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Introduction

Proteins are linear polymers built by one or more chains of amino acids; the

structure of an amino acid is summarized in Fig. 1, where R denotes the sidechain,

a chemical group which differs in each amino acid type (there are twenty natural

amino acids). In a protein each amino acid interacts with the others and with the

solvent; this gives rise to various kinds of interactions (e.g. electrostatic, Van der

Waals, hydrophobic..) whose heterogeneity makes proteins complex systems. In

spite of this complexity proteins usually display a unique global energy minimum,

called native state, that is the three-dimensional structure in which they perform

their biological functions; this means that the structure of a protein depends only

on the amino acid sequence [1, 2], which would be predictable if the potential

of the system composed by the protein and the solvent were known. Being the

calculation of the exact potential unfeasible for experimental and computational

issues, several kinds of approximated potentials have been developed [3]; they try

to catch all the main features of the true potential depending only on a small

number of degrees of freedom. A way to build such a potential is to make use

of a statistical approach, based on the analysis of the residue contact frequencies

in experimental known structures [4]. In the last decades, the rapid advances

in sequencing technology made possible a rapid growth of the number of protein

sequences available [5], which can be grouped into families according to structural

or functional similarity. As it is explained in Chapter 1, the analysis of correlated

subsitution pattern within a protein family can give quantitative information on

the interaction energies among the amino acids, and can thus be used to build

an effective potential for a reference amino acid sequence.

In this thesis we test the effective potential obtained from this kind of anal-

ysis by carrying out Monte Carlo simulations of some proteins. The proteins we

simulate are: the Bovine Pancreatic Tripsyn Inhibitor, the Apomyoglobin, the

Staphilococcal Nuclease, and the Thioredoxin. Their structure has been exper-

imentally determined, for the first three by x-ray cristallography, while for the

Thioredoxin by NMR; they can be found in the Protein Data Bank (PDB)[6]

with code, respectively, 1BPI, 1BVC, 1STN and 1RQM[7, 8, 9, 10]. The aim
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Figure 1: Schematic rapresentation of an amino acid in a protein:

R indicates the sidechain, ϕ and ψ are the Ramachandran dihedral

angles, while ω is the peptide bond dihedral.

of this work is to find the best set of parameters from which our potential de-

pends, and to verify their portability among different systems. In addition we

carry out some folding simulations in order to see if the potential is able to pre-

dict the native structure of the proteins with the only knowledge of the amino

acid sequence. In Chapter 1 we introduce the model underlying our potential;

in Chapter 2 we present the methods adopted in the Monte Carlo simulations

and we explain how we have set some quantities which appear in the potential

basing on physical and statistical considerations; in Chapter 3 we describe the

parametrization procedure, carried out basing on the results obtained from some

simulations; in Chapter 4 we describe our preliminary study on the aggregation

of the 1BPI.
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Chapter 1

The model

The model that underlies the potential we use in our Monte Carlo simulations

has been developed in previous works [11, 12, 13]. It is based on the analysis of

residue coevolutionary data of proteins belonging to the same family.

A family is composed of proteins which show a high similarity in the amino

acid sequence, that is usually translated into a sharp similarity in the three-

dimensional structure and in the functionality. Moreover, proteins members of

the same family are regarded as descendant of a common ancestor, so the muta-

tions of the amino acid sequencies are the product of the evolutionary process.

Tipically, proteins with more than 25% identical amino acids are evolutionary

related and display the same structure. For each family, by means of a hid-

den Markov model[15], it is possible to build a Multiple Sequence Alignment

(MSA)[14], that is a table whose rows identify the protein, and the columns are

the letters corresponding to the amino acid sequence of that protein. An example

of a MSA is shown in Fig. 1.1;“-” represents the lack of an amino acid, called

“gap”: they are added during the costruction of a MSA, in order to reproduce

the deletion or the insertion of an amino acid in some sequences due to the evo-

lutionary process. Analysing a MSA it is possibile to extract the mean frequency

fi(σ) with which an amino acid of type σ is found in the site i, and the mean

Figure 1.1: Example of a Multiple Sequence Alignment composed by

six proteins. The capital letters identify the amino acid type, while

the “-” denotes the lack of an amino acid.
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frequency with which the amino acid pair (σ, τ) is found in the sites (i, j), the

fij(σ, τ).

The study of these coevolutionary data can give quantitative information

about the interaction energy between residues. The basic idea is that, within

a single family, there is a potential which produces the experimentally observed

native structure of the proteins. This potential operates in the sequences space,

and the different proteins in a family can be regarded as the result of fluctuations

in sequences space. This because proteins display the lowest energy in their

native configuration. If we knew the exact form of the potential, we could predict

the observed single-site frequencies and the pair frequencies. Actually we deal

with the inverse problem: starting from a MSA we can extract both the single-

site frequencies and the pair frequencies, and we aim to find the potential which

produces these observed data. Another point of view is that this kind of analysis

can predict the interaction energy between the sites of a MSA because if two

sites interact in favorable way, then their mutation pattern will be correlated.

Starting from the assumption that proteins are energetically highly optimized

systems (thanks to evolution), if two sites interact and one is modified, then

there will be an increase in the energy of the system, which will be compensated

by the mutation of the other site.

The input of the model is therefore a MSA of a protein family, which can

be obtained from the UniProt database[16]. Starting from a MSA the aim of the

model is to build a probability distribution for a reference amino acid sequence,

p({σi}Li=1) (where L is the number of sites and σi is the amino acid in position i),

that reproduces the empirically observed frequencies. This means that p({σi}Li=1)

has to satisfy the costraints∑
{σk}

p(σ1, σ2, ..., σL)δ(σi, A) = fi(A) ∀i, σi∑
{σk}

p(σ1, σ2, ..., σL)δ(σi, A)δ(σj, B) = fij(A,B) ∀i, j, σi, σj
(1.1)

where the summations are over all the sequences belonging to the family. By

applying the maximum-entropy principle[17], the explicit mathematical form of

p({σi}Li=1) is derived: defining the effective potential

H =
L∑
i<j

uij(σi, σj) +
L∑
i=1

µ(σi) +
L∑
i=1

[h̃i(σi)−
1

L

L∑
j=1

h̃i(σj)], (1.2)

the probability of a specific sequence in the protein family is

p({σi}Li=1) =
1

Z
e−H. (1.3)
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Z is the partition function, while uij(σ, τ), hi(σ) and µ(σ) are the Lagrange

multipliers that come from the costrained maximization. Due to the analogy

with the Boltzmann distribution, they can be regarded as effective energies. In

particular, eij(σ, τ) is the two-body interaction energy between the amino acid

σ in site i and the amino acid τ in site j, h̃i(σ) is a local one-body energy

contribution (which we call h-fields), acting on the amino acid σ in site i, and

µ(σ) is a site-indipendent energy, so we assign to it the physical meaning of the

chemical potential of the amino acid σ. Being the h-fields a one-body term, they

would reflect the presence of an external field; this is however hard to justify, so

they must be regarded as the results of the combined effect of the sorrounding

residues, meaning a many-body term. In particular, the h-fields are found to

reflect the hydrophobicity of the residues [13], which is an intrinsically many-

body term.

Operatively, the model is implemented in CoCaInE [18] (a python written

code), with which, given an amico acid sequence and the corresponding MSA, we

can extract both the two-body energies and the h-fields. We are not interested in

the chemical potentials, because they represent just an energy shift, which does

not contribute to the protein structure stability.

1.1 The potential

In order to carry out Monte Carlo simulations of the systems under investigation,

we have to translate the effective energies obtained from CoCaInE (two-body and

h-fields) to a potential that rules the dynamics. To do this we define a potential

of the form

U = U2b + Udih + Uhf , (1.4)

where U2b is the two-body interaction term between the amino acids, Udih is

the potential acting on the Ramachandran dihedrals, obtained indipendently of

the alignment, and Uhf is a one-body potential that reflects the presence of the

h-fields.

