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Zusammenfassung

Ein Satz von Fontaine und Wintenberger [17] besagt, dass es einen Isomorphismus zwischen
den absoluten Galoisgruppen der Vervollständigung K des bewerteten Körpers Qp(p

1/p∞) und
der Vervollständigung K[ des bewerteten Körpers Fp((t))(t1/p

∞
) gibt. Nach der Definition von

Scholze [42] bemerken wir, dass diese Körper beide perfektoid sind, d.h. vollständige nicht-
archimedische, nicht-diskret bewertete Körper mit einem Restklassenkörper der Charakteristik
p und so, dass die Frobenius-Abbildung auf OK/p surjektiv ist. In loc. cit. zeigt der Autor,
dass man für einen solchen Körper K das multiplikative Monoid K[ = lim←−x 7→xp K mit einer
Körperstruktur versehen kann, die perfektoid der Charakteristik p ist. Dieser Körper wird der
Tilt von K genannt. Darüber hinaus induziert dieser “tilting”-Funktor eine Äquivalenz zwischen
endlichen étalen Algebren über K und über K[ und bietet damit eine Verallgemeinerung des
Satzes von Fontaine und Wintenberger.

In einer Motivsprache kann das obige Ergebnis mit den Worten beschrieben werden, dass
die Kategorien von Artin-Motiven über den beiden Körpern äquivalent sind. Das Ziel der
vorliegenden Arbeit ist, diese Äquivalenz auf die gesamte Kategorie der (triangulierten) Motive
analytischer Varietäten über K und über K[ zu verallgemeinern.

Das natürliche höher-dimensionale Analogon zur Kategorie von Artin-Motiven über einem
lokalen Körper ist die Kategorie der analytischen Motive RigDM, welche von Ayoub eingeführt
und analysiert wurde [5]. In diesem Zusammenhang werden die Grundkörper mit ihren nicht-
archimedischen Strukturen betrachtet, und nicht nur als abstrakte Körper wie in der Definition
der Motive DM auf glatten Varietäten.

Das wichtigste Ergebnis unserer Arbeit ist der folgende Satz :

THEOREM. Sei K ein perfektoider Körper mit Tilt K[. Es gibt eine Äquivalenz von triangu-
lierten monoidalen Kategorien:

F : RigDMeff
ét (K[,Q)→ RigDMeff

ét (K,Q).

Die Situation kann mit dem folgenden Diagramm zusammengefasst werden. Die Schreib-
weise wird in der Dissertation beschrieben und erläutert.

RigDMeff
ét (K) RigDMeff

ét (K[,Q)
F

∼
oo

RigDAeff
ét (K,Q)

∼

OO

Lι∗uu

RigDAeff
Frobét(K

[,Q)

∼

OO

∼ LPerf∗

��

R̂igDAeff
ét (K,Q)

Lι!
55

PerfDAeff
ét (K,Q)

∼

OO

Lj∗
ii

oo ∼ // PerfDAeff
ét (K[,Q)
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Introduction

A theorem of Fontaine and Wintenberger [17], later expanded by Scholze [42], states that
there is an isomorphism between the Galois groups of a perfectoid field K and the associated
(tilted) perfect field K[ of positive characteristic. The standard example of such a pair is formed
by the completions of the fields Qp(p

1/p∞) and Fp((t))(t1/p
∞

).
In a motivic language, the previous result can be rephrased by saying that the categories

of Artin motives over the two fields are equivalent. The goal of this paper is to extend this
equivalence to the whole category of (mixed derived) motives of rigid analytic varieties RigDM
over K and over K[ with Q-coefficients. As a matter of fact, the natural analogue in higher
dimension of the category of (derived) Artin motives over a local field is the category of rigid
motives, introduced and analyzed by Ayoub [5], where the base field is considered as a non-
archimedean valued field and not just as an abstract field as in the case of the category of
algebraic motives DM.

In this thesis, we prove the following (Theorem 1.7.8):

THEOREM. Let K be a perfectoid field with tilt K[ and let Λ be a Q-algebra. There is a
monoidal triangulated equivalence of categories

F : RigDMeff
ét (K[,Λ)→ RigDMeff

ét (K,Λ).

We remark that the construction of the functor F requires a lot of machinery and uses
Scholze’s tilting functor in a crucial way. We can roughly sketch the construction of this
functor as follows. We start from a smooth rigid variety X over the perfectoid field of positive
characteristic K[ and we associate to it a perfectoid space X̂ obtained by taking the perfection
of X . This operation can be performed canonically since K[ has characteristic p. We then use
Scholze’s theorem to tilt X̂ obtaining a perfectoid space Ŷ in mixed characteristic. Suppose
now that Ŷ is the limit of a tower of rigid analytic varieties

. . .→ Yh+1 → Yh → . . .→ Y1 → Y0

such that Y0 is étale over the Tate ball Bn = SpaK〈υ1, . . . , υn〉 and each Yh is obtained as
the pullback of Y0 by the map Bn → Bn defined by taking the ph-powers of the coordinates
υi 7→ υp

h

i . Under such hypothesis (we will actually need slightly stronger conditions on the
tower above) we then “de-perfectoidify” Ŷ by associating to it Yh̄ for a sufficiently big index h̄.

The main technical problem of this construction is to show that it is independent of the
choice of the tower, and on the index h̄. It is also by definition a local procedure, which is not
canonically extendable to arbitrary varieties by gluing. In order to overcome these obstacles, we
use in a crucial way some techniques of approximating maps between spaces up to homotopy
which are obtained by a generalization of the implicit function theorem in the non-archimedean
setting. We also need to introduce a subcategory of adic spaces (in the sense of Huber [26])
R̂igSm where to embed both rigid analytic and perfectoid spaces, and adapt the motivic tools to
develop homotopy theory on it.

