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Lecture 1

Complex abelian varieties

Let A = V/A be a complex torus of dimension g over C. Here V' is a complex vector space of
dimension g > 0 and A is a discrete subgroup of V of rank 2g.! The complex space V is identified
with the tangent space of A at the origin or with the space of holomorphic vector fields ©(A) on A.
It is the universal cover of A. The group A can be identified with the fundamental group of A that
coincides with H1 (A, Z). The dual space V* can be identified with the space Q*(A) of holomorphic
1-forms on A, the map

a:A=H(AZ)— QYA =V, a(*y):cw—)/w,
gl

can be identified with the embedding of Ain V. Let (71, . .., 24) be a basis of A and let (w1, . .., wy)
be a basis of V*. The map H;(A,Z) — V is given by the matrix

1 w1 V2 Wi f'yzg !
o— - w2 yo w2 ... f’Y2g w2 (1 1)
f% Wy f72 Wy .- fwg Wy
called the period matrix of A. The columns of the period matrix are the coordinates of v1, ..., 724
in the dual basis (e, ..., e4) of the basis (wq,...,wy), i.e. abasis of V. The rows of the period
matrix are the coordinates of (wy, . . . ,wy) in terms of the dual basis (7, ..., 73,) of H' (4, C).

Let W denote V' considered as a real vector space of dimension 2¢g by restriction of scalars. We
can identify it with Ag := A ®z R. A complex structure on V' is defined by the R-linear operator
I: W — W,w > fw, satisfying > = —1. The space W := W ®g C decomposes into the
direct sum V; @ V_; of eigensubspaces with eigenvalues ¢ and —i. Obviously, V_; = V;. We can
identify V; with the subspace {w — iI(w),w € W} and V_; with {w + iI(w),w € W} (since
Iw+il(w)) = I(w) Fiw = Fi(w £ il(w))). The map V; — V,w — il(w) — w, is an
isomorphism of complex linear spaces. Thus a complex structure V' = (W, I) on W defines a
decomposition W =V @ V.

The space V (resp. V) can be identified with the holomorphic part 70 (resp. anti-holomorphic
part T%!) of the complexified tangent space of the real torus W/A at the origin. Passing to the

'A subgroup T of V is discrete if for any compact subset K of V' the intersection K N T is finite, or, equivalently, T
is freely generated by r linearly independent vectors over R, the number 7 is the rank of T".
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duals, and using the De Rham Theorem, we get the Hodge decomposition
Hpg(A,C) = H'(A,C) = W¢ = HY(A) @ HY'(A), (1.2)

where HY0(A) = QY(A) = V* (resp. HY!(A) = V*) is the space of holomorphic (resp. anti-
holomorphic) differential 1-forms on A. Note that H%?(A) embeds in H'(A,C) by the map
that assigns to w € Q!(A) the linear function y fvw. If we choose the bases (71, ...,724)
and (wi,...,wy) as above, then HY is a subspace of H!(A,C) spanned by the vectors w; =
Zfil aij;> where (71, ...,75,) is the dual basis in H*'(A,C), and (a;;) is equal to the transpose
11 of the period matrix (1.1).

A complex torus is a Kéhler manifold, a Kdhler form (2 is defined by a Hermitian positive definite
form H on V. In complex coordinates 21, ..., z4 on V, the Kihler metric is defined by > _ h;;2;%;,
where (h;;) is a positive definite Hermitian matrix. The Kihler form 2 of this metric is equal
13" hijdz; A dz;. Its cohomology class ] in the De Rham cohomology belongs to H?(A, R).

A complex torus is called an abelian variety if there exists an ample line bundle L on A, i.e. a
line bundle such that the holomorphic sections of some positive tensor power of L embed A in a
projective space. By Kodaira’s Theorem, this is equivalent to that one can find a Kihler form 2 on A
with [2] € H?(A,Z). In our situation this means that the restriction of the imaginary part Im(H) to
A x A takes integer values. Recall that a Hermitian form H : V x V' — C on a complex vector space
can be characterized by the properties that its real part Re(H) is a real symmetric bilinear form on
the corresponding real space W and its imaginary part Im(H) is a skew-symmetric bilinear form
on W. The form H is positive definite if Re(H) is positive definite and Im(H ) is non-degenerate
(a symplectic form). Using the isomorphism

2 2
H*(A,z)= \ H'(A,Z) = \ A",

we can identify Im(H) with ¢1 (L), where L is an ample line bundle on A. Explicitly, a line bundle
L trivializes under the cover 7 : V' — V//A and it is isomorphic to the quotient of the trivial bundle
V' x C by the action of A defined by

A (z,8) = (24 A, e HENFZHON (),

where y : A — U(1) is a semi-character of A, i.e. a map A — U(1) satisfying x(A\') =
XA x(X)emmHOA) 1t follows that

Pic’(A) := Ker(c; : Pic(A) — H?*(A,Z)) = Hom(A, U(1)).
Note that the Hermitian form H can be uniquely reconstructed from the restriction of Im(H) to
A x A, first extending it, by linearity, to a real symplectic form £ on W, and then checking that
H(z,y) = E(iz,y) + iE(z,y). (1.3)
In fact, H(x,y) = A(z,y) + iE(z,y) implies
H(iz,y) = A(iz,y) + 1E(iz,y) = iH (z,y) = iA(z,y) — E(z,y),

hence, comparing the real and imaginary parts, we get A(x,y) = E(iz,y). Since H(z,y) =
H (ix,iy) and its real part is a positive definite symmetric bilinear form, we immediately obtain that
E satisfies

E(iz,iy) = E(z,y), Eliz,y) = E(iy,z), E(iz,z) >0, 2 # 0. (1.4)



3

We say that a complex structure (W, I') on W is polarized with respect to a symplectic form E on
W if E satisfies (1.4) (where iz := I(x)).

We can extend E to a Hermitian form Hc on W, first extending E to a skew-symmetric form E¢
, by linearity, and then setting

He(w,y) = iFc(z, ). (1.5)
Letx = a +ib,y = a’ + ib' € W¢. We have

Hc(a+bi,d —ib') = $(—Ec(b,d') + Ec(a, b)) + 3i(Ec(a, ') + Ec(b,b)).

The real part of H¢ is symmetric and the imaginary part is alternating, so H¢ is Hermitian. Also,
by taking a standard symplectic basis e1, ..., ea5 of W and a basis (fi,- s fgs f1,.o o5 fq) of We,
where fi, = ey, + i€yq, fr = ex — iei4q, we check that H is of signature (g, g).

Now, if z = w — il (w), 2’ = w' —il(w') € V, then, we easily check that
He(z,2) = 3iBc(w — il (w),w + il (w)) = E(I(w),w) > 0

and
Ec(x,2") = Ec(w — il(w),w —il(w))

= Ec(w,w') — Ec(I(w), I(w") — i(Ec(I(w),w') + Ec(w, [(w')) = 0.
Thus V' = (W, I) defines a point in the following subset of the Grassmann variety G (g, W¢):

G(9.We)g ={V € G(g9,Wc) : Hc|V > 0, Ec|V = 0}. (1.6)
It is obvious, that V and V' are orthogonal with respect of H¢ and Hc|V < 0.

Conversely, let us fix a real vector space W of dimension 2¢ that contains a lattice A of rank 2g,
so that W/ A is a real torus of dimension 2g. Suppose we are given a symplectic form E € /\2 W
on W. We extend E to a skew-symmetric form E¢ on W, by linearity, and define the Hermitian
form of signature (g, g) by using (3.3).

Suppose V' = (W, I) € G(g, Wc)g. It is immediate to check that Ec(z,y) = Ec(z,y). Thus,
H(z,7) = —H(z,y) < 0. This implies that V NV = {0}, hence Wg = V @ V. Now W =
{v+ v,v € V} and the complex structure / on W defined by I(w) = iv — v is isomorphic to the
complex structure on V' via the projection W — V, v + v — v. Now it is easy to check that E¢
restricted to W is equal to F, and E(I(w),w) > 0, E(I(w), I(w)) = E(w,w). We obtain that the
set of complex structures on W polarized by F is parameterized by (1.6).

The group Sp(W, E) = Sp(2g, R) acts transitively on G(g, W) g with isotropy subgroup of V/
isomorphic to the unitary group U(V, Hc|V') = U(g). Thus

G(9,We)E = Sp(29,R)/U(g)

is a Hermitian symmetric space of type Il in Cartan’s classification. Its dimension is equal to
g9(g+1)/2.

Remark 1. According to Elie Cartan’s classification of Hermitian symmetric spaces there are 4
classical types LII, III and IV and two exceptional types F/g and E7. We will see type IV spaces later
when we discuss K3 surfaces and other classical types when we will discuss special subvarieties of
the moduli spaces of abelian varieties. The exceptional types so far have no meaning as the moduli
spaces of some geometric objects.
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So far, we have forgot about the lattice A in the real vector space . The space G(g, W¢)g is the
moduli space of complex structures on a real vector space W of dimension 2g which are polarized
with respect to a symplectic form E on W or, in other words, it is the moduli space of complex
tori equipped with a Kahler metric H defined by a symplectic form E = Im(H ). Now we put an
additional integrality condition by requiring that

Im(H)(A x A) C Z.

Recall that a skew-symmetric form E on a free abelian group of rank 2¢g can be defined in some
basis by a skew-symmetric matrix
_ (9% D
o= (% )

where D is the diagonal matrix diag(dy,...,dy) with d;|dj+1,% = 1,...,¢9 — 1. The sequence
(di,...,dg) defines the skew-symmetric form uniquely up to a linear isomorphism preserving the
skew-symmetric form. In particular, if F is non-degenerate, the product d; - - - d is equal to the de-
terminant of any skew-symmetric matrix representing the form. If H is a positive definite Hermitian
form defining a polarization on A, the sequence (dy, ..., d,) defining Im(H)|A x A is called the
type of the polarization. A polarization is called primitive if (d1,...,dy) = 11tis called principal
if (dy,...,dg) =(1,...,1).

Choose a basis v = (71,...,724) of A such that the matrix of the symplectic form E|A x A is
equal to the matrix Jp.

We know that the matrix (E(ivq,))g+1<ab<2g 18 positive definite. This immediately implies
that the 2¢g vectors ¥4, v, = g + 1,..., 2g, are linearly independent over R, hence we may take
d—llfng, ey é'mg as abasis (e1, ..., eq) of V. It follows that the period matrix II in this basis of V/
and the basis (71, ...,724) of A is equal to a matrix (7 D). Write 7 = X +4Y, where X = Re(7)
and Y = Im(7) are real matrices. We have

A=C9/7% ¢ DZ°.

Then v, = Y9 | zkses + D Yrsies, k = 1,...,g. Then the matrix of E on W = Ap in the basis
(e1,...,eg,%€1,...,ieq) of W is equal to

tXD_lJXD_l_tXD_IJ 0 y—1
Y 0 Ply o —\y o P\p-! —-Dlxy-!
[0 —y-!
- ty—l _ty—l(X_tX)Y—l :

Since E(ej, e;) = E(ie;,iej) = %@E(Vg—&—i,r)/g-i-j) = 0 and (E/(ie;, e;)) is a symmetric positive
definite matrix, we obtain that Y is a symmetric positive definite matrix, and X is a symmetric
matrix. In particular, 7 = X + 7Y is a symmetric complex matrix.

We have proved one direction of the following theorem.

Theorem 2 (Riemann-Frobenius conditions). A complex torus A = V /A is an abelian variety
admitting a polarization of type D if and only if one can choose a basis of A and a basis of V' such
that the period matrix 11 is equal to the matriz (T D), where

tr =7, Im(7) > 0.



We leave the proof of the converse to the reader.

Note that the matrix of the Hermitian form H in the basis e, ..., e, as above is equal to S =
(E(ieq,ep)). Since

g
ddab = E(Ya Yatb) = Y E((Tka + iYka)Cr, dyes)
k=1

g g
= yraBliex, dyes) =Y Eliey, dyer)yra = dy Z E(iey, €x)Yka;
k=1 k=1 k=1

we obtain that
S =1Im(r)" L. (1.7)

So, we see that we can choose a special basis 71, ..., 724 such that the period matrix II of A is
equal to (7 D), where 7 belongs to the Siegel upper-half space of degree g

Z,:= {r € Mat,,(C) : 'r = 7,Im(7) > 0}.
Every abelian variety with a polarization of type D is isomorphic to the complex torus
A=CY/r79 + DZ.