1.1.1 Two-body potential

The two-body term of the potential (1.4) is

U2b =
L∑
i=1

L∑
j=i+1

NiNjeij, (1.5)

where i and j are amino acid indexes, L is the protein length in residues, Ni and

Nj are the number of atoms (not belonging to the backbone) in the respective
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Figure 1.2: Schematic representation of two possible choice of thes

two-body potential for a generic amino acid pairs (i, j). On the left

the single square well, on the right the double square well.

amino acids, and eij is the matrix element of this pair, which can be either a

square well or a double square well; specifically

eij(r) =


+∞ if r < rhc

Mij if rhc < r < rc

0 if r > rc

(1.6)

or

eij(r) =


+∞ if r < rhc

Mij if rhc < r < r0

Mij/2 if r0 < r < rc

0 if r > rc

(1.7)

where rhc is the hardcore distance, set to 2 Å, r0 is set to 2.5 Å, and rc is the

contact radius. A schematic representation of the two-body potential (fixed an

amino acid pair (i, j)) is shown in Fig 1.2. This term of the potential acts on each

pair of atoms not belonging to the backbone, but the interaction energies are the

same for each atom pair belonging to the same amino acid pair. The effective

energies obtained by means of a coevolutionary analysis are in fact defined over

the amino acid pairs, but we want to build an all atom model; the simplest way

to do this is defining the interactions as described above. The choice between the

two alternative forms of the well is one of the goals of the parametrization of the

potential (1.4), as it is the choice of rc value. The well depths Mij are obtained

starting from the uij that come from CoCaInE, and then applying the method

described in Chapter 2.
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Figure 1.3: Example of an α−helix (left) and of a β−sheet (right).

1.1.2 Dihedrals potential

The potential acting on Ramachandran dihedrals is

Udih = eα

L∑
i=1

U i
α + eβ

L∑
i=1

U i
β

U i
α = piα(N (φ0α, σφα) +N (ψ0α, σψα))

U i
β = piβ(N (φ0β, σφβ) +N (ψ0β, σψβ))

(1.8)

N (x, σx) is the normal distribution centered in x with standard deviation σx, eα
and eβ are the depth of the gaussians which stabilize respectively the α−helixes

and the β−sheets (an example of these secondary structures is shown in Fig.

1.3), while piα and piβ are the probabilities to find the i−th amino acid in an

α−helix or β−sheet conformation1. A schematic representation of the dihedral

potential acting on a generic amino acid is shown in Fig. 1.4. This potential

acts to stabilize the secondary structures of a protein (α−helixes and β−sheets),

whose presence depends on the dihedrals values. Therefore we have a term for

each dihedral angle (ϕ and ψ), and for each kind of secondary structure. The

values of the quantities that appear in Eq.(1.8) are chosen following the methods

described in Chapter 2.

1.1.3 h-fields potential

The potential which takes into account the h-fields is

Uhf =
1

α

L∑
i=1

Nihi · ni(x), (1.9)

1The meaning of these probabilities is explained in Section 2.1.2.
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Figure 1.4: Schematic representation of the dihedral potential (en-

ergy versus Ramachandran dihedral angle) for a generic amino acid,

ε indicates the depth of the Gaussian.

where α is a number that sets the relative importance of this term with respect

to the total potential, Ni is the number of atoms in the amino acid i, ni(x)

is the number of atomic contacts made by the i−th amino acid in the protein

conformation x, and hi is the effective energy associate to the i−th amino acid.

As for the two-body term, hi is the same for each atom in the amino acid i. The

value of the constant α will be set during the optimization of the potential, while

hi is obtained starting from the CoCaInE value h̃i, and then applying the method

described in Chapter 2. Being the h-fields related to the hydrophobicity of the

amino acids, the functional form of this potential has been chosen in such a way

that, if an amino acid has a negative value of hi, then it will try to maximize its

atomic contacts. The global effect is therefore to bury the hydrophobic residues

and to expose the hydrophilic ones, as the hydrophobic interaction does.
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Chapter 2

Methods and implementation

2.1 A priori chosen quantities

A very large part of the present thesis is devoted to the selection of the values

of the variables that appear in the potential (1.4). Some of these parameters are

chosen a priori, with a choice based on physical considerations and on the infor-

mation that comes from the structures of some known proteins. Other variables

have to be chosen by carrying out simulations and inspecting useful observables.

Moreover, some of these parameters (the two-body interaction matrix M , the

propensities pα and pβ, and the h-fields h) are of course system dependent, while

the others have in principle universal validity. In this section we describe how

we have set the values of all the quantities which are chosen a priori. Moreover,

since one of the goals of this work is to predict the native structure of a protein

knowing only the amino acid sequence, all the system-dependent quantities have

to be derived from this only knowledge.

2.1.1 Two-body interaction matrix M

Given the protein under investigation, we can obtain the MSA of the family

to which it belongs, and its amino acid sequence. With these inputs we are

able to run CoCaInE. If L is the length of the alignment (i.e. the number of

columns in the MSA) and q is the number of types of amino acids1, we obtain the

four-dimensional two-body energy tensor U, whose elements are uij(σ, τ) (with

i, j = 1..L and σ, τ = 1..q). As described in Chapter 1, they represent the effective

two-body interaction energies between the amino acids of the type σ and τ found

1In a MSA we have q = 21, because there are the natural 20 residues types plus the gap,
that represents the absence of an amino acid in a specific site (column) of a MSA. The presence
of the gap is also the reason why L does not correspond with the length of the protein.
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respectively in the site i and j of the MSA. However, it is not enough to select the

elements uij(σi, σj) corresponding to the reference protein to obtain the two-body

energies of interest to us; before of that we have to modify them, for the reasons

and by applying the methods described below.

Contact filtering

The energy values uij(σ, τ) are obtained from the inversion of a correlation matrix[11];

in particular

uij(σ, τ) = C−1
ij (σ, τ), (2.1)

where

Cij(σ, τ) = fij(σ, τ)− fi(σ)fj(τ), (2.2)

where fij and fk are the frequencies defined in Chapter 1. Being the statistics

limited, the uij are subject to errors; specifically some energies are large while

they would be small if calculated with an infinite statistics. We therefore have to

implement a filter on the contacts energies to minimize the statistical error.

To do this we follow the approach developed by Morcos and co-workers [11].

A measure of the correlation between two sites i and j of a given MSA is the

mutual information (MI) between i and j, defined as

MIij =
∑
σ,τ

fij(σ, τ)ln
fij(σ, τ)

fi(σ)fj(τ)
, (2.3)

which equals zero if and only if i−th and j−th sites are uncorrelated and it is

positive otherwise. To retain only the contribute to the MI which comes from the

direct coupling alone, we introduce for each column pair (i, j) an isolated two-site

model, and we define the direct information (DI) between i and j [19] as

DIij =
∑
σ,τ

P
(dir)
ij (σ, τ)ln

P
(dir)
ij (σ, τ)

fi(σ)fj(τ)
, (2.4)

where P
(dir)
ij (σ, τ) is defined by the equations

P
(dir)
ij (σ, τ) =

1

Zij
exp(uij(σ, τ) + ĥi(σ) + ĥj(τ))

fi(σ) =
∑
τ

P
(dir)
ij (σ, τ)

fj(τ) =
∑
σ

P
(dir)
ij (σ, τ)

(2.5)

In Eqs. (2.5) uij(σ, τ) are the elements of the tensor U which comes from Co-

CaInE, while the ĥi are implicitly defined here as auxiliary fields by compatibility
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with the observed single-site frequencies2. The principle under this filter is that

if the mutation pattern of two sites i and j is correlated even in a toy model in

which we do not consider all the other sites (big DIij), then we can assert that

i and j truly interact; conversely, if they present a small DIij value it means

that the two sites are weakly interacting, and if the statistical had been ideal, we

would have found uij ' 0.

Operatively, we wrote a python code that, for each pair (i, j), solves the Eqs.

(2.5) (in which the variables are the arrays ĥi and ĥj) and calculates DIij. This

means solving a system of 2q paired equations for each pair of sites. In doing

this we have to take into account that not all of the equations are independent,

because all the variables have to satisfy the normalization conditions (the second

and the third of Eqs. (2.5)), so there are 2q−2 indipendent equations; this means

that we have to fix the values of two variables. We choose

ĥi(q) = ĥj(q) = 0 ∀i, j = 1..L, (2.6)

where q = 21 (that corresponds to the residue gap). Once the equations are

solved we can compute the DI matrix by means of Eq. (2.4), and we redefine the

interaction matrix uij(σi, σj) as

uij(σi, σj) =

{
uij(σi, σj) if DIij > DI0

0 if DIij < DI0
(2.7)

where the threshold value of the direct information DI0 is one of the model’s

parameters, and it is chosen by carrying out some simulation (see Chapter 3).

Normalization of the residue-residue energies

Once the contacts are filtered, we have to take into account that the effective

energies which come from CoCaInE are multiplied by an immaterial constant,

which is different from system to system3 We therefore normalize the energy

matrix over the standard deviation of its elements values; this is done to fix the

magnitude of the energies that come from CoCaInE to 1 indipendently from the

system under investigation. In this way we make comparable the parameters of

the potential (1.4) which fix the relative weight of the various terms (eα, eβ and

α) among the different systems. We choose to divide over the standard deviation

and not over the mean because the latter fluctuates around zero, so the division

would be a very noisy operation.

