Derived categories and the geometry of projective varieties

Paolo Stellari

XXII Congress of the Italian Mathematical Union

Pisa - September 4-9, 2023

UNIVERSITÀ DEGLI STUDI DI MILANO

Table of Contents

1 The interplay between geometry and homological algebra

- The interplay between geometry and homological algebra
- Add more structure!

The results: uniqueness of enhancements

- The results: stability conditions
- Applications

The setting

1 The interplay between geometry and homological algebra
Let X be a smooth projective variety (over a field \mathbb{K}... secretly \mathbb{C}).

The setting

1 The interplay between geometry and homological algebra

Let X be a smooth projective variety (over a field \mathbb{K}... secretly \mathbb{C}).

Example

Let X be the zero-locus in \mathbb{P}^{4} of

$$
x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}=0 .
$$

It is a Calabi-Yau 3-fold ($K_{X} \equiv 0$) which is called Fermat quintic 3-fold.

The setting

1 The interplay between geometry and homological algebra
Let X be a smooth projective variety (over a field \mathbb{K}... secretly \mathbb{C}).

Consider the associated category:

$$
\mathrm{D}^{b}(X):=\mathrm{D}^{b}(\operatorname{Coh}(X))
$$

The setting

1 The interplay between geometry and homological algebra

Let X be a smooth projective variety (over a field \mathbb{K}... secretly \mathbb{C}).

Consider the associated category:

$$
\mathrm{D}^{b}(X):=\mathrm{D}^{b}(\operatorname{Coh}(X)) .
$$

The definition

- Objetcs: bounded complexes of coherent sheaves

$$
\cdots \rightarrow 0 \rightarrow E^{i} \rightarrow \ldots \rightarrow E^{i+n} \rightarrow 0 \rightarrow \ldots
$$

- Morphisms: finite sequences of roofs

Here quis=quasi-isomorphism=map inducing iso on cohomologies.

The setting

1 The interplay between geometry and homological algebra

Let X be a smooth projective variety (over a field \mathbb{K}... secretly \mathbb{C}).

Consider the associated category:

$$
\mathrm{D}^{b}(X):=\mathrm{D}^{b}(\operatorname{Coh}(X)) .
$$

It is triangulated:

- We can shift objects (E[1]);
- Exact triangles

$$
A \rightarrow B \rightarrow C \rightarrow A[1]
$$

play the same role as short exact sequences in $\operatorname{Coh}(X)$.

The definition

- Objetcs: bounded complexes of coherent sheaves

$$
\cdots \rightarrow 0 \rightarrow E^{i} \rightarrow \ldots \rightarrow E^{i+n} \rightarrow 0 \rightarrow \ldots
$$

- Morphisms: finite sequences of roofs

Here quis=quasi-isomorphism=map inducing iso on cohomologies.

Good news

1 The interplay between geometry and homological algebra
There are cases where $\mathrm{D}^{b}(X)$ proves to be a strong invariant:
Theorem (Bondal and Orlov, 2001)
Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Good news

1 The interplay between geometry and homological algebra
There are cases where $\mathrm{D}^{b}(X)$ proves to be a strong invariant:

Theorem (Bondal and Orlov, 2001)

Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Example (in the positive)

Let X be the zero-locus in \mathbb{P}^{5} of

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=0
$$

It is a cubic 4 -fold ($K_{X}<0$).
The theorem applies!

Good news

1 The interplay between geometry and homological algebra
There are cases where $\mathrm{D}^{b}(X)$ proves to be a strong invariant:

Theorem (Bondal and Orlov, 2001)

Let X be a smooth projective variety such that K_{X} is either ample or antiample. Let Y be a smooth projective variety such that $\mathrm{D}^{b}(X) \cong \mathrm{D}^{b}(Y)$. Then $X \cong Y$.

Example (in the positive)

Let X be the zero-locus in \mathbb{P}^{5} of

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=0
$$

It is a cubic 4 -fold ($K_{X}<0$).

Example (in the negative)

Let X be the Fermat quintic 3 -fold ($K_{X} \equiv 0$).
The theorem does not apply!

Bad news: trivial canonical bundle

1 The interplay between geometry and homological algebra
But when $K_{X} \equiv 0$, the situation gets more complicated:

Bad news: trivial canonical bundle

1 The interplay between geometry and homological algebra
But when $K_{X} \equiv 0$, the situation gets more complicated:

- $\mathrm{D}^{b}(X)$ is indecomposable: it does not contain nontrivial admissible. subcategories. (Bondal-Orlov, Bridgeland-Maciocia)

Bad news: trivial canonical bundle

1 The interplay between geometry and homological algebra
But when $K_{X} \equiv 0$, the situation gets more complicated:

- $\mathrm{D}^{b}(X)$ is indecomposable: it does not contain nontrivial admissible. subcategories. (Bondal-Orlov, Bridgeland-Maciocia)
- $\mathrm{D}^{b}(X)$ has a rich and misterious autoequivalence group. $\operatorname{Aut}\left(\mathrm{D}^{b}(X)\right)$. (Mukai, Orlov, Bridgeland, Huybrechts-Macrì-S., Bridgeland-Bayer)

Bad news: trivial canonical bundle

1 The interplay between geometry and homological algebra
But when $K_{X} \equiv 0$, the situation gets more complicated:

- $\mathrm{D}^{b}(X)$ is indecomposable: it does not contain nontrivial admissible. subcategories. (Bondal-Orlov, Bridgeland-Maciocia)
- $\mathrm{D}^{b}(X)$ has a rich and misterious autoequivalence group. $\operatorname{Aut}\left(\mathrm{D}^{b}(X)\right)$. (Mukai, Orlov, Bridgeland, Huybrechts-Macrì-S., Bridgeland-Bayer)
- $\mathrm{D}^{b}(X)$ does not catch the birational type of X : there are smooth projective CYs which are not birational but with equivalent derived category. (Borisov-Căldăraru-Perry,...)

