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Lecture 1

Complex abelian varieties

Let A = V/Λ be a complex torus of dimension g over C. Here V is a complex vector space of
dimension g > 0 and Λ is a discrete subgroup of V of rank 2g.1 The complex space V is identified
with the tangent space of A at the origin or with the space of holomorphic vector fields Θ(A) on A.
It is the universal cover of A. The group Λ can be identified with the fundamental group of A that
coincides withH1(A,Z). The dual space V ∗ can be identified with the space Ω1(A) of holomorphic
1-forms on A, the map

α : Λ = H1(A,Z)→ Ω1(A)∗ = V, α(γ) : ω 7→
∫
γ
ω,

can be identified with the embedding of Λ in V . Let (γ1, . . . , γ2g) be a basis of Λ and let (ω1, . . . , ωg)
be a basis of V ∗. The map H1(A,Z)→ V is given by the matrix

Π =


∫
γ1
ω1

∫
γ2
ω1 . . .

∫
γ2g

ω1∫
γ1
ω2

∫
γ2
ω2 . . .

∫
γ2g

ω2

...
...

...
...∫

γ1
ωg

∫
γ2
ωg . . .

∫
γ2g

ωg

 (1.1)

called the period matrix of A. The columns of the period matrix are the coordinates of γ1, . . . , γ2g

in the dual basis (e1, . . . , eg) of the basis (ω1, . . . , ωg), i.e. a basis of V . The rows of the period
matrix are the coordinates of (ω1, . . . , ωg) in terms of the dual basis (γ∗1 , . . . , γ

∗
2g) of H1(A,C).

Let W denote V considered as a real vector space of dimension 2g by restriction of scalars. We
can identify it with ΛR := Λ ⊗Z R. A complex structure on V is defined by the R-linear operator
I : W → W,w 7→ iw, satisfying I2 = −1. The space WC := W ⊗R C decomposes into the
direct sum Vi ⊕ V−i of eigensubspaces with eigenvalues i and −i. Obviously, V−i = V̄i. We can
identify Vi with the subspace {w − iI(w), w ∈ W} and V−i with {w + iI(w), w ∈ W} (since
I(w ± iI(w)) = I(w) ∓ iw = ∓i(w ± iI(w))). The map Vi → V,w − iI(w) → w, is an
isomorphism of complex linear spaces. Thus a complex structure V = (W, I) on W defines a
decomposition WC = V ⊕ V̄ .

The space V (resp. V̄ ) can be identified with the holomorphic part T 1,0 (resp. anti-holomorphic
part T 0,1) of the complexified tangent space of the real torus W/Λ at the origin. Passing to the

1A subgroup Γ of V is discrete if for any compact subset K of V the intersection K ∩ Γ is finite, or, equivalently, Γ
is freely generated by r linearly independent vectors over R, the number r is the rank of Γ.
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2 LECTURE 1. COMPLEX ABELIAN VARIETIES

duals, and using the De Rham Theorem, we get the Hodge decomposition

H1
DR(A,C) ∼= H1(A,C) = W ∗C = H1,0(A)⊕H0,1(A), (1.2)

where H1,0(A) = Ω1(A) = V ∗ (resp. H0,1(A) = V̄ ∗) is the space of holomorphic (resp. anti-
holomorphic) differential 1-forms on A. Note that H1,0(A) embeds in H1(A,C) by the map
that assigns to ω ∈ Ω1(A) the linear function γ 7→

∫
γ ω. If we choose the bases (γ1, . . . , γ2g)

and (ω1, . . . , ωg) as above, then H1,0 is a subspace of H1(A,C) spanned by the vectors ωj =∑2g
i=1 aijγ

∗
i , where (γ∗1 , . . . , γ

∗
2g) is the dual basis in H1(A,C), and (aij) is equal to the transpose

tΠ of the period matrix (1.1).

A complex torus is a Kähler manifold, a Kähler form Ω is defined by a Hermitian positive definite
form H on V . In complex coordinates z1, . . . , zg on V , the Kähler metric is defined by

∑
hijziz̄j ,

where (hij) is a positive definite Hermitian matrix. The Kähler form Ω of this metric is equal
i
2

∑
hijdzj ∧ d̄zi. Its cohomology class [Ω] in the De Rham cohomology belongs to H2(A,R).

A complex torus is called an abelian variety if there exists an ample line bundle L on A, i.e. a
line bundle such that the holomorphic sections of some positive tensor power of L embed A in a
projective space. By Kodaira’s Theorem, this is equivalent to that one can find a Kähler form Ω onA
with [Ω] ∈ H2(A,Z). In our situation this means that the restriction of the imaginary part Im(H) to
Λ×Λ takes integer values. Recall that a Hermitian formH : V ×V → C on a complex vector space
can be characterized by the properties that its real part Re(H) is a real symmetric bilinear form on
the corresponding real space W and its imaginary part Im(H) is a skew-symmetric bilinear form
on W . The form H is positive definite if Re(H) is positive definite and Im(H) is non-degenerate
(a symplectic form). Using the isomorphism

H2(A,Z) ∼=
2∧
H1(A,Z) =

2∧
Λ∗,

we can identify Im(H) with c1(L), where L is an ample line bundle on A. Explicitly, a line bundle
L trivializes under the cover π : V → V/Λ and it is isomorphic to the quotient of the trivial bundle
V × C by the action of Λ defined by

λ : (z, t) 7→ (z + λ, eπH(z,λ)+π
2
H(λ,λ)χ(λ)t),

where χ : Λ → U(1) is a semi-character of Λ, i.e. a map Λ → U(1) satisfying χ(λλ′) =
χ(λ)χ(λ′)eπiIm(H(λ,λ′)). It follows that

Pic0(A) := Ker(c1 : Pic(A)→ H2(A,Z)) ∼= Hom(Λ, U(1)).

Note that the Hermitian form H can be uniquely reconstructed from the restriction of Im(H) to
Λ× Λ, first extending it, by linearity, to a real symplectic form E on W , and then checking that

H(x, y) = E(ix, y) + iE(x, y). (1.3)

In fact, H(x, y) = A(x, y) + iE(x, y) implies

H(ix, y) = A(ix, y) + iE(ix, y) = iH(x, y) = iA(x, y)− E(x, y),

hence, comparing the real and imaginary parts, we get A(x, y) = E(ix, y). Since H(x, y) =
H(ix, iy) and its real part is a positive definite symmetric bilinear form, we immediately obtain that
E satisfies

E(ix, iy) = E(x, y), E(ix, y) = E(iy, x), E(ix, x) > 0, x 6= 0. (1.4)
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We say that a complex structure (W, I) on W is polarized with respect to a symplectic form E on
W if E satisfies (1.4) (where ix := I(x)).

We can extend E to a Hermitian form HC on WC, first extending E to a skew-symmetric form EC
, by linearity, and then setting

HC(x, y) = 1
2 iEC(x, ȳ). (1.5)

Let x = a+ ib, y = a′ + ib′ ∈WC. We have

HC(a+ bi, a′ − ib′) = 1
2(−EC(b, a′) + EC(a, b′)) + 1

2 i(EC(a, a′) + EC(b, b′)).

The real part of HC is symmetric and the imaginary part is alternating, so HC is Hermitian. Also,
by taking a standard symplectic basis e1, . . . , e2g of W and a basis (f1, . . . , fg, f̄1, . . . , f̄g) of WC,
where fk = ek + iek+g, f̄k = ek − iek+g, we check that HC is of signature (g, g).

Now, if x = w − iI(w), x′ = w′ − iI(w′) ∈ V , then, we easily check that

HC(x, x) = 1
2 iEC(w − iI(w), w + iI(w)) = E(I(w), w) > 0

and
EC(x, x′) = EC(w − iI(w), w′ − iI(w′))

= EC(w,w′)− EC(I(w), I(w′))− i(EC(I(w), w′) + EC(w, I(w′)) = 0.

Thus V = (W, I) defines a point in the following subset of the Grassmann variety G(g,WC):

G(g,WC)E := {V ∈ G(g,WC) : HC|V > 0, EC|V = 0}. (1.6)

It is obvious, that V and V̄ are orthogonal with respect of HC and HC|V̄ < 0.

Conversely, let us fix a real vector space W of dimension 2g that contains a lattice Λ of rank 2g,
so that W/Λ is a real torus of dimension 2g. Suppose we are given a symplectic form E ∈

∧2W ∗

on W . We extend E to a skew-symmetric form EC on WC, by linearity, and define the Hermitian
form of signature (g, g) by using (3.3).

Suppose V = (W, I) ∈ G(g,WC)E . It is immediate to check that EC(x̄, y) = EC(x, ȳ). Thus,
H(x̄, x̄) = −H(x, y) < 0. This implies that V ∩ V̄ = {0}, hence WC = V ⊕ V̄ . Now W =
{v + v̄, v ∈ V } and the complex structure I on W defined by I(w) = iv − iv̄ is isomorphic to the
complex structure on V via the projection W → V, v + v̄ → v. Now it is easy to check that EC
restricted to W is equal to E, and E(I(w), w) > 0, E(I(w), I(w)) = E(w,w). We obtain that the
set of complex structures on W polarized by E is parameterized by (1.6).

The group Sp(W,E) ∼= Sp(2g,R) acts transitively on G(g,WC)E with isotropy subgroup of V
isomorphic to the unitary group U(V,HC|V ) ∼= U(g). Thus

G(g,WC)E ∼= Sp(2g,R)/U(g)

is a Hermitian symmetric space of type III in Cartan’s classification. Its dimension is equal to
g(g + 1)/2.

Remark 1. According to Elie Cartan’s classification of Hermitian symmetric spaces there are 4
classical types I,II, III and IV and two exceptional typesE6 andE7. We will see type IV spaces later
when we discuss K3 surfaces and other classical types when we will discuss special subvarieties of
the moduli spaces of abelian varieties. The exceptional types so far have no meaning as the moduli
spaces of some geometric objects.
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So far, we have forgot about the lattice Λ in the real vector space W . The space G(g,WC)E is the
moduli space of complex structures on a real vector space W of dimension 2g which are polarized
with respect to a symplectic form E on W or, in other words, it is the moduli space of complex
tori equipped with a Kahler metric H defined by a symplectic form E = Im(H). Now we put an
additional integrality condition by requiring that

Im(H)(Λ× Λ) ⊂ Z.

Recall that a skew-symmetric form E on a free abelian group of rank 2g can be defined in some
basis by a skew-symmetric matrix

JD =

(
0g D
−D 0g

)
,

where D is the diagonal matrix diag(d1, . . . , dg) with di|di+1, i = 1, . . . , g − 1. The sequence
(d1, . . . , dg) defines the skew-symmetric form uniquely up to a linear isomorphism preserving the
skew-symmetric form. In particular, if E is non-degenerate, the product d1 · · · dg is equal to the de-
terminant of any skew-symmetric matrix representing the form. IfH is a positive definite Hermitian
form defining a polarization on A, the sequence (d1, . . . , dg) defining Im(H)|Λ × Λ is called the
type of the polarization. A polarization is called primitive if (d1, . . . , dg) = 1 It is called principal
if (d1, . . . , dg) = (1, . . . , 1).

Choose a basis γ = (γ1, . . . , γ2g) of Λ such that the matrix of the symplectic form E|Λ × Λ is
equal to the matrix JD.

We know that the matrix (E(iγa, γb))g+1≤a,b≤2g is positive definite. This immediately implies
that the 2g vectors γa, iγa, a = g + 1, . . . , 2g, are linearly independent over R, hence we may take
1
d1
γg+1, . . . ,

1
dg
γ2g as a basis (e1, . . . , eg) of V . It follows that the period matrix Π in this basis of V

and the basis (γ1, . . . , γ2g) of Λ is equal to a matrix (τ D). Write τ = X + iY , where X = Re(τ)
and Y = Im(τ) are real matrices. We have

A ∼= Cg/Zg ⊕ DZg.

Then γk =
∑g

s=1 xkses +
∑
yksies, k = 1, . . . , g. Then the matrix of E on W = ΛR in the basis

(e1, . . . , eg, ie1, . . . , ieg) of W is equal to

t

(
X D
Y 0

)−1

JD

(
X D
Y 0

)−1

= t

(
X D
Y 0

)−1

JD

(
0 Y −1

D−1 −D−1XY −1

)

=

(
0 −Y −1

tY −1 −tY −1(X − tX)Y −1

)
.

Since E(ei, ej) = E(iei, iej) = 1
didj

E(γg+i, γg+j) = 0 and (E(iei, ej)) is a symmetric positive
definite matrix, we obtain that Y is a symmetric positive definite matrix, and X is a symmetric
matrix. In particular, τ = X + iY is a symmetric complex matrix.

We have proved one direction of the following theorem.

Theorem 2 (Riemann-Frobenius conditions). A complex torus A = V/Λ is an abelian variety
admitting a polarization of type D if and only if one can choose a basis of Λ and a basis of V such
that the period matrix Π is equal to the matriz (τ D), where

tτ = τ, Im(τ) > 0.
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We leave the proof of the converse to the reader.