2Note that the ĥ are not related to the h̃ that come from CoCaInE.
3This because the effective energies basically come from a count in the MSA.
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Finally we have to face the problem that we want to simulate an all-atom

system, but the two-body energies are defined over the residues. This means that

we have to normalize every matrix element in some way in order to split the

total residue-residue interaction among all the atoms of the two amino acids. We

choose to normalize every matrix element over the maximum number of atom

contacts that occurs in the amino acid pair (i, j) in any protein4. Operatively,

to calculate these normalizing factors, we wrote a C++ code which scans 20000

protein structures taken from the PDB; for each one we consider only atom pairs

that do not belong to the backbone (those atoms do not interact in our simu-

lations) and that are separated by at least two residues (otherwise they do not

interact in our simulations), and, during the scanning procedure, we update the

maximum value of atomic contacts for each amino acid pair. In doing this we

define a contact radius rc (which is the same of the one in Eqs. (1.6) and (1.7)),

and we consider two atoms in contact if their distance is less than rc.

Once all these operations are performed, we can finally define the interaction

matrix M , whose elements are

Mij =


uij(σi, σj)

s · cij
if DIij > DI0

0 if DIij < DI0

(2.8)

where s is the standard deviation described above and c is the maximum contacts

matrix.

2.1.2 Secondary structures propensities

In a protein each amino acid can be classified from a secondary structure point

of view: it can be in a coil, helix or sheet state. If it belongs to a coil state, it

means that the amino acid does not form any secondary structure, while helix

and sheet mean that it is part of, respectively, an α−helix or a β−sheet. Each

amino acid has a propensity to be in one of these three states, which can be

quantified as a probability to find the amino acid in the corresponding one; this

probability depends only on the amino acid sequence. For each protein we can

predict the propensities of all the amino acids starting from the only knowledge

of the amino acid sequence by means of PSIPRED[20, 21], a tool that, by means

of a two-stage neural network algorithm, quantifies the propensities of a given

amino acid sequence.

4The “correct” normalization factors, calculated over the number of contacts that occur
between the pair (i, j) in the protein under investigation, cannot be obtained without the
knowledge of the native structure.
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Dihedral type Optimal angle [deg] Standard deviation [deg]

ϕα -63 30

ϕβ -105 40

ψα -44 30

ψβ 140 40

Table 2.1: Optimal dihedral angles and standard deviations for each

dihedral type that appears in the potential (1.8)

The α and β propensities obtained from PSIPRED are directly the pα and

the pβ that appear in the dihedral potential (1.8), while we do not make use of

the coil propensity, because no potential acts to stabilize a coil state.

2.1.3 Dihedrals angles and standard deviations

The potential acting on the Ramachandran dihedrals is basically the same for

every amino acid, it consists of a sum of four normal distributions, each cen-

tered in a particular angle and with a particular variance. These angles should

be universal, meaning that each amino acid that belongs to a specific secondary

structure should have approximately the same dihedral angles, independently of

the protein to which it belongs. This because the secondary structures are local

arrangements of the amino acids in a protein, so their presence will depend from

some properties of the involved amino acids, and not from all the protein. In other

words, an α−helix conformation, for example, has basically the same properties

in every protein, so what characterizes its presence does not depend from the

system in which it is. To verify this assertion, and to find the optimal dihedrals

angles (ψ0α, ψ0β, ϕ0α, ϕ0β), we adopt the following method. Starting from the

PDB files of some known protein (1BPI, 1BVC, 1STN, 1FMK[22]) we calculate

both the Ramachandran dihedral angles of each amino acid and the secondary

structures propensities. The propensities are calculated as described above, while

the dihedral angles are computed by means of gmx angle, a GROMACS[23] tool.

At this stage we can associate to each amino acid of the considered proteins the

propensities (piα, piβ) and the dihedral values (ψi, φi); then we make a scatterplot

of the propensities versus the dihedrals for each of the four possible combina-

tions (as shown in Fig. 2.1 and 2.2), and therefore choose the best values for

the parameters ψ0α, ψ0β, ϕ0α, ϕ0β and their standard deviations. The basic idea

underlying the procedure is that our potential has to facilitate the presence of

a secondary structure for which an amino acid has a high propensity; for each

15



(a) α propensity for ϕ angle

(b) α propensity for ψ angle

Figure 2.1: α propensities versus the ϕ dihedral angles (a) and ψ

dihedral angles (b) for the residues of 1BPI, 1BVC, 1STN, 1FMK.

The solid blue line indicates the optimal dihedral value (ϕ0α and ψ0α),

while the dashed grey lines define the region within one σ away from

the optimal angle.
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(a) β propensity for ϕ angle

(b) β propensity for ψ angle

Figure 2.2: β propensities versus the ϕ dihedral angles (a) and ψ

dihedral angles (b) for the residues of 1BPI, 1BVC, 1STN, 1FMK.

The solid blue line indicates the optimal dihedral value (ϕ0β and ψ0β),

while the dashed grey lines define the region within one σ away from

the optimal angle.
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angle we then choose a value that fits the dihedral values of the amino acids with

high propensity, and a standard deviation that allows all the amino acids with

high propensity to have a significant value of the dihedral potential. By looking

at Fig. 2.1 and 2.2 we can choose the values beared in Table 2.1.

2.1.4 h-fields

The values of the h-fields are obtained starting from the CoCaInE h-fields output

(the arrays h̃i), and then performing a normalization similar to that carried out

for the two-body matrix. First we normalize over the two-body energy standard

deviation s (in this way we measure the h-fields effective energies with respect to

the two-body energies); then we rescale every element of the h-fields array using

the maximum number of contacts done by the corresponding amino acid in any

protein. To perform this normalization we follow the same procedure used for the

two-body term, and the code is a variation of the previous one. This operation

has a double effect: first it takes into account that we are dealing with an all-atom

model (as in the two-body term); secondly it normalizes the energies in such a

way that when we multiply h̃i by the number of contacts ni in the potential (1.9),

we obtain the original effective energy reweighted by the fraction of contacts that

the i−th amino acid can make. Summing up we have

hi =
h̃i
s · ci

, (2.9)

where ci is the maximum contact array.

2.2 Overview of the Monte Carlo method

All the simulations performed in this thesis are carried out by means of a Monte

Carlo (MC) sampling. In a MC simulation the system under investigation follows

a fictitius dynamics, where the conformational changes are not driven by physical

forces, but by a set of implemented moves, whose only aim is to make the system

explore the conformational space according to some probability distribution, in

our case a Boltzmann distribution. At each step of the simulation the system

tries to jump from an initial configuration µ to a final one ν, and a move can be

either accepted or rejected. The transition rate from µ to ν is what actually rules

the dynamics, and is chosen as

w(µ→ ν) = w0Pap(µ→ ν)A(µ→ ν), (2.10)

where w0 is a constant that sets the time scale of the jumps, Pap(µ → ν) is the

a priori probability to jump from the conformation µ to ν and A(µ → ν) is the
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Figure 2.3: Schematic representation of the parallel tempering be-

haviour for a system composed of four replicas.

acceptance rate of the move which leads from µ to ν. To reproduce a Boltzmann

distribution we have to satisfy several conditions. First, the a priori probabilities

have to be chosen in such a way that the rates w satisfy the detailed balance

principle, which states

w(µ→ ν)w(ν → η)w(η → µ) = w(µ→ η)w(η → ν)w(ν → µ) ∀µ, ν, η. (2.11)

There are several possible choices of Pap that satisfy the condition (2.11), for

example one is to choose Pap(µ → ν) = f(|µ − ν|), where f is a function which

depends only on some distance between the two conformations µ and ν. Secondly,

the acceptance rate has to be [24]

A(µ→ ν) = min[1, e−
Uµ−Uν

T ], (2.12)

where Uα is the energy of the configuration α and T is the temperature of the

system 5. If conditions (2.11) and (2.12) are satisfied, and if the sampling is

ergodic, then, at equilibrium, the probability to find the system in a conformation

~x is given by the Boltzmann distribution

p(~x) =
1

Z
e−

U(~x)
T , (2.13)

5We fix kb = 1, that means we use the same (arbitrary) measurements units for the energies
and the temperatures.
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where Z is the (unknown) partition function of the system. This means that, at

equilibrium, according to the ergodic theorem, the thermal average of an observ-

able 〈O〉 can be calculated as an aritmetic “time” average over all the conforma-

tions visited during a simulation, so

〈O〉 =
∑
{~x}

O(~x)p(~x) =
1

N

N∑
i=1

O(~xi), (2.14)

where {~x} is the ensamble of every possible conformation ~x, N is the number

of Monte Carlo steps and ~xi is the conformation visited at the i−th step. The

power of the Monte Carlo method relies on the fact that, if one can find a wise

way to sample the phase space of the system, then it is possible to obtain all

the equilibrium properties of the system without any knowledge of its partition

function Z (whose calculation is unfeasible for every non-trivial system).

