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The setting

Let X be a cubic fourfold (i.e. a smooth hypersurface of
degree 3 in P5).

Most of the time defined over C but, for some results, defined
over a field K = K with char(K) 6= 2.

Aim of the talk:

Convince you that, even though X is a Fano 4-fold, it is secretly
a K3 surface!
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Hodge theory: Voisin + Hassett

Torelli Theorem (Voisin, etc.)

X is determined, up to
isomorphism, by its primitive
middle cohomology
H4(X ,Z)prim.
(Cup product + Hodge
structure!).

(A priori) weight-4 Hodge
decomposition:

H4(X ,C)

=

H4,0 ⊕ H3,1 ⊕ H2,2 ⊕ H1,3 ⊕ H0,4

∼ =

0⊕ C⊕ C21 ⊕ C⊕ 0

∼ =

(...not quite right...)

H2,0(K3)⊕ H1,1(K3)⊕ H0,2(K3)

=

H2(K3,C).

...a posteriori, H4(X ,Z) has a weight-2 Hodge structure!
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Homological algebra

Let us now look at the bounded derived category of coherent
sheaves on X (fix H to be a hyperplane section):

Db(X ) := Db(Coh(X ))

=

〈 Ku(X ) , OX ,OX (H),OX (2H) 〉

Ku(X )

={
E ∈ Db(X ) :

Hom (OX (iH),E [p]) = 0
i = 0,1,2 ∀p ∈ Z

}
Kuznetsov component of X

Exceptional objects:

〈OX (iH)〉 ∼= Db(pt)
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Homological algebra

Recall that the symbol 〈. . .〉 stays for a semiorthogonal
decomposition.

This means that:

Db(X ) is generated by extensions, shifts, direct sums and
summands by the objects in the 4 admissible
subcategories;

There are no Homs from right to left between the 4
subcategories:

Ku(X )

Ok!
((
〈OX 〉

Ok!
((

No!
hh

〈OX (H)〉
Ok!

))

No!
hh

〈OX (2H)〉
No!

ii
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Homological algebra: properties of Ku(X )

Property 1 (Kuznetsov):

The admissible subcategory Ku(X ) has a Serre functor SKu(X)

(this is easy!). Moreover, there is an isomorphism of exact
functors

SKu(X)
∼= [2].

Because of this, Ku(X ) is called 2-Calabi-Yau category.

=⇒

Hence Ku(X ) could be equivalent
to the derived category either of a K3 surface

or of an abelian surface.
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Homological algebra: properties of Ku(X )

Property 2 (Addington, Thomas):

Ku(X ) comes with an integral cohomology theory in the
following sense (here K = C):

Consider the Z-module

H∗(Ku(X ),Z) :=

{
e ∈ Ktop(X ) :

χ([OX (iH)],e) = 0
i = 0,1,2

}
.

Remark

H∗(Ku(X ),Z) is deformation invariant. So, as a lattice:

H∗(Ku(X ),Z) = H∗(Ku(Pfaff),Z) = H∗(K3,Z) = U4 ⊕ E8(−1)2
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Homological algebra: properties of Ku(X )

Consider the the map v : Ktop(X )→ H∗(X ,Q) and set

H2,0(Ku(X )) := v−1(H3,1(X )).

This defines a weight-2 Hodge structure on
H∗(Ku(X ),Z).

Definition

The lattice H∗(Ku(X ),Z) with the above Hodge structure is the
Mukai lattice of Ku(X ) which we denote by H̃(Ku(X ),Z).

=⇒

Ku(X ) can only be equivalent
to the derived category of a K3 surface
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Homological algebra: properties of Ku(X )

H̃alg(Ku(X ),Z) := H̃(Ku(X ),Z) ∩ H̃1,1(Ku(X ))

⊆ primitive

A2 =

(
2 −1
−1 2

)
= 〈λ1 := [Oline(H)], λ2 := [Oline(2H)]〉

Remark

If X is very general (i.e. H2,2(X ,Z) = ZH2), then

H̃alg(Ku(X ),Z) = A2.

Hence there is no K3 surface S such that Ku(X ) ∼= Db(S)!