Note that the matrix of the Hermitian form H in the basis e1, . . . , eg as above is equal to S =
(E(iea, eb)). Since

dbδab = E(γa, γg+b) =

g∑
k=1

E((xka + iyka)ek, dbeb)

=

g∑
k=1

ykaE(iek, dbeb) =

g∑
k=1

E(ieb, dbek)yka = db

g∑
k=1

E(ieb, ek)yka,

we obtain that
S = Im(τ)−1. (1.7)

So, we see that we can choose a special basis γ1, . . . , γ2g such that the period matrix Π of A is
equal to (τ D), where τ belongs to the Siegel upper-half space of degree g

Zg := {τ ∈ Matn(C) : tτ = τ, Im(τ) > 0}.

Every abelian variety with a polarization of type D is isomorphic to the complex torus

A ∼= Cg/τZg + DZg.

Note that Zg ∼= G(g,Cg)E , where E : R2g × R2g → R is defined by the matrix DIm(τ)−1.
However, this isomorphism depends on a choice of a special basis in R2g. One must view Zg as
the moduli space of polararized complex structures on a symplectic vector space W of dimension
2g equipped with a linear symplectic isomorphism R2n → W , where the symplectic form R2n is
defined by the matrix D.

Two such special bases are obtained from each other by a change of a basis matrix that belongs to
the group

Sp(JD,Z) = {X ∈ Sp(2g,Q) : X · JD · tX = JD}.

If X =

(
A1 A2

A3 A4

)
, where A1, A2, A3, A4 are square matrices of size g, then X ∈ Sp(JD,Z) if

and only if

A1D
tA2 = A2D

A
1 , A3D

tA4 = A4D
tA3, A1D

tA4 −A2D
tA3 = D.

Thus, we obtain that the coarse moduli space for the isomorphic classes of abelian varieties with
polarization of type D is isomorphic to the orbit space

Ag,D = Zg/Sp(JD,Z).

The group Sp(JD,Z) acts on Zg by

τ 7→ (τA1 +A2)(A3τ +A4)−1D.

If JD = J , then we denote Sp(JD,Z) by Sp(2g,Z) and Ag,D by Ag and get

Ag = Zg/Sp(2g,Z).
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As we see from above that, so far, the geometry of abelian varieties is reduced to linear algebra.
One can pursue it further by interpreting in these terms the intersection theory on A. It assigns to
any line bundles L1, . . . , Lg an integer (L1, . . . , Lg) that depends only on the images of Li under
the first Chern class map. Of course, it is also linear in each Li with respect to the tensor product of
line bundles. Let c1(Li) = αi ∈

∧2 Λ∗. Consider each αi as a linear map αi : Λ → Λ∗ and take
the exterior power of these maps

α1 ∧ · · · ∧ αg ∈
2g∧

Λ∗.

A choice of a basis in Λ defines an isomorphism
∧2g Λ∗ ∼= Z. This isomorphism depends only

on the orientation of the basis. We choose an isomorphism such that Lg := (L, . . . , L) > 0 if
L is an ample line bundle. For example, if L corresponds to a polarization of type D, we have
α =

∑
niγi ∧ γi+g and

Lg = g!n1 · · ·ng.

By constructing explicitly a basis in the space of holomorphic sections of an ample line bundle L in
terms of theta functions, one can prove that

h0(L) =
Lg

g!
= Pf(α),

where Pf(α) is the pfaffian of the skew-symmetric matrix defining α. More generally, for any line
bundle L, the Riemann-Roch Theorem gives

χ(L) =

g∑
i=0

H i(A,L) =
Lg

g!
.

Let us now define a duality between abelian varieties. Of course this should correspond to the
duality of the complex vector spaces.

Let A = V/Λ be a complex g-dimensional torus. Consider the Hodge decomposition (1.2), where
we identify the space H1,0(A) with V ∗. Using the Dolbeault’s Theorem, one can identify H0,1(A)
with the cohomology group H1(A,OA). The group H1(A,Z) = Λ∗ embeds in H1(A,C) and
its projection to H0,1 is a discreet subgroup Λ′ of rank 2g in H0,1. The inclusion H1(A,Z) →
H1(A,OA) corresponds to the homomorphism derived from the exponential exact sequence

0→ Z→ OA
e2πi−→ OÂ → 0

by passing to cohomology. It also gives an exact sequence

H1(A,OA)/Λ′ → H1(A,O∗A)
c1→ H2(A,Z),

where the group H1(A,O∗A) is isomorphic to Pic(A). Thus, we obtain that the group of points of
the complex torus H1(A,OA)/Λ′ is isomorphic to the group Pic0(A). It is called the dual complex
torus of A and will be denoted by Â.

Now, we assume that A is an abelian variety equipped with a polarization L of type D. The
corresponding Hermitian form H defines an isomorphism from the space V to the space V̄ ∗ of
C-antilinear functions on V (where V̄ is equal to V with the complex structure I(v) = −iv). 2

2It also defines an isomorphism of complex vector spaces V̄ → V ∗
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Considered as a vector space over R, it is isomorphic to the real vector space W ∗ = HomR(V,R)
by means of the isomorphism

V̄ ∗ →W ∗, l 7→ k = Im(l)

with the inverse defined by k → −k(iv) + ik(v). We may identify V̄ ∗ with H0,1(A). We have

Λ′ = Λ∗ := {l ∈ V̄ ∗ : l(Λ) ⊂ Z},

so that
Â = V̄ ∗/Λ∗.

Also, Im(H) defines a homomorphism Λ → Λ∗. Composing it with the homomorphism Λ∗ =
H1(A,Z)→ H0,1(A), we obtain a homomorphism Λ→ Λ∗. Let

φL : A→ Â (1.8)

be the homomorphism defined by the maps V → H0,1 and Λ→ Λ′. It is a finite map, and

K(L) := Ker(φL) ∼= Λ∗/Λ ∼= (Zg/DZg)2 ∼=
g⊕
i=0

(Z/diZ)2.

In particular, φL is an isomorphism if L is a principal polarization. The dual abelian variety can be
defined over any field as the Picard variety Pic0(A) and one can show that an ample line bundle L
defines a map (1.8) by using the formula

φL(a) = t∗a(L)⊗ L−1,

where ta denotes the translation map x 7→ x+ a of A to itself.

If we identify Â with A by means of this isomorphism, then the map φL corresponding to the
polarization L of type (n, . . . , n) can be identified with the multiplication map [n] : x → nx. Its
kernel is the subgroup A[n] of n-torsion points in A. Let eL be the exponent of the group KL,
i.e. the smallest positive integer that kills the group, then Â ∼= A/KL and the multiplication map
[eL] : A → A is equal to the composition of the map φL : A → Â and a finite map Â → A

with kernel isomorphic to the group (Z/eLZ)2g/KL of order d2g−2
g

(d1···dg−1)2
. Abusing the notation, we

denote this map by φ−1
L . so, by definition, φ−1

L ◦ φL = [eL]. In the ring End(A)Q the element φ−1
L

is the inverse of 1
eL
φL.
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Lecture 2

Endomorphisms of abelian varieties

A morphism f : A = V/Λ → A′ = V ′/Λ′ of complex tori that sends zero to zero is called a
homomorphism of tori. It is easy to see that this is equivalent to that f is a homomorphism of
complex Lie groups. Obviously, it is defined by a linear C-map fa : V → V ′ (called an algebraic
representation of f ) and a Z-linear map fr : Λ → Λ′ (called a emphrational representation of f )
such that the restriction of fa to Λ coincides with fr.

Let End(A) be the set of endomorphisms of an abelian variety A = V/Λ, i.e. homomorphisms of
A to itself. As usual, for any abelian group, it is equipped with a structure of an associative unitary
ring with multiplication define d by the composition of homomorphisms and the addition defined
by value by value addition of homomorphisms. By above, we obtain two injective homomorphisms
of rings

ρa : End(A)→ EndC(V ) ∼= Matg(C), ρr : End(A)→ EndZ(Λ) ∼= Mat2g(Z).

They are called the analytic and rational representations, respectively.

We fix a polarization L0 on A of type D = (d1, . . . , dg). The corresponding Hermitian form on
H0 and the symplectic form E0 = Im(H0) on Λ allow us to define the involutions in the rings
EndC(V ) (resp. EndZ(Λ)) by taking the adjoint operator with respect toH0 (resp. Im(H0)).1 Using
the representations ρa and ρr, we transfer this involution to End(A). It is called the Rosati involution
and, following classical notation, we denote it by f 7→ f ′. One can show that the Rosati involution
can be defined as

f ′ = φ−1
L0
◦ f∗ ◦ φL0 : A→ Â→ Â→ A.

Here (f∗)a : V̄ ∗ → V̄ ∗ is the transpose of f . If we view Â as the Picard variety, then f∗ is the usual
pull-back map of line bundles on A.

For any f ∈ End(A), let

Pa(f) = det(tIg − fa) =

g∑
i=0

tg−i(−1)icai

1Recall that the adjoint operator of a linear operator T : V → V of complex spaces equipped with a non-degenerate
Hermitian form H is the unique operator T ∗ such that H(T (x), y) = H(x, T ∗(y)) for all x, y ∈ V .

9
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be the characteristic polynomial of fa and

Pr(f) = det(tI2g − fr) =

2g∑
i=0

(−1)icri t
2g−i

be the characteristic polynomial of fr. It is easy to check that

Pa(f
′) = Pa(f),

so all eigenvalues of f ′a are conjugates of the eigenvalues of fa.

We have
(fr)C = fa ⊕ f̄a,

where (fr)C is considered as a linear operator on ΛC. (see Proposition (5.1,2) in Lange-Birkenhake,
Complex Abelian Varieties, cited [CAV] in the future). In particular,

Pr(t) = Pa(f)Pa(f̄).

An endomorphism f ∈ End(A) is called symmetric if f = f ′. Let Ends(A) denote the subring
of symmetric endomorphisms. It follows from above that, if f ∈ Ends(A), then fa is a self-adjoint
operator with respect to H0, and its eigenvalues are real numbers. Also, we see that Pr(f) =
Pa(f)2.

Let NS(A) = Pic(A)/Pic0(A) be the Néron-Severi group of A. We define a homomorphism

α : NS(A)→ End(A), L 7→ φ−1
L0
◦ φL.

If f is in the image, then φL = φL0 ◦ f . This means that H0(fa(z), z
′) = H(z, z′) for some

Hermitian form H and Im(H)(Λ × Λ) ⊂ Q. Since H(z, z′) = H(z′, z), this means that the
operator fa is self-adjoint, hence f is symmetric. This easily implies that α defines an isomorphism
of Q-linear spaces

α : NS(A)Q → Ends(A)Q.

If L0 is a principal polarization, we can skip the subscript Q [CAV], 5.2.1.

Note that α(L0) = idA, hence the subgroup generated by L0 is mapped isomorphically to the sub-
group of Ends(A) of endomorphisms of the form [m],m ∈ Z. Also, it follows from the definition
of α(L) is an isomorphism if and only if L is a principal polarization.

If we identify NS(A) with the space of Hermitian forms H such that Im(H)(Λ × Λ) ⊂ Z, then
the inverse map α−1 assigns to f the Hermitian form

H = H0(fa(z), z
′). (2.1)

Suppose f ∈ End(A) and fa is given by a complex matrix M of size g. Then we must have

M · (τ |D) = (τ |D) ·N, (2.2)

where the matrix

N =

(
A1 A3

A2 A4

)
∈ Mat2g(Z)
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defines fr. Thus we get
M = (τ ·A3 + DA4)D−1,

hence :
Mτ = (τ ·A3 + DA4)D−1τ = τA1 + DA2. (2.3)

Thus the period matrix τ must satisfy a “quadratic equation”. Now assume, additionally, that
f ∈ Ends(A) is a symmetric endomorphism. This means that fr and f ′r considered as linear
operators on W = ΛR are adjoint operators with respect to the alternating form E = Im(H)
defined by the matrix JD. Thus the matrix N must satisfy tN · JD = −JDt ·N . This gives

tA1D = DA4,
tA3D = −DA3,

tA3D = −DA3 (2.4)

If D = Ig, then

N =

(
A B
C tA

)
, (2.5)

where B and C are skew-symmetric matrices of size g × g.

The coefficients of the characteristic polynomial have the following geometric meaning.

For any f = α(L) ∈ Ends(A),

dcai =
(Lg−i0 , Li)

(g − i)!i!
, i = 0, . . . , g, (2.6)

where d = d1 · · · dg [CAV], (5.2.1). In particular, L is ample if and only if all eigenvalues of fa are
positive.2 In the last statement, we use that a line bundle L is ample if and only if (Lg−i0 , Li) > 0
for all i = 0, . . . , g.

A homomorphism f : A→ A′ of abelian varieties of the same dimension is called an isogeny if its
kernel is a finite group. The order of the kernel is called the degree of the isogeny and is denoted by
deg(f). It is equal to the topological degree of the map. Equivalently, f is an isogeny if its image is
equal to A′. An example of an isogeny is a map φL : A→ Â, where L is an ample line bundle. The
inverse isogeny is the map g : A′ → A such that g ◦ f = [e], where e is the exponent of the kernel
of f . For example, φ−1

L is the inverse isogeny of φL. One checks that the isogeny is an equivalence
relation on the set of isomorphism classes of abelian varieties.

