Varietà Complesse (6cfu)

Anno accademico 2013-2014.
Inizio corso:


Propedeuticità:
essenziali: Concetti di base di varietà differenziabili (reali) del vecchio corso "Geometria 5" (oppure del corso "Geometria 4" dal a.a. 2012/13 in poi) e di analisi complessa (basta il tutorato oppure le prime ore del corso "Analisi complessa").


Programma del corso (6cfu):
Varietà differenziabili complesse: spazio tangente olomorfe; applicazioni olomorfe e loro differenziale; forme differenziali di tipo (p,q) ([H], [W]).
Curve ellittiche: La funzione meromorfe "p" di Weierstrass, curve cubiche piane, legge di gruppo [S].
Fibrati vettoriali, il fibrato tangente, il fibrato canonico, il fibrato normale, divisori e fibrati in rette, formula di aggiunzione [H].
Fasci e prefasci di gruppi abeliani, omomorfismi di fasci, successioni esatte di fasci, coomologia a coefficienti in un fascio di gruppi abeliani come coomologia del complesso delle sezioni globali di una risoluzione aciclica del fascio, teorema di de Rham [W].


Riferimenti bibligrafici (catalogo):
[A] D. Arapura, Algebraic geometry over the complex numbers. Springer-Verlag 2012.
[H] D. Huybrechts, Complex geometry, an introduction. Berlin Springer-Verlag 2005.
[K] A.W. Knapp, Elliptic curves, Mathematical notes 40. Princeton University Press 1993.
[S] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106. Springer-Verlag 1986.
[W] R.O. Wells, Differential Analysis on Complex Manifolds. Prentice Hall 1973 (Springer-Verlag 2008).
Note del corso "Complex manifolds" (9cfu, anno accademico 2011-2012, autore: Marco Ramponi).
Note del corso "Complex manifolds" (6cfu, anno accademico 2012-2013, autore: Michele Ferrari).