Ku(X ) is a noncommutative K3 surface.
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Stability conditions

Bridgeland

If S is a K3 surface, then Db(S) carries a stability condition.

Moreover, one can describe a connected component
Stab†(Db(S)) of the space parametrizing all stability conditions.

In the light of what we discussed before, the following is very
natural:

Question 1 (Addinston-Thomas, Huybrechts,...)

Is the same true for the Kuznetsov component Ku(X ) of any
cubic fourfold X?
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Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability
conditions.

Let T be a triangulated category;

Let Γ be a free abelian group of
finite rank with a surjective map
v : K (T)→ Γ.

Example

T = Db(C), for C a
smooth projective curve.

Γ = N(C) = H0 ⊕ H2

with

v = (rk, deg)

A Bridgeland stability condition on T is a pair σ = (A,Z ),
where:
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Stability conditions: a quick recap

A is the heart of a
bounded t-structure on T;

Z : Γ→ C is a group
homomorphism

Example

A = Coh(C)

Z (v(−)) = −deg +
√
−1rk(−).

such that, for any 0 6= E ∈ A,

1 Z (v(E)) ∈ R>0e(0,1]π
√
−1;

2 E has a Harder-Narasimhan filtration with respect to
λσ = −Re(Z )

Im(Z ) (or +∞);

3 Support property (Kontsevich-Soibelman): wall and
chamber structure with locally finitely many walls.
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Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in
dimension 1!

We denote by

StabΓ(T) (or StabΓ,v (T) or Stab(T))

the set of all stability conditions on T.

Theorem (Bridgeland)

If non-empty, StabΓ(T) is a complex manifold of dimension rk(Γ).
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The results: existence of stability conditions

We are now ready to answer Question 1:

Theorem 1 (BLMS, BLMNPS)

1 For any cubic fourfold X , we have Stab(Ku(X )) 6= ∅.

2 There is a connected component Stab†(Ku(X )) of
Stab(Ku(X )) which is a covering of a period domanin
P+

0 (X ).

In (1), Γ = H̃alg(Ku(X ),Z);

(1) holds over a field K = K, char(K) 6= 2. (2) holds over C.
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The results: existence of stability conditions

The period domain P+
0 (X ) is defined as in Bridgeland’s result

about K3 surfaces:

Let σ = (A,Z ) ∈ Stab(Ku(X )). Then Z (−) = (vZ ,−), for
vZ ∈ H̃alg(Ku(X ),Z)⊗ C. Here (−,−) := −χ(−,−) is the
Mukai pairing on H̃(Ku(X ),Z);

Let P(X ) be the set of vectors in H̃alg(Ku(X ),Z)⊗C whose
real and imaginary parts span a positive definite 2-plane;

Let P+(X ) be the connected component containing vZ for
the special stability condition in part (1) of Theorem 1;

Let P+
0 (X ) be the set of vectors in P+(X ) which are not

orthogonal to any (−2)-class in H̃alg(Ku(X ),Z);

The map Stab†(Ku(X ))→ P+
0 (X ) sends σ = (A,Z ) 7→ vZ .
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The results: moduli spaces

Once we have stability conditions on Ku(X ), we can define and
study moduli spaces of stable objects in the Kuznetsov
component:

Let 0 6= v ∈ H̃alg(Ku(X ),Z) be a primitive vector;

Let σ ∈ Stab†(Ku(X )) be v -generic (here it means that
σ-semistable=σ-stable for objects with Mukai vector v ).

Let Mσ(Ku(X ), v) be the moduli space of σ-stable objects (in
the heart of σ) contained in Ku(X ) and with Mukai vector v .

Warning

Mσ(Ku(X ), v) has a weird geometry, in general!
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The results: moduli spaces

Theorem 2 (BLMNPS)

1 Mσ(Ku(X ), v) is non-empty if and only if v2 + 2 ≥ 0.
Moreover, in this case, it is a smooth projective irreducible
holomorphic symplectic manifold of dimension v2 + 2,
deformation-equivalent to a Hilbert scheme of points on a
K3 surface.