An effective sampling of the phase space is the key point for a good MC

simulation, which is translated into a wise choice of the allowed moves that lead

the system from an initial conformation µ to a final one ν. As said before, the

sampling has to be ergodic, meaning that the system can explore the entire con-

formational space without any dependence on the initial state. Defining two

conformations µ and ν in contact if there is a single move which leads from µ

to ν, the set of moves defines a contact matrix M(µ, ν) between each possible

configuration pair (µ, ν), whose elements are 1 if there is a contact, 0 otherwise.

The ergodicity is translated in the requirement that the matrix M cannot be

decomposed in blocks, otherwise the system cannot escape the block from where

it starts, thus cannot reach the equilibrium state. Moreover, the set of moves

has to make the sampling efficient: on one hand these moves have to drive the

system to not too different consecutive conformations in order to keep the ac-

ceptance rate (2.12) high, on the other two consecutive conformation cannot be

too similar, because the exploration of entire configuration space would require

a huge computational time. Moreover, even if the set of moves is optimal, the

system will tend to get trapped in local minima of the free energy, reducing the

efficiency of the sampling.

A way to overcome this problem is to adopt a Parallel Tempering technique,

in which Nr identical replicas of the system under investigation are simulated,

each at a different temperature Ti. The simulations are carried out indipen-

dently, except for the fact that every ns step an exchange between two replicas

is attempted: this exchange can be regarded as a Monte Carlo move, and it is

driven by the rate

w(m↔ n) = min[1, e−(βm−βn)(Un−Um)]. (2.15)
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The idea underlying this procedure is that high replicas (which are simulated

at high temperatures) can diffuse freely in the phase space, because their free

energy profile is basically flat, so if a low replica gets trapped in a local minimum

it can escape by raising its temperature. As before, the set of temperatures and

the pairs involved in an exchange have to be chosen in such a way to keep high

the rate (2.15): to this aim the exchange has to be attempted between replicas

in which Un is a typical energy at Tm and vice versa. Therefore the exchange

is usually attempted between subsequent replicas, and the set of temperatures

is chosen uneven: low temperatures are very close to each other, because here

the energy fluctuations are small, while higher ones are more separated, being

the fluctuations bigger. A schematic representation of the Parallel Tempering

procedure is shown in Fig. 2.3.
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Chapter 3

Results

3.1 Parameters optimization

In this section we describe how we have set the values of the parameters that are

not a priori fixed. We set their values by carrying out Monte Carlo simulations

of known proteins and selecting the values that best reproduce the observables

that well-describe the experimental native structures of the proteins. These pa-

rameters are:

• the constant which sets the h-fields relative weight α (Eq. 1.9);

• the dihedral potential depths eα and eβ (Eq. 1.8);

• the contact radius rc (Eq. 1.5);

• the presence of a splice in the two-body potential well;

• the direct information threshold DI0 (Eq. 2.7).

An ideal parametrization should be done by binning in an adeguately way each

parameter, and by carrying out simulations using all the possible combinations of

the parameters. Alternatively, if one could define a particular order parameter,

with which quantify the fitness of a simulation, it would be possible to apply an

automatic optimization algorithm that, moving in the parameters space, finds the

set that maximizes this order parameter. Our parametrization should be made

for at least two proteins (one which presents only α-helix and one which presents

only β-sheets as secondary structures) to verify the universality of the best set of

parameters. Unfortunately we do not have the computational power to apply the

first method, nor a single quantity that could be associated to an order parameter

to apply the second one. We choose then to perform a complete parametrization
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on one protein (the 1BPI, which is the smaller one in our set) and then verify the

fitness of the best parameter set on the others.

The variable we monitor to quantify the fitness of a simulation is the root

mean square deviation (RMSD) of the atomic position of the Cα of the pro-

tein with respect to their experimental native positions. The RMSD is always

calculated after having performed a rototranslation of the conformation under in-

vestigation onto its reference structure. The RMSD of the vector v with respect

to w is thus defined as

RMSD(v,w) = min
{rt}

√√√√ 1

N

N∑
i=1

||vi − wi||2, (3.1)

where {rt} is the set of rototranslations performed to align the structures, and N

is the length of the vector (in our case the protein length in residues). Starting

from the RMSD of a single simulation frame, calculated by means of the GRO-

MACS tool g rms[23],we can build the mean RMSD (RMSD) as a function of the

temperature and we can also make a scatterplot in which we draw the RMSD of

a single frame versus the energy of the corresponding conformation; these are the

quantities we actually consider. The former shows the global trend of the RMSD

and allows the identification of a folding temperature as well as the quality of the

folded conformations, while the latter gives some information about the shape

of the energy profile. In the ideal case we would see a very low value of the

RMSD in correspondence of the lowest temperatures, and a scatterplot in which

the RMSD minimum corresponds to the energy minimum, and this point (which

represents the native structure) would be separated by the others1. In addition

to the RMSD we always look at the Monte Carlo trajectory to have a global idea

of the structure of the simulated proteins, which cannot be completely caught by

the RMSD.

The technical parameters (e.g. the number of Monte Carlo steps) used in all

the simulations are chosen as described in Appendix A. Except where otherwise

specified the starting conformation is the experimental native state of the protein

under investigation, taken from the PDB, and the starting point for the calcula-

tion of all the quantities is the Monte Carlo step 2 · 107. This is a point at which

we have verified that the systems seem to have equilibrated: by inspecting the

energy shape of some systems (see Fig. A.2) we can see how the relative energy

change between the step 2 · 107 and the end of the simulations is very small com-

pared to the total energy change. Moreover, we calculate some quantities varying

1The proteins we simulate experimentally show a unique native conformation, which is
energetically separated by the others by a free energy barrier
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the ending point of the trajectory, and we see how the results are basically the

same (see Fig. A.3).

3.1.1 Parametrization of 1BPI

The parametrization of the 1BPI is carried out under the assumption that each

parameter is independent from the others, so the scheme we adopt is the following:

we scan a parameter at time, keeping fixed the others, and we find its best value.

This is used in the scan of the next parameter, and so on until we have found all

the values. The parameters are scanned in the same order in which they are listed

above. Finally we run a longer simulation (ns = 5 · 108) in which the starting

conformation is an unfolded one, in order to verify if it is true and within which

limits our model can predict the native structure without any knowledge on it.

The DI threshold is found to be a critical parameter, in the sense that varying

sligthly its value changes significantly the simulations results. For this reason,

before the complete parametrization we carry out some preliminary simulations in

order to find a reasonable value of DI0, but the real scan of this parameter is made

at the end. We have chosen this approach instead of carrying out the DI scan

directy at the beginning mainly because in this way we can have a double check

of the threshold best value, which partially allows to verify the real independence

of the parameters, and makes us sure of the choice of this critical parameter.

Scan of α

The first parameter we optimize is the h-fields constant α. Since we have to

use reliable values also for the other parameters, we carry out some preliminar

simulations, and, by the analysis based on the RMSD described above, we find

that a plausible set of parameters is:

• 0.1 < α < 0.5;

• eα = eβ = 80;

• rc = 3.0 Å without splice;

• DI0 = 0.007.

We then run some simulations using these parameters and varying α between 0.1,

0.125, 0.15, 0.2, 0.3, 0.5. For each one we carry out the analysis based on the

RMSD calculation, and we obtain the results shown in Fig. 3.1. By inspecting

Fig. 3.1, we can see how α = 0.125 is the value which shows the best RMSD at

low temperatures, and best describes the minimum energy conformation as the

native one. We therefore choose as the best α = 0.125.

24



(a)

(b)

Figure 3.1: 1BPI α parametrization results: (a) RMSD in function of

the temperature, (b) RMSD versus the energy of the corresponding

conformation. The scan is performed for α = 0.1, 0.125,0.15, 0.2,

0.3, 0.5, while the other parameters are fixed to e = 80, rc = 3.0 Å,

DI0 = 0.007. The red continue line indicates the best α value, which

is α = 0.125.
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Scan of eα and eβ

The dihedral energy parametrization is performed using:

• α = 0.125;

• 40 < eα, eβ < 120;

• rc = 3.0 Å without splice;

• DI0 = 0.007.

We vary eα and eβ between 40, 60, 70, 80, 90, 100, 120; from the results shown

in Fig. 3.2 we can see how eα = eβ = 80 best reproduce the experimental native

configuration at low temperatures and low energies. Note that in principle eα
and eβ could be different, but the global structure of this protein is due to the

β−sheets, so this parametrization is mainly devoted to eβ (we do a complementary

parametrization of eα for the 1BVC, which contains only α−helixes).

