \cong M_{\sigma}\left(\mathcal{K} u(X), 2 \lambda_{1}+\lambda_{2}\right)$, for all natural stability conditions σ.

By Theorem 2, $Z(X)$ is automatically (projective and) deformation equivalent to $\operatorname{Hilb}^{4}(\mathrm{~K} 3)$, which was proved by Addington-Lehn.

Concluding remarks

Concluding remarks

The last two results are stated in a 'punctual form' but, in view of Theorem 3, they can be put in families, giving rise to relative moduli spaces of relative dimension 4 and 8 .

Concluding remarks

The last two results are stated in a 'punctual form' but, in view of Theorem 3, they can be put in families, giving rise to relative moduli spaces of relative dimension 4 and 8 .

Question 3

Why do we really care about this alternative description of 'classical' hyperkähler manifolds in terms of moduli spaces in the Kuznetsov component?

Concluding remarks

The last two results are stated in a 'punctual form' but, in view of Theorem 3, they can be put in families, giving rise to relative moduli spaces of relative dimension 4 and 8 .

Question 3

Why do we really care about this alternative description of 'classical' hyperkähler manifolds in terms of moduli spaces in the Kuznetsov component?

This is because BLMNPS implies that the Bayer-Macrì machinery can be applied also in this noncommutative setting: all birational models of $F(X), Z(X)$ and all other possible HK from Theorem 2 are isomorphic to moduli spaces of stable objects in the Kuznetsov component (by variation of stability).

Concluding remarks

Concluding remarks

There several other simple but interesting applications that one can deduce from Theorems 1, 2 and 3:

Concluding remarks

There several other simple but interesting applications that one can deduce from Theorems 1, 2 and 3:

Exercise (Voisin)

Reprove the Intergral Hodge Conjecture for cubic fourfolds, due to Voisin, by using the same ideas as in the proof of Corollary 4.

Concluding remarks

There several other simple but interesting applications that one can deduce from Theorems 1, 2 and 3:

Exercise (Voisin)

Reprove the Intergral Hodge Conjecture for cubic fourfolds, due to Voisin, by using the same ideas as in the proof of Corollary 4.

Corollaries 4 and 5 allow us to extend recent results by Sheridan-Smith about Mirror Symmetry of K3 surfaces appearing as Kuznetsov components of cubic fourfolds.