Generalizing the results of [3, Appendix B], we also prove that the natural functor atr of
adding transfers induces and equivalence between the category of motives without transfers
RigDAeff

ét (K,Λ) and the category of motives with transfers RigDMeff
ét (K,Λ) in characteristic

zero. In positive characteristic, it induces an equivalence between RigDAeff
Frobét(K

[,Λ) and
RigDMeff

ét (K[,Λ) where the former category is obtained as a localization of RigDAeff
ét (K[,Λ)

with respect to the set of relative Frobenius maps X → X ×K[,Φ K
[ for all rigid varieties X

iv



over K[. Our main theorem can therefore be stated as an equivalence between RigDAeff
ét (K,Λ)

and RigDAeff
Frobét(K

[,Λ) for any perfectoid field K of characteristic 0.
The statements above involve only rigid analytic varieties and their proofs use Scholze’s

theory of perfectoid spaces only in an auxiliary way. Nonetheless, we can restate our main result
highlighting the role of perfectoid spaces as follows:

THEOREM. Let K be a perfectoid field and let Λ be a Q-algebra. There is a monoidal
triangulated equivalence of categories

RigDMeff
ét (K,Λ)

∼→ PerfDAeff
ét (K,Λ)

The category PerfDAeff
ét (K,Λ) is built in the same way as RigDAeff

ét (K,Λ) using as a
starting point the big étale site of perfectoid spaces which are locally étale over some perfectoid
ball B̂n.

The following diagram of categories of motives summarizes the situation. The equivalence
in the bottom line follows easily from the “tilting equivalence” of Scholze, see [42, Proposition
6.17]. The notation introduced in the theorems and in the diagram will be described in later
sections.

RigDMeff
ét (K,Λ) RigDMeff

ét (K[,Λ)
F

∼
oo

RigDAeff
ét (K,Λ)

∼

OO

Lι∗uu

RigDAeff
Frobét(K

[,Λ)

∼

OO

∼ LPerf∗

��

R̂igDAeff
ét,B̂1(K,Λ)

Lι!
55

PerfDAeff
ét (K,Λ)

∼

OO

Lj∗
ii

oo ∼ // PerfDAeff
ét (K[,Λ).

The thesis is organized as follows. The first chapter is devoted to the proof of the main
theorem. In Section 1.1 we recall the basic definitions and the language of adic spaces while in
Section 1.2 we define the environment in which we will perform our construction, namely the
category of semi-perfectoid spaces R̂igSm and we define the étale topology on it. In Section 1.3
we define the categories of motives for RigSm, R̂igSm and PerfSm adapting the constructions
of Voevodsky’s and Ayoub’s. Thanks to the general model-categorical tools introduced in this
section, we give in Section 1.4 a motivic interpretation of some approximation results of maps
valid for non-archimedean Banach algebras. In Sections 1.5 and 1.6 we prove the existence of
the de-perfectoidification functor from perfectoid motives to rigid motives in zero and positive
characteristics, respectively. Finally, we give in Section 1.7 the proof of our main result.

In the second chapter we prove the equivalence between rigid motives with and without
transfers. In Section 2.1 we introduce the Frob-topology and the Frobét-topology, which plays
the same role of the étale topology in positive characteristic for our purposes. In Section 2.2 we
define the categories of motives associated to these sites, as well as the auxiliary categories of
motives of normal varieties and their relative counterpart. Finally in Section 2.3 we prove the
desired equivalence RigDAeff

Frobét(K,Λ) ∼= RigDMeff
ét (K,Λ).

In the appendix, we collect some technical theorems that are used along the proofs of the
first chapter. Specifically, we first present a generalization of the implicit function theorem in

v



the rigid setting, and conclude a result about the approximation of maps modulo homotopy as
well as its geometric counterpart. We also prove the existence of compatible approximations
of a collection of maps {f1, . . . , fN} from a variety in R̂igSm of the form X × Bn to a rigid
variety Y such that the compatibility conditions among the maps fi on the faces X × Bn−1 are
preserved. This fact has important consequences for computing maps to B1-local complexes of
presheaves in the motivic setting.
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CHAPTER 1

The tilting equivalence of motives of rigid analytic varieties

The purpose of this chapter is to construct the equivalence of categories between motives of
analytic varieties over a perfectoid field K and its tilt K[. To this aim, we first recall the theory
of perfectoid spaces and we introduce the categories of adic spaces that we will be interested in.

1.1. Generalities on adic spaces

We start by recollecting the language of adic spaces, as introduced by Huber [26] and
generalized by Scholze-Weinstein [45] including some terminology of Buzzard-Verberkmoes
[12] and Wedhorn [52]. We will always work with adic spaces over a non-archimedean valued
field.

1.1.1. DEFINITION. A non-archimedean field is a toplological field K whose topology is
induced by a non-trivial valuation of rank one. The associated norm is a multiplicative map that
we denote by | · | : K → R≥0 and its valuation ring is denoted by K◦. A pair (K,K+) is called a
valuation field ifK is a non-archimedean field andK+ ⊂ K◦ an open bounded valuation subring.
We say it is complete if K (and hence also K+) is complete. A map (K,K+) → (L,L+) of
valuation fields is local if the inverse image of L+ in K coincides with K+.

1.1.2. REMARK. A map (K,K+)→ (L,L+) is local if an only if the map K+ → L+ is a
local map between local rings. In that case, the two valuations on K induced by K+ and L+

coincide. The valuation on K induced by K+ has rank 1 precisely when K+ coincides with K◦.

From now on, we fix a complete non-archimedean field K and we pick a non-zero element
π ∈ K with |π| < 1.

We now recall some definitions given in [25]. We also introduce the notion of a bounded
affinoid K-algebra.

1.1.3. DEFINITION. A Tate K-algebra is a topological K-algebra R for which there exists
a subring R0 such that the set {πkR0} forms a basis of neighborhoods of 0. A subring R0 with
the above property is called a ring of definition.

1.1.4. DEFINITION. Let R be a Tate K-algebra.
• A subset S of R is bounded if it is contained in the set π−NR0 for some integer N . An

element x of R is power-bounded if the set {xn}n∈N is bounded. The set of power-
bounded elements is a subring of R that we denote by R◦. We say that R is uniform if
R◦ is bounded.
• An element x of R is topologically nilpotent if limn→+∞ x

n = 0. The set of topologi-
cally nilpotent elements is an ideal of R◦ that we denote by R◦◦.

1.1.5. REMARK. Suppose that R is a Tate K-algebra. The definition of a bounded set does
not depend on the choice of the ring of definition R0. A subring of R is a ring of definition if and
only if it is bounded and open. By [25, Corollary 1.3] the ring R◦ is the filtered union of all rings
of definitions of R. In particular if x ∈ R is algebraic over R◦ then it is algebraic over a ring of

1



1.1. GENERALITIES ON ADIC SPACES 2

definition, and so it is power-bounded proving that R◦ is integrally closed in R. Moreover, since
for any x ∈ R the sequence xπn tends to zero, we conclude that xπn is contained in a ring of
definition R0 for a sufficiently big index n and hence R0[π−1] = R.