Bad news: trivial canonical bundle

1 The interplay between geometry and homological algebra
But when $K_{X} \equiv 0$, the situation gets more complicated:

- $\mathrm{D}^{b}(X)$ is indecomposable: it does not contain nontrivial admissible. subcategories. (Bondal-Orlov, Bridgeland-Maciocia)
- $\mathrm{D}^{b}(X)$ has a rich and misterious autoequivalence group. $\operatorname{Aut}\left(\mathrm{D}^{b}(X)\right)$. (Mukai, Orlov, Bridgeland, Huybrechts-Macrì-S., Bridgeland-Bayer)
- $\mathrm{D}^{b}(X)$ does not catch the birational type of X : there are smooth projective CYs which are not birational but with equivalent derived category. (Borisov-Căldăraru-Perry,...)

We need to add more structure to $\mathrm{D}^{b}(X)$!

Table of Contents

2 Add more structure!

- The interplay between geometry and homological algebra
- Add more structure!
- The results: uniqueness of enhancements
$>$ The results: stability conditions
- Applications

Overcoming the bad news

2 Add more structure!

(A) Higher categorical enhancements: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

Overcoming the bad news

2 Add more structure!

(A) Higher categorical enhancements: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

Overcoming the bad news

2 Add more structure!
(A) Higher categorical enhancements: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

Example: injective resolutions

Let X be a smooth projective scheme. Take $\mathbf{I n j}(X)$ to be the category such that

- Objects: bounded below complexes of injective objects with bounded coherent cohomology;
- Morphisms: morphisms of complexes.

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

Overcoming the bad news

2 Add more structure!
(A) Higher categorical enhancements: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

Example: injective resolutions

Let X be a smooth projective scheme. Take $\mathbf{I n j}(X)$ to be the category such that

- Objects: bounded below complexes of injective objects with bounded coherent cohomology;
- Morphisms: morphisms of complexes.

Note: $\operatorname{Hom}(A, B)$ has a natural complex structure (with the differential of morphisms of complexes!).

Overcoming the bad news

2 Add more structure!
(A) Higher categorical enhancements: observe that

$$
\mathrm{D}^{b}(X)=H^{0}\left(\mathrm{D}_{\mathrm{dg}}^{b}(X)\right)
$$

That is: $\mathrm{D}^{b}(X)$ is just the homotopy category of a category with richer structure.

Example: injective resolutions

Let X be a smooth projective scheme. Take $\mathbf{I n j}(X)$ to be the category such that

- Objects: bounded below complexes of injective objects with bounded coherent cohomology;
- Morphisms: morphisms of complexes.

Note: $\operatorname{Hom}(A, B)$ has a natural complex structure (with the differential of morphisms of complexes!). Then:

$$
H^{0}(\mathbf{I n j}(X))=\mathrm{D}^{b}(X)
$$

Overcoming the bad news

2 Add more structure!

(B) Stability conditions: endow $\mathrm{D}^{b}(X)$ with a good notion of stability which allows to cut out of $D^{b}(X)$ moduli spaces with geometric meaning.

Overcoming the bad news

2 Add more structure!
(B) Stability conditions: endow $\mathrm{D}^{b}(X)$ with a good notion of stability which allows to cut out of $\mathrm{D}^{b}(X)$ moduli spaces with geometric meaning.

Goals:

- Give a rigorous definition.
- Cut out a class of special ((semi)stable!) objects.
- Construct moduli spaces of such objects.
- Study the geometry of such moduli spaces.

Overcoming the bad news

2 Add more structure!

Goals:

- Give a rigorous definition.
- Cut out a class of special ((semi)stable!) objects.
- Construct moduli spaces of such objects.
- Study the geometry of such moduli spaces.

In the rest of the presentation we focus on (A) and (B)!

Mirror Symmetry: a study case

2 Add more structure!

CY 3-fold

Mirror Symmetry: a study case

2 Add more structure!

Idea:

X and \check{X} are compactifications of different string theories (type A and B, resp.).

Mirror Symmetry: a study case

2 Add more structure!

Idea:

X and \check{X} are compactifications of different string theories (type A and B, resp.).

Homological Mirror Symmetry Conj. (Kontsevich)
There is an exact equivalence

$$
\mathrm{D}^{b}(X) \cong \operatorname{DFuk}^{\pi}(\check{X})
$$

(and viceversa: $X \leftrightarrow \check{X}$)

Mirror Symmetry: a study case

2 Add more structure!

Idea:

X and \check{X} are compactifications of different string theories (type A and B, resp.).