Note that Z, = G(g,CY%)pg, where E : R? x R?* — R is defined by the matrix DIm(7)~!.
However, this isomorphism depends on a choice of a special basis in R?9. One must view Z, as
the moduli space of polararized complex structures on a symplectic vector space W of dimension
2g equipped with a linear symplectic isomorphism R?” — W, where the symplectic form R?" is
defined by the matrix D.

Two such special bases are obtained from each other by a change of a basis matrix that belongs to
the group
SP(JD7Z) = {X € Sp(2g7@) : X -Jp- tX = JD}

As Ay
and only if

IfX = (Al A2> , Where Aj, A, A3, A4 are square matrices of size g, then X € Sp(Jp, Z) if

A1D'Ay = AyDY,  A3D'A, = A4D'As, A D'Ay — A;D'As = D.

Thus, we obtain that the coarse moduli space for the isomorphic classes of abelian varieties with
polarization of type D is isomorphic to the orbit space

Agp = Z4/Sp(Jp, Z).
The group Sp(Jp, Z) acts on Z, by
T (TA] 4+ A2)(As7 4+ Ayg)7'D.
If Jp = J, then we denote Sp(Jp, Z) by Sp(2g, Z) and A, p by A, and get
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As we see from above that, so far, the geometry of abelian varieties is reduced to linear algebra.
One can pursue it further by interpreting in these terms the intersection theory on A. It assigns to
any line bundles L1, ..., L, an integer (L, ..., Ly) that depends only on the images of L; under
the first Chern class map. Of course, it is also linear in each L; with respect to the tensor product of
line bundles. Let ¢1(L;) = o € /\2 A*. Consider each «; as a linear map «; : A — A* and take

the exterior power of these maps
29
i Aage A"

A choice of a basis in A defines an isomorphism /\29 A* = Z. This isomorphism depends only
on the orientation of the basis. We choose an isomorphism such that LY := (L,...,L) > 0 if
L is an ample line bundle. For example, if L corresponds to a polarization of type D, we have
a = 1Y AYitg and

L9 = glng - ng.
By constructing explicitly a basis in the space of holomorphic sections of an ample line bundle L in
terms of theta functions, one can prove that

L9
0 _
W) =

= Pf(a),
where Pf(«) is the pfaffian of the skew-symmetric matrix defining . More generally, for any line
bundle L, the Riemann-Roch Theorem gives

Let us now define a duality between abelian varieties. Of course this should correspond to the
duality of the complex vector spaces.

Let A = V/A be a complex g-dimensional torus. Consider the Hodge decomposition (1.2), where
we identify the space H'?(A) with V*. Using the Dolbeault’s Theorem, one can identify H%!(A)
with the cohomology group H'(A,O4). The group H'(A,Z) = A* embeds in H'(A,C) and
its projection to H%! is a discreet subgroup A’ of rank 2g in H%!. The inclusion H'(A,Z) —
H' (A, O4) corresponds to the homomorphism derived from the exponential exact sequence

05Z—04"50,-0
by passing to cohomology. It also gives an exact sequence
HY(A,04)/N — H'(4,0%) % HX(A,2),

where the group H'(A, O%) is isomorphic to Pic(A). Thus, we obtain that the group of points of
the complex torus H'(A, O 4)/A’ is isomorphic to the group Pic®(A). It is called the dual complex
torus of A and will be denoted by A.

Now, we assume that A is an abelian variety equipped with a polarization L of type D. The
corresponding Hermitian form A defines an isomorphism from the space V' to the space V* of
C-antilinear functions on V' (where V is equal to V with the complex structure I(v) = —iv). 2

21t also defines an isomorphism of complex vector spaces V — V*



7

Considered as a vector space over R, it is isomorphic to the real vector space W* = Homg(V,R)
by means of the isomorphism

V¥ = W* I — k=1Im(l)
with the inverse defined by k — —k(iv) + ik(v). We may identify V* with H%1(A). We have
AN =AN:={leV*:I(A) CZ},
so that o
A=V*/A"

Also, Im(H) defines a homomorphism A — A*. Composing it with the homomorphism A* =
H'(A,7Z) — H%(A), we obtain a homomorphism A — A*. Let

b A— A (1.8)

be the homomorphism defined by the maps V' — H%! and A — A’. It is a finite map, and

g
K(L) := Ker(¢) = A*/A = (29/D79)? = Q)(Z/diZ)*.
i=0
In particular, ¢y, is an isomorphism if L is a principal polarization. The dual abelian variety can be

defined over any field as the Picard variety PicO(A) and one can show that an ample line bundle L
defines a map (1.8) by using the formula

¢1(a) = t5(L)® L7,

where ¢, denotes the translation map = — x + a of A to itself.

If we identify A with A by means of this isomorphism, then the map ¢, corresponding to the
polarization L of type (n,...,n) can be identified with the multiplication map [n] : z — nz. Its
kernel is the subgroup A[n] of n-torsion points in A. Let ey, be the exponent of the group K7,
i.e. the smallest positive integer that kills the group, then A~ A /K, and the multiplication map
ler] : A — A is equal to the composition of the map ¢y, : AQ—>2 A and a finite map A — A

with kernel isomorphic to the group (Z/e;Z)?9 /K, of order wlflf;ilp. Abusing the notation, we
o

denote this map by qﬁzl. s0, by definition, qﬁzl o ¢r, = [er]. In the ring End(A)q the element cbzl
is the inverse of égﬂ) L-



LECTURE 1. COMPLEX ABELIAN VARIETIES



Lecture 2

Endomorphisms of abelian varieties

A morphism f : A = V/A — A" = V’/A’ of complex tori that sends zero to zero is called a
homomorphism of tori. It is easy to see that this is equivalent to that f is a homomorphism of
complex Lie groups. Obviously, it is defined by a linear C-map f, : V' — V’ (called an algebraic
representation of f) and a Z-linear map f, : A — A’ (called a emphrational representation of f)
such that the restriction of f, to A coincides with f;..

Let End(A) be the set of endomorphisms of an abelian variety A = V//A, i.e. homomorphisms of
A to itself. As usual, for any abelian group, it is equipped with a structure of an associative unitary
ring with multiplication define d by the composition of homomorphisms and the addition defined
by value by value addition of homomorphisms. By above, we obtain two injective homomorphisms
of rings

pa : End(A) — Endc (V) = Mat,(C), p, : End(A) — Endz(A) = Maty,(Z).

They are called the analytic and rational representations, respectively.

We fix a polarization Lo on A of type D = (di,...,dy). The corresponding Hermitian form on
Hj and the symplectic form Ey = Im(Hy) on A allow us to define the involutions in the rings
Endc (V) (resp. Endz(A)) by taking the adjoint operator with respect to Hy (resp. Im(Hy)).! Using
the representations p, and p,., we transfer this involution to End(A). It is called the Rosati involution
and, following classical notation, we denote it by f — f’. One can show that the Rosati involution
can be defined as

f’:¢zjof*o¢L0:A—>A—>A—>A.

Here (f*), : V* — V* is the transpose of f. If we view A as the Picard variety, then f* is the usual
pull-back map of line bundles on A.

For any f € End(A), let

g
Pa(f) = det(tfg — fa) — Ztg_i(—l)icg
1=0

'Recall that the adjoint operator of a linear operator T : V — V of complex spaces equipped with a non-degenerate
Hermitian form H is the unique operator 7 such that H(T'(z),y) = H(z,T"(y)) forall z,y € V.
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be the characteristic polynomial of f, and

29

P.(f) = det(tlay — fr) = Z(_l)icgtzgﬂ'

=0

be the characteristic polynomial of f,. It is easy to check that

Po(f') = Pu(f),
so all eigenvalues of f/ are conjugates of the eigenvalues of f,.

We have ~
(fr)(C = fa 2 faa

where (f,)c is considered as a linear operator on Ac. (see Proposition (5.1,2) in Lange-Birkenhake,
Complex Abelian Varieties, cited [CAV] in the future). In particular,

P(t) = Pa(f)Pa(f).

An endomorphism f € End(A) is called symmetric if f = f’. Let End®(A) denote the subring
of symmetric endomorphisms. It follows from above that, if f € End®(A), then f, is a self-adjoint
operator with respect to Hy, and its eigenvalues are real numbers. Also, we see that P,(f) =

Pa(f)?.
Let NS(A) = Pic(A)/Pic’(A) be the Néron-Severi group of A. We define a homomorphism

a :NS(A) — End(A), L ¢ ooy

If f is in the image, then ¢, = ¢, o f. This means that Hy(f,(2),2") = H(z,z') for some
Hermitian form H and Im(H)(A x A) C Q. Since H(z,2') = H(Z/,z), this means that the
operator f, is self-adjoint, hence f is symmetric. This easily implies that « defines an isomorphism
of QQ-linear spaces

a NS(A)Q — EndS(A)@.
If Ly is a principal polarization, we can skip the subscript Q [CAV], 5.2.1.

Note that o(Lg) = id 4, hence the subgroup generated by Lg is mapped isomorphically to the sub-
group of End®(A) of endomorphisms of the form [m], m € Z. Also, it follows from the definition
of a(L) is an isomorphism if and only if L is a principal polarization.

If we identify NS(A) with the space of Hermitian forms H such that Im(H)(A x A) C Z, then
the inverse map o~ ! assigns to f the Hermitian form

H = Ho(fa(2),7"). 2.1)

Suppose f € End(A) and f, is given by a complex matrix M of size g. Then we must have
M - (7|D) = (7|D) - N, (2.2)
where the matrix

(A1 A
N = (A2 A4> € Maty,(Z)
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defines f,. Thus we get
M = (7- A3+ DAy)D™L,
hence :
Mt = (T - Asg + DA4)D_1T =71A1 + DAs. 2.3)

Thus the period matrix 7 must satisfy a “quadratic equation”. Now assume, additionally, that
/ € End’(A) is a symmetric endomorphism. This means that f, and f, considered as linear
operators on W = Ap are adjoint operators with respect to the alternating form £ = Im(H)
defined by the matrix .Jp. Thus the matrix N must satisfy ‘N - Jp = —Jp! - N. This gives

tA\D =DA4, ' A3D = —DA3, ' A3sD = —D A5 (2.4)

A B
N= <C tA), @5)

where B and C are skew-symmetric matrices of size g X g.

If D = I, then

The coefficients of the characteristic polynomial have the following geometric meaning.
For any f = a(L) € End®(A),
o
(g —a)lal

where d = d; - - - dy [CAV], (5.2.1). In particular, L is ample if and only if all eigenvalues of f, are
positive. In the last statement, we use that a line bundle L is ample if and only if (L LY >0
forallt=0,...,g.

i=0,...,q, (2.6)

A homomorphism f : A — A’ of abelian varieties of the same dimension is called an isogeny if its
kernel is a finite group. The order of the kernel is called the degree of the isogeny and is denoted by
deg(f). Itis equal to the topological degree of the map. Equivalently, f is an isogeny if its image is
equal to A’. An example of an isogeny is a map ¢, : A — A, where L is an ample line bundle. The
inverse isogeny is the map g : A’ — A such that g o f = [e], where e is the exponent of the kernel
of f. For example, gbzl is the inverse isogeny of ¢r. One checks that the isogeny is an equivalence
relation on the set of isomorphism classes of abelian varieties.

Suppose a(L) defines f € End®(A) which is an isogeny. By definition, ¢, o f = ¢, It follows
that deg(¢r,) deg(f) = deg(¢r). We know that deg(¢r,) = d = detD and deg(¢r) = d' =
det D', where D’ is the type of L. This gives deg(f) = d'/d. Applying (2.6) with i = g, we obtain

c? = — =deg(f). 2.7
g

One can also compute the coefficients c; in the characteristic polynomial P}‘}O %
o= (o) L0 1)
' (Lo)

2This follows from Sturm’s theorem relating the number of positive roots with the number of changes of signs of the
coefficients of a polynomial.

(2.8)
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(see [CAV], (5.1.7)). We set

Tr(f)a = cf, Tr, = ¢}, Nm(f)q = cj, Nm(f), = c

‘We have
o(fof)— 2 (f*(L0)7Lg_1) m(fo f) = (f*(LO)g>

The first equality implies that the symmetric form (f, g) — Tr(fog’) on End(A) is positive definite.