1.1.6. DEFINITION. Let K be a complete non-archimedean field.
• An affinoid K-algebra is a pair (R,R+) where R is a Tate K-algebra and R+ is an

open and integrally closed K◦-subalgebra of R◦. A morphism (R,R+)→ (S, S+) of
affinoid K-algebras is a pair of compatible K◦-linear continuous maps of rings (f, f+).
• A bounded affinoid K-algebra is an affinoid K-algebra (R,R+) such that R+ is a ring

of definition.
• An affinoidK-algebra (R,R+) is called complete ifR (and hence alsoR+) is complete.

1.1.7. REMARK. If (R,R+) is an affinoid K-algebra and R is uniform then (R,R+) is
bounded.

1.1.8. REMARK. If (R,R+) is an affinoid K-algebra and x is topologically nilpotent, then
there exists an integer N such that xN ∈ R+ and hence x ∈ R+ since R+ is integrally closed.
We then deduce that R+ contains the set R◦◦. The restricted topology on a ring of definition R0

coincides with the π-adic topology. In particular, the topology of a bounded affinoid K-algebra
(R,R+) is uniquely determined by the K◦-algebra R+.

1.1.9. EXAMPLE. By Remark 1.1.5, if R is a Tate K-algebra, then (R,R◦) is an affinoid
K-algebra.

Any affinoid K-algebra (R,R+) is endowed with a universal map (R,R+)→ (R̂, R̂+) to
a complete affinoid K-algebra that we call the completion of (R,R+) (see [25, Lemma 1.6]).
In case (R,R+) is bounded, then R̂+ is the π-adic completion of R+ and R̂ is R̂+[π−1]. More
generally, for any affinoid K-algebra (R,R+) we can define the π-adic completion to be the
complete affinoidK-algebra (S, S+) where S+ is the π-adic completion ofR+ and S is S+[π−1]
endowed with the topology generated by the sets {πkS+}.

Let {(Ri, R
+
i ), fi} be a direct system of maps of affinoid K-algebras. As remarked in [44], it

is not true in general that the direct limit (lim−→Ri, lim−→R+
i ) endowed with the direct limit topology

is an affinoid K-algebra. In the bounded context, however, this nuisance can be easily solved.

1.1.10. LEMMA. Let {(Ri, R
+
i ), fi} be a direct system of maps of bounded affinoid K-

algebras. Endow the ring lim−→i
Ri with the topology for which lim−→i

R+
i is a ring of defi-

nition. The pair (R,R+) := (lim−→i
Ri, lim−→i

R+
i ) is a bounded affinoid K-algebra and one

has Hom((R,R+), (S, S+)) ∼= lim←−i((Ri, R
+
i ), (S, S+)) for any bounded affinoid K-algebra

(S, S+).

PROOF. A map from (R,R+) to (S, S+) is uniquely determined by a K◦-linear map from
R+ = lim−→R+

i to S+. Similarly, a map from (Ri, R
+
i ) to (S, S+) is uniquely determined by a

K◦-linear map fromR+
i to S+. From the isomorphism Hom(lim−→R+

i , S
+) ∼= lim←−i Hom(R+

i , S
+)

we then deduce the claim. �

From the lemma above, we conclude that the category of bounded affinoid K-algebras has
direct limits.

We now examine some examples.

1.1.11. EXAMPLE. Let υ = (υ1, . . . , υN) be an N -tuple of coordinates. If (R,R+) is a
bounded affinoid K-algebra, then also the pair (R〈υ〉, R+〈υ〉) is, where R〈υ〉 is the ring of
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strictly convergent power series in N variables with coefficients in R:

R〈υ〉 :=

{∑
I

aIυ
I ∈ R[[υ]] : ∀k ∈ N, aI ∈ πkR+ for almost all I

}
with the topology having πkR+〈υ〉 as a basis of neighborhoods of 0. In case R is normed, then
also R〈υ〉 is normed, with respect to the Gauss norm |

∑
I aIυ

I | := maxI{|aI |} and is complete
whenever R is (see [9, Section 1.4.1]).

1.1.12. EXAMPLE. If R is any normed K-algebra, then (R,R◦) is an affinoid K-algebra.
The classical definition of Tate gives therefore examples of affinoid K-algebras.

1.1.13. DEFINITION. A topologically of finite type Tate algebra (or simply tft Tate algebra)
is a Banach K-algebra R isomorphic to a quotient of the normed K-algebra K〈υ1, . . . , υn〉 for
some n.

If R is a tft Tate algebra, the pair (R,R◦) is an affinoid K-algebra, which is bounded
whenever R is reduced (see [9, Theorem 6.2.4/1]).

We now recall the definition of perfectoid pairs, introduced in [42]:

1.1.14. DEFINITION. A perfectoid field K is a complete non-archimedean field whose rank
one valuation is non-discrete, whose residue characteristic is p and such that the Frobenius is
surjective on K◦/p. In case charK = p this last condition amounts to saying that K is perfect.

1.1.15. DEFINITION. Let K be a perfectoid field.
• A perfectoid algebra is a Banach K-algebra R such that R◦ is bounded and the

Frobenius map is surjective on R◦/p.
• A perfectoid affinoid K-algebra is an affinoid K-algebra (R,R+) over a perfectoid

field K such that R is perfectoid.

1.1.16. REMARK. Any perfectoid affinoidK-algebra is bounded. IfR is a perfectoid algebra,
then (R,R◦) is a perfectoid affinoid K-algebra.

1.1.17. EXAMPLE. Suppose that K is a perfectoid field. A basic example of a perfectoid
algebra is the following: let υ = (υ1, . . . , υN) be a N -tuple of coordinates and K◦[υ1/p∞ ] be the
ring lim−→h

K◦[υ1/ph ] endowed with the sup-norm induced by the norm on K. We also denote
by K◦〈υ1/p∞〉 its π-adic completion. By [42, Proposition 5.20], the ring K◦〈υ1/p∞〉[π−1] is a
perfectoid K-algebra which we will denote by K〈υ1/p∞〉. The pair (K〈υ1/p∞〉, K◦〈υ1/p∞〉) is a
perfectoid affinoid K-algebra. We also define in the same way the perfectoid affinoid K-algebra
(K〈υ±1/p∞〉, K◦〈υ±1/p∞〉) (see [43, Example 4.4]).