Rough idea:

$\mathrm{DFuk}^{\pi}(\check{X})$ is the Fukaya derived category: homotopy category of an A_{∞} category $\mathrm{D}_{\infty} \mathrm{Fuk}^{\pi}(\check{\mathrm{X}})$ whose objects are Lagrangian submanifolds and morphisms are intersection numbers.

Mirror Symmetry: a study case

2 Add more structure!

Whereof one cannot speak, thereof one must be silent.
L. Wittgenstein, Tractatus logico-philosophicus

Mirror Symmetry: a study case

2 Add more structure!
What we should keep in mind is:

Mirror Symmetry: a study case

2 Add more structure!
What we should keep in mind is:

- If X is a CY 3-fold, then $\mathrm{D}^{b}(X)$ has (conjecturally!) at least two enhancements:
- the dg category $\mathbf{I n j}(X)$;
- the A_{∞} category $\mathrm{D}_{\infty} \mathrm{Fuk}^{\pi}(\check{X})$.

Mirror Symmetry: a study case

2 Add more structure!
What we should keep in mind is:

- If X is a CY 3-fold, then $\mathrm{D}^{b}(X)$ has (conjecturally!) at least two enhancements:
- the dg category $\operatorname{Inj}(X)$;
- the A_{∞} category $\mathrm{D}_{\infty} \mathrm{Fuk}^{\pi}(\bar{X})$.
- The 'mirror' of the moduli space parametrizing complex structures on \check{X} embedds into an appropriate quotient of the space parametrizing stability conditions on $D^{b}(X)$.

Mirror Symmetry: a study case

2 Add more structure!

What we should keep in mind is:

- If X is a CY 3-fold, then $\mathrm{D}^{b}(X)$ has (conjecturally!) at least two enhancements:
- the dg category $\operatorname{Inj}(X)$;
- the A_{∞} category $\mathrm{D}_{\infty} \mathrm{Fuk}^{\pi}(X)$.
- The 'mirror' of the moduli space parametrizing complex structures on \check{X} embedds into an appropriate quotient of the space parametrizing stability conditions on $\mathrm{D}^{b}(X)$.

In relation to the first item the following is natural:

Conjecture (Bondal-Larsen-Lunts)

If X is a smooth projective variety, then $\mathrm{D}^{b}(X)$ has a unique enhancement.

Table of Contents

3 The results: uniqueness of enhancements

- The interplay between geometry and homological algebra
- Add more structure!
$>$ The results: uniqueness of enhancements
- The results: stability conditions
- Applications

Enhancements

3 The results: uniqueness of enhancements

Def. (dg categories)

A differential graded (dg) category is a k-linear category (k a comm. ring) such that

- $\operatorname{Hom}(A, B)$ is a complex of k-modules;
- The composition is a morphism of complexes.

Enhancements

3 The results: uniqueness of enhancements

Def. (dg categories)

A differential graded (dg) category is a k-linear category (k a comm. ring) such that

- $\operatorname{Hom}(A, B)$ is a complex of k-modules;
- The composition is a morphism of complexes.

Example: injective resolutions

We have already see that if X is a smooth projective scheme, then $\operatorname{Inj}(X)$ is a dg category.

It is actually pretriangulated! ...roughly:

$$
H^{0}(\text { dg-cat }) \cong \text { triang. cat. }
$$

Enhancements

3 The results: uniqueness of enhancements

Def. (dg categories)

A differential graded (dg) category is a k-linear category (k a comm. ring) such that

- $\operatorname{Hom}(A, B)$ is a complex of k-modules;
- The composition is a morphism of complexes.

Def. (dg functors)

Adg functor $\mathrm{F}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ is a functor such that

$$
\Phi_{\mathrm{F}}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(F(A), F(B))
$$

is a morphism of complexes.

Enhancements

3 The results: uniqueness of enhancements

Def. (dg categories)

A differential graded (dg) category is a k-linear category (k a comm. ring) such that

- $\operatorname{Hom}(A, B)$ is a complex of k-modules;
- The composition is a morphism of complexes.

Def. (dg functors)

Adg functor $\mathrm{F}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ is a functor such that

$$
\Phi_{\mathrm{F}}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(F(A), F(B))
$$

We then have the following constructions:

- Given a dg functor $\mathrm{F}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$, we can compute

$$
H^{0}(\mathbf{F}): H^{0}\left(\mathcal{C}_{1}\right) \rightarrow H^{0}\left(\mathcal{C}_{2}\right)
$$

- A dg functor F is a quasi-equivalence if
- Φ_{F} is a quasi-isomorphism;
- $H^{0}(F)$ is an equivalence.
is a morphism of complexes.

Enhancements

3 The results: uniqueness of enhancements
Drinfeld, Kontsevich, Keller,...: one can form the following

In practice:

- Objetcs: dg categories;
- Morphisms: finite sequences of roofs

Enhancements

3 The results: uniqueness of enhancements
Drinfeld, Kontsevich, Keller,...: one can form the following

$$
\begin{aligned}
\text { Hqe }: & =\mathrm{dg}-\mathrm{Cat}\left[\mathrm{q}-\mathrm{eq}^{-1}\right] \\
& =\text { loc. wrt quasi-equiv. }
\end{aligned}
$$

An enhancement of a triangulated category \mathcal{T} is a part $(\mathcal{C}, \mathrm{F})$ where \mathcal{C} is a pretriang. dg cat. and $\mathrm{F}: \mathrm{H}^{0}(\mathcal{C}) \rightarrow \mathcal{T}$ is an equivalence.