2 If v2 ≥ 0, then there exists a natural Hodge isometry

θ : H2(Mσ(Ku(X ), v),Z) ∼=

{
v⊥ if v2 > 0
v⊥/Zv if v2 = 0,

where the orthogonal is taken in H̃(Ku(X ),Z).
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The results: moduli spaces

A couple of comments are in order here:

1 Theorem 2 generalizes classical results for moduli spaces
of stable sheaves (O’Grady, Huybrechts, Yoshioka,
Mukai,...) and of stable objects (Bayer-Macrı̀,...) on
‘geometric’ K3 surfaces. We extend these results to
noncommutative K3 surfaces;

2 The (painful) proof is based on a completely new theory of
stability conditions and moduli spaces of stable objects in
families;

3 The most intriguing part in the proof is the non-emptiness
statement!
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The general picture

The applications of Theorems 1 and 2 motivate the relevance of
Question 1:

Theorem 1
Existence of locally complete 20-dim.

families of polarized HK manifolds
of arbitrary dimension and degree

Theorem 2



23

The general picture

The applications of Theorems 1 and 2 motivate the relevance of
Question 1:

Theorem 1
Existence of locally complete 20-dim.

families of polarized HK manifolds
of arbitrary dimension and degree

Theorem 2



24

The precise statement

The setting:

Let X → S be a family of cubic fourfolds;

Let v be a primitive section of the local system given by
H̃(Ku(Xs),Z) such that v stays algebraic on all fibers;

Assume that, for s ∈ S, there exists a stability condition
σs ∈ Stab†(Ku(Xs)) such that these pointwise stability
conditions organize themselves in a family σ. Assume that
σs is v -generic for very general s (+some invariance of
Z ...).
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The precise statement

Theorem 3 (BLMNPS)

1 There exists a finite cover S̃ → S, an algebraic space
M̃(v), and a proper morphism M̃(v)→ S̃ that makes M̃(v)

a relative moduli space over S̃ (i.e. the fiber
Mσs (Ku(Xs), v) of stable objects in the Kuznetsov
component of the corresponding cubic fourfold).

2 There exists a non-empty open subset S0 ⊂ S and a
variety M0(v) with a projective morphism M0(v)→ S0 that
makes M0(v) a relative moduli space over S0.
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The families of HK manifolds

The construction of the locally complete 20-dimensional
families of hyperkähler manifolds goes as follows:

Take S0 to be a suitable open subset in the moduli space
of cubic fourfolds (...see the next examples!);

We observed that, for any cubic fourfold X , we have a
primitive embedding A2 ↪→ H̃alg(Ku(X ),Z).

In A2 one finds primitive vectors v with arbitrary large v2.

We can then apply Theorem 3. By Theorem 2, the
dimension of the fibers can be arbitrary large.

Remark

These families have polarization of arbitrary large degree. The
family we construct are automatically unirational.
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v2 = 0: K3 surfaces

Let us start with some easy applications which generalize and
complete some existing (very nice!) results:

Corollary 4 (BLMNPS=Huybrechts)

Let X be a cubic fourfold. Then there exists a primitive vector
v ∈ H̃alg(Ku(X ),Z) with v2 = 0 if and only if there is a K3
surface S, α ∈ Br(S) and an equivalence Ku(X ) ∼= Db(S, α).

Corollary 5 (BLMNPS=Addington-Thomas)

Let X be a cubic fourfold. Then there exists a primitive
embedding U ↪→ H̃alg(Ku(X ),Z) if and only if there is a K3
surface S and an equivalence Ku(X ) ∼= Db(S).
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Let us prove Corollary 4:

If Ku(X ) ∼= Db(S, α), then there is a Hodge isometry
H̃alg(Ku(X ),Z) ∼= H̃alg(S, α,Z). Take for v the Mukai vector
of a skyscraper sheaf.

Assume we have v . Pick σ ∈ Stab†(Ku(X )) which is
v -generic (it exists by the Support Property!).

Mσ(Ku(X ), v) is a K3 surface by Theorem 2. Call it S.

The (quasi-)universal family induces a functor
Db(S, α)→ Db(X ) which is fully faithful (because S
parametrizes stable objects) and has image in Ku(X )
(because S is a moduli space of objects in this category).