We know that End(A)q is isomorphic to a subagebra of the matrix algebra and hence it is finite-
dimensional algebra over Q. A finite-dimensional associative algebra over a field F' is called simple
if it has no two-sided ideals. An example of a simple algebra is a matrix algebra Mat,,(F'). An
algebra is called semi-simple if it is isomorphic to the direct product of simple algebras. An example
of a simple algebra a skew field where every nonzero element is invertible. An example of a non-
commutative skew field is the quaternion algebra H(a,b) = F + Fi+ Fj+ Fk withi? = a,j? =

b,k = ij = —ji. Itis equipped with anti-involution z = xg + x1i + z2j + v3k — 2/ = 29 — 211 —
x2j — w3k such that Nm(z) := 22’ = 23 — ax? — br3 + abzi € F. If Nm(z) # 0 for any z # 0,
then ﬁmx is the inverse of x, so H (a, b) is a skew field. A quaternion algebra over a number field

K is called fotally definite if for every real embedding o : K — R, the change of scalars algebra
H, over R is a skew field. If R splits over any real embedding of K, it is called fotally indefinite.

If K is the center of a skew field D, then the degree of D over K is always a square. This is proved
by showing that over some finite extension L of K, the algebra R;, = R Qg L splits, i.e. becomes
isomorphic to a matrix algebra over L. For example, for the quaternion algebra H = Q(—1, —1),
the splitting field is Q(y/—1), and H becomes isomorphic to Mats(Q(v/—1)).

A simple algebra R is isomorphic to the matrix algebra Mat,. (D) with coefficients with some skew
field D over K. In particular, its dimension over K is always a square of some number.

A finite-dimensional algebra comes equipped with the trace F'-bilinear map R x R — F' defined
(z,y) — Tr(xy’), where Tr(r) is the trace of the linear operator R — R,z — xr. We can also
define a reduced trace by considering R as an algebra over its center K.

The possible structure of the Q-algebra End(A)q is known. It is a finite-dimensional associative
algebra R admitting an anti-involution®  — 2’ and a symmetric bilinear form Tr : R x R — Q
such that the quadratic form = +— Tr(zz') is positive definite. An equivalent definition is that R
is a semi-simple algebra over (Q admitting a positive definite anti-involution. Such algebras have
been classified by G. Scorza and A. Albert. Assume that R is a simple algebra over Q. Let K be
the center of R, it is a field admitting an involution o, the restriction of the anti-involution of R.
Let Ko = K be the subfield of invariants. Then Kj is a totally real algebraic number field and
K = K or is an imaginary quadratic extension of K. Since R is semi-simple, its dimension over
K is equal to n? for some number n. Let e = [K : Q],e9 = [Ko : Q]. Each such algebra is
isomorphic to the product of simple algebras.

An abelian variety is called simple if it is not isogenous to the product of positive-dimensional
abelian varieties. An equivalent definition uses Poincaré Reducibility Theorem and asserts that
an abelian variety is simple if and only if it does not contain an abelian subvariety of dimension

3 An anti-involution means an involutive isomorphism from the algebra to the opposite algebra, i.e. the algebra with
the same abelian group but with the multiplication law x - y 1= y - x.
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0 < k < g. The endomorphism algebra End(A)g of a simple abelian variety A is a skew-field. We
have four possible cases for a simple algebra:

I n=1, R= K is atotally real field, e = ey = p, €|g;

I n = 2, R is totally indefinite quaternion algebra over K, e = eg, p = 3e, 2¢|g;
III n = 2, R is totally definite quaternion algebra over K, e = ey = p, 2¢|g;
IV Ko # K, e = 2eq, p = eod?, eqd?|g.

If A is not simple, its endomorphism algebra is not a skew-field, it is a simple or a semi-simple
algebra.
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LECTURE 2. ENDOMORPHISMS OF ABELIAN VARIETIES



Lecture 3

Elliptic curves

An elliptic curve is a one-dimensional abelian variety A = C/A. We can find a special symplectic
basis in A of the form (7, 1), where 7 € H. The matrix of the symplectic form £ on A with respect
to this basis is the matrix (_01 (1)) Since i = —% + iT, we get E(i,1) = i By (1.7), the
corresponding Hermitian form is equal to %zz_’ in agreement with (1.7). The Hermitian form H
defines a principal polarization on E. It is defined by a line bundle L of degree 1. We will always
consider F' as a one-dimensional principally polarized abelian variety.

Note that Sp(2,7Z) = SL(2, Z), so the moduli space of elliptic curves is
A; = H/SL(2,7Z),

where H = {7 € C : Im(7) > 0}. The quotient space is known to be isomorphic to C, the
isomorhism is defined by a holomorphic function j : H — C which is invariant with respect to
SL(2,7Z). 1t is called the absolute invariant. If T is the period of F, then j(7) is called the absolute
invariant of E. We refer to the explicit definition of j to any (good) text-book on functions of one
complex variable.

Let f be an endomorphism of A, then f, is a complex number z and f,. : A — A is the map
A — zA. In the basis (7, 1) of A, the transformation f, is given by an integer matrix N = (gl &3)
so that we have (27, z) = (a17+ag, a3T+ay4). This gives z = azT+aq and (a37+a4)T = a17+as,

and hence a quadratic equations for 7
ast? + (ag —a1)T —ag = 0. 3.1
It agrees with (2.2). The discriminant of the quadratic equation (2.2) is equal to
D = (a4 — a1)? + 4azasz = (a1 + a4)® — 4(ara4 — agaz) = Tr(N)? — 4det(N). (3.2)
Since Im(7) > 0, we must have ag # 0,D < 0 or az = a4 — a3 = ag = 0. In the latter case,

the matrix [V is a scalar matrix, and the endomorphism is just the multiplication [a;] and there is no
condition on 7. In the former case

_ay—ag+ivV—D
N 2(13 .
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It shows that 7 € Q(\/T)), i.e. itis an an imaginary quadratic algebraic number. Also
z=a3T + a4 = %(al + a4 +1ivV—D)

belongs to the same field. For this reason an elliptic curve A is called an elliptic curve with complex
multiplication by K = Q(v/D).

Multiplying (3.1) by a3, we obtain that a37 and, hence z, satisfies a monic equation over Z, hence
belongs to the ring o of integers of the field K. Note that formula (3.2) shows that, D is divisible
by 4if Tr(N) = a1 + as iseven,and D =1 mod 4 otherwise.

Recall that, if D is square-free, then o has a basis, as a module over Z, equal to 1, %(1 + \/5)
if D=1 mod 4 or 1,/D otherwise. If D = m?Dy, where Dy is square-free, then End(E) is an
order in K. It is equal to Z 4+ mog (see [Borevich-Shafarevich. Number Theory]). In any case,
End(F)g = K, so we are in case IV of classification of endomorphism rings of abelian varieties.
Also, we see that End(A) is an order o in K. The lattice A must be a module over o, in fcat, one
can show that it is a projective module of rank 1. Conversely, if we tale A to be such a module
over an order o in K, we obtain an elliptic curve A = C/A with End(A) = o. In this way one can
show that there is a bijective correspondence between isomorphism classes of elliptic curves with
End(A) = o and the class group of K (i.e. the group of classes of ideals in 0 x modulo principal
ideals, or, in a scheme-theoretical language, the Picard group of Spec ox. The number of such
classes if called the class number of K.

Note that Aut(E) = End(E)* can be larger than {41} only if £ admits complex multiplication
with Gaussian integers (i.e. D = —1) or Eisenstein integers (i.e. D = —3). In fact, if D = 1
mod 4, an invertible algebraic integer a + 1b(1 + v/D), a,b € Z must satisfy Nm(#) = +1.
This implies D = —3. Similarly, if D # 1 mod 4, we obtain a®> — Db? = +1 implies D = —1.
Remark 3. Let E be an elliptic curve with complex multiplication End(F)gp = K. Recall that £
admits a Weierstrass equation

y2 =3 + a4 + ag,

and the isomorphism class of E is determined by the value of the absolute invariant

3
day

(F) = 1728 —5———.
J(E) 4a3 + 27a}

According to the Theorem of Weber and Fuerter, the j-invariant j(E) is an algebraic integer such
that [K(j(F)) : K] = [Q(j(F)) : Q] and the field K (j(E£))is a maximal unramified extension of
K (see [Silverman, Arithmetic of elliptic curves], Appendix C). Assume that j(FE) € Q, by the class
fields theory this implies that the class number of K is equal to 1. Also, it is known that j(F) € Q
if and only if F can be defined over Q. There are exactly nine imaginary quadratic fields K with
class number 1. They are the fields Q(v/—d), where

de{1,2,3,7,11,19,43,67,163}.
The corresponding values of the absolute invariants are
96 .33 96 53 g _33.53 _ol5 915 33 918 33 53 915 93 53 13

—218.3%.5%.23%, 23.33.113, 2%.3%3.53%, 33.53.173, —3.215.53
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Let f : E — E be an endomorphism of E of finite degree n > 0. By Hurwitz’ formula, the
map f is an unramified finite cover of degree n. Its kernel is a finite subgroup 7" of order n of FE.
The group E[n] of n-torsion elements of E = C/A is isomorphic to 2A/A = (Z/nZ)?. Assume
that f, is defined by a matrix /N whose entries are mutually coprime (otherwise the endomorphism
a composition of an endomorphism g with g, satisfying this property and multiplication by an
integer). The theory of elementary divisors allows us to find two bases (71,72) and (v},75) in A
such that (f-(71), f(72)) = (n7),7%). Since j(7) depends only on A, we obtain that j(tau) =
j(nt). Tt is known that there exists a polynomial ®,,(X,Y") with integer coefficients such that
®(j(7),j(nt)) = 0 for any 7 € H. The equation ®,,(X,Y) = 0 is called the modular equation
of level n. Thus the number of elliptic curves admitting an endomorphism of degree n is equal to
the number of solutions of the equation ®,,(x, z) = 0. It is a finite set of points, hence an algebraic
subvariety of A; =2 Al. It is a O-dimensional Shimura variety. It has been computed by R. Fricke
and it is equal to ho(—n) + ho(—4n) if n = 2,3 mod 4, and ho(—4n) if n = 1 mod 4. Here
ho(—d) is the class number of primitive quadratic integral positive definite forms with discriminant
equal to —d.

Let f : E — E' be an isogeny of elliptic curves and g : E’ — E be its inverse, i.e. go f = [n],
where n is the degree of f. Let f, be given by a complex number z and g be given by a complex
number 2’. Then 22’ = d. Also we know that |z|? = det f, = d. Thus, we obtain that z’ = 7 is the
complex conjugate of z.

Let A = Ey x- - - x E, be the product of g isogenous elliptic curves. We assume that End(E;) = Z.
Let a;; be an isogeny F; — FE; of minimal degree so that any isogeny F; — FE; can be written in
form [dij] oa; (which we denote, for brevity, by d;;c;;) for some integer d;; and a complex number
a;j. Obviously a;; = 1.

The analytic representation of an endomorphism f : A — A is given by a matrix

d11 d12a12 e dlgaig
dorany  dog ... dagang
dngm dggazg ... dgg
We may choose the period matrix of A to be equal to the diagonal matrix diag[r, ..., 7,], where

7; = x; + /—1y; is the period of F;. Let us choose a principal polarization Ly on A to be the
reducible one coming from the principal polarizations on the curves E;. Its Hermitian form is given
by the diagonal matrix diag[y; Lo, Yg 11. Assume that A has another principal polarization L and
M is a symmetric endomorphism corresponding to L. By (2.1), the matrix of the Hermitian form
H corresponding to L is equal to the matrix

M' = diagly;",....y; '] M (3.3)

In particular, this implies that y;d;; = y;d;;.

Assume now that £y = ... = E; = E and End(F) = Z. Since E has no complex mul-
tiplications, c;; = 1, hence M is a symmetric integral matrix. It follows from (2.2) that f.
is given by the matrix N = (]‘6[ ]8[) . Since we are looking for f defined by a principal polar-
ization, f must be an isomorphism, hence det M = 1. We know also that the coefficients of
its characteristic polynomial are positive rational numbers. This implies that M is positive def-
inite. Let (y1,...,7%24) = (Te€1,...,Teg,€1,...,€4) be a basis of Ag. It follows from (3.3)
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that the matrix of the symplectic form corresponding to H in this basis is equal to (a;;), where
aij =y "Im(H (v;,7;)). We getforl <i<j<g

ai; =y "Im(H(ej,e)|71?) = 0, a5 j1g =y Im(H (ei, €;)7) = d;j.