1.1.18. REMARK. K〈υ1/p∞〉 is isomorphic as a K〈υ〉-topological module to the completion⊕̂
K〈υ〉 of the free module

⊕
K〈υ〉 with basis indexed by the set (Z[1/p] ∩ [0, 1))N . By [9,

Proposition 2.1.5/7] there is an explicit description of this ring as a subring of
∏
K〈υ〉.

The following theorem summarizes some results of Scholze, including the tilting equivalence
of perfectoid algebras which will play a crucial role in our construction.

1.1.19. THEOREM ([42]). Let K be a perfectoid field.
(1) ([42, Lemma 3.4]) The multiplicative monoid lim←−x 7→xp K can be given a structure K[

of perfectoid field with the norm induced by the multiplicative map ] : K[ → K. The
field K[ has characteristic p and coincides with K in case charK = p.
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(2) ([42, Theorem 3.7]) The functor L 7→ L[ for L finite étale over K induces an isomor-
phism Gal(K) ∼= Gal(K[).

(3) ([42, Lemma 6.2]) There is an equivalence of categories, the tilting equivalence,
from perfectoid affinoid K-algebras to perfectoid affinoid K[-algebras denoted by
(R,R+) 7→ (R[, R[+) such that R[ is multiplicatively isomorphic to lim←−x 7→xp R and
R[+ is multiplicatively isomorphic to lim←−x 7→xp R

+.
(4) ([42, Proposition 5.20 and Corollary 6.8]) The tilting equivalence associates

(K〈υ1/p∞〉, K◦〈υ1/p∞〉) to (K[〈υ1/p∞〉, K[◦〈υ1/p∞〉) and (K〈υ±1/p∞〉, K◦〈υ±1/p∞〉)
to (K[〈υ±1/p∞〉, K[◦〈υ±1/p∞〉).

We now introduce a geometric category. We make use of a definition of Wedhorn [52,
Remark and Definition 8.9].

1.1.20. DEFINITION. Let X be a topological space and let B be a basis of open subsets of
X . A presheaf F on X with values in a category where projective limits exist is adapted to B if
for every open subset U of X one has F(U) ∼= lim←−B3B⊂U F(B).

1.1.21. REMARK. If F is a sheaf, it is adapted to any basis of open subsets. Vice-versa, if F
is a presheaf on X adapted to B and a sheaf on B then it is a sheaf on X .

1.1.22. DEFINITION. Let K be a complete non-archimedean field.
• We denote by Vpsh the following category: objects are triples (X,OX ,O+

X) with the
following properties:

– X is a topological space.
– OX resp. O+

X is a presheaf on X of complete topological algebras over K resp.
over K◦ with OX ⊇ O+

X and the stalk at each point x is a local ring OX,x resp.
O+
X,x. We denote by mx the maximal ideal of OX,x.

– There is a basis of open subsets B such that the presheaves OX and O+
X are

adapted to it and the pair (OX ,O+
X) defines a presheaf on B of complete affinoid

K-algebras.
– For each point x inX the π-adic completion of the pair (OX,x,O+

X,x) is a valuation
field (k̂(x), k̂(x)+) such that the map OX,x → k̂(x) factors over OX,x/mx.

A morphism f : (X,OX ,O+
X)→ (Y,OY ,O+

Y ) is a pair formed by a map of topological
spaces f : X → Y and a couple of maps of presheaves of topological K◦-algebras
(f ], f+]) : (OY ,O+

Y ) → f∗(OX ,O+
X) inducing local maps of valuation fields at each

point. For each x ∈ X we denote the totally ordered topological abelian group
k̂(x)∗/k̂(x)+∗ by Γ(x).
• We denote by V the full subcategory of Vpsh formed by triples (X,OX ,O+

X) such that
OX and O+

X are sheaves of topological rings.

1.1.23. LEMMA. Let (X,O+
X ,OX) be an object of Vpsh and x be a point of X .

(1) The completion map O+
X,x → k̂(x)+ and the map OX,x → k̂(x) are local.

(2) If (f, f ], f+]) : (X,OX ,O+
X)→ (Y,OY ,O+

Y ) is a morphism of V then the pairs (f, f ])
and (f, f+]) are morphisms of locally ringed spaces.

(3) The map OX,x → k̂(x) induces a continuous valuation | · (x)| : OX,x → Γ(x) ∪ {0}
and morphism of Vpsh are compatible with these valuations.

(4) The ringO+
X,x coincides with the subring of elements f with |f(x)| ≤ 1 and its maximal

ideal coincides with the set of elements f such that |f(x)| < 1.
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(5) The maximal ideal mx ofOX,x coincides with the set of elements f such that |f(x)| = 0.
(6) If (X,O+

X ,OX) lies in V then O+(X) coincides with the ring {f ∈ O(X) : |f(x)| ≤
1 for all x ∈ X}.

(7) For any a, b ∈ OX(X) the sets {x : |a(x)| 6= 0} and {x : |a(x)| ≤ |b(x)| 6= 0} are
open.

PROOF. We start by proving the first claim. The local map O+
X,x → O

+
X,x/π factors by the

completion mapO+
X,x → k(x)+ which is then also local. The claim aboutOX,x → k(x) follows

from the very definition of the category Vpsh.
For the second claim, we only need to prove that the induced maps O+

Y,f(x) → O
+
X,x and

OY,f(x) → OX,x are local. This follows from the first claim and the fact that a local map of
valuation fields (k̂(y), k̂(y)+)→ (k̂(x), k̂(x)+) induces a local map k̂(y)+ → k̂(x)+. This also
proves the third claim.

If an element a in OX,x satisfies |a(x)| ≤ 1 then a lies in k̂(x)+ which is the π-adic
completion of O+

X,x. In particular, there exist elements a′, c ∈ O+
X,x such that a − cπ = a′.