Scan of rc

The contact radius scan is performed using:

• α = 0.125;

• eα = eβ = 80;

• 3.0 Å < rc < 4.5 Å;

• DI0 = 0.007.

We vary rc between 3.0, 3.5, 4.0, 4.5 Å; since from preliminary simulations it

is found that the presence of a splice does not modify in a significant way the

results, we scan this parameter without it, and at the end, chosen the best value,

we perform an additional simulation in which we add a splice in the two-body

potential well. From the results shown in Fig. 3.3 we see how rc = 4.0 Å, despite

the presence of a metastable state with low energy and high RMSD, is the radius

for which the minimum energy values is truly associated to the minimum RMSD.

Furthermore, by looking at Fig. 3.4, we see that the presence of a splice is

substantially inconsequential, so we demand the definitive choice to a simulation

of the 1STN.
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(a)

(b)

Figure 3.2: 1BPI dihedral energy parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for the energies

120, 100, 90, 80, 70, 60, 40, while the other parameters are fixed to

α = 0.125, rc = 3.0 Å, DI0 = 0.007. The red continue line indicates

the best e value, which is e = 80.
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(a)

(b)

Figure 3.3: 1BPI contact radius parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for rc =3.0, 3.5,

4.0, 4.5 Å, while the other parameters are fixed to α = 0.125, e = 80,

DI0 = 0.007. The red continue line indicates the best rc value, which

is rc = 4.0 Å.
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(a)

(b)

Figure 3.4: 1BPI splice parametrization results: (a) RMSD in function

of the temperature, (b) RMSD versus the energy of the corresponding

conformation. The simulations are performed using α = 0.125, e = 80,

DI0 = 0.007 and rc = 4.0 Å with and without a splice. The results

are subtantially equivalent, so we do not choose a best simulation.
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(a)

(b)

Figure 3.5: 1BPI DI threshold parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for DI0 = 0.005,

0.006, 0.007, 0.0075, 0.008, 0.0085, 0.009, 0.01, while the other param-

eters are fixed to α = 0.125, e = 80, rc = 4.0 Å with splice. The red

continue line indicates the best DI0 value, which is DI0 = 0.007.
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Scan of DI0

Finally, the DI0 scan is carried out with the set:

• α = 0.125;

• eα = eβ = 80;

• rc = 4.0 Å with splice;

• 0.005 < DI0 < 0.01.

We vary DI0 between 0.005, 0.006, 0.007, 0.0075, 0.008, 0.0085, 0.009, 0.01. The

results are shown in Fig. 3.5. As for the radius, in spite of the presence of a

metastable state, DI0 = 0.007 best reproduces the experimental native state at

low energies; therefore we keep it as the best value, which is also the best found

by preliminar simulations.

Validation of conformational sampling

In the ideal case of infinite long simulations a simulation that starts from an

unfolded conformation would be totally equivalent to a simulation which starts

from the native configuration. Since our simulations are finite, as final test, we

perform a folding of the 1BPI with the optimal parameter set (α = 0.125, eα =

eβ = 80, rc = 4.0 Å with splice,DI0 = 0.007). We implement the same analysis

based on the RMSD calculation and we obtain the results shown in Fig. 3.6 (in

which are also represented the results of the “native” simulation). The shape of

the RMSD is different at low temperatures (Fig. (a)), this probably means that

the true equilibrium configuration is something in the middle of the two curves.

The analysis of the second plot (Fig. (b)) provides some information: first, the

fact that the energy of the minimum energy conformation is approximately the

same in both cases tells us that our potential has a global minimum around

the native state; furthermore the fact that there are many conformations with

low energies which are not visited during the “native” simulations suggests that

this minimum is narrowed. In addition to this, we have a confirmation that our

potential can predict the native state of the 1BPI within a RMSD of about 5.0 Å,

with the only knowledge of the amino acid sequence.

3.1.2 Parametrization of 1BVC, 1STN and 1RQM

The other systems we parametrize are the 1STN, the 1BVC and the 1RQM. As

described above, we do not have enough computational power to carry out a
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(a)

(b)

Figure 3.6: Red (continue line) results of the 1BPI starting from an

unfolded conformation, black (dashed line) results of the same simu-

lation started from the experimental native conformation. (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The parameters of the simulation are

fixed to α = 0.125, e = 80, DI0 = 0.007, rc = 4.0 Å with splice
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Figure 3.7: TPfraction in function of the number of predicted pairs

sorted by decreasing DI for 1BPI, 1STN, 1BVC and 1RQM.

complete scan of all the parameter for all the proteins, so what we do is check if

the optimal set of parameters found with the 1BPI works fine for these proteins

too. Among the others the direct information threshold is a particular quantity,

because while α, eα, eβ and rc have a direct physical meaning and can thus be

directly trasferred through the systems, DI0 is not so easily interpretable. We

therefore define two variables, associated to the DI, which could supply a criterion

to set the DI threshold for all the proteins. The first is the mean number of

residue-residue contacts per amino acid, k, which is defined as

k =
n2b

L
, (3.2)

where n2b is the number of elements of the two-body interaction matrix different

from zero (set by the value of DI0) and L is the protein length. The second is

the True Positive fraction (TPfraction)[11]. It is calculated as follows: first we

identify the native contacts of the given protein (this can be easily achieved by

means of CoCaInE), then we sort the amino acid pairs by decreasing order of

DI, and we assign a flag to each pair, which tells us if that pair is a “native”

one or not; finally we can calculate the fraction of native pairs as a function of

the number of predicted pairs (sorted by decreasing DI). To each value of DI0
corresponds thus a TPfraction value. The idea beyond this quantity is that in

the ideal case the contacts which show the highest DI values are also the native
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contacts, so this variable can give some information about the fitness of our DI

filter. We thus use it as a proxy to find good models instead of performing the

full simulation. In Fig. 3.7 it is shown the TPfraction for each of the protein

simulated during the parametrization.

For the 1BPI, to DI0 = 0.007 corresponds k = 3.4 and TPfraction = 0.48,

so in the simulations of the other proteins we choose a DI0 starting value which

produces comparables k and TPfraction. However we perform a DI scan for each

protein, in order to check if at least one of these variables can be used to guess a

priori the threshold value.

1BVC

For the 1BVC we vary DI0 between 0.01, 0.0102, 0.0106, 0.011, 0.012, and we

obtain the results shown in Fig. 3.8. We identify as the best DI0 = 0.0106. As

described above, being this a protein which presents only α−helixes, we repeat

the dihedral energy eα scan, varying it between 70, 80, 90, and we obtain the

results shown in Fig. 3.9. While eα = 90 gives worse results, eα = 70 and eα = 80

are essentially equivalent, so we retain the value eα = 80.

1STN

For the 1STN we vary DI0 between 0.005, 0.006, 0.007, 0.0075, 0.008, 0.0085,

0.009, 0.01, and we obtain the results shown in Fig. 3.10. We identify as the best

DI0 = 0.0075. In addition we carry out a simulation in which we set rc = 4.0 Å

without a splice, to decide whether or not the double well is better than the single

one; as shown in Fig. 3.11, while the RMSD shape is basically the same, by look-

ing at the plot (b) we can see how, without a splice, there are conformations which

present RMSD ' 0.5 with an energy lower than the minimum RMSD ones. This

shows an incorrect behaviour of the model, so we keep a double square well. Fi-

nally we perform a folding simulation, to have an additional test of our potential.

The results are shown in Fig. 3.12. The results of the “native” simulation are not

directly comparable to the previous ones, because in this simulation we improved

MonteGrappa by adding some features concerning the rotamers, which modify

the results2. By looking at Fig. 3.12 we can see how, as it happens for the 1BPI

(Fig. 3.6), the RMSD is higher for the folding simulation than the native one, as

it is the RMSD of the folding conformations for the same energy. Moreover, by

inspecting the Monte Carlo trajectories, we see that while the α−helixes are well

shaped, the β−sheets are not; this is true also for the 1BPI, so we definitively

2We improved the way MonteGrappa handles the rotamers for the amino acids which contain
aromatic rings.
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(a)

(b)

Figure 3.8: 1BVC DI threshold parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for DI0 = 0.01,

0.0102, 0.0106, 0.011, 0.012, while the other parameters are fixed to

α = 0.125, e = 80, rc = 4.0 Å with splice. The red continue line

indicates the best DI0 value, which is DI0 = 0.0106.
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(a)

(b)

Figure 3.9: 1BVC dihedral energy parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for e = 70, 80,

90, while the other parameters are fixed to α = 0.125, rc = 4.0 Å with

splice, DI0 = 0.0106. The red continue line indicates the chosen e

value, which is e = 80.
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(a)

(b)

Figure 3.10: 1STN DI threshold parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for DI0 = 0.005,

0.006, 0.007, 0.0075, 0.008, 0.0085, 0.009, 0.01, while the other param-

eters are fixed to α = 0.125, e = 80, rc = 4.0 Å with splice. The red

continue line indicates the best DI0 value, which is DI0 = 0.0075.
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(a)

(b)

Figure 3.11: 1STN splice results: (a) RMSD in function of the temper-

ature, (b) RMSD versus the energy of the corresponding conformation.

