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The setting1 The interplay between geometry and homological algebra
Let X be a smooth projective variety (over afield K... secretly C).

Consider the associated category:
Db(X) := Db(Coh(X)).

It is triangulated:
• We can shift objects (E[1]);
• Exact triangles

A → B → C → A[1]

play the same role as short exactsequences in Coh(X).
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play the same role as short exactsequences in Coh(X).

Example
Let X be the zero-locus in P4 of

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 0.

It is a Calabi–Yau 3-fold (KX ≡ 0) which iscalled Fermat quintic 3-fold.
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Good news1 The interplay between geometry and homological algebra
There are cases where Db(X) proves to be a strong invariant:

Theorem (Bondal and Orlov, 2001)
Let X be a smooth projective variety such that KX is either ample or antiample. Let Y be asmooth projective variety such that Db(X) ∼= Db(Y). Then X ∼= Y.

Example (in the positive)
Let X be the zero-locus in P5 of

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.

It is a cubic 4-fold (KX < 0).
The theorem applies!

Example (in the negative)
Let X be the Fermat quintic 3-fold (KX ≡ 0).
The theorem does not apply!
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Bad news: trivial canonical bundle1 The interplay between geometry and homological algebra
But when KX ≡ 0, the situation gets more complicated:

• Db(X) is indecomposable: it does not contain nontrivial admissible. subcategories.(Bondal–Orlov, Bridgeland–Maciocia)
• Db(X) has a rich and misterious autoequivalence group. Aut(Db(X)).(Mukai, Orlov, Bridgeland, Huybrechts–Macrı̀–S., Bridgeland–Bayer)
• Db(X) does not catch the birational type of X: there are smooth projective CYs whichare not birational but with equivalent derived category.(Borisov–Căldăraru–Perry,...)

We need to add more structure to Db(X)!
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We need to add more structure to Db(X)!



Table of Contents2 Add more structure!

▶ The interplay between geometry and homological algebra
▶ Add more structure!
▶ The results: uniqueness of enhancements
▶ The results: stability conditions
▶ Applications



Overcoming the bad news2 Add more structure!

(A) Higher categorical enhancements:observe that
Db(X) = H0(Db

dg(X)
)

That is: Db(X) is just the homotopy
category of a category with richerstructure.

Example: injective resolutions
Let X be a smooth projective scheme. Take
Inj(X) to be the category such that
• Objects: bounded below complexes ofinjective objects with boundedcoherent cohomology;
• Morphisms: morphisms of complexes.

Note: Hom(A,B) has a natural complexstructure (with the differential of morphismsof complexes!). Then:
H0(Inj(X)) = Db(X).
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(B) Stability conditions: endow Db(X) witha good notion of stability which allowsto cut out of Db(X) moduli spaces withgeometric meaning.

Goals:
• Give a rigorous definition.
• Cut out a class of special ((semi)stable!)objects.
• Construct moduli spaces of suchobjects.
• Study the geometry of such modulispaces.

In the rest of the presentation we focus on (A) and (B)!
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Mirror Symmetry: a study case2 Add more structure!

X oo mirror // X̌CY 3-fold Dual CY 3-fold

Idea:
X and X̌ are compactifications of differentstring theories (type A and B, resp.).

Homological Mirror Symmetry Conj.
(Kontsevich)

There is an exact equivalence
Db(X) ∼= DFukπ(X̌)

(and viceversa: X ↔ X̌)

Rough idea:
DFukπ(X̌) is the Fukaya derived category:homotopy category of an A∞ category
D∞Fukπ(X̌) whose objects are Lagrangiansubmanifolds and morphisms areintersection numbers.
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Whereof one cannot speak, thereof one must be silent.

L. Wittgenstein, Tractatus logico-philosophicus
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What we should keep in mind is:

• If X is a CY 3-fold, then Db(X) has (conjecturally!) at least two enhancements:
— the dg category Inj(X);— the A∞ category D∞Fukπ(X̌).