Enhancements

3 The results: uniqueness of enhancements
Drinfeld, Kontsevich, Keller,...: one can form the following

$$
\begin{aligned}
\text { Hqe } & :=\operatorname{dg}-C a t\left[q-e q^{-1}\right] \\
& =\text { loc. wrt quasi-equiv. }
\end{aligned}
$$

An enhancement of a triangulated category \mathcal{T} is a part $(\mathcal{C}, \mathrm{F})$ where \mathcal{C} is a pretriang. dg cat. and $\mathrm{F}: \mathrm{H}^{0}(\mathcal{C}) \rightarrow \mathcal{T}$ is an equivalence.

Example: injective resolutions

$\operatorname{Inj}(X)$ is an enhancement of $\mathrm{D}^{b}(X)$.

Enhancements

3 The results: uniqueness of enhancements
Drinfeld, Kontsevich, Keller,...: one can form the following

$$
\begin{aligned}
\text { Hqe } & :=\operatorname{dg}-C a t\left[\mathrm{q}^{-e q^{-1}}\right] \\
& =\text { loc. wrt quasi-equiv. }
\end{aligned}
$$

An enhancement of a triangulated category \mathcal{T} is a part $(\mathcal{C}, \mathrm{F})$ where \mathcal{C} is a pretriang. dg cat. and $\mathrm{F}: \mathrm{H}^{0}(\mathcal{C}) \rightarrow \mathcal{T}$ is an equivalence.

Example: injective resolutions

$\operatorname{Inj}(X)$ is an enhancement of $\mathrm{D}^{b}(X)$.

Def. (uniqueness of enhancements)
A triang. cat has a unique enhancement if any two such are isomorphic in Hqe.

Proving the BLL Conjecture

3 The results: uniqueness of enhancements
BLL Conjecture: proven by Lunts-Orlov (JAMS, 2010). Additional improvements by: Canonaco-S., Antieau, Genovese. The following covers additional conj./open problems:

Theorem 2 (Canonaco-Neeman-S.)

Proving the BLL Conjecture

3 The results: uniqueness of enhancements
BLL Conjecture: proven by Lunts-Orlov (JAMS, 2010). Additional improvements by: Canonaco-S., Antieau, Genovese. The following covers additional conj./open problems:

Theorem 2 (Canonaco-Neeman-S.)

(A) Let \mathcal{A} be an abelian category. Then $\mathrm{D}^{\text {? }}(\mathcal{A})$ has a unique enhancement, for $?=+,-, b, \emptyset$. (+additional variants...)

Proving the BLL Conjecture

3 The results: uniqueness of enhancements
BLL Conjecture: proven by Lunts-Orlov (JAMS, 2010). Additional improvements by: Canonaco-S., Antieau, Genovese. The following covers additional conj./open problems:

Theorem 2 (Canonaco-Neeman-S.)

(A) Let \mathcal{A} be an abelian category. Then $\mathrm{D}^{\text {? }}(\mathcal{A})$ has a unique enhancement, for $?=+,-, b, \emptyset$. (+additional variants...)
(B) If X is a quasi-compact and quasi-separated scheme, then $\mathrm{D}_{\mathrm{qc}}^{?}(X)$ and $\operatorname{Perf}(X)$ have unique enhancement, for $?=+,-, b, \emptyset$.

Proving the BLL Conjecture

3 The results: uniqueness of enhancements
BLL Conjecture: proven by Lunts-Orlov (JAMS, 2010). Additional improvements by: Canonaco-S., Antieau, Genovese. The following covers additional conj./open problems:

Theorem 2 (Canonaco-Neeman-S.)

(A) Let \mathcal{A} be an abelian category. Then $\mathrm{D}^{\text {? }}(\mathcal{A})$ has a unique enhancement, for $?=+,-, b, \emptyset$. (+additional variants...)
(B) If X is a quasi-compact and quasi-separated scheme, then $\mathrm{D}_{\mathrm{qc}}^{?}(X)$ and $\operatorname{Perf}(X)$ have unique enhancement, for $?=+,-, b, \emptyset$.

Canonaco-Ornaghi-S.

By old and recent results of the three of us, the thm above applies to A_{∞} categories as well, covering the case of $\mathrm{D}_{\infty} \operatorname{Fuk}^{\pi}(\check{X})$.

Table of Contents

4 The results: stability conditions

- The interplay between geometry and homological algebra
- Add more structure!

The results: uniqueness of enhancements

The results: stability conditions

- Applications

From an example to the definition

4 The results: stability conditions

Baby example
The definition

From an example to the definition

4 The results: stability conditions

Baby example

The definition
C a smooth projective curve (over \mathbb{C})
ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C})
$\operatorname{ch}: K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.

The definition
X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C})
ch: $K(C) \rightarrow N(\mathcal{C}):=H^{0}(C, \mathbb{Z}) \oplus H^{2}(C, \mathbb{Z})$.
The data of:

The definition
X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk .
The data of:

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C})
ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.
The data of:

- Abelian category: $\operatorname{Coh}(C)$.

The definition
X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C})
ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.
The data of:

- Abelian category: $\operatorname{Coh}(C)$.

The definition
X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

- The heart \mathcal{A} of a bounded t-structure.