This implies that the type D of the polarization L is equal to the matrix (d;;) (reduced to the diagonal
form).

It is known that a unimodular positive definite matrix of rank g < 7 is isomorphic to the odd
lattice I" defined by the quadratic form 7 4 ... + 2. By above this implies that the only prin-
cipal polarization on an abelian variety A = EY is of the form ) 7_, p¥(point), where p; is the
projection to the i-th factor. In particular, A cannot be isomorphic to the Jacobian variety of a curve
of genus g. However, if g = 8, there is one more positive definite unimodular quadratic lattice

defined by the matrix 2/g — Pg,, where Pg, incidence matrix of the Dynkin diagram of type Fj3

ESFFT.%

Remark 4. 1t is known that the rank of any positive definite unimodular quadratic lattice is divisible
by 8 [J.-P. Serre, Cours de Arithmetique], 2.3. Thus, if £ has no complex multiplication, the product
of r copies of E does not admit a principal polarization unless 7 is divisible by 8. Note that there
is only positive definite unimodular quadratic lattices of rank 16 not isomorphic to Eg @& Eg and
there are 24 non-isomorphic such lattices of rank 24, the Leech lattice is among them. So we have
2 (resp. 24) principally polarized abelian varieties isomorphic to E® (resp. E'?), where E is an
elliptic curve. Do they have any geometric meaning, e.g. being the Prym or Jacobian varieties?

Example 5. Let M be a quadratic lattice, i.e. a free abelian group of finite rank equipped with a
symmetric bilinear form B : M x M — Z. Assume that the rank of M is an even number 2k
and the bilinear from is positive definite (when tensored with R). Assume also that the orthogonal
group of M (i.e. the subgroup of Aut(M) that preserves the symmetric form) contains an element
¢ such that 1> = —id;;. Then we can use ¢ to define a complex structure on W = Mp and define
a hermitian form H by taking E(z,y) := —B(i(x),y) so that E(c(z),y) = B(z,y) is symmetric
and positive definite, and

E(ya l‘) = _B(L(y)v l‘) = _B(:Cv L(y)) = _B(L(J:)v LQ(y)) = B(L(I‘), y) = —E(SL‘, y)
is skew-symmetric, obviously non-degenerate.

Let us consider M as a module over Z][i] by letting ¢ act on M as the isometry ¢. Since Z[i] is a
principal ideal domain, we get M = Z[i]* and we have an isomorphism (Mg, :) = C¥, so that M
can be identified with the lattice A with a basis equal to the union of k copies of the basis (i, 1).
Obviously, the abelian variety A = C* /M becomes isomorphic to the product Efﬁ, where £/ —7
is the elliptic curve with complex multiplication by Z[i]. On the other hand, if we take M to be an
even unimodular lattice of rank 2k, then our Hermitian form H defines an indecomposable principal
polarization. As we remarked before such lattices M exist only in dimension divisible by 8. So, k
is divisible by 4.

If k = 4, there exists a unique such lattice, the Fg-lattice M. The abelian 4-fold A = ct /M
is remarkable for many reasons. For example, it is isomorphic to the intermediate Jacobian of a
Weddle quartic double solid, i.e. a nonsingular model of the double cover of P2 branched along a
Weddle quartic surface with 6 nodes (see [R. Varley, Amer. J. Math. 108 (1986), no. 4]). Another
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remarkable property of A is that the theta function corresponding to its indecomposable principal
polarization has maximal value of critical points (equal to 10 in dimension 4 for simple abelian
varieties which are not isomorphic to the Jacobian variety of a hyperelliptic curve) (see [O. Debarre,
C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 20]).

Recall that the Jacobian variety Jac(C') of a compact Riemann surface C' of genus g (or, equiva-
lently, nonsingular complex projective curve of genus g) is an abelian variety whose period matrix

is equal to
I =( / wj),
i
where wi, ..., wy is a basis of holomorphic 1-forms on C' and 1, . .., ¥y is a basis of H1(C,Z).
One can always choose a basis of H;(C,Z) and a basis in Q!(C) such that the period matrix
IT = [rl,], where 7 € Z,. In particular, Jac(C') has always a principal polarization Lg. The

unique nonzero section of Lg has the divisor of zeros equal to the image of the symmetric product
cl=1) =9 /& 4—1 under the Abel-Jacobi map

g—1 -1 Cik
cl-1) Jac(O), cL — (/ Wi, ... ,/ wg) mod 2%,
k

Ck
=1 k=1 YP1 Pg—1

Q

where p1,...,py—1 are fixed points on C.

Example 6. Following [T. Hayashida, M. Nishi, J. Math. Soc. Japan 17 (1965)] let us give an
example of the Jacobian of a curve of genus 2 isomorphic to the product of two isomorphic elliptic
curves. Let K = Q(—m) be an imaginary quadratic field and o be its ring of integers. We assume
that the class number of K is greater than 1 and choose a non-principal ideal a on 0. For example, we
can take m = 5. Since —5 = 3 mod 4, the ring o is generated over Z by 1 and w = \/—5. We may
take for a the ideal generated by (2, 1 + w). In fact, Nm(a) = (Nm(2),Nm(1 +w)) = (4,6) = (2)
and since the equation Nm(z + yw) = x? + 5b% = 2 has no integer solutions, we obtain that the
ideal a is not principal. Let
E=C/o=C/Z+ Zw.

Consider a homomorphism ¢ : E — E x E defined by z — (2z, (1 + w)x). Let E’ be the image
of this homomorphism. Let E; = FE x {0}, E; = {0} x E, and A be the diagonal. Let us compute
the intersection indices of E’ with these three curves.

Suppose ¢(z) € F1, then z(1 + w) € o, hence there exists m, n € Z such that

m + nw 1 1+w
v 14w G(m+ +(m—nw) € 6 +

This shows that there are 3 intersection points (0,0), (152, 0), (2(1?’) ,0).

Suppose ¢(x) = (0,(w + 1)x) € E,, then 2z € o, hence there are two intersection points
(0,0), (0, 3(1 +w)).

Suppose ¢(x) = (2z, (1 +w)z) € A, then (1 —w)xr = 2z — (1 + w)z € o. This implies that
x € 127 + 7, hence there are 3 intersection points (0, 0), (152, 1£2), (KITM, 2(17;;@)

Now we consider the divisor
C:2A+E/+E1—2E2.
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We have C - A = 2,C - E' = 5,C-FE; = 3,C-FEy, = 5,C? = 2. By Riemann-Roch, C
is an effective divisor class, so we may assume that C' is a curve of arithmetic genus 2. If C is
reducible, then C' = Cy 4+ (s is the sum of two elliptic curves with C; - Co = 1, and we may
assume that one of its components, say C1, intersects A and E; with multiplicity 1. We have
Cy=C—Cy ~2A+ E' + E; — 2F; — (. Intersecting with Cy, we get 1 = 4 — 2(Fs - C1),
a contradiction. Thus C'is an irreducible curve of arithmetic genus 2. It is known that this implies
that C' is a smooth curve of genus 2 and A = Jac(D) (see [A. Weil, Nachr. Akad. Wiss. Gottingen.
Math.-Phys. KI. ITa. 1957 (1957)]).! and as we remarked before, it must be a nonsingular curve of
genus 2, and A = E X E is isomorphic to Jac(C').

'To see this use one considers the normalization map D — A and the dual map A — Jac(D) and proves that it is
injective, hence the geometric genus coincides with the arithmetic genus.



Lecture 4

Abelian surfaces with real multiplication

Let A be an abelian variety of dimension 2, i.e. an abelian surface. The Poincaré duality equips the
group H%(A,Z) = Z° with a structure of a unimodular quadratic lattice of signature (3,3). It is
an even lattice, i.e. its values are even integers. By Milnor’s theorem, H?(A,Z) = U & U @ U,

01
1 0)°
and the direct sum is the orthogonal direct sum. Let 74 be the orthogonal complement of NS(A) in

H?(A, 7). 1tis a quadratic lattice of signature (2, 4 — p), and we have an orthogonal decomposition
of quadratic lattices

where U is a hyperbolic plane over Z, i.e. its quadratic form could be defined by a matrix

H%(A,Z) = NS(A) @ Ta.

The quadratic form on NS(A) is defined by the intersection theory of curves on an algebraic surface.
For any irreducible curve C' on A, the adjunction formula C? + C - K4 = C? = —2x(0O¢),
together with the fact that A has no rational curves, gives C? > 0 and C? = 0 if and only if C is
a smooth elliptic curve. By writing any effective divisor as a sum of irreducible curves, we obtain
that D? > 0 on the cone Eff(A) in NS(A)g of classes of effective divisors modulo homological
equivalence. By Hodge’s Index Theorem, we have D - C' > 0 for any effective divisors D and C'.
This implies that Eff(A) coincides with the cone Nef(A) of nef divisor classes. The latter is known
to be the closure of the cone Amp(A) of ample divisor classes. By Riemann-Roch and the vanishing
Theorem, h(D) = D?/2 for any ample divisor D. Thus the restriction of the trace quadratic form
on End(A) to Amp(A) is equal to twice of the restriction of the intersection form to Amp(A).

Suppose A is a simple abelian surface with End(A) # Z. According to the classification of
possible endomorphism algebras, we have four possible types:

(i) End(A)q is a totally real quadratic field K and p = 2;
(ii) End(A)q is a totally indefinite quaternion algebra over K = Q and p = 3;

(iii) End(A)q is a totally imaginary quadratic extension K of a real quadratic field K and p = 2;

Observe that we have intentionally omitted the cases when End(A)q is a definite quaternion al-
gebra and when End(A)q is a totally imaginary quadratic extension of Q. These types of algebras
occur for a non-simple abelian surface. In the former case it must be the product of two elliptic
curves with complex multiplication by \/—1 (see [CAV], Chapter 9, Example 9.5.5 and Exercises
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1). In the latter case, End(A)g must be isomorphic to an indefinite quaternion algebra (loc.cit.
Exercise 4 in Chapter 4).

Let us first discuss abelian surfaces with type (i) endomorphism ring. First observe that the Rosati
involution acts identically on the totally real field X' C End(A), hence all endomorphisms come

from NS(A). Let
(Zl ZQ)
T =
zZ9 Z3

be the period matrix of A. We assume that A = C? /Z? + DZ? has a primitive polarization of degree
n. Its type is defined by the diagonal matrix D = diag[1, n|. Let f € End®(A), where f,, is defined
by a matrix M and f, is defined by a matrix /V as in (2.2). Since f is symmetric, N satisfies (2.4).
We easily obtain that
ap mnay 0 nb
A1 A3 o as a4 —b 0
<A2 A4> 1 0 nc a1 nas
—c 0 ay a4

By (2.2) and (2.3), we have
M = (A3 + DA4)D™Y, M7 =7A; + DA,

and
(TAg + DA4)D_1T =7A; + DAs.

The left-hand side in the secon equality is equal to

< 0 b(—Z% + Z123)> ( a1z1 + azz9 a1z + aszz3 >
b(

23 — 2123) 0 naszy + a1ze  nasze + asz3
B a1z1 + azzo b(—23 + 2123) + a122 + azzs
b(z% - 2123) + nagzy + a422 +nagzo + aqzs ’

The right-hand side is equal to

ai1z1 + azz2 naszi + asz9 + nc
a1zo + azzz — nc Naszo + G423 '

Comparing the entries of the matrices in each side, we find a relation
b(zg — z123) + agnzy + (ag — a1)z2 — agzs + ne = 0.

We rename the coefficients to write it in the classical form to obtain what G. Humbert called the
singular equation for the period matrix 7:

naz + bzs + czz 4 d(23 — z123) + ne = 0. 4.1)

We also assume that (a, b, ¢, d, €) = 1. In this new notations, the matrix Ny = N —ay I, representing
(fo)r = (f — a1id), can be rewritten in the form

0 na 0 nd
—c b —-d 0
0 ne 0 —nc
—e 0 a b

Nog=—a1ly+ N = 4.2)
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and (fp), is represented by the matrix

. —Nnz9 nzy —c¢
Mo = (—nz;; +na nzg+ b) ' @.3)

We have
Tr(No) = 2Tr(My) = 2b, det(Np) = det(Mp)? = n*(ac + ed)*.