Suppose α(L) defines f ∈ Ends(A) which is an isogeny. By definition, φL0 ◦ f = φL It follows
that deg(φL0) deg(f) = deg(φL). We know that deg(φL0) = d = detD and deg(φL) = d′ =
detD′, where D′ is the type of L. This gives deg(f) = d′/d. Applying (2.6) with i = g, we obtain

cag =
d′g!

g!d
= deg(f). (2.7)

One can also compute the coefficients ci in the characteristic polynomial P af◦f ′

ci =
(
g
i

)(f∗(L0)i, Lg−i0 )

(Lg0)
(2.8)

2This follows from Sturm’s theorem relating the number of positive roots with the number of changes of signs of the
coefficients of a polynomial.
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(see [CAV], (5.1.7)). We set

Tr(f)a = ca1, Trr = cr1, Nm(f)a = cag , Nm(f)r = crg.

We have

Tr(f ◦ f ′) =
2

(g − 1)!

(f∗(L0), Lg−1
0 )

(Lg0)
, Nm(f ◦ f ′) =

(f∗(L0)g)

(Lg0)
. (2.9)

The first equality implies that the symmetric form (f, g)→ Tr(f ◦g′) on End(A) is positive definite.

We know that End(A)Q is isomorphic to a subagebra of the matrix algebra and hence it is finite-
dimensional algebra over Q. A finite-dimensional associative algebra over a field F is called simple
if it has no two-sided ideals. An example of a simple algebra is a matrix algebra Matn(F ). An
algebra is called semi-simple if it is isomorphic to the direct product of simple algebras. An example
of a simple algebra a skew field where every nonzero element is invertible. An example of a non-
commutative skew field is the quaternion algebra H(a, b) = F + F i + F j + Fk with i2 = a, j2 =
b,k = ij = −ji. It is equipped with anti-involution x = x0 + x1i + x2j + x3k 7→ x′ = x0 − x1i−
x2j− x3k such that Nm(x) := xx′ = x2

0 − ax2
1 − bx2

2 + abx2
3 ∈ F . If Nm(x) 6= 0 for any x 6= 0,

then 1
Nm(x)x is the inverse of x, so H(a, b) is a skew field. A quaternion algebra over a number field

K is called totally definite if for every real embedding σ : K ↪→ R, the change of scalars algebra
Hσ over R is a skew field. If R splits over any real embedding of K, it is called totally indefinite.

IfK is the center of a skew fieldD, then the degree ofD overK is always a square. This is proved
by showing that over some finite extension L of K, the algebra RL = R ⊗K L splits, i.e. becomes
isomorphic to a matrix algebra over L. For example, for the quaternion algebra H = Q(−1,−1),
the splitting field is Q(

√
−1), and H becomes isomorphic to Mat2(Q(

√
−1)).

A simple algebraR is isomorphic to the matrix algebra Matr(D) with coefficients with some skew
field D over K. In particular, its dimension over K is always a square of some number.

A finite-dimensional algebra comes equipped with the trace F -bilinear map R×R→ F defined
(x, y) 7→ Tr(xy′), where Tr(r) is the trace of the linear operator R → R, x 7→ xr. We can also
define a reduced trace by considering R as an algebra over its center K.

The possible structure of the Q-algebra End(A)Q is known. It is a finite-dimensional associative
algebra R admitting an anti-involution3 x → x′ and a symmetric bilinear form Tr : R × R → Q
such that the quadratic form x 7→ Tr(xx′) is positive definite. An equivalent definition is that R
is a semi-simple algebra over Q admitting a positive definite anti-involution. Such algebras have
been classified by G. Scorza and A. Albert. Assume that R is a simple algebra over Q. Let K be
the center of R, it is a field admitting an involution σ, the restriction of the anti-involution of R.
Let K0 = Kσ be the subfield of invariants. Then K0 is a totally real algebraic number field and
K = K0 or is an imaginary quadratic extension of K0. Since R is semi-simple, its dimension over
K is equal to n2 for some number n. Let e = [K : Q], e0 = [K0 : Q]. Each such algebra is
isomorphic to the product of simple algebras.

An abelian variety is called simple if it is not isogenous to the product of positive-dimensional
abelian varieties. An equivalent definition uses Poincaré Reducibility Theorem and asserts that
an abelian variety is simple if and only if it does not contain an abelian subvariety of dimension

3An anti-involution means an involutive isomorphism from the algebra to the opposite algebra, i.e. the algebra with
the same abelian group but with the multiplication law x · y := y · x.
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0 < k < g. The endomorphism algebra End(A)Q of a simple abelian variety A is a skew-field. We
have four possible cases for a simple algebra:

I n = 1, R = K is a totally real field, e = e0 = ρ, e|g;

II n = 2, R is totally indefinite quaternion algebra over K, e = e0, ρ = 3e, 2e|g;

III n = 2, R is totally definite quaternion algebra over K, e = e0 = ρ, 2e|g;

IV K0 6= K, e = 2e0, ρ = e0d
2, e0d

2|g.

If A is not simple, its endomorphism algebra is not a skew-field, it is a simple or a semi-simple
algebra.
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Lecture 3

Elliptic curves

An elliptic curve is a one-dimensional abelian variety A = C/Λ. We can find a special symplectic
basis in Λ of the form (τ, 1), where τ ∈ H. The matrix of the symplectic form E on Λ with respect

to this basis is the matrix
(

0 1
−1 0

)
. Since i = −x

y + 1
y τ , we get E(i, 1) = 1

y . By (1.7), the

corresponding Hermitian form is equal to 1
yzz̄
′ in agreement with (1.7). The Hermitian form H

defines a principal polarization on E. It is defined by a line bundle L0 of degree 1. We will always
consider E as a one-dimensional principally polarized abelian variety.

Note that Sp(2,Z) ∼= SL(2,Z), so the moduli space of elliptic curves is

A1 = H/SL(2,Z),

where H = {τ ∈ C : Im(τ) > 0}. The quotient space is known to be isomorphic to C, the
isomorhism is defined by a holomorphic function j : H → C which is invariant with respect to
SL(2,Z). It is called the absolute invariant. If τ is the period of E, then j(τ) is called the absolute
invariant of E. We refer to the explicit definition of j to any (good) text-book on functions of one
complex variable.

Let f be an endomorphism of A, then fa is a complex number z and fr : Λ → Λ is the map
λ 7→ zλ. In the basis (τ, 1) of Λ, the transformation fr is given by an integer matrix N = ( a1 a3a2 a4 )
so that we have (zτ, z) = (a1τ+a2, a3τ+a4). This gives z = a3τ+a4 and (a3τ+a4)τ = a1τ+a2,
and hence a quadratic equations for τ

a3τ
2 + (a4 − a1)τ − a2 = 0. (3.1)

It agrees with (2.2). The discriminant of the quadratic equation (2.2) is equal to

D = (a4 − a1)2 + 4a2a3 = (a1 + a4)2 − 4(a1a4 − a2a3) = Tr(N)2 − 4 det(N). (3.2)

Since Im(τ) > 0, we must have a3 6= 0, D < 0 or a3 = a4 − a1 = a2 = 0. In the latter case,
the matrix N is a scalar matrix, and the endomorphism is just the multiplication [a1] and there is no
condition on τ . In the former case

τ =
a1 − a4 + i

√
−D

2a3
.

15
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It shows that τ ∈ Q(
√
D), i.e. it is an an imaginary quadratic algebraic number. Also

z = a3τ + a4 = 1
2(a1 + a4 + i

√
−D)

belongs to the same field. For this reason an elliptic curve A is called an elliptic curve with complex
multiplication by K = Q(

√
D).

Multiplying (3.1) by a3, we obtain that a3τ and, hence z, satisfies a monic equation over Z, hence
belongs to the ring oK of integers of the field K. Note that formula (3.2) shows that, D is divisible
by 4 if Tr(N) = a1 + a4 is even, and D ≡ 1 mod 4 otherwise.

Recall that, if D is square-free, then oK has a basis, as a module over Z, equal to 1, 1
2(1 +

√
D)

if D ≡ 1 mod 4 or 1,
√
D otherwise. If D = m2D0, where D0 is square-free, then End(E) is an

order in K. It is equal to Z + moK (see [Borevich-Shafarevich. Number Theory]). In any case,
End(E)Q ∼= K, so we are in case IV of classification of endomorphism rings of abelian varieties.
Also, we see that End(A) is an order o in K. The lattice Λ must be a module over o, in fcat, one
can show that it is a projective module of rank 1. Conversely, if we tale Λ to be such a module
over an order o in K, we obtain an elliptic curve A = C/Λ with End(A) ∼= o. In this way one can
show that there is a bijective correspondence between isomorphism classes of elliptic curves with
End(A) = oK and the class group of K (i.e. the group of classes of ideals in oK modulo principal
ideals, or, in a scheme-theoretical language, the Picard group of Spec oK . The number of such
classes if called the class number of K.

Note that Aut(E) = End(E)∗ can be larger than {±1} only if E admits complex multiplication
with Gaussian integers (i.e. D = −1) or Eisenstein integers (i.e. D = −3). In fact, if D ≡ 1

mod 4, an invertible algebraic integer a + 1
2b(1 +

√
D), a, b ∈ Z must satisfy Nm(1+

√
D

2 ) = ±1.
This implies D = −3. Similarly, if D 6≡ 1 mod 4, we obtain a2 −Db2 = ±1 implies D = −1.

Remark 3. Let E be an elliptic curve with complex multiplication End(E)Q = K. Recall that E
admits a Weierstrass equation

y2 = x3 + a4x+ a6,

and the isomorphism class of E is determined by the value of the absolute invariant

j(E) = 1728
4a3

4

4a3
4 + 27a2

6

.

According to the Theorem of Weber and Fuerter, the j-invariant j(E) is an algebraic integer such
that [K(j(E)) : K] = [Q(j(E)) : Q] and the field K(j(E))is a maximal unramified extension of
K (see [Silverman, Arithmetic of elliptic curves], Appendix C). Assume that j(E) ∈ Q, by the class
fields theory this implies that the class number of K is equal to 1. Also, it is known that j(E) ∈ Q
if and only if E can be defined over Q. There are exactly nine imaginary quadratic fields K with
class number 1. They are the fields Q(

√
−d), where

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

The corresponding values of the absolute invariants are

26 · 33, 26 · 53, 0, −33 · 53, −215, −215 · 33, −218 · 33 · 53, −215 · 33 · 53 · 113,

−218 · 33 · 53 · 233, 23 · 33 · 113, 24 · 33 · 53, 33 · 53 · 173, −3 · 215 · 53.
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Let f : E → E be an endomorphism of E of finite degree n > 0. By Hurwitz’ formula, the
map f is an unramified finite cover of degree n. Its kernel is a finite subgroup T of order n of E.
The group E[n] of n-torsion elements of E = C/Λ is isomorphic to 1

nΛ/Λ ∼= (Z/nZ)2. Assume
that fr is defined by a matrix N whose entries are mutually coprime (otherwise the endomorphism
a composition of an endomorphism g with gr satisfying this property and multiplication by an
integer). The theory of elementary divisors allows us to find two bases (γ1, γ2) and (γ′1, γ

′
2) in Λ

such that (fr(γ1), f(γ2)) = (nγ′1, γ
′
2). Since j(τ) depends only on Λ, we obtain that j(tau) =

j(nτ). It is known that there exists a polynomial Φn(X,Y ) with integer coefficients such that
Φ(j(τ), j(nτ)) ≡ 0 for any τ ∈ H. The equation Φn(X,Y ) = 0 is called the modular equation
of level n. Thus the number of elliptic curves admitting an endomorphism of degree n is equal to
the number of solutions of the equation Φn(x, x) = 0. It is a finite set of points, hence an algebraic
subvariety of A1

∼= A1. It is a 0-dimensional Shimura variety. It has been computed by R. Fricke
and it is equal to h0(−n) + h0(−4n) if n ≡ 2, 3 mod 4, and h0(−4n) if n ≡ 1 mod 4. Here
h0(−d) is the class number of primitive quadratic integral positive definite forms with discriminant
equal to −d.

Let f : E → E′ be an isogeny of elliptic curves and g : E′ → E be its inverse, i.e. g ◦ f = [n],
where n is the degree of f . Let fa be given by a complex number z and g be given by a complex
number z′. Then zz′ = d. Also we know that |z|2 = det fr = d. Thus, we obtain that z′ = z̄ is the
complex conjugate of z.

LetA = E1×· · ·×Eg be the product of g isogenous elliptic curves. We assume that End(Ei) = Z.
Let αij be an isogeny Ei → Ej of minimal degree so that any isogeny Ei → Ej can be written in
form [dij ]◦αij (which we denote, for brevity, by dijαij) for some integer dij and a complex number
αij . Obviously αii = 1.

The analytic representation of an endomorphism f : A→ A is given by a matrix

M =


d11 d12α12 . . . d1gαig

d21α12 d22 . . . d2gα2g
...

...
...

...
dg1α1g dg2α2g . . . dgg

 .

We may choose the period matrix of A to be equal to the diagonal matrix diag[τ1, . . . , τg], where
τi = xi +

√
−1yi is the period of Ei. Let us choose a principal polarization L0 on A to be the

reducible one coming from the principal polarizations on the curves Ei. Its Hermitian form is given
by the diagonal matrix diag[y−1

1 , . . . , y−1
g ]. Assume that A has another principal polarization L and

M is a symmetric endomorphism corresponding to L. By (2.1), the matrix of the Hermitian form
H corresponding to L is equal to the matrix

M ′ = diag[y−1
1 , . . . , y−1

g ] ·M (3.3)

In particular, this implies that yidij = yjdji.