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C})
ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.
The data of:

- Abelian category: $\operatorname{Coh}(C)$.
- A stability function: $Z_{\text {slope }}: N(C) \rightarrow \mathbb{C}$ such that

$$
Z_{\text {slope }}(-):=-\operatorname{deg}(-)+\sqrt{-1} \operatorname{rk}(-)
$$

The definition

X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

- The heart \mathcal{A} of a bounded t-structure.

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C}) ch: $K(C) \rightarrow N(C):=H^{0}(C, \mathbb{Z}) \oplus H^{2}(C, \mathbb{Z})$.

The data of:

- Abelian category: $\operatorname{Coh}(C)$.
- A stability function: $Z_{\text {slope }}: N(C) \rightarrow \mathbb{C}$ such that

$$
Z_{\text {slope }}(-):=-\operatorname{deg}(-)+\sqrt{-1} \operatorname{rk}(-)
$$

The definition

X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

- The heart \mathcal{A} of a bounded t-structure.
- A stability function: $\mathrm{Z}: \Lambda \rightarrow \mathbb{C}$

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C}) ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.

The data of:

- Abelian category: $\operatorname{Coh}(C)$.
- A stability function: $Z_{\text {slope }}: N(C) \rightarrow \mathbb{C}$ such that

$$
Z_{\text {slope }}(-):=-\operatorname{deg}(-)+\sqrt{-1} \operatorname{rk}(-) .
$$

The definition

X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

- The heart \mathcal{A} of a bounded t-structure.
- A stability function: $\mathrm{Z}: \Lambda \rightarrow \mathbb{C}$

Satisfying the following properties:

From an example to the definition

4 The results: stability conditions

Baby example

C a smooth projective curve (over \mathbb{C}) ch: $K(\mathcal{C}) \rightarrow N(\mathcal{C}):=H^{0}(\mathcal{C}, \mathbb{Z}) \oplus H^{2}(\mathcal{C}, \mathbb{Z})$.

The data of:

- Abelian category: $\operatorname{Coh}(C)$.
- A stability function: $Z_{\text {slope }}: N(C) \rightarrow \mathbb{C}$ such that

$$
Z_{\text {slope }}(-):=-\operatorname{deg}(-)+\sqrt{-1} \operatorname{rk}(-) .
$$

Satisfying the following properties:

The definition

X a smooth projective variety (over \mathbb{C})
$\mathrm{v}: K(X) \rightarrow \Lambda=$ free ab. finite rk.
The data of:

- The heart \mathcal{A} of a bounded t-structure.
- A stability function: $\mathrm{Z}: \Lambda \rightarrow \mathbb{C}$ Satisfying the following axioms:

From an example to the definition

4 The results: stability conditions
(A) If $0 \neq E \in \operatorname{Coh}(C)$, then

$$
Z_{\text {slope }}(E) \in \mathbb{H} \cup \mathbb{R}_{<0}
$$

From an example to the definition

4 The results: stability conditions
(A) If $0 \neq E \in \operatorname{Coh}(C)$, then

$$
Z_{\text {slope }}(E) \in \mathbb{H} \cup \mathbb{R}_{<0}
$$

(A) If $0 \neq E \in \mathcal{A}$, then $Z(E) \in \mathbb{H} \cup \mathbb{R}_{<0}$.

From an example to the definition

4 The results: stability conditions
(A) If $0 \neq E \in \operatorname{Coh}(C)$, then
$Z_{\text {slope }}(E) \in \mathbb{H} \cup \mathbb{R}_{<0}$.
(A) If $0 \neq E \in \mathcal{A}$, then $Z(E) \in \mathbb{H} \cup \mathbb{R}_{<0}$.
(B) For any $0 \neq E \in \operatorname{Coh}(C)$ there is a Harder-Narasimhan filtration

$$
0=E_{0} \subseteq E_{1} \subseteq \cdots \subseteq E_{n}=E
$$

such that E_{i} / E_{i-1} is semistable with respect to

$$
\mu_{\text {slope }}:=-\frac{\operatorname{Re}\left(Z_{\text {slope }}\right)}{\operatorname{Im}\left(Z_{\text {slope }}\right)}
$$

and $\mu_{\text {slope }}\left(E_{1}\right)>\cdots>\mu_{\text {slope }}\left(E_{n} / E_{n-1}\right)$.

From an example to the definition

4 The results: stability conditions
(A) If $0 \neq E \in \operatorname{Coh}(C)$, then
$Z_{\text {slope }}(E) \in \mathbb{H} \cup \mathbb{R}_{<0}$.
(B) For any $0 \neq E \in \operatorname{Coh}(C)$ there is a Harder-Narasimhan filtration

$$
0=E_{0} \subseteq E_{1} \subseteq \cdots \subseteq E_{n}=E
$$

such that E_{i} / E_{i-1} is semistable with respect to

$$
\mu_{\text {slope }}:=-\frac{\operatorname{Re}\left(Z_{\text {slope }}\right)}{\operatorname{Im}\left(Z_{\text {slope }}\right)}
$$

and $\mu_{\text {slope }}\left(E_{1}\right)>\cdots>\mu_{\text {slope }}\left(E_{n} / E_{n-1}\right)$.
(A) If $0 \neq E \in \mathcal{A}$, then $Z(E) \in \mathbb{H} \cup \mathbb{R}_{<0}$.
(B) For any $0 \neq E \in \mathcal{A}$ there is a Harder-Narasimhan filtration with factors which are semistable with respect to

$$
\mu:=-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}
$$

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies
(C) Support property (Kontsevich-Soibelman): about the existance of a special quadratic form on $\Lambda \otimes \mathbb{R}$.