We then deduce a ∈ O+
X,x and hence the third claim. The fourth and fifth claims are easy

consequences of the previous ones.
If OX and O+

X are sheaves, then also the subsheaf F of OX defined as F(U) = {f ∈
OX(U) : |f(x)| ≤ 1 for all x ∈ U} is a sheaf and by what proved above has the same stalks of
O+
X . They therefore coincide and this shows the sixth claim.

We now move to the last claim. Fix now a, b ∈ OX(X). From the previous results, we
deduce that |a(x)| 6= 0 is equivalent to a ∈ O∗X,x which is an open condition. In order to prove
that the second set is also open it therefore suffices to show that the condition |a(x)| ≤ 1 is open.
From the third claim, this amounts to saying that a ∈ O+

X,x which is again an open condition, as
wanted. �

By the above result, each object (X,OX ,O+
X) of V defines a triple (X,OX , {vx}x∈X) where

vx is a multiplicative valuation defined on the stalk OX,x and the maps of V are compatible
with them. The category V is then a subcategory of V as defined by Huber in [27, Section 2].
Our definition is more restrictive, as we assume that the valuation ring at each point coincides
with the π-adic completion of the stalk of O+

X . On the other hand, valuations at each point are
automatically induced by the properties of the stalks of (OX ,O+

X).
We now recall Huber’s construction of the spectrum of a valuation ring (see [26]).

1.1.24. CONSTRUCTION. Let (R,R+) be an affinoid K-algebra. The set Spa(R,R+)
is the set of equivalence classes of continuous multiplicative valuations, i.e. multiplicative
maps | · | : R → Γ ∪ {0} where (Γ, ·) is a totally ordered abelian group, such that |0| = 0,
|1| = 1, |x + y| ≤ max{|x|, |y|} and |R+| ≤ 1. It is endowed with the topology generated by
rational subsets {U(f1, . . . , fn | g)} by letting f1, . . . , fn, g vary among elements in R such
that f1, . . . , fn generate R as an ideal and where the set U(f1, . . . , fn | g) is the set of those
valuations | · | satisfying |fi| ≤ |g| for all i. Rational subsets form a basis of quasi-compact sets
of the (quasi-compact) space Spa(R,R+) ([25, Theorem 3.5]).

Alternatively, Spa(R,R+) is the set lim−→Hom((R,R+), (L,L+)) by letting (L,L+) vary in
the category of valuation fields over K and local maps. Its topology can be defined by declaring
the sets {φ : 0 6= |φ(f)| ≤ |φ(g)|} to be open, for all pairs of elements f, g in R.

Let (R,R+) be an affinoid K-algebra, let f1, . . . , fn be elements in R that generate R
as an ideal and g be in R. We can endow the ring R[1/g] with the topology generated by
πkR0[f1/g, . . . , fn/g] where R0 is a ring of definition of R. If we let B be the integral closure
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of R+[f1/g, . . . , fn/g] in R[1/g] the pair (R[1/g], B) is an affinoid algebra, and its completion
will be denoted by (R〈f1/g, . . . , fn/g〉, R〈f1/g, . . . , fn/g〉+). If (R,R+) is bounded (or even
if R is uniform) the pair (R〈f1/g, . . . , fn/g〉, R〈f1/g, . . . , fn/g〉+) may not be bounded (see
the proof of [12, Proposition 17]).

We associate to U(f1, . . . , fn | g) the affinoid K-algebra

(O(U),O+(U)) = (R〈f1/g, . . . , fn/g〉, R〈f1/g, . . . , fn/g〉+)

introduced above. Whenever a rational subspace U is contained in another one U ′ there are
canonical maps ρU ′U : (O(U ′),O+(U ′)) → (O(U),O+(U)) (see [26, Lemma 1.5]). For an
arbitrary open V we can then define

O(V ) = lim←−
V⊃U rational

O(U)

and similarly for O+. This way, we define a pair of presheaves of complete topological K-
algebras (O,O+) on Spa(R,R+) adapted to rational subsets. By [26, Lemma 1.5, Proposition
1.6] we have U ∼= Spa(O(U),O+(U)) which is called a rational subspace of X = Spa(R,R+)
and for any x ∈ X the valuation at x extends to a valuation on OX,x such that the stalk O+

X,x is
local and corresponds to {f ∈ OX,x : |f(x)| ≤ 1}. The triple (Spa(R,R+),OX ,O+

X) defines
an object of Vpsh. The property at stalks is a consequence of [42, Proposition 2.25]. We point
out that (O(X),O+(X)) ∼= (R̂, R̂+) and that Spa(R,R+) ∼= Spa(R̂, R̂+) as remarked in [25,
Proposition 3.9].

By [26, Proposition 1.6] there holds O+(U) = {f ∈ O(U) : |f(x)| ≤ 1 for all x ∈ U} for
any rational open U of Spa(R,R+) so that O+ is a sheaf if O is a sheaf. By Tate’s acyclicity
theorem [9, Theorem 8.2.1/1] and Scholze’s acyclicity theorem [42, Theorem 6.3], if (R,R+) is
a tft Tate algebra or a perfectoid affinoid K-algebra, then O, O+ are sheaves. Sadly enough,
this does not hold in general as shown at the end of [26, Section 1].

1.1.25. REMARK. By [12, Theorem 7] if (R,R+) is an affinoid K-algebra such that O(U)
is uniform for all rational subspaces U of Spa(R,R+) (i.e. it is stably uniform following [12])
then the presheaf O on Spa(R,R+) is a sheaf.

1.1.26. REMARK. By abuse of notation, whenever R is a reduced tft Tate algebra we will
sometimes denote by SpaR the object Spa(R,R◦) of V.

The category V must be thought of as the analogue of the category of locally ringed spaces,
and allows to have a completely abstract definition of the affinoid spectrum Spa(A,A+) akin to
the case of schemes (see [14, I.1.2.1]) as the following fact shows. It is a slight generalization of
[26, Proposition 2.1(ii)].

1.1.27. PROPOSITION. Let (R,R+) be an affinoid K-algebra and X be an object of V. The
global section functor induces a bijection

HomVpsh
(X, Spa(R,R+)) ∼= HomK−cont((R̂, R̂

+), (O(X),O+(X)))

where the set on the right is the set of continuousK◦-linear maps of pairs of complete topological
rings.