Assume now that E1 = . . . = Eg = E and End(E) = Z. Since E has no complex mul-
tiplications, αij = 1, hence M is a symmetric integral matrix. It follows from (2.2) that fr
is given by the matrix N =

(
M 0
0 M

)
. Since we are looking for f defined by a principal polar-

ization, f must be an isomorphism, hence detM = 1. We know also that the coefficients of
its characteristic polynomial are positive rational numbers. This implies that M is positive def-
inite. Let (γ1, . . . , γ2g) = (τe1, . . . , τeg, e1, . . . , eg) be a basis of ΛR. It follows from (3.3)
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that the matrix of the symplectic form corresponding to H in this basis is equal to (aij), where
aij = y−1Im(H(γi, γj)). We get for 1 ≤ i < j ≤ g

aij = y−1Im(H(ei, ej)|τ |2) = 0, ai,j+g = y−1Im(H(ei, ej)τ) = dij .

This implies that the type D of the polarizationL is equal to the matrix (dij) (reduced to the diagonal
form).

It is known that a unimodular positive definite matrix of rank g ≤ 7 is isomorphic to the odd
lattice Ir defined by the quadratic form x2

1 + . . . + x2
g. By above this implies that the only prin-

cipal polarization on an abelian variety A = Eg is of the form
∑g

i=1 p
∗
i (point), where pi is the

projection to the i-th factor. In particular, A cannot be isomorphic to the Jacobian variety of a curve
of genus g. However, if g = 8, there is one more positive definite unimodular quadratic lattice
defined by the matrix 2I8 − PE8 , where PE8 incidence matrix of the Dynkin diagram of type E8

E8 • • • • • • •
••

Remark 4. It is known that the rank of any positive definite unimodular quadratic lattice is divisible
by 8 [J.-P. Serre, Cours de Arithmetique], 2.3. Thus, ifE has no complex multiplication, the product
of r copies of E does not admit a principal polarization unless r is divisible by 8. Note that there
is only positive definite unimodular quadratic lattices of rank 16 not isomorphic to E8 ⊕ E8 and
there are 24 non-isomorphic such lattices of rank 24, the Leech lattice is among them. So we have
2 (resp. 24) principally polarized abelian varieties isomorphic to E8 (resp. E12), where E is an
elliptic curve. Do they have any geometric meaning, e.g. being the Prym or Jacobian varieties?

Example 5. Let M be a quadratic lattice, i.e. a free abelian group of finite rank equipped with a
symmetric bilinear form B : M ×M → Z. Assume that the rank of M is an even number 2k
and the bilinear from is positive definite (when tensored with R). Assume also that the orthogonal
group of M (i.e. the subgroup of Aut(M) that preserves the symmetric form) contains an element
ι such that ι2 = −idM . Then we can use ι to define a complex structure on W = MR and define
a hermitian form H by taking E(x, y) := −B(ι(x), y) so that E(ι(x), y) = B(x, y) is symmetric
and positive definite, and

E(y, x) = −B(ι(y), x) = −B(x, ι(y)) = −B(ι(x), ι2(y)) = B(ι(x), y) = −E(x, y)

is skew-symmetric, obviously non-degenerate.

Let us consider M as a module over Z[i] by letting i act on M as the isometry ι. Since Z[i] is a
principal ideal domain, we get M ∼= Z[i]k and we have an isomorphism (MR, ι) ∼= Ck, so that M
can be identified with the lattice Λ with a basis equal to the union of k copies of the basis (i, 1).
Obviously, the abelian variety A = Ck/M becomes isomorphic to the product Ek√−1

, where E√−1

is the elliptic curve with complex multiplication by Z[i]. On the other hand, if we take M to be an
even unimodular lattice of rank 2k, then our Hermitian formH defines an indecomposable principal
polarization. As we remarked before such lattices M exist only in dimension divisible by 8. So, k
is divisible by 4.

If k = 4, there exists a unique such lattice, the E8-lattice M . The abelian 4-fold A = C4/M
is remarkable for many reasons. For example, it is isomorphic to the intermediate Jacobian of a
Weddle quartic double solid, i.e. a nonsingular model of the double cover of P3 branched along a
Weddle quartic surface with 6 nodes (see [R. Varley, Amer. J. Math. 108 (1986), no. 4]). Another
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remarkable property of A is that the theta function corresponding to its indecomposable principal
polarization has maximal value of critical points (equal to 10 in dimension 4 for simple abelian
varieties which are not isomorphic to the Jacobian variety of a hyperelliptic curve) (see [O. Debarre,
C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 20]).

Recall that the Jacobian variety Jac(C) of a compact Riemann surface C of genus g (or, equiva-
lently, nonsingular complex projective curve of genus g) is an abelian variety whose period matrix
is equal to

Π =
( ∫

γi

ωj
)
,

where ω1, . . . , ωg is a basis of holomorphic 1-forms on C and γ1, . . . , γ2g is a basis of H1(C,Z).
One can always choose a basis of H1(C,Z) and a basis in Ω1(C) such that the period matrix
Π = [τIg], where τ ∈ Zg. In particular, Jac(C) has always a principal polarization L0. The
unique nonzero section of L0 has the divisor of zeros equal to the image of the symmetric product
C(g−1) = Cg/Sg−1 under the Abel-Jacobi map

C(g−1) → Jac(C),

g−1∑
k=1

ck 7→
g−1∑
k=1

(

∫ ck

p1

ω1, . . . ,

∫ ck

pg−1

ωg) mod ΠZ2g,

where p1, . . . , pg−1 are fixed points on C.

Example 6. Following [T. Hayashida, M. Nishi, J. Math. Soc. Japan 17 (1965)] let us give an
example of the Jacobian of a curve of genus 2 isomorphic to the product of two isomorphic elliptic
curves. Let K = Q(−m) be an imaginary quadratic field and o be its ring of integers. We assume
that the class number ofK is greater than 1 and choose a non-principal ideal a on o. For example, we
can takem = 5. Since−5 ≡ 3 mod 4, the ring o is generated over Z by 1 and ω =

√
−5. We may

take for a the ideal generated by (2, 1 + ω). In fact, Nm(a) = (Nm(2),Nm(1 + ω)) = (4, 6) = (2)
and since the equation Nm(x + yω) = x2 + 5b2 = 2 has no integer solutions, we obtain that the
ideal a is not principal. Let

E = C/o = C/Z + Zω.

Consider a homomorphism φ : E → E × E defined by x 7→ (2x, (1 + w)x). Let E′ be the image
of this homomorphism. Let E1 = E ×{0}, E2 = {0}×E, and ∆ be the diagonal. Let us compute
the intersection indices of E′ with these three curves.

Suppose φ(x) ∈ E1, then x(1 + ω) ∈ o, hence there exists m,n ∈ Z such that

x =
m+ nω

1 + ω
=

1

6
(m+ 5 + (m− n)ω) ∈ Z

1 + ω

6
+ Z.

This shows that there are 3 intersection points (0, 0), (1+ω
3 , 0), (2(1+ω)

3 , 0).

Suppose φ(x) = (0, (ω + 1)x) ∈ E2, then 2x ∈ o, hence there are two intersection points
(0, 0), (0, 1

2(1 + ω)).

Suppose φ(x) = (2x, (1 + ω)x) ∈ ∆, then (1 − ω)x = 2x − (1 + w)x ∈ o. This implies that
x ∈ 1+ω

6 Z + Z, hence there are 3 intersection points (0, 0), (1+ω
3 , 1+ω

3 ), (2(1+ω)
3 , 2(1+ω)

3 ).

Now we consider the divisor
C = 2∆ + E′ + E1 − 2E2.
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We have C · ∆ = 2, C · E′ = 5, C · E1 = 3, C · E2 = 5, C2 = 2. By Riemann-Roch, C
is an effective divisor class, so we may assume that C is a curve of arithmetic genus 2. If C is
reducible, then C = C1 + C2 is the sum of two elliptic curves with C1 · C2 = 1, and we may
assume that one of its components, say C1, intersects ∆ and E1 with multiplicity 1. We have
C2 = C − C1 ∼ 2∆ + E′ + E1 − 2E2 − C1. Intersecting with C1, we get 1 = 4 − 2(E2 · C1),
a contradiction. Thus C is an irreducible curve of arithmetic genus 2. It is known that this implies
that C is a smooth curve of genus 2 and A ∼= Jac(D) (see [A. Weil, Nachr. Akad. Wiss. Göttingen.
Math.-Phys. Kl. IIa. 1957 (1957)]).1 and as we remarked before, it must be a nonsingular curve of
genus 2, and A = E × E is isomorphic to Jac(C).

1To see this use one considers the normalization map D̄ → A and the dual map Â → Jac(D̄) and proves that it is
injective, hence the geometric genus coincides with the arithmetic genus.



Lecture 4

Abelian surfaces with real multiplication

Let A be an abelian variety of dimension 2, i.e. an abelian surface. The Poincaré duality equips the
group H2(A,Z) = Z6 with a structure of a unimodular quadratic lattice of signature (3, 3). It is
an even lattice, i.e. its values are even integers. By Milnor’s theorem, H2(A,Z) ∼= U ⊕ U ⊕ U ,

where U is a hyperbolic plane over Z, i.e. its quadratic form could be defined by a matrix
(

0 1
1 0

)
,

and the direct sum is the orthogonal direct sum. Let TA be the orthogonal complement of NS(A) in
H2(A,Z). It is a quadratic lattice of signature (2, 4−ρ), and we have an orthogonal decomposition
of quadratic lattices

H2(A,Z) = NS(A)⊕ TA.

The quadratic form on NS(A) is defined by the intersection theory of curves on an algebraic surface.
For any irreducible curve C on A, the adjunction formula C2 + C · KA = C2 = −2χ(OC),
together with the fact that A has no rational curves, gives C2 ≥ 0 and C2 = 0 if and only if C is
a smooth elliptic curve. By writing any effective divisor as a sum of irreducible curves, we obtain
that D2 ≥ 0 on the cone Eff(A) in NS(A)R of classes of effective divisors modulo homological
equivalence. By Hodge’s Index Theorem, we have D · C ≥ 0 for any effective divisors D and C.
This implies that Eff(A) coincides with the cone Nef(A) of nef divisor classes. The latter is known
to be the closure of the cone Amp(A) of ample divisor classes. By Riemann-Roch and the vanishing
Theorem, h0(D) = D2/2 for any ample divisor D. Thus the restriction of the trace quadratic form
on End(A) to Amp(A) is equal to twice of the restriction of the intersection form to Amp(A).

Suppose A is a simple abelian surface with End(A) 6= Z. According to the classification of
possible endomorphism algebras, we have four possible types:

(i) End(A)Q is a totally real quadratic field K and ρ = 2;

(ii) End(A)Q is a totally indefinite quaternion algebra over K = Q and ρ = 3;

(iii) End(A)Q is a totally imaginary quadratic extension K of a real quadratic field K0 and ρ = 2;

Observe that we have intentionally omitted the cases when End(A)Q is a definite quaternion al-
gebra and when End(A)Q is a totally imaginary quadratic extension of Q. These types of algebras
occur for a non-simple abelian surface. In the former case it must be the product of two elliptic
curves with complex multiplication by

√
−1 (see [CAV], Chapter 9, Example 9.5.5 and Exercises

21
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1). In the latter case, End(A)Q must be isomorphic to an indefinite quaternion algebra (loc.cit.
Exercise 4 in Chapter 4).

Let us first discuss abelian surfaces with type (i) endomorphism ring. First observe that the Rosati
involution acts identically on the totally real field K ⊂ End(A), hence all endomorphisms come
from NS(A). Let

τ =

(
z1 z2

z2 z3

)
be the period matrix ofA. We assume thatA = C2/Z2 +DZ2 has a primitive polarization of degree
n. Its type is defined by the diagonal matrix D = diag[1, n]. Let f ∈ Ends(A), where fa is defined
by a matrix M and fr is defined by a matrix N as in (2.2). Since f is symmetric, N satisfies (2.4).
We easily obtain that (

A1 A3

A2 A4

)
=


a1 na2 0 nb
a3 a4 −b 0
0 nc a1 na3

−c 0 a2 a4

 .

By (2.2) and (2.3), we have

M = (τA3 + DA4)D−1, Mτ = τA1 + DA2,

and
(τA3 + DA4)D−1τ = τA1 + DA2.

The left-hand side in the secon equality is equal to(
0 b(−z2

2 + z1z3)
b(z2

2 − z1z3) 0

)
+

(
a1z1 + a3z2 a1z2 + a3z3

na2z1 + a4z2 na2z2 + a4z3

)

=

(
a1z1 + a3z2 b(−z2

2 + z1z3) + a1z2 + a3z3

b(z2
2 − z1z3) + na2z1 + a4z2 +na2z2 + a4z3

)
.

The right-hand side is equal to(
a1z1 + a3z2 na2z1 + a4z2 + nc

a1z2 + a3z3 − nc na2z2 + a4z3

)
.

Comparing the entries of the matrices in each side, we find a relation

b(z2
2 − z1z3) + a2nz1 + (a4 − a1)z2 − a3z3 + nc = 0.