Since Ku(X ) is a 2-Calabi-Yau category, we are done.
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v2 = 0: K3 surfaces

The conditions in Corollaries 4 and 5:

having a primitive vector v ∈ H̃alg(Ku(X ),Z) with v2 = 0;

having a primitive embedding U ↪→ H̃alg(Ku(X ),Z),

are divisorial in the moduli space C of cubic fourfolds.

Hassett, Huybrechts: they identify countably many
Noether-Lefschetz loci in C which can be completely classified.

Conjecture (Kuznetsov)

X is such that Ku(X ) ∼= Db(S), for a K3 surface S, if and only if
X is rational.

Question 2

What’s the geometric meaning of having Ku(X ) ∼= Db(S, α)?
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v2 = 2: the Fano variety of lines

For a cubic fourfold X , let F (X ) be the Fano variety of lines in
X .

Beauville-Donagi: F (X ) is a smooth projective hyperkähler
manifold of dimension 4. Moreover, it is deformation equivalent
to Hilb2(K3).

To see a line ` ⊆ X as an object in the Kuznetsov component:

0→ F` → O⊕4
X → I`(H)→ 0.

Kuznetsov-Markushevich: F` is in Ku(X ) and it is a Gieseker
stable sheaf. F (X ) is isomorphic to the moduli space of stable
sheaves with Mukai vector v(F`).
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v2 = 2: the Fano variety of lines

Theorem (Li-Pertusi-Zhao)

For any cubic fourfold X , we have an isomorphism
F (X ) ∼= Mσ(Ku(X ), λ1), for all natural stability conditions σ.

A stability condition σ is natural if:

σ ∈ Stab†(Ku(X );

Under the map Stab†(Ku(X ))→ P+
0 (X ), σ is sent to

A2 ⊗ C ∩ P(X ) ⊆ P+
0 (X ).
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v2 = 6: twisted cubics

For X a cubic fourfold not containing a plane, we have the
following beautiful construction due to Lehn-Lehn-Sorger-van
Straten:

Let M3(X ) be the component of the Hilbert scheme
Hilb3t+1(X ) containing all twisted cubics which are
contained in X . M3(X ) is a smooth projective variety of
dimension 10;

M3(X ) admits a P2-fibration M3(X )→ Z ′(X ), where Z ′(X )
is a smooth projective variety of dimension 8;

We can contract a divisor Z ′(X )→ Z (X ), where Z (X ) is a
smooth projective hyperkähler manifold of dimension 8
which contains X as a Lagrangian submanifold.
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v2 = 8: twisted cubics

Question (M. Lehn):

Is there a modular interpretation for Z ′(X ) and Z (X )?

Theorem (M. Lehn-Lahoz-Macrı̀-S. and Li-Pertusi-Zhao)

For any cubic fourfold X not containing a plane,

Z ′(X ) is isomorphic to a component of a moduli space of
Gieseker stable torsion free scheaves of rank 3;

We have an isomorphism Z (X ) ∼= Mσ(Ku(X ),2λ1 + λ2),
for all natural stability conditions σ.

By Theorem 2, Z (X ) is automatically (projective and)
deformation equivalent to Hilb4(K3), which was proved by
Addington-Lehn.
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Concluding remarks

The last two results are stated in a ‘punctual form’ but, in view
of Theorem 3, they can be put in families, giving rise to relative
moduli spaces of relative dimension 4 and 8.

Question 3

Why do we really care about this alternative description of
‘classical’ hyperkähler manifolds in terms of moduli spaces in
the Kuznetsov component?

This is because BLMNPS implies that the Bayer-Macrı̀
machinery can be applied also in this noncommutative setting:
all birational models of F (X ), Z (X ) and all other possible HK
from Theorem 2 are isomorphic to moduli spaces of stable
objects in the Kuznetsov component (by variation of stability).
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Concluding remarks

There several other simple but interesting applications that one
can deduce from Theorems 1, 2 and 3:

Exercise (Voisin)

Reprove the Intergral Hodge Conjecture for cubic fourfolds, due
to Voisin, by using the same ideas as in the proof of Corollary 4.

Corollaries 4 and 5 allow us to extend recent results by
Sheridan-Smith about Mirror Symmetry of K3 surfaces
appearing as Kuznetsov components of cubic fourfolds.
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