PROOF. We can assume that (R,R+) is a complete affinoid K-algebra. There is a canonical
map

Γ: HomVpsh
(X, Spa(R,R+))→ HomK−cont((R,R

+), (OX(X),O+
X(X)))
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induced by the global section functor. We now define a map

φ : HomK−cont((R,R
+), (OX(X),O+

X(X))→ HomVpsh
(X, Spa(R,R+))).

Suppose we have a map a : (R,R+) → (OX(X),O+
X(X)). We associate to each x ∈ X the

point φa(x) of Spa(R,R+) correponding to the composite map

(R,R+)→ (OX(X),O+
X(X))→ (k(x), k(x)+).

The map x 7→ φa(x) from X to Spa(R,R+) is continuous, since the condition |a(f)(x)| ≤
|a(g)(x)| 6= 0 is open in X by Lemma 1.1.23. For each f1, . . . , fn ∈ R generating R and any
g ∈ R let V be the subset {x ∈ X : |a(fi)(x)| ≤ |a(g)(x)| 6= 0 for all i}. It is open by Lemma
1.1.23. For any subset B of V in the basis B there exists an induced map of affinoid K-algebras

(φ]a, φ
+]
a )(V ) : (R〈f1/g, . . . , fn/g〉, R〈f1/g, . . . , fn/g〉+)→ (OX(B),O+

X(B))

deduced by the universal property of (R〈fi/g〉, R〈fi/g〉+) [26, Proposition 1.3]. Since OX and
O+
X are sheaves and since O and O+ are adapted to rational subsets the mapping above also

defines
(φ]a, φ

+]
a )(U) : (O(U),O+(U))→ (OX(φ−1(U)),O+

X(φ−1(U)))

for an arbitrary open subset U of Spa(R,R+). Therefore the triple (φa, φ
]
a, φ

+]
a ) defines an

element of HomVpsh
(X, Spa(R,R+)) as wanted.

The composition Γ ◦ φ is the identity by definition. We are left to check that φ ◦ Γ is
the identity. Fix a map (f, f ], f+]) in HomVpsh

(X, Spa(R,R+)) and let a be the associated
map in HomK−cont((R,R

+), (OX(X),O+
X(X))). For each x ∈ X we deduce the following

commutative diagram:

(R,R+)
a //

��

(OX(X),O+
X(X))

��
(k(f(x)), k+(f(x)))

(f]x,f
+]
x )
// (k(x), k+(x))

where (f ]x, f
+]
x ) is a local map of valuation fields. Since the composite map

(R,R+)→ (OX(X),O+
X(X))→ (k(x), k+(x))

coincides with φx we deduce that φx is equivalent to the valuation induced by the map (R,R+)→
(k(f(x)), k+(f(x))) hence f(x) = φx. Fix now a rational subset U of Spa(R,R+) and let V be
f−1(U). By covering it with open sets of B we conclude that the map a factors over

(f ], f+])(V ) : (O(U),O+(U))→ (OX(V ),O+
X(V ))

and it coincides with (φ]a, φ
+]
a )(V ) by the universal property of (O(U),O+(U)). This proves

the claim. �

1.1.28. REMARK. The functor Spa induces an adjunction between V and the category of
affinoid K-algebras such that the presheaf O on Spa(R,R+) is a sheaf, also known as sheafy
affinoid K-algebras using the language of [45], and these include reduced tft Tate algebras and
perfectoid affinoid K-algebras.

1.1.29. REMARK. Proposition 1.1.27 slightly differs from [26, Proposition 2.1(ii)] since we
do not assume that X is locally affinoid and that Spa(R,R+) is in V.

1.1.30. DEFINITION. Let X be an object of V.
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• We say that X is an affinoid adic space if it is isomorphic to Spa(R,R+) for some
affinoid K-algebra (R,R+). It is called bounded if (R,R+) is bounded.
• We say that X is an affinoid rigid variety if it is isomorphic to Spa(R,R◦) for some

tft Tate algebra R and it is called reduced if R is reduced.
• We say that X is a perfectoid affinoid space if it is isomorphic to Spa(R,R+) for some

perfectoid affinoid K-algebra (R,R+).
• We say that X is an adic space if it is locally isomorphic to an affinoid adic space.
• We say that X is a rigid variety if it is locally isomorphic to an affinoid rigid variety.

It is called reduced if it is locally isomorphic to a reduced affinoid rigid variety.
• We say that X is a perfectoid space if it is locally isomorphic to a perfectoid affinoid

space.

In this work we will always be dealing with stably uniform affinoid K-algebras. For this
reason, the adjectives “bounded” and “reduced” will sometimes be omitted.

There is an apparent clash of definitions between rigid varieties as presented above, and
as defined by Tate [49]. In fact, the two categories are canonically equivalent. We refer to
[26, Section 4] and [42, Section 2] for a more detailed collection of results on the comparison
between these theories.

1.1.31. ASSUMPTION. From now on, we will always assume that K is a perfectoid field.
We also make the extra assumption that the invertible element π of K satisfies |p| ≤ |π| < 1
and coincides with (π[)] for a chosen π[ in K[. In particular, π is equipped with a compatible
system of p-power roots π1/ph (see [42, Remark 3.5]).

We now consider some basic examples and fix some notation. Let υ = (υ1, . . . , υN) be a
N -tuple of coordinates. The Tate N -ball Spa(K〈υ〉, K◦〈υ〉) will be denoted by BN and the
N -torus Spa(K〈υ±1〉, K◦〈υ±1〉) by TN . It is the rational open subset U(1 | υ1 . . . υN) of BN .
The map of spaces induced by the inclusion (K〈υ〉, K◦〈υ〉)→ (K〈υ1/ph〉, K◦〈υ1/ph〉) will be
denoted by BN〈υ1/ph〉 → BN . We use the analogous notation TN〈υ1/ph〉 → TN for the torus.
These maps are clearly isomorphic to the endomorphism of BN resp. TN induced by υi 7→ υp

h

i .
The space defined by the perfectoid affinoid K-algebra (K〈υ1/p∞〉, K◦〈υ1/p∞〉) will be

denoted by B̂N and referred to as the perfectoid N -ball. The space defined by the perfectoid affi-
noidK-algebra (K〈υ±1/p∞〉, K◦〈υ±1/p∞〉) coincides with the rational subspace U(1 | υ1 . . . υN)

of B̂N will be denoted by T̂N and will be referred to as the perfectoid N -torus.
We now recall the definition of étale maps on the category of adic spaces, taken from [42,

Section 7].