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies
(C) Support property (Kontsevich-Soibelman): about the existance of a special quadratic form on $\Lambda \otimes \mathbb{R}$.
(D)-(E) Esistence of moduli spaces (Bayer-Lahoz-Macrì-Nuer-Perry-S.).

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies
(C) Support property (Kontsevich-Soibelman): about the existance of a special quadratic form on $\Lambda \otimes \mathbb{R}$.
(D)-(E) Esistence of moduli spaces (Bayer-Lahoz-Macrì-Nuer-Perry-S.).

$$
\operatorname{Stab}_{\Lambda}(X)=\text { set of stability conditions }
$$

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies
(C) Support property (Kontsevich-Soibelman): about the existance of a special quadratic form on $\Lambda \otimes \mathbb{R}$.
(D)-(E) Esistence of moduli spaces (Bayer-Lahoz-Macrì-Nuer-Perry-S.).
$\operatorname{Stab}_{\Lambda}(X)=$ set of stability conditions

Theorem (Bridgeland, BLMNPS)
$\operatorname{Stab}_{\Lambda}(X)$ is a complex manifold of dimension $\operatorname{rk}(\Lambda) \ldots$ if $\operatorname{Stab}_{\Lambda}(X) \neq \emptyset$.

From an example to the definition

4 The results: stability conditions
The pair $\sigma=(\mathcal{A}, Z)$ is a (Bridgeland) stability condition... if it satisfies
(C) Support property (Kontsevich-Soibelman): about the existance of a special quadratic form on $\Lambda \otimes \mathbb{R}$.
(D)-(E) Esistence of moduli spaces (Bayer-Lahoz-Macrì-Nuer-Perry-S.).
$\operatorname{Stab}_{\Lambda}(X)=$ set of stability conditions

Theorem (Bridgeland, BLMNPS)

$\operatorname{Stab}_{\Lambda}(X)$ is a complex manifold of dimension $\operatorname{rk}(\Lambda) \ldots$ if $\operatorname{Stab}_{\Lambda}(X) \neq \emptyset$.

Warning:

$\operatorname{Stab}_{\Lambda}(X) \neq \emptyset$ stricking and difficult problem! Expecially when $K_{X} \equiv 0$ and the dim grows.

Case by case

4 The results: stability conditions

Theorem (Beauville, Bogomolov)

Assume X smooth proj. with $c_{1}=0$. Up to a finite étale map, X is isomorphic to a product varieties of the following types:

Case by case

4 The results: stability conditions

Theorem (Beauville, Bogomolov)

Assume X smooth proj. with $c_{1}=0$. Up to a finite étale map, X is isomorphic to a product varieties of the following types:

- Abelian variety;

Definition

$X=\mathbb{C}^{n} / \Lambda$, where $\Lambda \subseteq \mathbb{C}^{n}$ is rank- $2 n$ sublattice lattice + an ample polarization.

Example

X an elliptic curve. $\ln \mathbb{P}^{2}$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0
$$

Case by case

4 The results: stability conditions

Theorem (Beauville, Bogomolov)

Assume X smooth proj. with $c_{1}=0$. Up to a finite étale map, X is isomorphic to a product varieties of the following types:

- Abelian variety;
- (Product of) Calabi-Yau varieties;

Definition

X simply conn. trivial canonical bundle, $H^{i}\left(X, \mathcal{O}_{X}\right)=0$, for $0<i<\operatorname{dim}(X)$.

Example

X the quintic 3-fold.

Case by case

4 The results: stability conditions

Theorem (Beauville, Bogomolov)

Assume X smooth proj. with $c_{1}=0$. Up to a finite étale map, X is isomorphic to a product varieties of the following types:

- Abelian variety;
- (Product of) Calabi-Yau varieties;
- (Product of) Irreducible holomorphic symplectic manifolds.

Definition

X simply connected + trivial canonical bundle $+H^{2}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}$ generated by an everywhere non-deg. holomorphic 2 -form.

Example

$\operatorname{Hilb}^{n}($ K3 $)=$ Hilbert scheme of length- n 0 -dim. subschemes of a K3 surface.

The results

4 The results: stability conditions

Theorem (Bayer-Macrì-S., Invent. Math. 2016)
If X is an abelian 3-fold, then $\operatorname{Stab}(X) \neq \emptyset$.

The results

4 The results: stability conditions

Theorem (Bayer-Macrì-S., Invent. Math. 2016)
If X is an abelian 3-fold, then $\operatorname{Stab}(X) \neq \emptyset$.

Theorem (Li, Invent. Math. 2019)
If X is a quintic 3 -fold, then $\operatorname{Stab}(X) \neq \emptyset$.

The results

4 The results: stability conditions

Theorem (Bayer-Macrì-S., Invent. Math. 2016)
If X is an abelian 3 -fold, then $\operatorname{Stab}(X) \neq \emptyset$.

