COMPLEX VARIETIES - A.Y. 2011-2012 HOMEWORK

1.1. (a) Let \mathcal{F} be a presheaf of abelian groups on a topological space X and let \mathcal{F}^+ be the sheaf generated by this presheaf.

Show that the natural homomorphism of sheaves $\tau: \mathcal{F} \to \mathcal{F}^+$ induces an isomorphism $\tau_a: \mathcal{F}_a \to \mathcal{F}_a^+$ on the stalks for all $a \in X$.

- (b) Let \mathcal{F} and \mathcal{G} be sheaves on X and let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Prove that there is an isomorphism between the sheaves $\operatorname{Im}(\varphi)$ and $\mathcal{F}/\ker(\varphi)$.
- **1.2.** Let \mathcal{F}, \mathcal{G} be sheaves of abelian groups on a topological space X. Let $X = \cup U_i$ be an open covering of X. Notice that if $V \subset U_i$ is an open subset (for the induced topology on U_i), then V is also open in X. Thus we get sheaves \mathcal{F}_i on U_i by $\mathcal{F}_i(V) := \mathcal{F}(V)$. Let $\phi_i : \mathcal{F}_i \to \mathcal{G}_i$ be homomorphisms of sheaves such that $\phi_i = \phi_i$ on $U_i \cap U_i$ (i.e. $\phi_{i,V} = \phi_{i,V}$ for $V \subset U_i \cap U_i$).

homomorphisms of sheaves such that $\phi_i = \phi_j$ on $U_i \cap U_j$ (i.e. $\phi_{i,V} = \phi_{j,V}$ for $V \subset U_i \cap U_j$). Define a homomorphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ such that for $V \subset U_i$ one has $\phi_V = \phi_{i,V} : \mathcal{F}(V) \to \mathcal{G}(V)$.

- **1.3.** Let X be a topological space and let \mathcal{F} be a sheaf of abelian groups on X.
- (a) For an open subset $U \subseteq X$ and a section $s \in \mathcal{F}(U)$ define

$$\operatorname{Supp}(s) = \{ a \in U : s_a \neq 0 \},\$$

where s_a is the germ of s in the stalk \mathcal{F}_a . Prove that Supp(s) is a closed subset of U.

(b) Let $Z \subseteq X$ be a closed subset. Define $\Gamma_Z(X, \mathcal{F})$ to be the subgroup of $\mathcal{F}(X)$ consisting of all sections whose support is contained in Z. Show that the presheaf

$$V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$$

is a sheaf.

- **1.4.** Consider the sheaves $\mathcal{O}_{\mathbb{P}^1}$ and $\mathcal{O}_{\mathbb{P}^1}(1)$ on \mathbb{P}^1 .
- (a) Show that any global section $s \in \mathcal{O}_{\mathbb{P}^1}(1)(\mathbb{P}^1)$ yields an injective morphism of sheaves

$$\varphi: \mathcal{O}_{\mathbb{P}^1} \longrightarrow \mathcal{O}_{\mathbb{P}^1}(1)$$

(b) Describe the stalks of the corresponding quotient sheaf $\mathcal{O}_{\mathbb{P}^1}(1)/\mathcal{O}_{\mathbb{P}^1}$.

- **1.5.** Let $X \subset \mathbb{P}^2$ be a one-dimensional complex manifold defined by a homogeneous polynomial of degree d > 3.
- (a) Show that $\omega_X = \Omega_X^1$ has a global section ω which is not identically zero.
- (b) Show that any holomorphic map $\phi: \mathbb{P}^1 \to X$ must be constant.
- **1.6.** (a) Let $A = (a_{ij})$ be an invertible $(n+1) \times (n+1)$ matrix with complex coefficients. Show that the map

$$\alpha: \mathbb{P}^n \longrightarrow \mathbb{P}^n, \qquad (x_0: \ldots: x_n) \longmapsto (y_0: \ldots: y_n), \quad y_i:=\sum_{j=1}^n a_{ij}x_j$$

(so α is the map induced by $A: \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^{n+1} - \{0\}$) is a biholomomorphic map.

(b) Let $\lambda \in \mathbb{C}$, $\lambda \neq 0$. Show that

$$\beta: \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \qquad (x:y:z) \longmapsto (u:v:w) := (\lambda^2 x:\lambda^3 y:z),$$

is a biholomorphic map and that the elliptic curves E, E' with (affine) equations

$$y^2 = 4x^3 - g_2x - g_3, \qquad v^2 = 4u^3 - \lambda^4 g_2 u - \lambda^6 g_3,$$

respectively, are isomorphic.

(c) Show that the curves in \mathbb{P}^2 defined by

$$x^3 + y^3 + z^3 = 0 \qquad y^2 = 4x^3 - g_3$$

are isomorphic, for any $g_3 \in \mathbb{C}$, $g_3 \neq 0$, and that these curves are also isomorphic to the complex torus \mathbb{C}/Λ where $\Lambda = \{n + m\omega : n, m \in \mathbb{Z}, \omega^3 = 1, \omega \neq 1\}$. (Hint: substitute x = u + v, y = u - v in the Fermat equation and use affine coordinates with u = 1).

1.7. Let E be the elliptic curve in \mathbb{P}^2 defined by the (affine) equation

$$y^2 = 4x^3 - g_3, \qquad (g_3 \neq 0).$$

Let $\mathcal{O} := (0:1:0)$ be the neutral element in the group law on E.

- (a) Show that the points P_{\pm} with affine coordinates $(x,y) = (0, \pm \sqrt{-g_3})$ are points of order three.
- (b) Let g_3 be choosen in such a way that the map $F: \mathbb{C} \to \mathbb{P}^2$, $z \mapsto (\wp(z) : \wp'(z) : 1)$, where \wp is the Weierstrass \wp -function for the lattice $\Lambda = \{n + m\omega : n, m \in \mathbb{Z}, \ \omega^3 = 1, \ \omega \neq 1\}$ as in Exercise 1.6 has image E. Show that

$$(\wp(\omega z) : \wp'(\omega z) : 1) = (\omega \wp(z) : \wp'(z) : 1)$$

for all $z \in \mathbb{C}$. Conclude that the image of $(1 - \omega)/3 \in \mathbb{C}$ under F is P_+ or P_- .

Contacts:

lambertus.vangeemen@unimi.it
paolo.stellari@unimi.it