1.1.32. DEFINITION. A map of affinoid adic spaces f : Spa(S, S+)→ Spa(R,R+) is finite
étale if the associated map R→ S is a finite étale map of rings, and if S+ is the integral closure
of R+ in S. A map of adic spaces f : X → Y is étale if for any point x ∈ X there exists
an open neighborhood U of x and an affinoid open subset V of Y containing f(U) such that
f |U : U → V factors as an open embedding U → W and a finite étale map W → V for some
affinoid adic space W .

The previous definitions, when restricted to the case of tft Tate varieties, coincide with the
usual ones, as proved in [18, Proposition 8.1.2].
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1.1.33. REMARK. Suppose we are given a diagram of affinoid K-algebras

(R,R+) //

��

(S, S+)

(T, T+)

In general, it is not possible to define a push-out in the category of affinoid K-algebras. Nonethe-
less, this can be performed under some hypotheses. For example, if the affinoid K-algebras are
tft Tate algebras then the push-out exists and it is the tft Tate algebra associated to the completion
S⊗̂RT of S ⊗R T endowed with the norm of the tensor product (see [9, Section 3.1.1]). In case
the affinoid K-algebras are perfectoid affinoid, then the push-out exists and is also perfectoid
affinoid. It coincides with the completion of (L,L+) where L is the ring S⊗RT endowed with
the norm of the tensor product and L+ is the algebraic closure of S+ ⊗R+ T+ in L (see [42,
Proposition 6.18]). The same construction holds in case the map (R,R+)→ (S, S+) is finite
étale and (T, T+) is a perfectoid affinoid (see [42, Lemma 7.3]). By Proposition 1.1.27, the
constructions above give rise to fiber products in the category V.

1.2. Semi-perfectoid spaces

We can now introduce a convenient generalization of both smooth rigid varieties and smooth
perfectoid spaces. We recall that our base field K is a perfectoid field.

1.2.1. PROPOSITION. Let υ = υ1, . . . , υN and ν = ν1, . . . , νM be two systems of coordinates.
Let (R0, R

◦
0) be a tft Tate algebra and let

f : Spa(R0, R
◦
0)→ TN × TM = SpaK〈υ±1, ν±1〉

be a map which is a composition of finite étale maps and rational embeddings. Let also
Spa(Rh, R

◦
h) be the affinoid rigid variety Spa(R0, R

◦
0)×TN TN〈υ1/ph〉. The π-adic completion

(T, T+) of (lim−→i
Ri, lim−→i

R◦i ) represents the fiber product Spa(R0, R
◦
0) ×TN T̂N and defines a

bounded affinoid adic space. Moreover, (T, T+) is isomorphic to the completion of (L,L+)
where L is the ring R0⊗K〈υ〉K〈υ1/p∞〉 endowed with the norm of the tensor product and L+ is
the integral closure of R◦0 in L.

PROOF. Let (T, T+) be as in the last claim. We need to prove that W := Spa(T, T+) is
an adic space, i.e. that O is a sheaf on it. We let W ′ be the fiber product of Spa(R0, R

◦
0)

and T̂N × T̂M over TN × TM . If charK = 0 by [42, Proposition 6.3(iii), Lemma 7.3 and
Proposition 7.10] and the proof of [43, Lemma 4.5] it exists, is affinoid perfectoid repre-
sented by (T ′, T ′+) where T ′ is R0⊗̂K〈υ,ν〉K〈υ1/p∞ , ν1/p∞〉 and where T ′+ is bounded in T ′

and corresponds to the completion of the algebraic closure of R◦0⊗K◦〈υ,ν〉K◦〈υ1/p∞ , ν1/p∞〉 in
R0⊗K〈υ,ν〉K〈υ1/p∞ , ν1/p∞〉. The same is true if charK = p as in this case it coincides with the
completed perfection of X0 (see [19, Theorem 3.5.13]).

Let {Ui} be a finite rational covering of W and let {U ′i} be the rational covering of W ′

obtained by pullback. We first prove that the pullback ofO(W ′) andO(Ui) overO(U ′i) coincides
with O(W ). Since as pointed out in Remark the ring K〈ν1/p∞〉 is isomorphic to

⊕̂
K〈ν〉 also

O(W ′) is isomorphic to
⊕̂
O(W ) and O(U ′i) is isomorphic to

⊕̂
O(Ui) using [9, Proposition

2.1.7/8]. By the explicit description of this set as a subset of
∏
O(Ui) given in [9, Proposition

2.1.5/7] we conclude that
⊕̂
O(W ) ×⊕̂

O(Ui)
O(Ui) = O(W ) as claimed. We then conclude
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that the equalizer of the diagram∏
i

O(Ui) ⇒
∏
i,j

O(Ui ∩ Uj)

is obtained by pullback from equalizer of the diagram∏
i

O(U ′i) ⇒
∏
i,j

O(U ′i ∩ U ′j).

Since the latter coincides withO(W ′) we deduce that the former coincides wihO(W ) as wanted.
Moreover, since the map R0 → Rh is finite, R◦h is the algebraic closure in Rh of R◦0 by [9,

Theorem 6.3.5/1]. Passing to the direct limit, one finds that T+ is the completion of lim−→h
R◦h.

We are left to prove that T+ is bounded, and this follows as it strictly embeds in T ′+ which is
bounded in T ′. �

1.2.2. COROLLARY. Let X be a reduced rigid variety with an étale map

f : X → TN × TM = SpaK〈υ±1, ν±1〉.

Then the fiber product X ×TN T̂N exists.

PROOF. This follows from Proposition 1.2.1 and the fact that every étale map is locally (on
the source) a composition of rational embeddings and finite étale maps. �

1.2.3. DEFINITION. We denote by R̂igSmgc /K the full subcategory of adic spaces whose
objects are isomorphic to spacesX = X0×TN T̂N with respect to a map of affinoid rigid varieties
f : X0 → TN ×TM that is a composition of rational embeddings and finite étale maps. Because
of Proposition 1.2.1, such fiber products X = X0 ×TN T̂N exist and are affinoid. Whenever
N = 0 these varieties are rigid analytic varieties and the full subcategory they form will be
denoted by RigSmgc /K and referred to as smooth affinoid rigid varieties with good coordinates.
Whenever M = 0 these varieties are perfectoid affinoid spaces and the full subcategory they
form will be denoted by PerfSmgc /K and referred to as smooth affinoid perfectoids with good
coordinates. A perfectoid space X in R̂igSmgc /K will be sometimes denoted with X̂ .