Thus fy satisfies a quadratic equation

t2 — bt 4+ n(ac + ed) = 0, (4.4)
so that 1, fy generate a subalgebra 2l of rank 2 of End®(A) isomorphic to

A = Z[t]/(t* — bt + n(ac + ed)).
The discriminant A of the equation (4.4) is equal to
A =b* — 4n(ac + ed). (4.5)

It is called the discriminant of the singular equation. Note that, if b is even, D = 0 mod 4,
otherwise D =1 mod 4.

Since we know that the eigenvalues of M are real numbers,
A > 0. (4.6)

Thus if A is not a square, the algebra 2l is an order in the real quadratic field Q(\/Z) On the other
hand, if A is a square, then the algebra 2l has zero divisors defined by the integer roots %(b +VA)
of equation (4.4).

Let L be the line bundle that is mapped to fy inder o : NS(A) — End*(A). Applying (2.6), we
obtain that
(Lo, La) = nb = 3(L3)b, (LX) = sn(b* — A). (4.7)

Thus the sublattice of NS(A) generated by L, L has discriminant equal to (Lg)?(L?)— (Lo, L)? =
—n2A.

When LA is ample, we can also determine the type of the polarization defined by La. It is equal
to the type of the alternating form given by the matrix

0 na 1 nd

—c b —-d n
tNoJpNy = 1 one 0 —ne (4.8)
—e —n a b

Let Ay, = Z2/Sp(Jp,Z) be the coarse moduli space of principally polarized abelian surfaces.
We denote by Ha the set of period matrices 7 € Z, satisfying a singular modular equation with
discriminant A. Let

Hum,,(A) = Ha/Sp(Jb,Z)

be the image of Ha in Ay, := Ay p. This is the locus of isomorphism classes of abelian surfaces
with primitive polarization of degree n that admit an embedding of a quadratic algebra Z[t]/(t* +
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at + B) with discriminant A = o — 43 in End(A). We call it the Humbert surface of discriminant
A.

Suppose 7 € Ha and let 7 = M - 7 for some M € Sp(4,7Z). If 7 satisfies a singular equation
(4.1), then the matrix Ny defining an endomorphism of C? /A changes to M —1. Ny - M ([CAV],
8.1). Thus 7’ satisfies another singular equation although with the same discriminant.

We will prove later the following theorem, which is in the case n = 1 due to G. Humbert.

Theorem 7. Every irreducible component of the Humbert surface Hum,, (A) is equal to the image
in Z5/Sp(Jp,Z) of the surface given by the equation

21 4+ bzo + cnzz = 0, 4.9)
where A = b? — 4nc, 0 < b < 2n. The number of irreducible components is equal to

#{b mod 2n:bv*=A mod 4t}.

Assume A is not a square. Then End®(A)g contains the field K = Q(v/D). Let o be its ring
of integers defined by equation (4.4). The lattice A aquires a structure of a rank 1 module over o g
via action of f,. It is known that any such module is isomorphic to 0 & a, where a is an ideal in

ox. LetI' = SL(ox @ a) be the group of automorphisms of this module represented by matrices

with unimodular matrices (: g ) with coefficients in 0 such that, for any z € ox,y € a, we have

ax + By € ox,yx + oy € a. Itis called the Hilbert modular group.The group I' acts on H x H by

azy+7v az t+7y
Bz14+0" Bz1+ 0

(21, 22) = ( )-
We also consider a little larger group r acting on H x H by adding to I" an automorphism o :
(21, ZQ) — (22, Zl).

Corollary 8. Assume that A is not a square. Then the irreducible component defined by (4.9) is the
image of a degree 1 map H x H/T' — As,, = Z2/Sp(Jp,Z) ifb # 0 mod n and it is the image
of H x H/T' — Ay, ifb=0 mod n.

Proof. (see [G. van der Geer, Hilbert modular surfaces], iX, Proposition 2.6). Let S = ( 1

Sl NI

(b+VA )
b—VA) )
Write A in the form A = b? — 4nc. Consider the map

Hx H— 25, (21,22) — S (zl 0) tg—1,
0 Z9

One checks immediately that the image is equal to the subset of matrices 7 = ( ~0®2_cn@s 22,

Next, we compute the subgroup of Sp(Jp,Z) that leaves invariant the image of the map. It turns
oyt to be the group I or I'. O



Lecture 5

A is a square

Let 7 : B < A be an abelian subvariety of an abelian variety A with primitive polarization L
of degree n. Let L, = i*(Ly) be the induced polarization of B and ¢ : B — B be the isogeny
defined by L{,. Consider the composition

NmB::¢Z§oi*o¢L0oz’:A—>A—>B—>B—>A.

It is called the norm-endomorphism associated to B. It is a symmetric endomorphism corresponding
to the Hermitian form obtained by restricting the Hermitian form of L to H;(B,C) C H;(A,C)
and then extending it to Hy(A, C) by zero. Also it is easy to see that Nm% = e(L{)Nmp. Taking
f =Nmp and d = e(L{,), we obtain that f satisfies the equation f2 — df = 0.

Let us go back to abelian surfaces and assume that A = k? is a square. Then the minimal
polynomial defining the corresponding endomorphism has roots ay = %(b + k). Since A = b?
mod 4n, at € Z. The equation

0= (f—asida)(f +a_idg) =0
shows that the endomorphisms g+ = f — a1id 4 satisfy the equations
9% = £kgs, gyog-=0. (5.1)

Let £+ = g+ (A) C A. These are elliptic curves on A, and we have exact sequences of homomor-
phisms of abelian varieties:

0—>E+—>Ag;>E,—>O, O—>E,—>Aﬁ>E+—>O
Note that g+ | E+ = [+k], hence E, - E_ = #Ker([k]) = k2. Since the kernel of the isogeny
EixE_— A (z,y) —»x+y
is the group E, N E_, we obtain that its degree is equal to k.

Suppose A = Jac(C') for some curve C' of genus 2 and the polarization Ly = O4(C) is the
principal polarization defined by C' embedded in Jac(C') via the Abel-Jacobi map. Since k is equal
to the trace of the characteristic equation fro g, formula (2.8) and the projection formula imply that

Tr(g}) = Tr(kgy) = kTe(g+) = k> = (¢7.(0),C) = (C,(9+)+(C)) = d+C - By = dyd-,
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where d is the degree of the projection g+ |C' : C — FE4. Since d+,d_ < k,we getd; = d_ = k.
Obviously, k£ > 1 since C is not isomorphic to an elliptic curve.

Thus we obtain the following.

Theorem 9. Suppose a period T of Jac(C) satisfies a singular equation with discriminant A =
k? > 1, then C is a degree k cover of an elliptic curve.

Conversely, assume that there exists a degree k cover ¢ : C — E, where E is an elliptic curve.
Then the cover is ramified, hence the canonical map ¢* : £ = Jac(E) — A = Jac(C) is injective.
We identify its image with F. Let N : Jac(C') — Jac(E) = FE be the norm map (defined on
divisors by taking ¢,). Then N - ¢* : E — FE is the map [k]. Let g = Nmpg : A — A. Then, it
follows from the definition of the norm-endomorphism that g = kg. Arguing as above, we find
that the symmetric endomorphism Nmpg defines a singular equation for a period of Jac(C') whose
discriminant is equal to k2.

Example 10. Assume that a period of A = Jac(C) satisfies a singular equation with A = 4, so that
C is a bielliptic curve, i.e. there exists a degree 2 cover o : C' — FE. Let ¢t : C' = C be the deck
transformation of this cover. If C' is given by the equations

y* — fo(x) =0 (5.2)

then, we may choose (z,) in such a way that ¢ is given by (z,y) — (y, —) and fe(z) = g3(2?).
Let
v? — g3(u) =0

be the equation of an elliptic curve E. The map (z,y) — (22,v) defines the degree 2 cover
a: C — E. Let du/v be a holomorphic 1-form on £, then a*(du/v) = zdz/y is a holomorphic
1-form on C. The involution ¢* acts on the space of holomorphic 1-forms on C' spanned by dx/y
and zdz/y, and decomposes it into two eigensubspaces with eigenvalues +1 and —1. Consider
the involution ¢/ : (z,y) + (—y, —z). The field of invariants is generated by 32, zy, 2%, Again
fo = g3(z%) and we get the equation (xy)? = x2g3(z?). Thus the quotient C'/(¢') is another elliptic
curve with equation
v? — ugz(u) = 0.

The map o/ : C — E’ is given by (u,v) — (22, zy). We have o/*(du/v) = 2dz/y. Thus any
hyperelliptic integral [ # can be written as a linear combination of elliptic integrals. This was
one of the motivation for the work of G. Humbert.

One may ask how to find whether a hyperelliptic curve given by equation (5.2) admits a degree
2 map onto an elliptic curve in terms of the coefficients of the polynomial fg. The answer was
known in the 19th century. Let us explain it. First let us put a level on the curve by ordering the the
Weierstrass points (0, z;), fe(x;) = 0,7 = 1,...,6. By considering the Veronese map v : P! — P2
we put these 6 points (x;, 1) on a conic K in P2, Let p; = v(z;). Applying Proposition 9.4.9 from
[CAG], we obtain that the following is equivalent:

e there exists an involution 7 of P! with orbits (1, z2), (23, 24), (75, T6);

e the lines pr, p2, P3, P4, D5, Pe intersect;

e the three quadratic polynomial (x — z1)(x — x2), (x — z3)(x — 24), (z — x5)(z — x6 are
linearly dependent;
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o if a;tg + E;t1 + c;te = 0 are the equations of the three lines, then

ap a2 as 1 x14+29 2179
D12734756 = det a9 E2 C2 =det |1 I3 + x4 374 0.
as E3 C3 1 5+ Tg TsTg

(see [?], p. 468). Let

I= 11 Poo@.o0).06)00)-
geGg

The stabilizer subgroup of D12 34 56)% in &g is generated by the transpositions (12), (34), (56) and
permutations of three pairs (12), (34), (56). Itis a subgroup of order 48. Thus, after symmetrization,

I defines the Clebsch-Gordan invariant 15 of degree 6! /48 = 15 in coefficients of the binary form.
1

Remark 11. Note that, if one does not assume that the 6 points py, ..., pg are on a conic, the last
two conditions define an irreducible component of the moduli space of marked cubic surfaces with
an Eckardt point (see [CAG], 9.4.5).

Remark 12. Explicitly, suppose the characteristic equation of fo and N is equal to t? — bt + (ac +
ed) = 0. Suppose that A = b? — 4((ac + ed) = k%. The matrix Ny in its action on A has two
eigensublattices A+ of A with eigenvalues .. They are generated by

vf = (d,0,—c,ax), vF =(0,d,b— —a),

where the coordinates are taken with respect to the basis (71, y2, €1, e2) of A = T7? + Z2. So, we
can write
vf = (dz1 — ¢,dza + ax), vF = (dzg +b— ag,dz3 — a).

The endomorphism fj represented by the matrix M has the eigenvalues o+ with one-dimensional
eigensubspaces V4 generated by the vectors wy = vli, the vectors vli, UQi are proportional over C
with the coefficient proportionality equal to

dzo + a4 _ dz1 — ¢

== dzs —a  dz+b—oay’

Let
EL = V:t/A:t = C/Z’rﬂ: + 7Z.

The embedding AL — A define a homomorphism F+ — A. Its kernel is equal to the torsion of the
group A/A4. We have

Uli A v2i = (d?,d(b— ax), —ad, cd, doy, ed)
is equal to d times a vector with mutually coprime coordinates. More precisely,
+

avi + azvi = (da,dos, —ac + ax(b — ax),0) = d(a, at, e,0) = dgx.

This shows that the torsion is of degree d.

'Tts explicit formula occupies 15 pages of Salmon’s book [G. Salmon, Lessons introductory to the modern higher
algebra, Appendix.



28 LECTURE 5. A IS A SQUARE
Let A, = Ay + Zg+. Then E/, = Vi /A, embeds in A. We have E(vi", g1) = (b — 2a4) = k,
where k% = A.