We rename the coefficients to write it in the classical form to obtain what G. Humbert called the
singular equation for the period matrix τ :

naz1 + bz2 + cz3 + d(z2
2 − z1z3) + ne = 0. (4.1)

We also assume that (a, b, c, d, e) = 1. In this new notations, the matrixN0 = N−a1I4 representing
(f0)r = (f − a1id)r can be rewritten in the form

N0 = −a1I4 +N =


0 na 0 nd
−c b −d 0
0 ne 0 −nc
−e 0 a b

 . (4.2)
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and (f0)a is represented by the matrix

M0 =

(
−nz2 nz1 − c

−nz3 + na nz2 + b

)
. (4.3)

We have
Tr(N0) = 2Tr(M0) = 2b, det(N0) = det(M0)2 = n2(ac+ ed)2.

Thus f0 satisfies a quadratic equation

t2 − bt+ n(ac+ ed) = 0, (4.4)

so that 1, f0 generate a subalgebra A of rank 2 of Ends(A) isomorphic to

A ∼= Z[t]/(t2 − bt+ n(ac+ ed)).

The discriminant ∆ of the equation (4.4) is equal to

∆ = b2 − 4n(ac+ ed). (4.5)

It is called the discriminant of the singular equation. Note that, if b is even, D ≡ 0 mod 4,
otherwise D ≡ 1 mod 4.

Since we know that the eigenvalues of M are real numbers,

∆ > 0. (4.6)

Thus if ∆ is not a square, the algebra A is an order in the real quadratic field Q(
√

∆). On the other
hand, if ∆ is a square, then the algebra A has zero divisors defined by the integer roots 1

2(b±
√

∆)
of equation (4.4).

Let L∆ be the line bundle that is mapped to f0 inder α : NS(A)→ Ends(A). Applying (2.6), we
obtain that

(L0, L∆) = nb = 1
2(L2

0)b, (L2
∆) = 1

2n(b2 −∆). (4.7)

Thus the sublattice of NS(A) generated byL0, L has discriminant equal to (L0)2(L2)−(L0, L)2 =
−n2∆.

When L∆ is ample, we can also determine the type of the polarization defined by L∆. It is equal
to the type of the alternating form given by the matrix

tN0JDN0 =


0 na 1 nd
−c b −d n
−1 ne 0 −nc
−e −n a b

 . (4.8)

Let A2,n = Z2/Sp(JD,Z) be the coarse moduli space of principally polarized abelian surfaces.
We denote by H∆ the set of period matrices τ ∈ Z2 satisfying a singular modular equation with
discriminant ∆. Let

Humn(∆) = H∆/Sp(JD,Z)

be the image of H∆ in A2,n := A2,D. This is the locus of isomorphism classes of abelian surfaces
with primitive polarization of degree n that admit an embedding of a quadratic algebra Z[t]/(t2 +
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αt+ β) with discriminant ∆ = α2− 4β in End(A). We call it the Humbert surface of discriminant
∆.

Suppose τ ∈ H∆ and let τ ′ = M · τ for some M ∈ Sp(4,Z). If τ satisfies a singular equation
(4.1), then the matrix N0 defining an endomorphism of C2/Λτ changes to tM−1 ·N0 ·M ([CAV],
8.1). Thus τ ′ satisfies another singular equation although with the same discriminant.

We will prove later the following theorem, which is in the case n = 1 due to G. Humbert.

Theorem 7. Every irreducible component of the Humbert surface Humn(∆) is equal to the image
in Z2/Sp(JD,Z) of the surface given by the equation

z1 + bz2 + cnz3 = 0, (4.9)

where ∆ = b2 − 4nc, 0 ≤ b < 2n. The number of irreducible components is equal to

#{b mod 2n : b2 ≡ ∆ mod 4t}.

Assume ∆ is not a square. Then Ends(A)Q contains the field K = Q(
√
D). Let oK be its ring

of integers defined by equation (4.4). The lattice Λ aquires a structure of a rank 1 module over oK
via action of fr. It is known that any such module is isomorphic to oK ⊕ a, where a is an ideal in
oK . Let Γ = SL(oK ⊕ a) be the group of automorphisms of this module represented by matrices
with unimodular matrices

(
α β
γ δ

)
with coefficients in oK such that, for any x ∈ oK , y ∈ a, we have

αx+ βy ∈ oK , γx+ δy ∈ a. It is called the Hilbert modular group.The group Γ acts on H×H by

(z1, z2) 7→ (
αz1 + γ

βz1 + δ
,
αz1 + γ

βz1 + δ
).

We also consider a little larger group Γ̃ acting on H × H by adding to Γ an automorphism σ :
(z1, z2) 7→ (z2, z1).

Corollary 8. Assume that ∆ is not a square. Then the irreducible component defined by (4.9) is the
image of a degree 1 map H × H/Γ → A2,n = Z2/Sp(JD,Z) if b 6≡ 0 mod n and it is the image
of H×H/Γ̃→ A2,n if b ≡ 0 mod n.

Proof. (see [G. van der Geer, Hilbert modular surfaces], iX, Proposition 2.6). Let S =

(
1

1
2 (b+

√
∆

1
1
2 (b−

√
∆)

)
.

Write ∆ in the form ∆ = b2 − 4nc. Consider the map

H×H→ Z2, (z1, z2) 7→ S−1

(
z1 0
0 z2

)
tS−1.

One checks immediately that the image is equal to the subset of matrices τ =
(−bx2−cnx3 x2

x2 x3

)
.

Next, we compute the subgroup of Sp(JD,Z) that leaves invariant the image of the map. It turns
oyt to be the group Γ or Γ̃.



Lecture 5

∆ is a square

.

Let i : B ↪→ A be an abelian subvariety of an abelian variety A with primitive polarization L0

of degree n. Let L′0 = i∗(L0) be the induced polarization of B and φB : B → B̂ be the isogeny
defined by L′0. Consider the composition

NmB := φ−1
L′0
◦ i∗ ◦ φL0 ◦ i : A→ Â→ B̂ → B → A.

It is called the norm-endomorphism associated toB. It is a symmetric endomorphism corresponding
to the Hermitian form obtained by restricting the Hermitian form of L0 to H1(B,C) ⊂ H1(A,C)
and then extending it to H1(A,C) by zero. Also it is easy to see that Nm2

B = e(L′0)NmB . Taking
f = NmB and d = e(L′0), we obtain that f satisfies the equation f2 − df = 0.

Let us go back to abelian surfaces and assume that ∆ = k2 is a square. Then the minimal
polynomial defining the corresponding endomorphism has roots α± = 1

2(b ± k). Since ∆ ≡ b2

mod 4n, α± ∈ Z. The equation

0 = (f − α+idA)(f + α−idA) = 0

shows that the endomorphisms g± = f − α±idA satisfy the equations

g2
± = ±kg±, g+ ◦ g− = 0. (5.1)

Let E± = g±(A) ⊂ A. These are elliptic curves on A, and we have exact sequences of homomor-
phisms of abelian varieties:

0→ E+ −→ A
g−−→ E− → 0, 0→ E− −→ A

g+−→ E+ → 0

Note that g±|E± = [±k], hence E+ · E− = #Ker([k]) = k2. Since the kernel of the isogeny

E+ × E− → A, (x, y) 7→ x+ y

is the group E+ ∩ E−, we obtain that its degree is equal to k2.

Suppose A = Jac(C) for some curve C of genus 2 and the polarization L0
∼= OA(C) is the

principal polarization defined by C embedded in Jac(C) via the Abel-Jacobi map. Since k is equal
to the trace of the characteristic equation fro g+, formula (2.8) and the projection formula imply that

Tr(g2
+) = Tr(kg+) = kTr(g+) = k2 = (g∗+(C), C) = (C, (g+)∗(C)) = d+C · E+ = d+d−,

25
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where d± is the degree of the projection g±|C : C → E±. Since d+, d− ≤ k, we get d+ = d− = k.
Obviously, k > 1 since C is not isomorphic to an elliptic curve.

Thus we obtain the following.

Theorem 9. Suppose a period τ of Jac(C) satisfies a singular equation with discriminant ∆ =
k2 > 1, then C is a degree k cover of an elliptic curve.

Conversely, assume that there exists a degree k cover q : C → E, where E is an elliptic curve.
Then the cover is ramified, hence the canonical map q∗ : E = Jac(E) → A = Jac(C) is injective.
We identify its image with E. Let N : Jac(C) → Jac(E) = E be the norm map (defined on
divisors by taking q∗). Then N · q∗ : E → E is the map [k]. Let g = NmE : A → A. Then, it
follows from the definition of the norm-endomorphism that g2 = kg. Arguing as above, we find
that the symmetric endomorphism NmE defines a singular equation for a period of Jac(C) whose
discriminant is equal to k2.

Example 10. Assume that a period of A = Jac(C) satisfies a singular equation with ∆ = 4, so that
C is a bielliptic curve, i.e. there exists a degree 2 cover α : C → E. Let ι : C → C be the deck
transformation of this cover. If C is given by the equations

y2 − f6(x) = 0 (5.2)

then, we may choose (x, y) in such a way that ι is given by (x, y) 7→ (y,−x) and f6(x) = g3(x2).
Let

v2 − g3(u) = 0

be the equation of an elliptic curve E. The map (x, y) → (x2, v) defines the degree 2 cover
α : C → E. Let du/v be a holomorphic 1-form on E, then α∗(du/v) = xdx/y is a holomorphic
1-form on C. The involution ι∗ acts on the space of holomorphic 1-forms on C spanned by dx/y
and xdx/y, and decomposes it into two eigensubspaces with eigenvalues +1 and −1. Consider
the involution ι′ : (x, y) 7→ (−y,−x). The field of invariants is generated by y2, xy, x2. Again
f6 = g3(x2) and we get the equation (xy)2 = x2g3(x2). Thus the quotient C/(ι′) is another elliptic
curve with equation

v2 − ug3(u) = 0.

The map α′ : C → E′ is given by (u, v) 7→ (x2, xy). We have α′∗(du/v) = 2dx/y. Thus any
hyperelliptic integral

∫
a+bdx
y can be written as a linear combination of elliptic integrals. This was

one of the motivation for the work of G. Humbert.

One may ask how to find whether a hyperelliptic curve given by equation (5.2) admits a degree
2 map onto an elliptic curve in terms of the coefficients of the polynomial f6. The answer was
known in the 19th century. Let us explain it. First let us put a level on the curve by ordering the the
Weierstrass points (0, xi), f6(xi) = 0, i = 1, . . . , 6. By considering the Veronese map ν : P1 → P2

we put these 6 points (xi, 1) on a conic K in P2. Let pi = ν(xi). Applying Proposition 9.4.9 from
[CAG], we obtain that the following is equivalent:

• there exists an involution τ of P1 with orbits (x1, x2), (x3, x4), (x5, x6);

• the lines p1, p2, p3, p4, p5, p6 intersect;

• the three quadratic polynomial (x − x1)(x − x2), (x − x3)(x − x4), (x − x5)(x − x6 are
linearly dependent;
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• if ait0 + Eit1 + cit2 = 0 are the equations of the three lines, then

D12,34,56 = det

a1 a2 a3

a2 E2 c2

a3 E3 c3

 = det

1 x1 + x2 x1x2

1 x3 + x4 x3x4

1 x5 + x6 x5x6

 0.

(see [?], p. 468). Let
I =

∏
σ∈S6

Dσ(1)σ(2),σ(3)σ(4),σ(5)σ(6).

The stabilizer subgroup of D12,34,56)2 in S6 is generated by the transpositions (12), (34), (56) and
permutations of three pairs (12), (34), (56). It is a subgroup of order 48. Thus, after symmetrization,
I defines the Clebsch-Gordan invariant I15 of degree 6!/48 = 15 in coefficients of the binary form.
1

Remark 11. Note that, if one does not assume that the 6 points p1, . . . , p6 are on a conic, the last
two conditions define an irreducible component of the moduli space of marked cubic surfaces with
an Eckardt point (see [CAG], 9.4.5).

Remark 12. Explicitly, suppose the characteristic equation of f0 and N0 is equal to t2 − bt+ (ac+
ed) = 0. Suppose that ∆ = b2 − 4((ac + ed) = k2. The matrix N0 in its action on Λ has two
eigensublattices Λ± of Λ with eigenvalues α±. They are generated by

v±1 = (d, 0,−c, α±), v±2 = (0, d, b− α±,−a),

where the coordinates are taken with respect to the basis (γ1, γ2, e1, e2) of Λ = τZ2 + Z2. So, we
can write

v±1 = (dz1 − c, dz2 + α±), v±2 = (dz2 + b− α±, dz3 − a).

The endomorphism f0 represented by the matrix M0 has the eigenvalues α± with one-dimensional
eigensubspaces V± generated by the vectors w± = v±1 , the vectors v±1 , v

±
2 are proportional over C

with the coefficient proportionality equal to

τ± =
dz2 + α±
dz3 − a

=
dz1 − c

dz2 + b− α±
.

Let
E± = V±/Λ± ∼= C/Zτ± + Z.

The embedding Λ± ↪→ Λ define a homomorphism E± → A. Its kernel is equal to the torsion of the
group Λ/Λ±. We have

v±1 ∧ v
±
2 = (d2, d(b− α±),−ad, cd, dα±, ed)

is equal to d times a vector with mutually coprime coordinates. More precisely,

av±1 + α±v
±
2 = (da, dα±,−ac+ α±(b− α±), 0) = d(a, α±, e, 0) = dg±.

This shows that the torsion is of degree d.