Theorem (Li, Invent. Math. 2019)
If X is a quintic 3 -fold, then $\operatorname{Stab}(X) \neq \emptyset$.

More results:

- Additional results on abelian 3-folds by Maciocia-Piyaratne.
- More Calabi-Yau 3-folds: Bayer-Macrì-S., Koseki,...

The results

4 The results: stability conditions

IHS are more difficult: dim > 3 (unless $X=$ К3 surf., studied by Bridgeland)!

The results

4 The results: stability conditions
IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!
Theorem (Li-Macrì-S.-Zhao, in progress)
Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

Here, at the moment:

'very general'=infinite dense set containing inf. many very gen. examples in class. sense.

The results

4 The results: stability conditions

IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!

Theorem (Li-Macrì-S.-Zhao, in progress)

Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

- Abelian n-folds;

The results

4 The results: stability conditions

IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!

Theorem (Li-Macrì-S.-Zhao, in progress)

Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

- Abelian n-folds;
- $\operatorname{Hilb}^{n}(A)$, where A is an abelian surface;

The results

4 The results: stability conditions

IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!

Theorem (Li-Macrì-S.-Zhao, in progress)

Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

- Abelian n-folds;
- $\operatorname{Hilb}^{n}(A)$, where A is an abelian surface;
- Hilb^{n} (K3 surface).

The results

4 The results: stability conditions

IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!

Theorem (Li-Macrì-S.-Zhao, in progress)

Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

- Abelian n-folds;
- $\operatorname{Hilb}^{n}(A)$, where A is an abelian surface;
- Hilb^{n} (K3 surface).

Then $\operatorname{Stab}(X) \neq \emptyset$.

The results

4 The results: stability conditions
IHS are more difficult: dim > 3 (unless $X=$ K3 surf., studied by Bridgeland)!

Theorem (Li-Macrì-S.-Zhao, in progress)

Let $n \geq 2$ be an integer. Let X be a very general member of one of the following families

- Abelian n-folds;
- $\operatorname{Hilb}^{n}(A)$, where A is an abelian surface;
- Hilb^{n} (K3 surface).

Then $\operatorname{Stab}(X) \neq \emptyset$.

The case of abelian n-fods answers a question of Pandharipande.

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

- Construct stab. cond. for special examples in the 3 cases: product of curves + equivariant geometry/homological algebra (Y. Li + Macrì-Mehrotra-S. + LMSZ);

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

- Construct stab. cond. for special examples in the 3 cases: product of curves + equivariant geometry/homological algebra (Y. Li + Macrì-Mehrotra-S. + LMSZ);
- Deform t-structures and stability conditions.

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

- Construct stab. cond. for special examples in the 3 cases: product of curves + equivariant geometry/homological algebra (Y. Li + Macrì-Mehrotra-S. + LMSZ);
- Deform t-structures and stability conditions.

Future applications:

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

- Construct stab. cond. for special examples in the 3 cases: product of curves + equivariant geometry/homological algebra (Y. Li + Macrì-Mehrotra-S. + LMSZ);
- Deform t-structures and stability conditions.

Future applications:

- Use this to prove a conjecture about the topology of stability manifold of K3 surfaces (joint with Lahoz and Macri));

Ideas from the proof \& future applicarions

4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult to implement):

- Construct stab. cond. for special examples in the 3 cases: product of curves + equivariant geometry/homological algebra (Y. Li + Macrì-Mehrotra-S. + LMSZ);
- Deform t-structures and stability conditions.

Future applications:

- Use this to prove a conjecture about the topology of stability manifold of K3 surfaces (joint with Lahoz and Macri));
- Construct locally complete families of HK of Hilb^{n} (K3 surface)-type (joint with Macrì and Perry).

Table of Contents

5 Applications

- The interplay between geometry and homological algebra
- Add more structure!

The results: uniqueness of enhancements

The results: stability conditions

- Applications

Semiorthogonal decompositions

5 Applications
Let X be a smooth projective variety ($K_{X} \not \equiv 0$!).

Semiorthogonal decompositions

5 Applications
Let X be a smooth projective variety ($K_{X} \not \equiv 0$!).

Definition

A Semiorthogonal decomposition of $\mathrm{D}^{b}(X)$ is a decomposition

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right\rangle
$$

where:

- \mathcal{A}_{i} admissible,
- $\mathrm{D}^{b}(X)$ generated by objects in \mathcal{A}_{i},
- $\operatorname{Hom}\left(\mathcal{A}_{j(>i)}, \mathcal{A}_{i}\right)=0$.

Semiorthogonal decompositions

5 Applications

Let X be a smooth projective variety ($K_{X} \not \equiv 0$!).

Definition

A Semiorthogonal decomposition of $\mathrm{D}^{b}(X)$ is a decomposition

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right\rangle
$$

where:

- \mathcal{A}_{i} admissible,
- $\mathrm{D}^{b}(X)$ generated by objects in \mathcal{A}_{i},
- $\operatorname{Hom}\left(\mathcal{A}_{j(>i)}, \mathcal{A}_{i}\right)=0$.

Cubic 4-folds

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{K} u(X), \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

$\mathcal{K} u(X)$ is called Kuznetsov component: it behaves like a (noncommutative) K3 surface (2-dim CY).

Semiorthogonal decompositions

5 Applications

Let X be a smooth projective variety ($K_{X} \not \equiv 0$!).