The parameters are fixed to α = 0.125, e = 80, DI0 = 0.0075 and

rc = 4.0 Å with and without splice. The red continue line indicates

the best result, which is the rpesence of a splice.
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(a)

(b)

Figure 3.12: Red (continue line) results of the 1STN starting from an

unfolded conformation, black (dashed line) results of the same simu-

lation started from the experimental native conformation. (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The parameters of the simulation are

fixed to α = 0.125, e = 80, DI0 = 0.0075, rc = 4.0 Å with splice
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Protein DI0 TPfraction k

1BPI 0.007 0.48 3.4

1STN 0.0075 0.45 4.0

1BVC 0.0106 0.49 3.6

1RQM 0.007 0.57 2.3

Table 3.1: Direct information best value for each protein, the corre-

sponding TPfraction and mean number of contacts per residue k.

realize that we must improve our potential in order to enhance the formation of

the β−sheets.

1RQM

The last system we consider is the 1RQM, another protein which presents both

α and β structures. For this protein we vary DI0 between 0.005, 0.006, 0.0065,

0.007, 0.0075, 0.008, and we choose as the best threshold DI0 = 0.007 (see Fig.

3.13).

As exposed above, by means of these results we have to check if we are able to

find a portable criterion for the DI threshold choice. In Table 3.1 are reported the

k and TPfraction values corresponding to the best DI0 values; by inspecting the

quantities we can see how, with the exception of the 1RQM, the TPrate should be

set around 0.5, while k around 3.7. However, considering the variability of these

quantities among the systems, we do not have a solid criterion to set a priori the

DI0 value. Actually this is a limit of our model; we try therefore to go beyond

the DI filter, implementing the strategies described in the next section.

3.2 Improvements of the model

The results obtained in the previous section indicate that the use of a coevolu-

tionary potential is able to catch the main features of a protein structure, but

also indicate that the form of the potential can be improved. We therefore try

to improve our model first adding a term to the potential (1.4) which takes into

account the effect of the hydrogen bonds; secondly we implement various filters

on the two-body energies which could sobstitute the one based on the DI. These

filters are tested on the 1BPI.
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(a)

(b)

Figure 3.13: 1RQM DI threshold parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for DI0 = 0.005,

0.006, 0.0065, 0.007, 0.0075, 0.008, while the other parameters are

fixed to α = 0.125, e = 80, rc = 4.0 Å with splice. The red continue

line indicates the best DI0 value, which is DI0 = 0.007.

41



Figure 3.14: Representation of a hydrogen bond in water.

3.2.1 Hydrogen bonds

The secondary structures of a protein are stabilized also by the hydrogen bonds

(HBs). These are bonds that occur between an hydrogen (H) bounded to a highly

electronegative atom (such as nitrogen (N) or oxygen (O)) and another highly

electronegative atom. The H atom has a partial positive charge (because it is

bounded), while the other involved atom has a partial negative charge (because

it is highly electronegative); if they come close to each other they experience

an electrostatic attraction. Being an electrostatic interaction, the energy of this

bond is higher than the one of a Van der Waals interaction, but lower than the

one of a covalent bond. Such bonds occurs for example in water (Fig. 3.14). In a

protein, the hydrogen bonds can arise between the H bonded to the backbone N

atom and the O of the backbone carbonilic group of another amino acid. Thanks

to their high associated energy, they play an important role in the stabilization

of a protein (and in particular in the stabilization of the β−structures).

Up to this point we did not consider explicitely the HBs because they play

basically the same role of the potential term which acts on the Ramachandran

dihedrals but, according to the results of the folding simulations, we need an

additional term to stabilize mainly the β−sheets. The HBs are a two-body inter-

action, but it is important to note that they cannot be automatically caught by

a coevolutionary potential, as it is ours, where the two-body interaction energies

are calculated basing on the analysis of the correlation patterns in a MSA. This

because each amino acid is identical to the others from the HBs point of view:

they all have the H and the O in the same position, so when in a site an amino

acid is subsituted by another one, the H and the O do not change, therefore the

associated change in energy is not due to the formation or to the break of a HB.

This means that the correlation pattern would be the same even if all the HBs

were neglected, so would be the two-body energies.
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(a)

(b)

Figure 3.15: 1BPI hydrogen bonds energy parametrization results: (a)

RMSD in function of the temperature, (b) RMSD versus the energy of

the corresponding conformation. The scan is performed for ehb = 0.25,

0.3, 0.4, 0.5, 0.75, while the other parameters are fixed to α = 0.125,

eα = eβ = 80, DI0 = 0.007, rc = 4.0 with splice.
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(a)

(b)

Figure 3.16: 1BVC dihedral energy energy parametrization results: (a)

RMSD in function of the temperature, (b) RMSD versus the energy of

the corresponding conformation. The scan is performed for e = 80, 50,

40, 30, 20 and 10, while the other parameters are fixed to α = 0.125,

DI0 = 0.0106, rc = 4.0 with splice and ehb = 0.4.
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(a)

(b)

Figure 3.17: Red (continue line) results of the 1BPI starting from an

unfolded conformation with the HBs term, black (dashed line) results

of the same simulation started from the experimental native confor-

mation. (a) RMSD in function of the temperature, (b) RMSD versus

the energy of the corresponding conformation. The parameters of the

simulation are fixed to α = 0.125, e = 80, s = 0.007, DI0 = 0.007,

rc = 4.0 Å with splice, ehb = 0.4.
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We therefore add an explicit term at the potential 1.4, which is

Uhb = −
NH∑
k=1

NO∑
l=1

ehbΘ(rhb − rkl), (3.3)

where NH and NO are respectively the number of hydrogens and oxigens involved

in this kind of interaction, ehb is the energy associated to the formation of a single

HB, Θ indicates a step function which is 1 if rhb < rkl and 0 otherwise, rkl is the

distance of the atoms and rhb is the maximum distance at which an H and a O

form an HB (we set rhb = 1 Å). This term is so a square well potential, whose

depth ehb has to be chosen by carrying out some simulations. By introducing this

term we add a new type of atom, the hydrogen, which was not simulated up to

this point. This because there are many hydrogens in a protein, which does not

play a relevant role in the structure stabilization; we can therefore neglect them

to have a significant gain from the computational point of view. The interaction

energy between the hydrogens and all the other atoms is so set to zero, nor there

is an hard-core repulsion, because these hydrogens are dummy atoms whose only

aim is to form HBs.

In order to set the optimal ehb value we perform a parametrization of this

quantity for the 1BPI, by varying it between 0.25, 0.3, 0.4, 0.5, 0.75. According to

the results shown in Fig. 3.15 we set ehb = 0.4. By inspecting the RMSD relative

to this value we can also see how the HBs improve the results of the simulations

if compared to those obtained without them: they decrease the RMSD at low

temperatures, and they remove the metastable state at low energies. Being the

HBs’ potential a term that stabilizes the secondary structures, we have to check

if the dihedrals energy eα has to be rescaled: we added this potential term to

improve the formation of the β−sheets, but it also reinforces the α−helixes,

which were already stable enough; it is so possible that the dihedral term plus

the HB term makes them too strong. We therefore perfom a new dihedral energy

scan for the 1BVC, having set ehb = 0.4, and we obtain the results shown in

Fig. 3.16. The best simulation is the one in which we have set eα = 20, which is

slightly worse than the one without HBs, but, since they add a physical feature

to the potential, we keep them for the successive simulations.