1Its explicit formula occupies 15 pages of Salmon’s book [G. Salmon, Lessons introductory to the modern higher
algebra, Appendix.
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Let Λ′± = Λ± + Zg±. Then E′± = V±/Λ
′
± embeds in A. We have E(v±1 , g±) = (b− 2α±) = k,

where k2 = ∆.

Then we have homomorphism of the complex tori:

E+ × E− = V+ ⊕ V−/Λ′+ ⊕ Λ′− → A = V+ ⊕ V−/Λ.

Its kernel is a finite group Λ/Λ′+ ⊕ Λ′− of order equal to the determinant of the 4 × 4-matrix with
columns v+

1 , v
−
1 , v

+
2 , v

−
2 divided by d2. Computing the determinant, we find that it is equal to d2∆.

Thus we obtain

Remark 13. We know from Example 6 that the Jacobian variety Jac(C) of a curve of genus 2 could
be isomorphic to the product of two isogenous elliptic curves E1 ×E2. Let k1, k2 be the degrees of
the projections ofC → Ei. Fix an embeddingEi ↪→ E1×E2 and consider the corresponding norm-
endomorphisms gi. Then, we obtain that the period matrix ofA satisfies two singular equations with
discriminants k2

1 and k2
2 . We have two isogenies

E1 × E′1 → E1 × E2, E2 × E′2 → E1 × E2

of degrees k2
1 and k2

2 .

Remark 14. (see [N. Murabayashi, Manuscripta Math. 84 (1994)). Consider the abelian variety A
defined by the period matrix

τ =

(
z1 1/k

1/k z3

)
(5.3)

Let p : C2 → C2 be the linear map (a, b) 7→ (0, kb). Then p(γ1) = e2, p(γ2) = kγ2 − e1, p(e1) =
0, p(e2) = ke2. Thus p defines an endomorphism of A with

fa =

(
0 0
0 k

)
, fr =


0 0 0 0
0 k 0 0
0 −1 0 0
1 0 0 k


We have p(Λ) = Z1+Zkz3 = C/Λ1 and Ker(p)∩Λ = Z(kγ1−e2)+Ze1.We see that the matrix is
a special case of the matrix N0 from (4.2). We get a = c = d = 0, b = k, e = −1. Thus τ satisfies
the singular equation kz2 = 1, of course, this was obvious from the beginning. The discriminant of
this equation is equal to k2. This shows that p defines a surjective homomorphism to the complex
1-torus E = C/Z+Zkz3 and its kernel is the complex torus E′ = C/Z+Zkz1 = C/Λ2 embedded
in A by the map z 7→ (z, 0) that sends 1 to e1 and kz1 to kγ1 − e2. We also can embed E′ in A
by the map C → C2 that sends 1 to e2 and kz3 to kγ2. The determinant of the matrix of the map
Λ1 ⊕ Λ2 → Λ is equal to k2, thus we have an isogeny E × E′ → A of degree k2.

Example 15. Assume k = 3. Let f : C → E be a degree 3 map onto an elliptic curve E. Assume
that Jac(C) contains only one pair of one-dimensional subgroups E,E′ with E · E′ = k2 and that
E is not isomorphic to E′. Let σ be the hyperelliptic involution of C and φ : C → C/(σ) = P1 be
the canonical degree 2 cover. By our assumption, the subfield of the field of rational functions on
C contains a unique subfield isomorphic to the field of rational functions on E. This shows that σ
leaves this field invariant and hence induces an involution σ̄ on E such that we have a commutative
diagram
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C

f
��

σ // C

f
��

E
σ̄ // E

.

We assume that the map f : C → E ramifies at two distinct points. This is a non-degenerate case, in
another case we may have one ramification point of index 3. Let x be one of the Weierstrass points,
a fixed point of σ. We have f(x) = f(σ(x)) = σ̄(f(x)). Thus, by taking f(x) to be the origin of
a group law on E, we may assume that σ̄ is an order 2 automorphism of E. Obviously, it has four
fixed points, the 2-torsion points on E. This shows that f defines a map of a set of 6 Weierstrass
points W to the set F = Eσ̄ of 4 fixed points a1, . . . , a4 of σ̄. If a is one of these fixed points
and f(x) = a, then f(σ(x)) = a, hence σ preserves the fiber f−1(a) (considered as an effective
divisor of degree 3 on C. Since σ is of order 2, it must fix one of the points or the whole fiber. The
latter case happens if f has a ramification point over a. Thus the fibers of the map W → F have
cardinalities (3, 1, 1, 1) or (2, 2, 1, 1). To exclude the latter possibility, we consider the commutative
diagram

C

f
��

φ // P1

f̄
��

E
φ̄ // P1

,

Comparing the ramification schemes for the degree 6 maps φ̄ ◦ f : C → P1 and f̄ ◦ φ one can
see that the second possibility does not occur. Let us consider the case (3, 1, 1, 1). We assume that
f−1(a1) consists of three points in W . Let yi = φ̄(ai). The the map φ̄ ◦ f : C → P1 ramifies the 3
preimage of each point yi ∈ φ̄(F ) with index ramification equal to 2, and ramifies at 2 points over
the image b in P1 of the two branch points of C → E.

Using the commutative diagram we see that the branch points of the map f̄ : P1 → P1 are three
points y2, y3, y4 ∈ φ̄(F ). The fiber f̄−1(yi) contains one point from φ(W ), the other point in the
this fiber is a ramification point.

Now, we see that the set of Weierstrass pointsW is split into a disjoint set of triples of pointsA+B,
where f(A) = a ∈ F and f(B) = F \ {a}. We choose a group law on E to assume that a1 = {0}.
We know that Ker(Jac(C) → E) = Ker(Nm : Jac(C) → E). Since Nm(x + y + z) = 0, hence
{x+ y + z} ⊂ E′. The image φ(A) of A in P1 is a fiber of the map f̄ : P1 → P1 over y1 = φ̄(0).
The image of each point in B under φ is contained in a fiber over a point y2, y3, y4 complementary
to the ramification point over y2, y3, y4.

Thus we come to the following problem. Let C : y2 − F6(x) = 0. The polynomial F6 should
be written as the product Φ3Ψ3 of two cubic polynomials such that there exists a degree 3 map
P1 → P1 such that the zeros of Φ3 form one fiber, and the zeros of Ψ3 are in the same fiber
containing 3 ramification points.

We follow the argument of E. Goursat [E. Goursat, Bull. Soc. Math. France, 13 (1885)], and H.
Burhardt [H. Burhardt, Math. Ann. 36 (1869)] in a nice exposition due to T. Shaska [T. Shaska,
Forum Math. 16 (2004)].

Let F (u, v) = 0 be the binary form of degree 6 defining the ramification points of φ : C → P1.
We seek for a condition that F (u, v) = Φ(u, v)Ψ(u, v), where the cubic binary forms satisfy the
following conditions.
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Let G(u, v) be a binary cubic and

J(u, v) = J(G,Φ) = det

(
G′u G′v
Φ′u Φ′v

)
be the jacobian of G,Φ. Its zeroes are the four ramification points of the map φ : P1 → P1 given by
(G,Φ). Let

K = K(u, v;u′v′) = det

(
G(u, v) Φ(u, v)
G(u′, v′) Φ(u′, v′)

)
/(uv′ − u′v)

be the anti-symmetric bi -homogeneous form of bidegree (2, 2) on C2×C2 expressing the condition
that two points (u, v) and (u′, v′) are in the same fiber of φ. Its set of zeros (u : v) = (u′ : v′)
consists of 4 ramification points of φ. In other words,

K(u, v;u′, v′) = J(G,Φ).

Consider K as a polynomial in u′, v′ with coefficients in C[u, v]. Let

R(u, v) = R(K(u, v;u′, v′), J(u′, v′))

be the resultant. Its vanishing expresses the condition that K and J have a common zero. It is a
binary form of degree 4 in u, v. Let Ψ(u, v) be a cubic binary form dividing R(u, v). Then the
hyperelliptic curve y2 − Φ(u, v)Ψ(u, v) = 02 admits a map of degree 3 to C. The equation of C is
y2 − ψ(x) = 0, where v2ψ(u/v) = Ψ(u, v).

Using the projective transformations of (u, v) and a linear transformation ofG,Φ, one may assume
that G(u, v) = u2v. We can also assume that Φ(u, v) = u3 + au2v+ buv2 + v3. Then we find that

F (u, v) = (u3 + au2v + buv2 + v3)(4u3 + b2 + 2bx+ 1),

so that a, b are two parameters on which our hyperelliptic curves depend.

Finally, we refer to [Burhardt] and [T. Shaska, Forum Math. 16 (2004)] for an explicit invariant
of binary sextics defining the locus Hum(9). In [K. Magaard, T. Shaska, H. Völklein, Forum Math.
21 (2009)], one can find a treatment of the case k = 5.

A generalization of a problem of finding the conditions that a map C → E of degree k exists is
the following problem.

A principally polarized abelian variety P is called a Prym-Tyurin variety of exponent e if there
exists a curve C and an embedding P ↪→ Jac(C) such that the principal polarization of C induces
the polarization of type (e, . . . , e). Prym-Tyurin varieties of index 2 are the Prymians of covers
C → D of degree 2 with at most 2 branch points. A generalization of the Prym constructions is a
symmetric correspondence T on C such that (T −1)(T +e−1) = 0 in the ring of correspondences.
The associated Prym variety of index e is the image of T − 1.

For example, the existence of a degree k cover C → E gives a realization of E as a Prym-Tyurin
variety of exponent k. So, the problem is the following. Fix a ppav P of dimension p and a positive
number e. Find all curves C of fixed genus g such that P ⊂ Jac(C) and the principal polarization
induces a polarization of type (e, . . . , e) on P .

For example, assume that p = 2 and g = 3. Then Jac(C) should be isogenous to the product
P × E, where E is an elliptic curve.

2One views this equation as a curve in P(1, 1, 2).



Lecture 6

∆ is not a square

Let us study the Humbert surface Hum(∆) := Hum1(∆), where ∆ is not a square. We will see the
speciality of abelian surfaces belonging to the Humbert surface Hum(∆) in terms of the associated
Kummer surface. Let A be a principally polarized abelian surface and Kum(A) be the quotient
of A by the cyclic group of order 2 generated by the involution ι = [−1]. Let L be a principal
polarization of A. The involution ι is a symmetric endomorphism corresponding to L−1. Then ι∗

acts on H1(A,Z) as the multiplication by −1, hence its acts on H2(A,Z) identically. This shows
that c1(L) = c1(ι∗(L)), hence M = ι∗(L)⊗ L satisfies ι∗(M) = M (such line bundles are called
symmetric) and c1(M) = 2c1(L), or, equivalently, M defines a polarization of type (2, 2) with
(M,M) = 4(L,L) = 8. By Riemann-Roch, dimH0(A,M) = 4, and the linear system |M |
defines a regular map f : A→ P3 that factors through a degree 2 quotient map

φ : A→ A/(ι)

and an isomorphismA/(ι)→ X , whereX is a quartic surface in P3. The quotientA/(ι) is denoted
by Kum(A) and is called the Kummer surface associated to A. The 16 fixed points of the involution
ι are the 2-torsion points e ∈ A. Their images pe on X are ordinary double points. Assume that
the polarization L is irreducible. Then A ∼= Jac(C) for some smooth genus 2 curve C ⊂ A and A
can be identified with the subgroup Pic0(C) of divisor classes of degree 0. By translating C by a
point in A, we may assume that C is the divisor of zeros of a section of L. For any 2-torsion point
e ∈ A, let Ce denote the translation of C by the point e. We have 2(Ce) ∈ |L⊗2|. Let us identify
Kum(A) with the quartic surface X and let Te be the image f(Ce) in X . Then f−1(2Te) = 2(Ce),
hence 2Te is equal to X ∩He for some plane He in P3. Since plane sections of X are plane curves
of degree 4, we see that Te must be a conic. The plane He (or the conic Ce) is called a trope.

Note that the map Ce → Te is given by the linear system |L⊗2|Ce| of degree 2 on Ce ∼= C. It
defines a degree 2 map Ce → Te, so Te is a smooth conic. Thus we have 16 nodes pe ∈ X and
16 tropes Te. The 6 ramification points of the map Ce → Te are fixed points of ι. Hence, they are
2-torsion points lying on Ce. Thus each trope passes through 6 nodes. It is clear that the number
of tropes containing a given node does not depend on the node (use that nodes differ by translation
automorphism of A descent to X). By looking at the incidence relation {(Ce, e′) : e′ ∈ Ce}, we
obtain that each node is contained in 6 tropes. Thus we get a combinatorial configuration (166)
expressing the incidence relation between two finite sets. This is the famous Kummer configuration.

To obtain a minimal resolution of Kum(A), we lift the involution ι = [−1]A to an involution ι̃
of the blow-up Ã → A of the set A[2]. The quotient X̃ = Ã/(ι̃) has the projection to A/(ι) =
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Kum(A) which is a minimal resolution of the 16 nodes of Kum(X).

Ã
φ̃ //

σ̃
��

X̃

σ
��

A
φ // X

Since ι acts as −1 on the tangent space T0(A), it acts identically on the exceptional curves R′i
of σ̃. Thus the quotient Ã/ι̃ is nonsingular and the proejction p̃ is a degree 2 cover of nonsingular
surfaces ramified over 16 curves R′i isomorphic to P1. Using the known behaviour of the canonical
class under a blow-up, we obtainKÃ =

∑
R′i. The Hurwitz formulaKÃ = p̃∗(KX̃)+

∑
R′i implies

that KX̃ = 0. Since ι̃ acts on H1(Ã,Q) as −1, we obtain that H1(X̃,Q) ⊂ H1(Ã,Q)p̃ = {0}
must be trivial. Thus b1(X̃) = 0, and we obtain that X̃ is a K3 usrace.1.