• The ‘mirror’ of the moduli space parametrizing complex structures on X̌ embeddsinto an appropriate quotient of the space parametrizing stability conditions on Db(X).
In relation to the first item the following is natural:

Conjecture (Bondal–Larsen–Lunts)
If X is a smooth projective variety, then Db(X) has a unique enhancement.
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Enhancements3 The results: uniqueness of enhancements
Def. (dg categories)

A differential graded (dg) category is a
k-linear category (k a comm. ring) such that
• Hom(A,B) is a complex of k-modules;
• The composition is a morphism ofcomplexes.

Def. (dg functors)
A dg functor F : C1 → C2 is a functor suchthat

ΦF : Hom(A,B) → Hom(F(A), F(B))
is a morphism of complexes.
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Def. (dg functors)
A dg functor F : C1 → C2 is a functor suchthat

ΦF : Hom(A,B) → Hom(F(A), F(B))
is a morphism of complexes.

Example: injective resolutions
We have already see that if X is a smoothprojective scheme, then Inj(X) is a dgcategory.
It is actually pretriangulated! ...roughly:

H0(dg-cat) ∼= triang. cat.
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Def. (dg functors)
A dg functor F : C1 → C2 is a functor suchthat

ΦF : Hom(A,B) → Hom(F(A), F(B))
is a morphism of complexes.

We then have the following constructions:
• Given a dg functor F : C1 → C2, we cancompute

H0(F) : H0(C1) → H0(C2).

• A dg functor F is a quasi-equivalence if
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Enhancements3 The results: uniqueness of enhancements
Drinfeld, Kontsevich, Keller,...: one can form the following

Hqe := dg-Cat[q-eq−1]

= loc. wrt quasi-equiv.

An enhancement of a triangulated category
T is a part (C, F) where C is a pretriang. dgcat. and F : H0(C) → T is an equivalence.

In practice:
• Objetcs: dg categories;
• Morphisms: finite sequences of roofs
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|| ��

A A1 . . . An−1 B.

Example: injective resolutions
Inj(X) is an enhancement of Db(X).

Def. (uniqueness of enhancements)
A triang. cat has a unique enhancement if any two such are isomorphic in Hqe.
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Proving the BLL Conjecture3 The results: uniqueness of enhancements
BLL Conjecture: proven by Lunts–Orlov (JAMS, 2010). Additional improvements by:Canonaco–S., Antieau, Genovese. The following covers additional conj./open problems:

Theorem 2 (Canonaco–Neeman–S.)

(A) Let A be an abelian category. Then D?(A) has a unique enhancement, for
? = +,−, b, ∅. (+additional variants...)

(B) If X is a quasi-compact and quasi-separated scheme, then D?
qc(X) and Perf(X) haveunique enhancement, for ? = +,−, b, ∅.

Canonaco–Ornaghi–S.
By old and recent results of the three of us, the thm above applies to A∞ categories aswell, covering the case of D∞Fukπ(X̌).
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From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:

• Abelian category: Coh(C).

The data of:

• The heart A of a bounded t-structure.
• A stability function: Zslope : N(C) → Csuch that

Zslope(−) := −deg(−) +
√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:

• The heart A of a bounded t-structure.
• A stability function: Zslope : N(C) → Csuch that

Zslope(−) := −deg(−) +
√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties:

Satisfying the following axioms:



From an example to the definition4 The results: stability conditions

Baby example The definition

C a smooth projective curve (over C)
ch : K(C) ↠ N(C) := H0(C,Z)⊕ H2(C,Z).

X a smooth projective variety (over C)
v : K(X) ↠ Λ = free ab. finite rk.

The data of:
• Abelian category: Coh(C).

The data of:
• The heart A of a bounded t-structure.

• A stability function: Zslope : N(C) → Csuch that
Zslope(−) := −deg(−) +

√
−1rk(−).

• A stability function: Z : Λ → C

Satisfying the following properties: Satisfying the following axioms:
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(A) If 0 ̸= E ∈ Coh(C), then

Zslope(E) ∈ H ∪ R<0.

(A) If 0 ̸= E ∈ A, then Z(E) ∈ H ∪ R<0.