Then we have homomorphism of the complex tori:
E+ x F_ :V_J,_@V_/A/_’_@A/_ —)A:V+@V_/A

Its kernel is a finite group A/A/, @ A’ of order equal to the determinant of the 4 x 4-matrix with
columns v}, v, vy, v, divided by d?. Computing the determinant, we find that it is equal to d2A.
Thus we obtain

Remark 13. We know from Example 6 that the Jacobian variety Jac(C') of a curve of genus 2 could
be isomorphic to the product of two isogenous elliptic curves F; x FEs. Let k1, ko be the degrees of
the projections of C' — E;. Fix an embedding F; — F X F» and consider the corresponding norm-
endomorphisms g;. Then, we obtain that the period matrix of A satisfies two singular equations with
discriminants k? and k3. We have two isogenies

E1XE1—>E1XE2, EQXEé-)EleQ

of degrees k? and k3.

Remark 14. (see [N. Murabayashi, Manuscripta Math. 84 (1994)). Consider the abelian variety A

defined by the period matrix
. z1 1/]45
T = <1/k 2 > (5.3)

Let p : C2 — C? be the linear map (a, b) — (0, kb). Then p(v1) = €2, p(12) = ky2 — e1,p(e1) =
0,p(e2) = key. Thus p defines an endomorphism of A with

0 0 00
0 0 0 k 00
f“_(o k)’f’“_ 0 -1 0 0
1 0 0 k

We have p(A) = Z1+Zkzz = C/A; and Ker(p)NA = Z(k~y1 —e2) +Ze;. We see that the matrix is
a special case of the matrix Ny from (4.2). We geta = c=d = 0,b = k,e = —1. Thus 7 satisfies
the singular equation kzo = 1, of course, this was obvious from the beginning. The discriminant of
this equation is equal to k2. This shows that p defines a surjective homomorphism to the complex
1-torus E = C/Z+ Zkz3 and its kernel is the complex torus E' = C/Z+ Zkz; = C/A5 embedded
in A by the map z — (z,0) that sends 1 to e; and kz1 to ky; — ea. We also can embed E' in A
by the map C — C? that sends 1 to e and kz3 to kvo. The determinant of the matrix of the map
A1 ® Ay — Ais equal to k2, thus we have an isogeny E x E’ — A of degree k2.

Example 15. Assume k = 3. Let f : C — E be a degree 3 map onto an elliptic curve . Assume
that Jac(C') contains only one pair of one-dimensional subgroups E, E’ with E - E' = k? and that
E is not isomorphic to E’. Let o be the hyperelliptic involution of C' and ¢ : C' — C/(c) = P! be
the canonical degree 2 cover. By our assumption, the subfield of the field of rational functions on
C contains a unique subfield isomorphic to the field of rational functions on E. This shows that o
leaves this field invariant and hence induces an involution & on F such that we have a commutative
diagram
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C—==C .
! !

E—"+FE

We assume that the map f : C' — F ramifies at two distinct points. This is a non-degenerate case, in
another case we may have one ramification point of index 3. Let x be one of the Weierstrass points,
a fixed point of 0. We have f(z) = f(o(x)) = &(f(x)). Thus, by taking f(z) to be the origin of
a group law on F, we may assume that & is an order 2 automorphism of E. Obviously, it has four
fixed points, the 2-torsion points on £. This shows that f defines a map of a set of 6 Weierstrass
points W to the set F' = E° of 4 fixed points ay,...,a4 of 7. If a is one of these fixed points
and f(z) = a, then f(o(x)) = a, hence o preserves the fiber f~!(a) (considered as an effective
divisor of degree 3 on C'. Since ¢ is of order 2, it must fix one of the points or the whole fiber. The
latter case happens if f has a ramification point over a. Thus the fibers of the map W — F' have
cardinalities (3,1,1,1) or (2,2, 1, 1). To exclude the latter possibility, we consider the commutative
diagram

C'*d)>IP’1 ,

.

E—=P!

Comparing the ramification schemes for the degree 6 maps ¢ o f : C — P! and f o ¢ one can
see that the second possibility does not occur. Let us consider the case (3,1, 1,1). We assume that
f~(ay) consists of three points in W. Let y; = ¢(a;). The the map ¢ o f : C — P! ramifies the 3
preimage of each point y; € ¢(F) with index ramification equal to 2, and ramifies at 2 points over
the image b in P! of the two branch points of C' — E.

Using the commutative diagram we see that the branch points of the map f : P! — P! are three
points yo,y3, 44 € ¢(F). The fiber f~1(y;) contains one point from ¢(W), the other point in the
this fiber is a ramification point.

Now, we see that the set of Weierstrass points W is split into a disjoint set of triples of points A+ B,
where f(A) =a € Fand f(B) = F'\ {a}. We choose a group law on E to assume that a; = {0}.
We know that Ker(Jac(C') — E) = Ker(Nm : Jac(C') — E). Since Nm(z + y + z) = 0, hence
{x +y+ 2} C E'. The image ¢(A) of A in P! is a fiber of the map f : P* — P! over y; = ¢(0).
The image of each point in B under ¢ is contained in a fiber over a point y2, y3, y4 complementary
to the ramification point over ¥z, y3, Y4.

Thus we come to the following problem. Let C' : y? — Fg(x) = 0. The polynomial Fs should
be written as the product @33 of two cubic polynomials such that there exists a degree 3 map
P! — P! such that the zeros of ®3 form one fiber, and the zeros of U5 are in the same fiber
containing 3 ramification points.

We follow the argument of E. Goursat [E. Goursat, Bull. Soc. Math. France, 13 (1885)], and H.
Burhardt [H. Burhardt, Math. Ann. 36 (1869)] in a nice exposition due to T. Shaska [T. Shaska,
Forum Math. 16 (2004)].

Let F(u,v) = 0 be the binary form of degree 6 defining the ramification points of ¢ : C' — P
We seek for a condition that F'(u,v) = ®(u,v)¥(u,v), where the cubic binary forms satisfy the
following conditions.
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Let G(u,v) be a binary cubic and

G, G,
J(u,v) = J(G, ®) = det ((I); q)i))

be the jacobian of G, ®. Its zeroes are the four ramification points of the map ¢ : P — P! given by
(G, ®). Let

K = K(u,v;u'v") = det <GG’;(7;:Z')) f(gf::j,))) J(uv —u'v)

be the anti-symmetric bi -homogeneous form of bidegree (2, 2) on C2 x C? expressing the condition
that two points (u,v) and (u’,v’) are in the same fiber of ¢. Its set of zeros (u : v) = (v : V')
consists of 4 ramification points of ¢. In other words,

K(u,v;u/,v") = J(G, ®).
Consider K as a polynomial in «’, v" with coefficients in C[u, v]. Let
R(u,v) = R(K (u,v;u',v"), J(u',v"))

be the resultant. Its vanishing expresses the condition that K and J have a common zero. It is a
binary form of degree 4 in u,v. Let ¥(u,v) be a cubic binary form dividing R(u,v). Then the
hyperelliptic curve y? — ®(u,v)¥(u,v) = 0° admits a map of degree 3 to C. The equation of C is
y? — (z) = 0, where v (u/v) = ¥(u,v).

Using the projective transformations of (u, v) and a linear transformation of G, ®, one may assume
that G (u, v) = u?v. We can also assume that ®(u, v) = u® + au?v + buv? + v3. Then we find that

F(u,v) = (u® + av?v + buv? 4+ v¥) (4u® + b + 2bx + 1),
so that a, b are two parameters on which our hyperelliptic curves depend.

Finally, we refer to [Burhardt] and [T. Shaska, Forum Math. 16 (2004)] for an explicit invariant
of binary sextics defining the locus Hum(9). In [K. Magaard, T. Shaska, H. Vélklein, Forum Math.
21 (2009)], one can find a treatment of the case k = 5.

A generalization of a problem of finding the conditions that a map C' — FE of degree k exists is
the following problem.

A principally polarized abelian variety P is called a Prym-Tyurin variety of exponent e if there
exists a curve C' and an embedding P < Jac(C') such that the principal polarization of C' induces
the polarization of type (e, ...,e). Prym-Tyurin varieties of index 2 are the Prymians of covers
C — D of degree 2 with at most 2 branch points. A generalization of the Prym constructions is a
symmetric correspondence 7" on C' such that (7'—1)(7T'4+e— 1) = 0 in the ring of correspondences.
The associated Prym variety of index e is the image of 7" — 1.

For example, the existence of a degree k cover C' — E gives a realization of F as a Prym-Tyurin
variety of exponent k. So, the problem is the following. Fix a ppav P of dimension p and a positive
number e. Find all curves C of fixed genus g such that P C Jac(C') and the principal polarization
induces a polarization of type (e,...,e) on P.

For example, assume that p = 2 and ¢ = 3. Then Jac(C') should be isogenous to the product
P x E, where E is an elliptic curve.

2One views this equation as a curve in P(1, 1, 2).
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A is not a square

Let us study the Humbert surface Hum(A) := Hum; (A), where A is not a square. We will see the
speciality of abelian surfaces belonging to the Humbert surface Hum(A) in terms of the associated
Kummer surface. Let A be a principally polarized abelian surface and Kum(A) be the quotient
of A by the cyclic group of order 2 generated by the involution ¢ = [—1]. Let L be a principal
polarization of A. The involution ¢ is a symmetric endomorphism corresponding to L~!. Then ¢*
acts on H'(A,Z) as the multiplication by —1, hence its acts on H2(A, Z) identically. This shows
that ¢; (L) = ¢1(¢*(L)), hence M = *(L) ® L satisfies t*(M) = M (such line bundles are called
symmetric) and c¢1(M) = 2c1(L), or, equivalently, M defines a polarization of type (2,2) with
(M,M) = 4(L,L) = 8. By Riemann-Roch, dim H(A, M) = 4, and the linear system |M]|
defines a regular map f : A — IP? that factors through a degree 2 quotient map

¢: A AJL)

and an isomorphism A/ () — X, where X is a quartic surface in P3. The quotient A/(:) is denoted
by Kum(A) and is called the Kummer surface associated to A. The 16 fixed points of the involution
¢ are the 2-torsion points e € A. Their images p. on X are ordinary double points. Assume that
the polarization L is irreducible. Then A = Jac(C') for some smooth genus 2 curve C' C A and A
can be identified with the subgroup Pic®(C) of divisor classes of degree 0. By translating C by a
point in A, we may assume that C' is the divisor of zeros of a section of L. For any 2-torsion point
e € A, let C, denote the translation of C' by the point e. We have 2(C.) € |L®?|. Let us identify
Kum(A) with the quartic surface X and let T, be the image f(C,) in X. Then f~1(27T,) = 2(C.),
hence 27 is equal to X N H, for some plane H, in 3. Since plane sections of X are plane curves
of degree 4, we see that T, must be a conic. The plane H. (or the conic C,) is called a trope.

Note that the map C, — T}, is given by the linear system |L®?|C,| of degree 2 on C, = C. It
defines a degree 2 map C, — T, so 1, is a smooth conic. Thus we have 16 nodes p. € X and
16 tropes 1. The 6 ramification points of the map C. — T, are fixed points of ¢. Hence, they are
2-torsion points lying on C.. Thus each trope passes through 6 nodes. It is clear that the number
of tropes containing a given node does not depend on the node (use that nodes differ by translation
automorphism of A descent to X). By looking at the incidence relation {(C.,€’) : €' € C.}, we
obtain that each node is contained in 6 tropes. Thus we get a combinatorial configuration (16¢)
expressing the incidence relation between two finite sets. This is the famous Kummer configuration.

To obtain a minimal resolution of Kum(A), we lift the involution ¢ = [~1]4 to an involution ¢
of the blow-up A — A of the set A[2]. The quotient X = A/(7) has the projection to A/(t) =
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Kum(A) which is a minimal resolution of the 16 nodes of Kum(X).

A2 X
A i> X

Since ¢ acts as —1 on the tangent space To(A), it acts identically on the exceptional curves R}
of 6. Thus the quotient A/7 is nonsingular and the proejction p is a degree 2 cover of nonsingular
surfaces ramified over 16 curves R, isomorphic to P*. Using the known behaviour of the canonical
class under a blow-up, we obtain K ; = > R;. The Hurwitz formula K ; = p*(K 3 )+ R} implies
that Ky = 0. Since ¢ acts on HY(A,Q) as —1, we obtain that HY(X,Q) c HY(A,Q)? = {0}
must be trivial. Thus b1 (X) = 0, and we obtain that X is a K3 usrace.!.