Let p be one of the 16 nodes of X . Projecting from this point, we get a morphism X \ {p} → P2

of degree 2. Let us choose coordinates in P3 such that p = [1, 0, 0, 0]. Then the equation of X can
be written in the form

t20F2(t1, t2, t3) + 2t0F3(t1, t2, t3) + F4(t1, t2, t3) = 0,

where Fk(t1, t2, t3) is a homogeneous form of degree indicated by the subscript. It is clear that the
pre-image of a point [x1, x2, x3] on the plane consists of two points which coincide when

F = F3(t1, t2, t3)2 − F2(t1, t2, t3)F4(t1, t2, t3) = 0.

We say that X is birationally isomorphic to the double plane with branch curve B : F = 0 of
degree 6. Note that the conic F2 = 0 is the image of the tangent cone at p and it is tangent to B
at all its intersection points with it. Of course, this is true for any irreducible quartic surface with a
node p. In our case we get more information about the branch curve B. Let C1, . . . , C6 be the six
tropes containing p. Then any line in the plane Ti spanned by Ci intersects the surface at one points
besides p. This implies that the projection of Ci, which is a line `i in the plane, must be contained in
B. Thus, we obtain that B is the union of 6 lines `1, . . . , `6. Obviously, they intersect at 15 =

(
6
2

)
points, the images of the remaining 15 nodes on X . So, we obtain that X is birationally isomorphic
to a surface in P(3, 1, 1, 1) given by the equation

x2
0 = l1 · · · l6,

where l1, . . . , l6 are linear forms in variables x1, x2, x3. The corresponding lines `1, . . . , `6 are in
general linear position. However, they are not general 6 lines in the plane since they satisfy an
additional condition that there exists a smooth conic K that tangent each line.

Conversely, one can show that such equation defines a surface birationally isomorphic to the Kum-
mer surface corresponding to the hyperelliptic curve of genus 2 isomorphic to the double cover of
K branched at the tangency points. One uses that the pre-image of K under the cover splits into the
sum of two smooth rational curves K1 + K2 intersecting at 6 points. Let h be the pre-image of a
general line in the plane. Then h ·K1 = h ·K2 = 2 and (h + K1)2 = 2 + 4 − 2 = 4. The linear
system |h+K1| maps the double plane to a quartic surface in P3 with 16 nodes, fifteen of them are
the images of the intersection points of the lines, and the sixteenth is the image of K2.

1By definition, a K3 surface is a smooth algebraic surface with trivial canonical class and the first Betti number equal
to 0
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In the following we will follow the paper [C. Birkenhake, H. Wilhelm, Trans. Amer. Math. Soc.
355 (2003)]. Applying Lemma 7, we may assume that b = 0, 1 and ∆ = b+ 4m. Recall from (4.7)
that A ∈ Hum(∆) contains a line bundle L∆ such that

(L2
∆) = 1

2(b2 −∆) = −2m, (L0, L∆) = b.

Suppose
∆ = 8d2 + 9− 2k,

where k ∈ {4, 6, 8, 10, 12} and d ≥ 1. We have (L2
∆) = −(4d2 + 4− k). Let L = L⊗d0 ⊗ L∆. We

easily compute
(L2) = 4d(d+ 1) + k − 4, (L,L0) = 4d+ 1.

Using the formula (4.8), we find that the type of the polarization defined by L is equal to (1, 2d(d+
1) + k

2 − 2). After tensoring L with some line bundle from Pic0(A), we may assume that L is
symmetric, i.e. [−1]∗(L) = L.2 For any symmetric line bundle L defining a polarization of type
(d1, d2), [−1]A acts on H0(L) decomposing it into the direct sum of linear subspaces H0(L)± of
eigensubspaces of dimensions 1

4((L2)−#X∓2 (L)) + 2, where

X±2 (L) = {x ∈ A[2] : [−1]A|L(x) = ±1}.

It is known that

X+
2 (L) ∈


{8, 16} if d1is even,
{4, 8, 12} if d1is odd and d2is even,
{6, 10} if d2 is odd.

(see [CAV], 4.7.7 and 4.14). Since in our case d1 = 1, we can choose L such that k = #X2(L)+

and dimH0(L)− = d(d + 1) + 1. By counting constants, we can choose a divisor D ∈ |L| such
that mult0D ≥ 2d + 1 (the number of conditions is d(d + 1)). The geometric genus g(D) of D is
equal to 1 + 1

2D
2 − d(2d+ 1) = d+ k−2

2 . Let

φ : A→ Kum(A) = A/([−1]A) ⊂ P3

be the map from A to the Kummer surface given by the linear system |L⊗2
0 |. It extends to a map

Ã→ X from the blow-up of 16 2-torsion points of A to a minimal nonsingular model of Kum(A).
The divisorD is invariant with respect to the involution [−1]A. The normalization D̄ ofD is mapped
(2 : 1) onto the normalization C̄ of C = φ(D) and ramifies at k − 1 points and some point in the
pre-image of 0. The Hurwitz Formula applied to the map D̄ → C̄ gives

g(D̄) = d+
k − 2

2
= −1 + 2g(C̄) +

k − 1 + r

2
, (6.1)

where r is the number of ramification points over 0(one can show that C is smooth outside φ(0),
see [BirkenkakeWilhelm], Proposition 6.3]). We may obtain D̄ by blowing up 0 and taking the
proper inverse transform of D. The preimage of 0 consists of 2d+ 1 points that are fixed under the
involution [−1]A extended to Ã. This shows that r = 2d + 1 and (6.1) gives g(C̄) = 0. Thus C is
a rational curve and the proper transform of φ(C) in the blow-up of φ(0) intersects the exceptional
curve with multiplicity 2d + 1. Since (L0, L) = 4d + 1, the image C ′ of C under the proejction
π : X 99K P2 from φ(0) is a plane curve of degree 4d+1− (2d+1) = 2d that passes through k−1

2We use that [−1]A acts as [−1] on Pic0(A), since M = [−1]∗(L) ⊗ L⊗−1 ∈ Pic0(A), we write M = N⊗2 and
check that [−1]∗(L⊗N) ∼= L⊗N .
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intersection points `i ∩ `j . Also note that, if C intersects one of the six tropes Ti corresponding to
the lines `i at a point q with multiplicity m, then C ′ intersect `i at q̄ = π(q) with multiplicity 2m.
This follows from the projection formula (π(C), `i)q̄ = (C, π∗(`i))q = 2(C, Ti)q.

So, we obtain the following theorem from [BirkenhakeWilhelm].3

Theorem 16. Suppose ∆ = 8d2 + 9 − 2k, where d ≥ 1 and k ∈ {4, 6, 8, 10, 12}. If (A,L0)
is an abelian surface with an irreducible principal polarization L0 belonging to Hum(∆), then
the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the property that there exists
a rational curve C of degree 2d with nonsingular points at k − 1 intersection points `i ∩ `j and
intersecting the lines at the remaining intersection points with even multiplicity.

Similarly, Birkenhake and Wilhelm prove the following.

Theorem 17. Suppose ∆ = 8d(d+ 1) + 9− 2k, where d ≥ 1 and k ∈ {4, 6, 8, 10, 12}. If (A,L0)
is an abelian surface with an irreducible principal polarization L0 belonging to Hum(∆), then
the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the property that there exists
a rational curve C of degree 2d + 1 with nonsingular points at k intersection points `i ∩ `j and
intersecting the lines at the remaining intersection points with even multiplicity.

The following is the special case considered by G. Humbert.

Example 18. Take ∆ = 5, d = 1, k = 6. Then C is a conic passing through 5 intersection points
pi = `i ∩ `i+1, i = 1, . . . , 4 and p5 = `1 ∩ `5 forming the set of 5 vertices of a 5-sided polygon Π
with sides `1, . . . , `5 and touching the sixth line `6.

Together with the conic K touching all 6 lines, the pentagon is the Poncelet pentagon for the pair
of conics K,C (i.e. K is inscribed in Π and C is circumscribed around Π).

Example 19. Take ∆ = 13, d = 1, k = 6. The only possibility is the following. Let p1 =
`1 ∩ `2, p2 = `2 ∩ `3, p3 = `1 ∩ `3. Take p4 = `1 ∩ `4, p5 = `2 ∩ `5, p6 = `3 ∩ `6. Then there must
be a plane cubic passing through p1, . . . , p6 and touching `4, `5, `6.

These two theorems deals with the case when ∆ ≡ 1 mod 4 (although they do not cover all
possible ∆’s. The next theorem treats the cases with ∆ ≡ 0 mod 4

Theorem 20. Suppose ∆ = 8d2 + 8 − 2k (resp. 8d(d + 1) + 8 − 2k, where d ≥ 1 and k ∈
{4, 6, 8, 10, 12}. If (A,L0) is an abelian surface with an irreducible principal polarization L0

belonging to Hum(∆), then the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the
property that there exists a rational curve C of degree 2d (resp. 2d+ 1) with nonsingular points at
k (resp. k − 1) intersection points `i ∩ `j and intersecting the lines at the remaining intersection
points with even multiplicity.

Example 21. Take d = 1, k = 4,∆ = 8. Then we get two 4-Poncelet related conics C and
K circumscribed and inscribed in a quadrangle of lines. Note that Hum(8) is the locus in A2 of
surfaces with real multiplication by Q(

√
2). One can see in the following way (see [Terasoma]).

Consider the following subgroups of Sp(4,Z)”

Γ1(2) = {
(
A B
C D

)
∈ Sp(4,Z) : A− I2 ≡ D − I2 ≡ C ≡ 0 mod 2}, (6.2)

Γ0(2) = {
(
A B
C D

)
∈ Sp(4,Z) : C ≡ 0 mod 2}, (6.3)

Γ(2) = {
(
A B
C D

)
∈ Sp(4,Z) : A− I2 ≡ D − I2 ≡ C ≡ B ≡ 0 mod 2}. (6.4)

3We omitted some details justifying, for example, why C can be chosen irreducible or why its singular point at 0 is
an ordinary point of multiplicity 2d+ 1.
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One can show that Z2/Γ1(2) is the fine moduli space A2,1(2) of pairs (A, φ), where A is a
ppas (principally polarized abelian surface) and φ : (Z/2Z)2 ↪→ A[2] is a homomorphism of
groups with the image a totally isotropic subgroup of A[2] with respect to the symplectic form
on H1(A,Z)/2H1(A,Z) ∼= A[2] induced by the symplectic form on H1(A,Z) defined by the po-
larization.

The quotient Z2/Γ0(2) is the fine moduli space A2,0(2) of pairs (A, φ), where A is a ppas (prin-
cipally polarized abelian surface) and V ⊂ A[2], where V is a totally isotropic subgroup of A[2].

Finally, the quotient Z2/Γ(2) is the fine moduli space A2(2) of pairs (A, φ), where A is a ppas
(principally polarized abelian surface) and φ : F4

2 ↪→ A[2] is an isomorphism of 4-dimensional
symplectic linear spaces over F2, where the symplectic form on F4

2 is defined by the matrix J .

We have a sequence of finite maps

A2(2)→ A2,1(2)→ A2,0(2)→ A2

corresponding to inclusions of groups

Γ(2) ⊂ Γ1(2) ⊂ Γ0(2) ⊂ Sp(4,Z)

with corresponding indices 15, 8, 6. Note that Γ(2) is a normal subgroup of Sp(4,Z) with the
quotient isomorphic to Sp(4,F2) ∼= S6. It is known that the moduli space A2(2) is isomorphic to a
locally closed subset of the GIT-quotient (P2)//SL(3) parameterizing orbits of 6 distinct points on
a conic. The group S6 acts on this space by permuting the points. Let

f2 =
1√
2

(
0 I2

−I2 0

)
∈ Sp(4,R).

It is an element of order 2, called the Fricke involution. It normalizes both Γ0(2) and Γ1(2) and acts
as an involution on the spaces A2,0(2) and A2,1(2). The fixed locus of f2 in A2,1(2) is mapped to
Hum(8).

• •

•
•

• •

•

•

•

•

• •
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A point in A2,1(2) is represented by an ordered triple of pairs of points in fixed conic modulo
projective transformations leaving the conic invariant. These are painted in blues and joined by
three lines. The new 3 pairs pinted in red is the image of the point under the Fricke involution.

Remark 22. It follows from the Teichmüller theory any holomorphic differential on a Riemann
surface X of genus g defines an immersion of H inMg such the image is a complex geodesic with
respect to the Techmüller metric. According to C. McMullen [?], the closure of the image of H in
M2 is either a curve, or a Humbert surface Hum(∆), where ∆ is not a square, or the wholeM2.