The HBs should improve also the folding process, so we carry out a folding

simulation on the 1BPI, and we obtain the results shown in Fig. 3.17. Even with

the HBs the folding simulation cannot reproduce the native state as the only

conformation at low energy; this is a limit of our model.
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(a)

(b)

Figure 3.18: 1BPI α parametrization results: (a) RMSD in function

of the temperature, (b) RMSD versus the energy of the corresponding

conformation. The scan is performed for α = 0.5, 1.0, 1.5, 1.7, 2.0,

2.5 while the other parameters are fixed to eα = eβ = 10, rc = 4.0 Å

with splice. The red continue line indicates the best α value, which is

α = 2.0.
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(a)

(b)

Figure 3.19: 1BPI dihedral energy parametrization results: (a) RMSD

in function of the temperature, (b) RMSD versus the energy of the

corresponding conformation. The scan is performed for e = 5, 10, 15,

20, 30, 50 while the other parameters are fixed to α = 2.0, rc = 4.0 Å

with splice.
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3.2.2 Two-body energies reweighting

Being the optimal DI0 value a quantity which is hardly portable among the

systems, we try to find a way to not use this filter for the two-body energies. The

simplest attempt is to not use any filter at all, but, from the results obtained from

preliminary simulations, this has proved to be a bad solution. We have therefore

to find a way to both take into account the Direct Information value and to not

filter the contacts. Being the DI the fraction of Mutual Information which comes

from the direct coupling alone, we reweight the two body energies by the DI/MI

ratio: we compute the MI for each amino acid pair according to Eq. (2.3), and

we define the new two-body matrix elements as

u′ij(σi, σj) = uij(σi, σj)
DIij
MIij

; (3.4)

then, by applying the two normalizations described in Sec. 2.1.1, we obtain the

Mij used in the simulations.

In order to test this method it is necessary to perform a new parametriza-

tion, because the two-body/dihedral/h-fields ratio is completely different from the

previous one. We then perform a partial parametrization scanning the α−values

and the dihedral energies eα and eβ with the methods described above: we vary

α between 0.5, 1.0, 1.5, 1.7, 2.0, 2.5 and, after having fixed α = 2.0, we vary

the dihedral energy between 5, 10, 15, 20, 30, 50. The results are shown in Fig.

3.18 and 3.19, from which we can see how these are actually worse than the ones

obtained by filtering the contacts.

3.2.3 Relative error filtering

As described in Chapter 2, being the statistics limited, the two-body energies uij
obtained from CoCaInE are susceptible to error; bigger is the error, the more

the matrix element is unreliable, so we implement a strategy to quantify its

value, in order to filter the contacts retaining only the ones which present a small

error value. First we adopt a bootstrap procedure [25]: from the MSA of the

1BPI we select randomly a number of sequences equal to the one of the original

MSA, building thus a new modified MSA, in which some of the original sequences

appear several times, while others do not appear. We repeat this twenty times,

generating thus twenty different MSA; for each one we then run CoCaInE, and

we obtain twenty two-body energy matrixes. For each matrix element uij we then

calculate the mean value and its error. As for the DI, we calculate the TPfraction,

both for the absolute error and for the relative one (now the pairs are ordered for

increasing value of the error). From Fig. 3.20, we can see how the only meaningful

49



Figure 3.20: TPrate in function of the number of predicted pairs sorted

by increasing absolute energy error (black solid line) and relative error

(red dashed line).

quantity is the relative error, we therefore implement a filter on it: as done for

the DI, we retain the uij which present a relative error below a threshold value

RE0. Finally we run a simulation in the 1BPI using the parameters RE0 = 0.08,

α = 0.125, eα = eβ = 80 and rc = 4.0 Å with splice (RE0 = 0.08 was chosen

because it corresponds to a TPfraction ' 0.5, which was found as the best value

when using the DI filter). The results of the simulation are shown in Fig. 3.21;

they are considerably worse than the one obtained using the DI filtering (Fig.

3.15), so we decide to not carry out a parametrization on the RE0 value, because

it is highly unlikely that we could obtain decent results.

3.2.4 PCA filtering

The last attempt of improvement of the model is the implementation of a Principal

Component Analysis (PCA) [26] to obtain a valid filter on the two-body energies.

For each amino acid pair (i, j) we consider three variables:

• the distance in residues between i and j, defined as |i− j|;

• the direct information, DIij;

• the relative error of uij, REij.
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(a)

(b)

Figure 3.21: 1BPI relative error filtering results: (a) RMSD in function

of the temperature, (b) RMSD versus the energy of the corresponding

conformation. The scan is performed using RE0 = 0.08, α = 0.125,

eα = eβ = 80, rc = 4.0 Å with splice, ehb = −0.4.
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Figure 3.22: Projection on the first two principal axes of the triple

(distance, DI, RE) of the points corresponding to the native contacts

(red squares) and not native contacts (black circles). The blue solid

straight line indicates the filter implemented to select mainly the na-

tive contacts.

The idea is to find some linear combination of these variables that allows to

identify the native contacts: that means to find a basis of the 3D-space generated

by the three variables in which the points representing the amino acid pairs divide

in two clusters, one corresponding to the native contacts and the other to the

non-native ones. By using directly the basis generated by the three considered

variables, we are not able to separate the native contacts from the others, so

we implement a PCA procedure. Using it we find a basis in which the original

(possible correlated) quantities are represented in the basis in which they are

linearly uncorrelated. By projecting the 3D-space into the first two components

(Fig. 3.22), we can see how a partial clusterization is obtained: the most native

contacts live above the line

f(x) = 2x+ 2. (3.5)

We therefore implement a filter which retains only the amino acid pairs whose

representative points live above this line, and we obtain a TPfraction ' 0.97.

Finally we run a simulation by using the optimal set of parameters (α = 0.125,

eα = eβ = 80 and rc = 4.0 Å with splice). The results are shown in Fig. 3.23;

as before, they are sharply worse the the ones obtained by using the DI filter.
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(a)

(b)

Figure 3.23: 1BPI dihedral PCA filtering results: (a) RMSD in func-

tion of the temperature, (b) RMSD versus the energy of the cor-

responding conformation. The scan is performed using α = 0.125,

eα = eβ = 80, rc = 4.0 Å with splice, ehb = 0.4.
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Figure 3.24: Projection on the first and on the fourth principal axes of

the quadruple (distance, DI, RE, energy) of the points corresponding

to the native contacts (red squares) and not native contacts (black

circles).

In spite of the optimal TPfraction value the results are bad, this means that the

TPfraction is not completely able to catch the ideality of the filtering. In fact

we analyzed the contacts retained by the DI filter and by the PCA filter and we

have found a substantial difference: by fixing DI0 = 0.007 we have 104 native

contacts, of which 50 relatives to pairs (i, j) such that |i− j| > 2 (meaning that

they truly interact in MonteGrappa), while for the PCA filter we have 115 native

contacts, of which only 31 truly interact. The DI filter is therefore more efficient

in identifing non-local contacts.

Finally we try to improve the PCA analysis by adding the two-body energy

uij as fourth variable. We perform the same PCA analysis and, by projecting

the 4D-space into the varius combinations of subspaces, we find that the most

representative projection is on the first and on the fourth principal axes (Fig.

3.24); however there is not a significant clusterization, so we definitively abandon

this filter, and we confirm the DI filter as the best one.
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Chapter 4

Aggregation

The final part of this thesis is devoted to a preliminar study of the aggregation

process between different copies of the same protein. It is experimentally known

that some proteins can cluster together forming different types of aggregates.

The aggregation is a phenomenon that is biologically relevant when the proteins

are susceptible to misfolding or unfolding, which lead hydrophobic regions to be

exposed to the solvent. In such cases, the exposed hydrophobic regions of two

proteins may interact to minimize their exposition, forming an aggregate. There

are several conditions that can lead a protein to a misfolded/unfolded state:

for example one is the enviromental stress, such as an extreme temperature or

an extreme pH value [27]. The aggregation is of fundamental medical interest,

because many diseases, such as Alzheimer’s or Parkinson’s disease, are related to

this phenomenon [28].

The protein 1BPI can undergo such a process, forming a decamer [29, 30, 31],

whose properties are not fully understood. Being our approach suitable to study

large protein systems, we implement a strategy to reproduce this phenomenon for

Figure 4.1: Schematic representation of an amino acid in the Cβ model.
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(a)

(b)

Figure 4.2: 1BPI Cβ model results: (a) RMSD in function of the tem-

perature for the all atom model (black dashed line), and for the Cβ
model (red solid line); (b) RMSD versus the energy of the correspond-

ing conformation for the Cβ model.
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Figure 4.3: 1BPI free energy profile in function of the RMSD, at the

temperatures T = 0.01, 0.1, 0.4, 0.6, 0.9.