Let p be one of the 16 nodes of X. Projecting from this point, we get a morphism X \ {p} — P?
of degree 2. Let us choose coordinates in P such that p = [1,0, 0, 0]. Then the equation of X can
be written in the form

t3Fy(t1, ta, t3) + 2toF3(t1, ta, t3) + Fy(t1, ta, t3) = 0,

where FJ(t1,t2,t3) is a homogeneous form of degree indicated by the subscript. It is clear that the
pre-image of a point [z1, 22, x3] on the plane consists of two points which coincide when

F = F3(t1,t2,t3)? — Fa(ty, ta, t3)Fu(ty, ta, t3) = 0.

We say that X is birationally isomorphic to the double plane with branch curve B : F' = 0 of
degree 6. Note that the conic 5 = 0 is the image of the tangent cone at p and it is tangent to B
at all its intersection points with it. Of course, this is true for any irreducible quartic surface with a
node p. In our case we get more information about the branch curve B. Let (1, ..., Cg be the six
tropes containing p. Then any line in the plane 7; spanned by C; intersects the surface at one points
besides p. This implies that the projection of C;, which is a line ¢; in the plane, must be contained in
B. Thus, we obtain that B is the union of 6 lines /1. .., {5. Obviously, they intersect at 15 = (5)
points, the images of the remaining 15 nodes on X. So, we obtain that X is birationally isomorphic
to a surface in P(3, 1, 1, 1) given by the equation

2
a2 =1,

where 1, ...,lg are linear forms in variables x1, x2, x3. The corresponding lines /1, ..., {g are in
general linear position. However, they are not general 6 lines in the plane since they satisfy an
additional condition that there exists a smooth conic K that tangent each line.

Conversely, one can show that such equation defines a surface birationally isomorphic to the Kum-
mer surface corresponding to the hyperelliptic curve of genus 2 isomorphic to the double cover of
K branched at the tangency points. One uses that the pre-image of K under the cover splits into the
sum of two smooth rational curves K + K intersecting at 6 points. Let i be the pre-image of a
general line in the plane. Then h - K1 = h - Ko = 2 and (h + K1)? = 2 + 4 — 2 = 4. The linear
system |h + K| maps the double plane to a quartic surface in P2 with 16 nodes, fifteen of them are
the images of the intersection points of the lines, and the sixteenth is the image of K».

'By definition, a K3 surface is a smooth algebraic surface with trivial canonical class and the first Betti number equal
to 0
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In the following we will follow the paper [C. Birkenhake, H. Wilhelm, Trans. Amer. Math. Soc.
355 (2003)]. Applying Lemma 7, we may assume that b = 0,1 and A = b+ 4m. Recall from (4.7)
that A € Hum(A) contains a line bundle L such that

(LA) = 3(0* = A) = —2m, (Lo, La) =b.

Suppose
A =8d% +9 — 2k,

where k € {4,6,8,10,12} and d > 1. We have (L4) = —(4d® + 4 — k). Let L = LY ® La. We
easily compute
(L*) =4d(d+ 1)+ k=4, (L,Lo) =4d+1.

Using the formula (4.8), we find that the type of the polarization defined by L is equal to (1, 2d(d +
1) + g — 2). After tensoring L with some line bundle from Pic’(A), we may assume that L is
symmetric, i.e. [~1]*(L) = L.> For any symmetric line bundle L defining a polarization of type
(dy,ds), [~1] 4 acts on HY(L) decomposing it into the direct sum of linear subspaces H°(L)* of
eigensubspaces of dimensions §((L?) — #X; (L)) + 2, where

X5 (L) = {x € A[2] : [-1]4|L(z) = +1}.

It is known that
{8,16} if d;is even,
XS (L) € { {4,8,12} if dyis odd and dais even,
(6,10} ifds is odd.

(see [CAV], 4.7.7 and 4.14). Since in our case d; = 1, we can choose L such that k = #Xo(L)"
and dim H°(L)~ = d(d + 1) + 1. By counting constants, we can choose a divisor D € |L| such
that multoD > 2d + 1 (the number of conditions is d(d + 1)). The geometric genus g(D) of D is
equalto 1 + $D? —d(2d + 1) = d + 52, Let

¢:A— Kum(A) = A/([-1]4) c P3

be the map from A to the Kummer surface given by the linear system |L%<>2 |. It extends to a map
A — X from the blow-up of 16 2-torsion points of A to a minimal nonsingular model of Kum(A).
The divisor D is invariant with respect to the involution [—1] 4. The normalization D of D is mapped
(2 : 1) onto the normalization C of C' = ¢(D) and ramifies at k& — 1 points and some point in the
pre-image of 0. The Hurwitz Formula applied to the map D — C gives

k

_ —9 R
g(D):d+T:—1+2g(0)+7r

> ) (6.1)
where r is the number of ramification points over O(one can show that C' is smooth outside ¢(0),
see [BirkenkakeWilhelm], Proposition 6.3]). We may obtain D by blowing up 0 and taking the
proper inverse transform of D. The preimage of O consists of 2d + 1 points that are fixed under the
involution [—1] 4 extended to A. This shows that 7 = 2d + 1 and (6.1) gives g(C) = 0. Thus C'is
a rational curve and the proper transform of ¢(C') in the blow-up of ¢(0) intersects the exceptional
curve with multiplicity 2d + 1. Since (Lo, L) = 4d + 1, the image C’ of C under the proejction
7 : X --+ P2 from ¢(0) is a plane curve of degree 4d+ 1 — (2d + 1) = 2d that passes through k — 1

*We use that [—1] 4 acts as [—1] on Pic®(A), since M = [—1]*(L) ® L®* € Pic’(A), we write M = N®? and
check that [-1]"(L® N) 2 L ® N.
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intersection points ¢; N £;. Also note that, if C intersects one of the six tropes 7; corresponding to
the lines ¢; at a point ¢ with multiplicity m, then C” intersect ¢; at § = m(q) with multiplicity 2m.
This follows from the projection formula (7(C'), ¢;)g = (C,7*(¢;))q = 2(C, T})q.

So, we obtain the following theorem from [BirkenhakeWilhelm].3

Theorem 16. Suppose A = 8d> + 9 — 2k, where d > 1 and k € {4,6,8,10,12}. If (A, Lo)
is an abelian surface with an irreducible principal polarization Ly belonging to Hum(A), then
the double plane model of Kum(A) defined by 6 lines {1, ..., {s has the property that there exists
a rational curve C of degree 2d with nonsingular points at k — 1 intersection points {; N {; and
intersecting the lines at the remaining intersection points with even multiplicity.

Similarly, Birkenhake and Wilhelm prove the following.

Theorem 17. Suppose A = 8d(d+ 1) +9 — 2k, where d > 1 and k € {4,6,8,10,12}. If (A, Ly)
is an abelian surface with an irreducible principal polarization Ly belonging to Hum(A), then
the double plane model of Kum(A) defined by 6 lines {1, . .., lg has the property that there exists
a rational curve C of degree 2d + 1 with nonsingular points at k intersection points {; N {; and
intersecting the lines at the remaining intersection points with even multiplicity.

The following is the special case considered by G. Humbert.

Example 18. Take A = 5,d = 1,k = 6. Then C is a conic passing through 5 intersection points
pi =4;NLlipq,i=1,...,4and p; = ¢1 N {5 forming the set of 5 vertices of a 5-sided polygon IT
with sides 41, . . ., 5 and touching the sixth line /.

Together with the conic K touching all 6 lines, the pentagon is the Poncelet pentagon for the pair
of conics K, C' (i.e. K is inscribed in IT and C is circumscribed around II).

Example 19. Take A = 13,d = 1,k = 6. The only possibility is the following. Let p; =
b1 N by, py = by N L3, p3 = €1 NL3. Take py = £1 N Ly, p5s = o N L5, pg = €3 N £g. Then there must
be a plane cubic passing through p1, . . ., pg and touching ¢4, ¢, (.

These two theorems deals with the case when A = 1 mod 4 (although they do not cover all
possible A’s. The next theorem treats the cases with A =0 mod 4

Theorem 20. Suppose A = 8d? + 8 — 2k (resp. 8d(d + 1) + 8 — 2k, where d > 1 and k €
{4,6,8,10,12}. If (A, Ly) is an abelian surface with an irreducible principal polarization L
belonging to Hum(A), then the double plane model of Kum(A) defined by 6 lines (1, . . ., g has the
property that there exists a rational curve C' of degree 2d (resp. 2d + 1) with nonsingular points at
k (resp. k — 1) intersection points {; N {; and intersecting the lines at the remaining intersection
points with even multiplicity.

Example 21. Take d = 1,k = 4,A = 8. Then we get two 4-Poncelet related conics C' and
K circumscribed and inscribed in a quadrangle of lines. Note that Hum(8) is the locus in Ay of
surfaces with real multiplication by Q(\@) One can see in the following way (see [Terasomal).
Consider the following subgroups of Sp(4, Z)”

2 = {(A8)eSp(4,2): A-L,=D—-1,=C=0 mod 2}, (6.2)
Io(2) = {(A8)eSp(4,Z):C=0 mod 2}, (6.3)
re = {(A8)esSp4,2):A-L=D-L=C=B=0 mod 2}. (6.4)

3We omitted some details justifying, for example, why C' can be chosen irreducible or why its singular point at 0 is
an ordinary point of multiplicity 2d + 1.
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One can show that Z,/I";(2) is the fine moduli space A3 1(2) of pairs (A, ¢), where A is a
ppas (principally polarized abelian surface) and ¢ : (Z/2Z)?> < A[2] is a homomorphism of
groups with the image a totally isotropic subgroup of A[2] with respect to the symplectic form
on Hy(A,7Z)/2H'(A,Z) = A[2] induced by the symplectic form on H;(A,Z) defined by the po-
larization.

The quotient Z5/I'(2) is the fine moduli space A3 o(2) of pairs (A, ¢), where A is a ppas (prin-
cipally polarized abelian surface) and V' C A[2], where V is a totally isotropic subgroup of A[2].

Finally, the quotient Z5/I'(2) is the fine moduli space A2(2) of pairs (A, ¢), where A is a ppas
(principally polarized abelian surface) and ¢ : F% — A[2] is an isomorphism of 4-dimensional
symplectic linear spaces over Fy, where the symplectic form on 3 is defined by the matrix J.

We have a sequence of finite maps
A2(2) = A21(2) = A20(2) — A2
corresponding to inclusions of groups
I'(2) cT'1(2) Cc Ty(2) C Sp(4,7Z)

with corresponding indices 15,8,6. Note that I'(2) is a normal subgroup of Sp(4,Z) with the
quotient isomorphic to Sp(4, F2) = Gg. It is known that the moduli space A3(2) is isomorphic to a
locally closed subset of the GIT-quotient (P?)//SL(3) parameterizing orbits of 6 distinct points on
a conic. The group Gg acts on this space by permuting the points. Let

i = \2 <_012 %) € Sp(4,R).

It is an element of order 2, called the Fricke involution. It normalizes both I'y(2) and I';(2) and acts
as an involution on the spaces A3 ¢(2) and A3 1(2). The fixed locus of f in A3 1(2) is mapped to
Hum(8).
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A point in Ay 1(2) is represented by an ordered triple of pairs of points in fixed conic modulo
projective transformations leaving the conic invariant. These are painted in blues and joined by
three lines. The new 3 pairs pinted in red is the image of the point under the Fricke involution.

Remark 22. It follows from the Teichmiiller theory any holomorphic differential on a Riemann
surface X of genus g defines an immersion of H in M such the image is a complex geodesic with
respect to the Techmiiller metric. According to C. McMullen [?], the closure of the image of H in
M3 is either a curve, or a Humbert surface Hum(A), where A is not a square, or the whole M.