Lecture 7

Fake elliptic curves

We will discuss abelian surfaces with the endomorphism ring of the third type, i.e. imaginary
quadratic extensios of a real quadratic field later. They are examples of abelian varieties of CM-type.
In this lecture we will consider fake abelian surfaces, i.e. abelian surfaces with the ring End(A)Q
isomorphic to an order in an indefinite quaternion algebra. Fake elliptic curves are parameterized
by a complete algebraic curve (a Shimura curve), the quotient of H by a cocompact Fuchsian group
isomorphic to the group of units of a quaternion algebra over Q. A construction of the moduli space
is as follows. Let B = Q(a, b) be an indefinite quaternion algebra over Q and o be an order in B.
Recall that this means that o is an algebra over Z containing 1 such that o ⊗ Q ∼= B. Note that
each order is contained in a unique maximal order. Let us identify BR with Mat2(R) and consider a
linear R-isomorphism

φ : BR → C2, X 7→ X · z,

where z ∈ P1 \ P1(R). Let Λz = φ(o). The complex torus C2/Λz is an abelian variety. In fact,
we define the alternating form Ez on Λz by Ez(φ(x), φ(y)) = −Tr(ixȳ). The real part of the
associated Hermitian form is equal to the positive definite symmetric matrix Tr(xȳ). This gives us
an abelian surface Az = C2/Λz . Note that Az ∼= Az′ if and only if there exists a unit u from o such
that φ(u)(z) = z′. We can find u with Nm(u) = −1 such that Im(z′) > 0, and then obtain that z is
defined uniquely up to the action of the group Γ = φ(o∗1)/{±} ⊂ PSL2(R), where o∗1 is the group
of elements in o with Nm(u) = 1. The group Γ is a discrete subgroup of PSL2(R), a Fuchsian
group of the first kind (a discrete subgroup Γ of PSL2(R) such that the quotient H/Γ is isomorphic
to the complement of finitely many points on a compact Riemann surface). It is known that Γ is
a cocompact, i.e. the quotient H/Γ is a compact Riemann surface. It is also an arithmetic group
1 Such quotients are called the Shimura curves. Conversely, any point on the curve H/Γ defines
a polarized abelian surface with endomorphism algebra containing O for some order in a B. The
curve H/Γ is the coarse moduli space of such abelian surfaces.

Let us give an example of a fake elliptic curve from [K. Hashimoto, N. Murabayashi, Tohoku
Math. J. (2) 47 (1995)]. Let B be an indefinite quaternion algebra over Q and oB be the maximal
order in B. By definition, BR ∼= Mat2(R). Let x 7→ x∗ be the involution in B induced by the
transpose involution of Mat2(R). The trace bilinear form Tr(xy∗) restricted to the symmetric part
Bs = {x ∈ B : x = x∗} of B defines a structure of a positive definite lattice on osB := Bs ∩ oB of
rank 3. The discriminant of B is equal to the discriminant of the lattice osB .

1This means that its preimage in SL2(R) contains a subgroup of finite index whose elements are matrices with entries
in an algebraic number field.
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Let us choose

B = Q + Qi + Qj + Qk, i2 = −6, j2 = 2, ij = −ji = k.

The maximal order oB has a basis

(α1, . . . , α4) = (1, 1
2(i + j), 1

2(i− j),
1

4
(2 + 2j + k)).

Note that i, j,k/2 = (i− j)(i + j)/4− 1 ∈ oB . The discriminant is equal to the determinant of the
matrix (Tr(αiᾱj)). One finds that the discriminant of this matrix is equal to −6. The embedding of
ER in Mat2(R) is given by

i 7→
(

0 −1
6 0

)
, j 7→

(√
2 0

0 −
√

2

)
.

We consider the isomorphism φz : BR → C2 given by X 7→ X · ( z1 ), where z ∈ C and consider
the abelian surface Az . Let ωi = φz(αj) ∈ C2. One computes the matrix of the alternating form
Ez in this basis to obtain that it is equal to

0 −1 −1 0
1 0 0 1
1 0 0 0
0 −1 0 0

 .

If we put ω′1 = −ω3, ω
′
2 = ω4, ω

′
3 = −ω1, ω

′
4 = ω3 − ω2, we obtain a standard symplectic basis

defined by the matix J . We easily compute the period matrix

τz =

(
z1 z2

z2 z3

)
=

(
3z
2 −

1
4z −3

√
2z

4 − 1
2 −

√
2

8z

−3
√

2z
4 − 1

2 −
√

2
8z

3z
4 −

1
2 −

1
8z

)
.

One finds that the period matrix τz satisfies the following 2-parametrical family of singular equa-
tions:

−(λ+ µ)z1 + λz2 + (λ+ 2µ)z3 + λ(z2
2 − z1z3) + µ = 0.

Its discriminant is equal to

∆ = λ2 + 4(λ+ µ)(λ+ 2µ)− 4λµ = 5λ2 + 8µ(λ+ µ).

Taking (λ, µ) = (1, 0) and (0, 1), we obtain that the image of τ lies in the intersection of two
Humbert surfaces Hum(5) and Hum(8) which we discussed in the previous lecture. It will turn out
that the family of genus 2 curves whose endomorphism rings contains B is given by the following
formula.

y2 = x(x4 − px3 + qx2 − rx+ 1),

where

p = −2(s+ t), r = −2(s− t), q =
(1 + 2t2)(11− 28t2 + 8t4)

3(1− t2)(1− 4t2)
,

and g(s, t) = 4s2t2 − s2 + t2 + 2 = 0.

The base is the elliptic curve given by the affine equation g(s, t) = 0. The Shimura curve
is of genus 0, the quotient of the base by the subgroup generated by the involutions (t, s) 7→
(−t,±s), (x, y) 7→ (−x, iy), (x−1, yx−3).



Lecture 8

Periods of K3 surfaces

A K3 surface was defined as a complex algebraic surface with KX = 0 and b1(X) = 0. The
Noether formula

12χ(X,OX) = K2
X + c2,

where χ(X,OX) = 1 − q(X) + pg(X) := 1 − dimH0(X,Ω1
X) + dimH0(X,Ω2

X) and c2 is the
second Chern class of X equal to the Euler-Poincaré characteristic of X , gives us that c2(X) = 24
and b2(X) = 22. The cohomology H2(X,Z) ∼= Z221 and the Poincaré duality equips it with a
structure of a unimodular indefinite quadratic lattice. Its signature is equal to (3, 19). The lattice
H2(X,Z) is an even unimodular lattice, and as such, by a theorem of J. Milnor, must be unique, up
to isomorphism. We can choose a representative of the isomorphism class to be the lattice

LK3 := U ⊕ U ⊕ U ⊕ E8 ⊕ E8.

(sometimes referred to as the K3-lattice). Here the direct sum is the orthogonal direct sum, U is an
integral hyperbolic plane that has a basis (f, g) with f2 = g2 = 0, f · g = 1(called a canonical
basis) and E8 is the negative definite unimodular lattice of rank 8 that we saw before in Lecture 3.

The first Chern class map c1 : Pic(X) → H2(X,Z) is injective, and its image is a sublattice SX
of H2(X,Z) which is, by Hodge Index Theorem is of signature (1, ρ), where Pic(X) ∼= Zρ. Note
that the Poincaré duality allows us to identifyH2(X,Z) withH2(X,Z). Applying this to SX , gives
the identification between cohomology classes defined by line bundles via the first Chern class and
divisor classes of defined by their meromorphic sections. So we will identify SX with the subgroup
of algebraic cycles H2(X,Z)alg of H2(X,Z).

Let TX = (SX)⊥ be the transcendental lattice. We have the Hodge decomposition

H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2 ∼= C⊕ C20 ⊕ C,

and (SX)C ⊂ H1,1. Thus (TX)C has a decomposition

(TX)C = H2,0 ⊕H1,1
0 ⊕H0,2 ∼= C22−ρ,

1The assumption that b1(X) = 0 implies that the group H1(X,Z) is finite. Any its nonzero element defines a
finite unramified cover f : X ′ → X of some degree d > 1 with KX′ = f∗(KX) = 0, hence pg(X ′) = 1 and
c2(X ′) = dc2(X) = 24d giving a contradiction to the Noether formula. This shows that H2(X,Z) has no torsion. A
much more difficult fact is that π1(X) = 0.
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where H1,1
0 = (TX)C ∩ H1,1. The complex line p(X) := (H2,0 ⊂ (TX)C), viewed as a point

on the projective space |(TX)C| of lines in (TX)C is called the period of X . If we choose a basis
ω in H2,0(X) = Ω2(X), then we have a complex valued linear function on H2(X,Z) defined by
γ 7→

∫
γ ω. Integrating over an algebraic cycle coming from SX , we get zero (because our form is of

type (2, 0) and an analytic cycle has one complex coordinate z), so the function can be considered
as a linea function on (H2(X,C)/SX), i.e. an element from (TX)C. This explains the name period.

The Poincaré Duality onH2(X,C) corresponds via the de Rham Theorem, to the exterior product
of 2-forms. Since ω is a form of type (2, 0), we get w∧w = 0. Thus p(X) belongs to a quadric QT
in |(TX)C| defined by the quadratic form defining the quadratic lattice H2(X,Z) restricted to TX .
Also, ω∧ ω̄ is a form of type (2, 2) which is proportional to the volume form generating H4(X,R).
Since its sign does not depend on a scalar multiple of ω, we may choose an orientation on the 4-
manifold X to assume that it is positive. Thus we get a second condition ω∧ ω̄ > 0. This defines an
open (in the usual topology) subset Q0 of Q. So, we see that the period p(X) defines a point on the
manifold Q0 of dimension 20 − ρ(X). We would like to introduce a space, where the periods lie.
However, our our manifold Q0 obviously depends on X , so we have to find some common target
fro the map X 7→ p(X).

We fix an even quadratic lattice S of signature (1, r) and a primitive embedding S ↪→ LK3

(primitive means that the quotient group has no torsion). Then we repeat everything from above,
replacing SX with S, and denoting by T its orthogonal complement in LK3. Its signature is (2, 19−
r). Then we obtain a quadric QT in the projective space |TC| ∼= P20−r defined by the quadratic
form of T . We also obtain its open subset Q0

T defined by the condition x · x̄ > 0. Now we fix a
manifold DT := QT which is called the period domain defined by the lattice T . Of course, as a
manifold it depends only on its dimension 19 − r. When, its dimension is positive, it consists of
two connected components, each is a Hermitian symmetric domain of orthogonal type of type IV in
Cartan’s classification of such spaces. We have

DT ∼= Ø(2, 19− r)/SO(2)×O(19− r), D0
T
∼= SO(2, 19− r)/SO(2)× SO(19− r),

where D0
T denotes one of the connected components.

A choice of an isomorphism of quadratic lattices φ : H2(X,A) → LK3 (called a marking) and a
primitive embedding j : S ↪→ SX such that φ ◦ j : S ↪→ LK3 coincides with a fixed embedding
S ↪→ LK3 (called a lattice S polarization) defines a point φ(p(X)) ∈ DT . For some technical
reasons one has additionally assume that the image of S in SX contains a semi-ample divisor class,
i.e. the classD such thatD2 > 0 andD ·R ≥ 0 for every irreducible curve onX . A different choice
of (φ, j) with the above properties replaces the point φ(p(X)) by the point g · φ(p(X)), where g
belongs to the group

ΓS := {g ∈ O(LK3) : g|S = idS}.

Let AT = T∨/T be the discriminant group, where T embeds in its dual group T∨ = Hom(T,Z)
via viewing the symmetric bilinear form on T as a homomorphism ι : S → Hom(S,Z) such that
ι(s)(s′) = s · s′. It is a finite abelian defined by a symmetric matrix representing the quadratic
form on T in some basis of T . Its order is equal to the discriminant of the quadratic form. The
discriminant group is equipped with a quadratic map

qT : AT → Q/2Z, x∗ 7→ x∗2 mod 2,

where x∗ ∈ T∨ is a representative of a coset in AT , and we extend the quadratic form q of T to
T∨ ⊂ TQ and then check that the definition is well defined on cosets.
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We have a natural homomorphism of

ρ : O(T )→ O(AT , qT ).

Its kernel consists of orthogonal transformations of T that can be lifted to an orthogonal transfor-
mation σ of LK3 such that σ|S = idS . Thus we obtain that

ΓT ∼= Ker(ρ).

Now we can consider the quotient space DT /ΓT . It is a quasi-projective algebraic variety of di-
mension 20 − ρ. The Global Torelli Theorem of I. Pyatetsky-Shapiro and I. Shafarevich asserts
that assigning to X its period point p defined a point in DT that does not depend on marking φ
and two S-poilarzed surfaces are isomorphic preserving the polarization if and only if the images
are the same. One can use this to identify the quotient with the coarse moduli space MK3,SE of
S-polarized K3 surfaces.

For any vector δ ∈ T , let δ⊥ denote the orthogonal complement of Cδ in TC. This is a hyperplane
in the projective space |TC| defined by a linear function with rational coefficients. LetHδ = DT∩δ⊥
be the subset of the period domain DT . If δ2 < 0, then the signature of the lattice (Rδ)⊥ ⊂ TR is
equal to (2, 18− r), so Hδ is the same type domain. For any positive integer N consider

H(N) =
⋃

δ,δ2=−N

Hδ.

The group ΓT acts on the set of δ’s with δ2 = −N and we denote by Heeg(N) the image ofH(N)
in the quotient spaceMK3,S . It is empty or a hypersurface inMK3,S . It is denoted by Heeg(N)
and is called the Heegner divisor in the moduli space of lattice S polarized K3 surfaces.

In the next lecture we will compare it with the Humbert surface Hum(∆).
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