(B) For any 0 ̸= E ∈ Coh(C) there is a
Harder–Narasimhan filtration

0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E

such that Ei/Ei−1 is semistable withrespect to
µslope := −Re(Zslope)

Im(Zslope)
and µslope(E1) > · · · > µslope(En/En−1).

(B) For any 0 ̸= E ∈ A there is a
Harder–Narasimhan filtration withfactors which are semistable withrespect to

µ := −Re(Z)
Im(Z)
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From an example to the definition4 The results: stability conditions
The pair σ = (A, Z) is a (Bridgeland) stability condition... if it satisfies

(C) Support property (Kontsevich–Soibelman): about the existance of a specialquadratic form on Λ⊗ R.(D)–(E) Esistence of moduli spaces (Bayer–Lahoz–Macrı̀–Nuer–Perry–S.).
StabΛ(X) = set of stability conditions
Theorem (Bridgeland, BLMNPS)

StabΛ(X) is a complex manifold of dimension rk(Λ)... if StabΛ(X) ̸= ∅.
Warning:

StabΛ(X) ̸= ∅ stricking and difficult problem! Expecially when KX ≡ 0 and the dim grows.
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Case by case4 The results: stability conditions

Theorem (Beauville, Bogomolov)
Assume X smooth proj. with c1 = 0. Up to a finite étale map, X is isomorphic to a productvarieties of the following types:

• Abelian variety;
• (Product of) Calabi–Yau varieties;
• (Product of) Irreducible holomorphic symplectic manifolds.



Case by case4 The results: stability conditions
Theorem (Beauville, Bogomolov)

Assume X smooth proj. with c1 = 0. Up to a finite étale map, X is isomorphic to a productvarieties of the following types:
• Abelian variety;

• (Product of) Calabi–Yau varieties;
• (Product of) Irreducible holomorphic symplectic manifolds.

Definition
X = Cn/Λ, where Λ ⊆ Cn is rank-2nsublattice lattice + an ample polarization.

Example
X an elliptic curve. In P2

x3
0 + x3

1 + x3
2 = 0.
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Theorem (Beauville, Bogomolov)
Assume X smooth proj. with c1 = 0. Up to a finite étale map, X is isomorphic to a productvarieties of the following types:
• Abelian variety;
• (Product of) Calabi–Yau varieties;

• (Product of) Irreducible holomorphic symplectic manifolds.

Definition
X simply conn. trivial canonical bundle,
Hi(X,OX) = 0, for 0 < i < dim(X).

Example
X the quintic 3-fold.



Case by case4 The results: stability conditions
Theorem (Beauville, Bogomolov)

Assume X smooth proj. with c1 = 0. Up to a finite étale map, X is isomorphic to a productvarieties of the following types:
• Abelian variety;
• (Product of) Calabi–Yau varieties;
• (Product of) Irreducible holomorphic symplectic manifolds.

Definition
X simply connected + trivial canonicalbundle + H2(X,OX) ∼= C generated by aneverywhere non-deg. holomorphic 2-form.

Example
Hilbn(K3) = Hilbert scheme of length-n
0-dim. subschemes of a K3 surface.
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Theorem (Bayer–Macrı̀–S., Invent. Math. 2016)
If X is an abelian 3-fold, then Stab(X) ̸= ∅.

Theorem (Li, Invent. Math. 2019)
If X is a quintic 3-fold, then Stab(X) ̸= ∅.
More results:
• Additional results on abelian 3-folds by Maciocia–Piyaratne.
• More Calabi–Yau 3-folds: Bayer–Macrı̀–S., Koseki,...
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The results4 The results: stability conditions
IHS are more difficult: dim > 3 (unless X = K3 surf., studied by Bridgeland)!

Theorem (Li–Macrı̀–S.–Zhao, in progress)

Let n ≥ 2 be an integer. Let X be a very general member of one of the following families
• Abelian n-folds;
• Hilbn(A), where A is an abelian surface;
• Hilbn(K3 surface)

.

Then Stab(X) ̸= ∅.
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• Abelian n-folds;
• Hilbn(A), where A is an abelian surface;
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.