Lecture 7

Fake elliptic curves

We will discuss abelian surfaces with the endomorphism ring of the third type, i.e. imaginary
quadratic extensios of a real quadratic field later. They are examples of abelian varieties of CM-type.
In this lecture we will consider fake abelian surfaces, i.e. abelian surfaces with the ring End(A)g
isomorphic to an order in an indefinite quaternion algebra. Fake elliptic curves are parameterized
by a complete algebraic curve (a Shimura curve), the quotient of H by a cocompact Fuchsian group
isomorphic to the group of units of a quaternion algebra over Q. A construction of the moduli space
is as follows. Let B = Q(a, b) be an indefinite quaternion algebra over Q and o be an order in B.
Recall that this means that o is an algebra over Z containing 1 such that 0 ® Q = B. Note that
each order is contained in a unique maximal order. Let us identify Br with Maty(R) and consider a
linear R-isomorphism
$:Bp—C? X—X-z,

where z € P!\ P(R). Let A, = ¢(0). The complex torus C2/A. is an abelian variety. In fact,
we define the alternating form E, on A, by E,(¢(z),¢(y)) = —Tr(izy). The real part of the
associated Hermitian form is equal to the positive definite symmetric matrix Tr(xg). This gives us
an abelian surface A, = C2/A. Note that A, = A, if and only if there exists a unit u from o such
that ¢(u)(z) = 2’. We can find u with Nm(u) = —1 such that Im(z’) > 0, and then obtain that z is
defined uniquely up to the action of the group I" = ¢(07)/{x} C PSLa(R), where o7 is the group
of elements in o with Nm(u) = 1. The group I' is a discrete subgroup of PSLy(R), a Fuchsian
group of the first kind (a discrete subgroup I' of PSLy(R) such that the quotient H/T" is isomorphic
to the complement of finitely many points on a compact Riemann surface). It is known that I is
a cocompact, i.e. the quotient H/T" is a compact Riemann surface. It is also an arithmetic group
! Such quotients are called the Shimura curves. Conversely, any point on the curve H/T" defines
a polarized abelian surface with endomorphism algebra containing O for some order in a B. The
curve H/T" is the coarse moduli space of such abelian surfaces.

Let us give an example of a fake elliptic curve from [K. Hashimoto, N. Murabayashi, Tohoku
Math. J. (2) 47 (1995)]. Let B be an indefinite quaternion algebra over Q and op be the maximal
order in B. By definition, Bgr = Matz(R). Let x — x* be the involution in B induced by the
transpose involution of Mats(R). The trace bilinear form Tr(zy*) restricted to the symmetric part
B®* = {x € B :x = 2"} of B defines a structure of a positive definite lattice on 0% := B* N op of
rank 3. The discriminant of B is equal to the discriminant of the lattice 03;.

!This means that its preimage in SL2(R) contains a subgroup of finite index whose elements are matrices with entries
in an algebraic number field.
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Let us choose
B=Q+Qi+Qj+Qk, i’=-6,j=2ij=-ji=k

The maximal order o has a basis
1
4

Note thati, j, k/2 = (i —j)(i+j)/4 — 1 € op. The discriminant is equal to the determinant of the
matrix (Tr(c;;)). One finds that the discriminant of this matrix is equal to —6. The embedding of

Er in Mata(R) is given by
. (0 -1 V2 0
o (g ) i (Y )

We consider the isomorphism ¢, : Br — C2 given by X + X - (%), where z € C and consider
the abelian surface A,. Let w; = ¢.(o) € C2. One computes the matrix of the alternating form
E, in this basis to obtain that it is equal to

(041,...,044) = (17 %(1"’_3)7 %(I_J)7 (2+2j +k))

0 -1 -1 0
1 0 0 1
10 0 O
0 -1 0 0
If we put w] = —ws,w) = wy,wh = —wi,wW) = ws — wa, we obtain a standard symplectic basis

defined by the matix .J. We easily compute the period matrix

3z 1 32 1 V2
S A 2 4z 1 27 B2
z 29 23 3vV2z 1 _ /2 32 _ 1 1 )

One finds that the period matrix 7, satisfies the following 2-parametrical family of singular equa-
tions:
—(A )z + Aze + (A4 2u)23 + A(25 — 2123) + = 0.

Its discriminant is equal to
A =X AN+ )N+ 20) — 4hp = 5A% 4+ 8u(\ + p).

Taking (A, ) = (1,0) and (0, 1), we obtain that the image of 7 lies in the intersection of two
Humbert surfaces Hum(5) and Hum(8) which we discussed in the previous lecture. It will turn out
that the family of genus 2 curves whose endomorphism rings contains B is given by the following

formula.

y? =zt — pa® 4+ qz? —rz + 1),

where ( 2)( ) 4)
14+ 2t%)(11 — 28t~ + &¢
= -2 t),r=—-2(s—1t),q=
p (S+ )’T (8 )7q 3(1—t2)(1—4t2) ’

and g(s,t) = 45%t?> — s> + 12 +2 = 0.

The base is the elliptic curve given by the affine equation g(s,t) = 0. The Shimura curve
is of genus 0, the quotient of the base by the subgroup generated by the involutions (¢,s) —

(=t £s), (z,y) = (=, 1y), (=71, y2 ™).



Lecture 8

Periods of K3 surfaces

A K3 surface was defined as a complex algebraic surface with Kx = 0 and b;(X) = 0. The
Noether formula
12x(X,0x) = KX + ¢,

where x(X,0x) = 1 — q¢(X) + pg(X) := 1 — dim H(X, QL) + dim H°(X, Q%) and c; is the
second Chern class of X equal to the Euler-Poincaré characteristic of X, gives us that co(X) = 24
and bo(X) = 22. The cohomology H?(X,7Z) = 7Z??! and the Poincaré duality equips it with a
structure of a unimodular indefinite quadratic lattice. Its signature is equal to (3,19). The lattice
H? (X, Z) is an even unimodular lattice, and as such, by a theorem of J. Milnor, must be unique, up
to isomorphism. We can choose a representative of the isomorphism class to be the lattice

Lgs:=UaU®U® Eg® Eg.

(sometimes referred to as the K3-lattice). Here the direct sum is the orthogonal direct sum, U is an
integral hyperbolic plane that has a basis (f, g) with f2 = ¢g> = 0, f - g = 1(called a canonical
basis) and Ey is the negative definite unimodular lattice of rank 8 that we saw before in Lecture 3.

The first Chern class map ¢; : Pic(X) — H?(X,Z) is injective, and its image is a sublattice S
of H?(X,Z) which is, by Hodge Index Theorem is of signature (1, p), where Pic(X) 2 Z. Note
that the Poincaré duality allows us to identify H?(X,Z) with Ho(X,Z). Applying this to Sy, gives
the identification between cohomology classes defined by line bundles via the first Chern class and
divisor classes of defined by their meromorphic sections. So we will identify Sx with the subgroup
of algebraic cycles Ho (X, Z)ag of Ho(X,7Z).

Let Ty = (Sx)* be the transcendental lattice. We have the Hodge decomposition
H2(X, (C) — H2,0 D Hl’l @ HO,2 ~Co (CQO D C,
and (Sx)c € HY!. Thus (Tx)c has a decomposition

(TX)(C — {20 ® Hé’l ® 02 ~ (C22_p,

'The assumption that b;(X) = 0 implies that the group H;(X,Z) is finite. Any its nonzero element defines a
finite unramified cover f : X' — X of some degree d > 1 with Kx, = f*(Kx) = 0, hence py(X’) = 1 and
c2(X") = dca(X) = 24d giving a contradiction to the Noether formula. This shows that H?(X, Z) has no torsion. A
much more difficult fact is that 71 (X) = 0.
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where Hol’1 = (Tx)c N HY. The complex line p(X) := (H?*? C (Tx)c), viewed as a point
on the projective space |(T'x )c/| of lines in (T'x)c is called the period of X. If we choose a basis
win H*%(X) = Q?(X), then we have a complex valued linear function on Hy(X,Z) defined by
v fv w. Integrating over an algebraic cycle coming from Sx, we get zero (because our form is of
type (2,0) and an analytic cycle has one complex coordinate z), so the function can be considered
as a linea function on (H3(X,C)/Sx), i.e. an element from (7T'x )c. This explains the name period.

The Poincaré Duality on H?(X, C) corresponds via the de Rham Theorem, to the exterior product
of 2-forms. Since w is a form of type (2,0), we get w A w = 0. Thus p(X) belongs to a quadric Qp
in |(T'x)c| defined by the quadratic form defining the quadratic lattice H?(X, Z) restricted to T'y.
Also, w A @ is a form of type (2, 2) which is proportional to the volume form generating H*(X, R).
Since its sign does not depend on a scalar multiple of w, we may choose an orientation on the 4-
manifold X to assume that it is positive. Thus we get a second condition w A& > 0. This defines an
open (in the usual topology) subset Q° of Q). So, we see that the period p(X) defines a point on the
manifold Q" of dimension 20 — p(X). We would like to introduce a space, where the periods lie.
However, our our manifold Q¥ obviously depends on X, so we have to find some common target
fro the map X — p(X).

We fix an even quadratic lattice S of signature (1,7) and a primitive embedding S < L3
(primitive means that the quotient group has no torsion). Then we repeat everything from above,
replacing Sx with S, and denoting by T its orthogonal complement in L k3. Its signature is (2,19 —
r). Then we obtain a quadric Q7 in the projective space |T¢| =2 P2°~" defined by the quadratic
form of T'. We also obtain its open subset QOT defined by the condition x - £ > 0. Now we fix a
manifold D7 := @Qr which is called the period domain defined by the lattice 7. Of course, as a
manifold it depends only on its dimension 19 — . When, its dimension is positive, it consists of
two connected components, each is a Hermitian symmetric domain of orthogonal type of type IV in
Cartan’s classification of such spaces. We have

Dr = ((2,19 —7)/SO(2) x O(19 —r), DY =2 S0(2,19 — r)/SO(2) x SO(19 — r),
where DE} denotes one of the connected components.

A choice of an isomorphism of quadratic lattices ¢ : H2(X,A) — L3 (called a marking) and a
primitive embedding j : S < Sx such that ¢ o j : S — L3 coincides with a fixed embedding
S < Ls (called a lattice S polarization) defines a point ¢(p(X)) € Dp. For some technical
reasons one has additionally assume that the image of .S in Sy contains a semi-ample divisor class,
i.e. the class D such that D? > 0 and D-R > 0 for every irreducible curve on X. A different choice
of (¢, j) with the above properties replaces the point ¢(p(X)) by the point g - ¢(p(X)), where g
belongs to the group

I's = {g S O(LKg) : g’S = ids}.

Let Ar = TV /T be the discriminant group, where T' embeds in its dual group TV = Hom(T, Z)
via viewing the symmetric bilinear form on 7" as a homomorphism ¢ : S — Hom(S,Z) such that
t(s)(s') = s-§. Itis a finite abelian defined by a symmetric matrix representing the quadratic
form on 7" in some basis of 7T'. Its order is equal to the discriminant of the quadratic form. The
discriminant group is equipped with a quadratic map

qr : Ar — Q/2Z, z*+— 2*? mod 2,

where z* € TV is a representative of a coset in A7, and we extend the quadratic form ¢ of T to
TV C Ty and then check that the definition is well defined on cosets.
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We have a natural homomorphism of
p:O(T) — O(Ar, qr).

Its kernel consists of orthogonal transformations of 7" that can be lifted to an orthogonal transfor-
mation o of L3 such that o|S = idg. Thus we obtain that

I'r = Ker(p).

Now we can consider the quotient space Dy /T'r. It is a quasi-projective algebraic variety of di-
mension 20 — p. The Global Torelli Theorem of 1. Pyatetsky-Shapiro and I. Shafarevich asserts
that assigning to X its period point p defined a point in D that does not depend on marking ¢
and two S-poilarzed surfaces are isomorphic preserving the polarization if and only if the images
are the same. One can use this to identify the quotient with the coarse moduli space M g3 sE of
S-polarized K3 surfaces.

For any vector § € T, let 6+ denote the orthogonal complement of Cd in Tt This is a hyperplane
in the projective space | Ttz | defined by a linear function with rational coefficients. Let Hs = DpNé~+
be the subset of the period domain Dr. If 62 < 0, then the signature of the lattice (R6)* C Tk is
equal to (2,18 — r), so Hy is the same type domain. For any positive integer /N consider

5,62=—N

The group I'r acts on the set of §’s with 62 = — N and we denote by Heeg(IV) the image of H(N)
in the quotient space M3 g. It is empty or a hypersurface in M3 g. It is denoted by Heeg(V)
and is called the Heegner divisor in the moduli space of lattice .S polarized K3 surfaces.

In the next lecture we will compare it with the Humbert surface Hum(A).
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