Definition

A Semiorthogonal decomposition of $\mathrm{D}^{b}(X)$ is a decomposition

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right\rangle
$$

where:

- \mathcal{A}_{i} admissible,
- $\mathrm{D}^{b}(X)$ generated by objects in \mathcal{A}_{i},
- $\operatorname{Hom}\left(\mathcal{A}_{j(>i)}, \mathcal{A}_{i}\right)=0$.

Cubic 4-folds

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{K} u(X), \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle .
$$

$\mathcal{K} u(X)$ is called Kuznetsov component: it behaves like a (noncommutative) К3 surface (2-dim CY).

Enriques surfaces

X smooth projective surface $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ and $2 K_{X} \equiv 0$.

$$
\mathrm{D}^{b}(X)=\left\langle\mathcal{K} u(X), L_{1}, \ldots L_{10}\right\rangle .
$$

Semiorthogonal decompositions and stability conditions

5 Applications

Theorem (Bayer-Lahoz-Macrì-S.)
Let X be a cubic 4 -fold. Then $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.

Semiorthogonal decompositions and stability conditions

5 Applications

Theorem (Bayer-Lahoz-Macrì-S.)
Let X be a cubic 4 -fold. Then $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.

More is true:

Semiorthogonal decompositions and stability conditions

5 Applications

Theorem (Bayer-Lahoz-Macrì-S.)
Let X be a cubic 4 -fold. Then $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.

- $F(X)=F a n o$ variety of lines on X.

Beauville-Donagi: It is a 4-dim IHS manifold with a special ample polarization λ.
More is true:

Semiorthogonal decompositions and stability conditions

5 Applications

Theorem (Bayer-Lahoz-Macrì-S.)

Let X be a cubic 4 -fold. Then $\operatorname{Stab}(\mathcal{K} u(X)) \neq \emptyset$.

- $F(X)=F a n o$ variety of lines on X.

Beauville-Donagi: It is a 4-dim IHS manifold with a special ample polarization λ.
More is true:

- BLMS+Zhao, Li-Pertusi-Zhao: For the special stab. cond. in the theorem above: $F(X) \cong M_{\sigma}(X)=$ special moduli space of σ-stable objects in $\mathcal{K} u(X)$ (with Bayer-Macrì ample polarization). The isomorphism preserve special polarizations.

Semiorthogonal decompositions and stability conditions

5 Applications

- Let φ : $H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ be a Hodge isometry preserving the special classes H_{1}^{2} and H_{2}^{2} (H_{i} the hyperplane section).

Semiorthogonal decompositions and stability conditions

5 Applications

- Let $\varphi: H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ be a Hodge isometry preserving the special classes H_{1}^{2} and H_{2}^{2} (H_{i} the hyperplane section).
- Up to deforming to a dense set of points in moduli, the isometry can be lifted to an equivalence $\mathcal{K} u\left(X_{1}\right) \cong \mathcal{K} u\left(X_{2}\right)$ inducing isometries

$$
F\left(X_{1}\right) \cong M_{\sigma_{1}}\left(X_{1}\right) \cong M_{\sigma_{2}}\left(X_{2}\right) \cong F\left(X_{2}\right)
$$

and the comp. sends λ_{1} to λ_{2}.

Semiorthogonal decompositions and stability conditions

5 Applications

- Let $\varphi: H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ be a Hodge isometry preserving the special classes H_{1}^{2} and H_{2}^{2} (H_{i} the hyperplane section).
- Up to deforming to a dense set of points in moduli, the isometry can be lifted to an equivalence $\mathcal{K} u\left(X_{1}\right) \cong \mathcal{K} u\left(X_{2}\right)$ inducing isometries

$$
F\left(X_{1}\right) \cong M_{\sigma_{1}}\left(X_{1}\right) \cong M_{\sigma_{2}}\left(X_{2}\right) \cong F\left(X_{2}\right)
$$

and the comp. sends λ_{1} to λ_{2}.

- Old trick: $X_{1} \cong X_{2}$ (use sensity above + sep. of moduli of cubic 4 -folds).

Semiorthogonal decompositions and stability conditions

5 Applications

- Let φ : $H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ be a Hodge isometry preserving the special classes H_{1}^{2} and H_{2}^{2} (H_{i} the hyperplane section).
- Up to deforming to a dense set of points in moduli, the isometry can be lifted to an equivalence $\mathcal{K} u\left(X_{1}\right) \cong \mathcal{K} u\left(X_{2}\right)$ inducing isometries

$$
F\left(X_{1}\right) \cong M_{\sigma_{1}}\left(X_{1}\right) \cong M_{\sigma_{2}}\left(X_{2}\right) \cong F\left(X_{2}\right)
$$

and the comp. sends λ_{1} to λ_{2}.

- Old trick: $X_{1} \cong X_{2}$ (use sensity above + sep. of moduli of cubic 4 -folds).

Then we reproved:

Torelli Theorem for cubic 4-folds (Voisin, Invent. Math., 1986)

Let X_{1} and X_{2} be cubic 4 -folds. Then $X_{1} \cong X_{2}$ iff there is a Hodge iso $H^{4}\left(X_{1}, \mathbb{Z}\right) \cong H^{4}\left(X_{2}, \mathbb{Z}\right)$ preserving H_{i}^{2}.