Figure 4.4: Mean number of clusters in function of the temperature for

the 1BPI aggregation simulation. The error bars show the fluctuations

between the different clusterization states.
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the 1BPI. We simulate a system composed by ten copies of the 1BPI in a box1 of

side 15 nm; the side has been chosen in such a way to obtain a realistic molarity

of 5 mM. Being now the system ten times bigger, we semplify the model in order

to accelerate the simulations: we move from an all-atom description to a Cβ one,

doubling thus the speed of the simulations. Now the properties of the amino acid

sidechiains are summarized in their Cβ, artificially constructed in the geometric

center of mass of the sidechain (an amino acid is now modelized as shown in

Fig 4.1). The two-body term of the potential and the h-fields one have to be

consequently slightly modified: the matrix elements uij do not have to undergo

the normalization over the maximum number of atomic contacts; the h-fields h̃i
now have to be normalized over the maximum number of contacts made between

the Cβ in all the systems. Moreover, it is necessary to perform a new complete

parametrization on a single 1BPI, because the system is significantly different.

We carry out the parametrization with the methods described in Section 3.1, and

we obtain the optimal parameter set for this model:

• α = 0.4;

• eα = eβ = 80;

• rc = 6.5 Å;

• DI0 = 0.007;

• ehb = 0.5.

The results of the simulation carried out with this optimal set is shown in Fig.

4.2. By inspecting it we can see how the RMSD value is slightly worse than

the one corresponding to the best all-atom simulation, however the results are

still good. In addition we compute the free energy profile in function of the

RMSD for some temperature values (Fig. 4.3) by means of the WHAM method

[32, 33]. For low temperatures the free energy minimum is in correspondence

of low RMSD values, while increasing the temperatures it is shifted to higher

RMSD. These results indicate that even a simplified Cβ model is able to catch

the main thermodynamic features of the system, so we can actually study the

aggregation process within this semplification.

Finally we run an aggregation simulation; in doing this we add some new

Monte Carlo moves besides the ones described in Appendix A, whose keywords

are

1The presence of a box is essential, because if the system were not confined, the equilibrium
state would be the one in which the chains are infinetely distant (because the entropy diverges).
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• BackRub, which is a flip of the backbone around the axis defined by two

non-consecutive Cα;

• BackSideRub, which is a combination of a backrub and of a sidechain move;

• MoveCom, in which a random chain is shifted;

• ComCluster, in which a cluster is shifted.

The first two are local moves, meaning that they change the position of some

localized atoms, and they have been added to let the amino acids adjust their

position within a cluster; the last two let the chains move and join together. The

temperature range is 0.1 < T < 4.0; the highest temperature has been chosen to

let the equilibrium state be the one in which all the monomers are separated.

The inspection of the Monte Carlo trajectories reveals a partial clusteriza-

tion of the proteins. In particular, as shown in Fig. 4.4, we compute the mean

number of clusters2 in function of the temperature, where the mean is calcu-

lated starting from the step 108 to the step 13 · 107. The error bars represent

the standard deviation from the mean value, and indicates thus the fluctuations

among the different clusterization states. For the lowest temperatures we observe

that proteins join together forming one, two or three clusters, while increasing

the temperatures the number of disjoint clusters grow (because the entropy wins

over the energy). These preliminar results, although are not compared to exper-

imental observables, suggest that the aggregation process can be studied within

this framework.

2Two chains belong to the same cluster if there is at least an atomic contact between them,
with rc = 6.5 Å.
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Chapter 5

Conclusions and outlook

The potential we have developed starting from a coevolutionary model is able to

catch the main structural features of the investigated proteins. The parameters

on which it depends seem portable among different systems, with the limits re-

lated to the DI threshold exposed in Chapter 3. The coevolutionary quantities

(two-body energies and h-fields) can be easily obtained for any protein belonging

to a large enough family, so the potential can be used to study a large number

of proteins. Studies on different proteins could also lead to an effective a priori

choice of the the DI threshold, or to the development of an alternative contact

filtering scheme. Once this critical point will be solved, our potential will be

able to give information about the native state of some unknown protein, since

all the paramenters are set without any reference to it. Furthermore, the last

investigations on the 1BPI show that even a simplified Cβ model can be used to

obtain significant results. This is an important fact especially when our coevolu-

tionary potential is used to study large proteins or protein systems, as we have

done in the last part of the thesis. The preliminar simulations we have carried

out on the aggregation show that the potential is able to partially reproduce this

phenomenon: as outcome, subsequent studies will focus on the aggregation, de-

veloping strategies to reproduce the physical conditions that lead to it within our

framework, and comparing some observable with experimental data.
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Appendix A

Overview of MonteGrappa

The code we use to implement our model is MonteGrappa[34]; it is a C writ-

ten program which implements the Monte Carlo method described in Sec. 2.2.

Among the many possibilities offered by the program, we use the parallel tem-

pering technique at a fixed potential, which is implemented through the MPI

libraries. To run, MonteGrappa needs three input files: file.par, file.pol

and file.pot; the .par contains all the parameters of the simulation (e.g. the

number of Monte Carlo steps, the temperatures of the replicas etc.), the .pol

contains all the geometric information of the starting configuration of the system,

while the .pot contains the information regarding the potential which leads the

dynamics. While the .par is prepared by hand, the .pol and .pot are generated

by a supplementary tool, Grappino (distributed alongside MonteGrappa): giving

it as input a structure in the PDB format and all the parameters that appear

in the potential, it translates the structure and the potential in a MonteGrappa

readable format. The potential parameters are chosen as described in Chapter

2, while the technical parameters of the simulation are chosen as described in

Sec A.1. We use three types of Monte Carlo moves in the simulations, whose

keywords are

• Pivot, in which a random dihedral is changed by a random angle;

• Multiple Pivot, which is a sequence of pivot moves applied to an arbitrary

number of consecutive residues;

• Sidechain, in which the residues of the amino acids are moved in one of

their possible conformations (the so-called rotamers);

the moves are summarized in Fig. A.1.
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Figure A.1: Scheme of the Monte Carlo moves used in the simulations.

A.1 Technical parameters

A crucial point in all the parametrization process is that each simulation has to

reach a reasonable equilibrium state, in the sense that we must let the proteins

sampling completely the phase space. Actually, we cannot be sure that the equi-

librium condition is reached within a finite-length simulation, what we can do

is monitor an observable of the system, for example the energy, and see when it

stops varying significantly. At this stage we have a necessary but not sufficient

condition to check the equilibration state of the systems. Keeping this in mind,

we have to fix the technical parameters of the simulations in order to reach the

“equilibrium” state in the shortest possible duration. Since we use a parallel

tempering, the main parameters are:

• the number of replicas Nr;

• the number of Monte Carlo steps ns;

• the set of temperatures Ti with i = 0..Nr − 1.

The set of temperatures should have a range wide enough to catch both the

native state and the denatured one as equilibrium conformations (in order to

see the folding point and to facilitate the equilibration), and narrow enough to

allow the replicas exchange efficiently. While the former condition is a system

property, the latter can be achieved by having a high number of replicas; we

therefore choose Nr as the biggest number of cores we can use simultaneusly,

that is, depending on the machine, Nr = 56 or Nr = 32. By carrying out some
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Figure A.2: Energy of the lowest replica in function of the Monte

Carlo time for the 1BPI, 1STN and 1BVC.

preliminar simulation we also fix the temperatures range1 (in principle different

for each protein), and we find that 0.01 < T < 1.0 basically fits all the systems

under investigation (we vary it sligthly switching from system to system); for the

reasons explained in Sec. 2.2, the low temperatures are set close to each other,

while the higher ones are more separated. The last technical parameter is ns; we

have to find its minimum value that allows the systems to converge to equilibrium,

and that let us make a statistical significant analysis. Obviously this parameter

depends critically from the initial conditions of the simulations, so we choose (for

the first part of the parametrization procedure) to start the simulations from the

experimental native structure of the proteins (taken from the PDB), in order to

minimize the time required by the equilibration process2. Once again we perform

some simulations on different systems, and we find that nr = 3 · 107 represents a

good trade off between the time needed by a simulation and the realization of the

equilibrium state (in the sense exposed above). By inspecting the energy of the

lowest replica in function of the Monte Carlo time for some simulations carried

out on different proteins (see Fig. A.2) we find how the relative energy change

1Note that, since we fix kb = 1, the temperature is measured in the same (arbitrary) mea-
surements unit of the energy.

2This is actually true if our potential gives rise to a the free energy profile which shows a
minimum in the protein native state.
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between the step 2 · 107 and the end of the simulation is very small, so we decide

to calculate all the equilibrium properties starting from this point. In addition

to this we calculate the RMSD starting at different steps of the simulations, for

two simulations carried out on the 1BPI and on the 1STN; as it is shown in

Fig. A.3, the results do not substantially change varying the starting point of the

calculation, meaning that we have reached a good equilibration.
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(a)

(b)

Figure A.3: RMSD versus the temperature for the 1BPI (a) and for the

1STN (b) calculated starting from different steps of the simulations.
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