Then Stab(X) ̸= ∅.

Here, at the moment:
‘very general’=infinite dense set containing inf. many very gen. examples in class. sense.
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The results4 The results: stability conditions
IHS are more difficult: dim > 3 (unless X = K3 surf., studied by Bridgeland)!

Theorem (Li–Macrı̀–S.–Zhao, in progress)
Let n ≥ 2 be an integer. Let X be a very general member of one of the following families
• Abelian n-folds;
• Hilbn(A), where A is an abelian surface;
• Hilbn(K3 surface).

Then Stab(X) ̸= ∅.
The case of abelian n-fods answers a question of Pandharipande.



Ideas from the proof & future applicarions4 The results: stability conditions
There are two key ideas from the proof (both of them unfortunately technically difficult toimplement):

• Construct stab. cond. for special examples in the 3 cases: product of curves +equivariant geometry/homological algebra (Y. Li + Macrı̀–Mehrotra-S. + LMSZ);
• Deform t-structures and stability conditions.

Future applications:
• Use this to prove a conjecture about the topology of stability manifold of K3 surfaces(joint with Lahoz and Macrı̀));
• Construct locally complete families of HK of Hilbn(K3 surface)-type (joint with Macrı̀and Perry).
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Semiorthogonal decompositions5 Applications
Let X be a smooth projective variety(KX ̸≡ 0!).

Definition
A Semiorthogonal decomposition of Db(X)is a decomposition

Db(X) = ⟨A1, . . . ,An⟩,
where:
• Ai admissible,
• Db(X) generated by objects in Ai,
• Hom

(
Aj(>i),Ai

)
= 0.

Cubic 4-folds
Db(X) = ⟨Ku(X),OX,OX(1),OX(2)⟩.

Ku(X) is called Kuznetsov component: itbehaves like a (noncommutative) K3 surface(2-dim CY).
Enriques surfaces

X smooth projective surface H1(X,OX) = 0and 2KX ≡ 0.
Db(X) = ⟨Ku(X), L1, . . . L10⟩.
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Semiorthogonal decompositions and stability conditions5 Applications

Theorem (Bayer–Lahoz–Macrı̀-S.)
Let X be a cubic 4-fold. Then Stab(Ku(X)) ̸= ∅.

More is true:

• F(X)=Fano variety of lines on X.
Beauville–Donagi: It is a 4-dim IHS manifold with a special amplepolarization λ.

• BLMS+Zhao, Li–Pertusi–Zhao: For the special stab. cond. in thetheorem above: F(X) ∼= Mσ(X)=special moduli space of σ-stableobjects in Ku(X) (with Bayer–Macrı̀ ample polarization).The isomorphism preserve special polarizations.
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• F(X)=Fano variety of lines on X.
Beauville–Donagi: It is a 4-dim IHS manifold with a special amplepolarization λ.

• BLMS+Zhao, Li–Pertusi–Zhao: For the special stab. cond. in thetheorem above: F(X) ∼= Mσ(X)=special moduli space of σ-stableobjects in Ku(X) (with Bayer–Macrı̀ ample polarization).The isomorphism preserve special polarizations.



Semiorthogonal decompositions and stability conditions5 Applications
• Let φ : H4(X1,Z) ∼= H4(X2,Z) be a Hodge isometry preserving the special classes H2

1and H2
2 (Hi the hyperplane section).

• Up to deforming to a dense set of points in moduli, the isometry can be lifted to anequivalence Ku(X1) ∼= Ku(X2) inducing isometries
F(X1) ∼= Mσ1(X1) ∼= Mσ2(X2) ∼= F(X2)

and the comp. sends λ1 to λ2.
• Old trick: X1

∼= X2 (use sensity above + sep. of moduli of cubic 4-folds).
Then we reproved:

Torelli Theorem for cubic 4-folds (Voisin, Invent. Math., 1986)
Let X1 and X2 be cubic 4-folds. Then X1

∼= X2 iff there is a Hodge iso
H4(X1,Z) ∼= H4(X2,Z) preserving H2

i .
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