When X = X0 ×TN T̂N is in R̂igSmgc /K we denote by Xh the fiber product X0 ×TN

TN〈υ1/ph〉 and we will write X = lim←−hXh. We say that a presentation X = lim←−hXh of an

object X in R̂igSmgc /K has good reduction if the map X0 → Tn × Tm has an étale formal
model X → Spf(K◦〈υ±1, ν±1〉). We say that a presentation X = lim←−hXh of an object X in

R̂igSmgc /K has potentially good reduction if there exists a finite separable field extension L/K
such that XL = lim←−h(Xh)L has good reduction in R̂igSmgc /L. We warn the reader that the
association X 7→ X0 is not functorial and the varieties Xh are not uniquely determined by X in
general.

We denote by R̂igSm /K the full subcategory of adic spaces which are locally isomorphic to
objects in R̂igSmgc /K; we denote by RigSm /K the full subcategory of adic spaces which are
locally isomorphic to objects in RigSmgc /K and by PerfSm /K the one of adic spaces which
are locally isomorphic to objects in PerfSmgc /K. Whenever the context allows it, we omit K
from the notation.

1.2.4. REMARK. Any smooth rigid variety (see for example [5, Definition 1.1.39]) has
locally good coordinates over TN by [5, Corollary 1.1.49]. Hence RigSm coincides with the
category of smooth rigid varieties.
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We remark that the presentations of good reduction defined above are a special case of the
objects considered in [2].

The notation X = lim←−hXh is justified by the following corollary, which is inspired by [45,
Proposition 2.4.5].

1.2.5. COROLLARY. Let Y be a bounded affinoid adic space and let X be in R̂igSmgc with
X = lim←−hXh. Then Hom(Y,X) ∼= lim←−h Hom(Y,Xh).

PROOF. This follows from Lemma 1.1.10 and Proposition 1.2.1. �

Let {Xh, fh}h∈I be a cofiltered diagram of rigid varieties and let {X → Xh}h∈I be a
collection of compatible maps of adic spaces. We recall that, according to [27, Remark 2.4.5],
one writes X ∼ lim←−hXh when the following two conditions are satisfied:

(1) The induced map on topological spaces |X| → lim←−h |Xh| is a homeomorphism.
(2) For any x ∈ X with images xh ∈ Xh the map of residue fields lim−→h

k(xh)→ k(x) has
dense image.

The apparent clash of notations is solved by the following fact.

1.2.6. PROPOSITION. Let X = lim←−hXh be in R̂igSmgc. Then X ∼ lim←−hXh.

PROOF. This follows from T̂N ∼ lim←−hK〈υ
±1/ph〉 and from [42, Proposition 7.16]. �

Étale maps define a topology on R̂igSm in the following way.

1.2.7. DEFINITION. A collection of étale maps of adic spaces {Ui → X}i∈I is an étale cover
if the induced map

⊔
i∈I Ui → X is surjective. These covers define a Grothendieck topology on

R̂igSm called the étale topology.

The following facts are shown in the proof of [42, Theorem 7.17] and of [27, Proposition
2.4.4].

1.2.8. PROPOSITION. Let X = lim←−hXh be an object of R̂igSmgc.

(1) Any finite étale map U → X is isomorphic to Uh̄ ×Xh̄ X for some integer h̄ and some
finite étale map Uh̄ → Xh̄.

(2) Any rational subspace U ⊂ X is isomorphic to Uh̄ ×Xh̄ X for some integer H and
some rational subspace Uh̄ ⊂ Xh̄.

PROOF. The first statement follows from [42, Lemma 7.5]. The second statement follows
from [25, Lemma 3.10] and the fact that lim−→h

O(Xh) is dense in O(X). �

1.2.9. COROLLARY. Let X = lim←−hXh be an object of R̂igSmgc and let U := {fi : Ui → X}
be an étale covering of adic spaces. There exists an integer h̄ and a finite affine refinement
{Vj → X} of U which is obtained by pullback of an étale covering {Vh̄j → Xh̄} of Xh̄ and
such that V = lim←−h Vhj lies in R̂igSmgc by letting Vhj be Vh̄j ×Xh̄ Xh for all h ≥ h̄.

PROOF. Any étale map of adic spaces is locally a composition of rational embeddings and
finite étale maps and they descend because of Proposition 1.2.8. �

1.2.10. COROLLARY. A perfectoid space X lies in PerfSm if and only if it is locally étale
over T̂N .
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PROOF. Let X be locally étale over T̂N . Then it is locally open in a finite étale space over a
rational subaffinoid of T̂N = lim←−h T

N〈υ±1/ph〉. By Proposition 1.2.8, we conclude it is locally

of the form X0 ×TN T̂N for some étale map X0 → TN = Spa(K〈υ±1〉, K◦〈υ±1〉) which is the
composition of rational embeddings and finite étale maps. �

1.2.11. REMARK. If X is a smooth affinoid perfectoid space, then it has a finite number of
connected components. Indeed, it is quasi-compact and locally isomorphic to a rational domain
of a perfectoid which is finite étale over a rational domain of T̂N .

For later use, we record the following simple example of a space X = lim←−hXh for which
the varieties Xh are easy to understand.

1.2.12. PROPOSITION. Consider the smooth variety with good coordinates

X0 = U (υ − 1 | π) ↪→ T1 = Spa(K〈υ±1〉).

One has Xh
∼= B1 for all h and X̂ = lim←−hXh

∼= B̂1.

PROOF. By direct computation, the variety Xh is isomorphic to Spa(K〈υ, ω〉/(ωph − (πυ+

1))). Since |p| ≤ |π| we deduce that |
(
ph

i

)
| ≤ |π| for all 0 < i < ph. In particular, in the ring

K〈υ, ω〉/(ωph − (πυ + 1)) one has

|(ω − 1)p
h| = |πυ +

ph−1∑
i=1

(
ph

i

)
ωi| = |π|.

Analogously, in the ring K〈χ〉 one has

|(χ+ π−1/ph)p
h − π−1| = |χph +

ph−1∑
i=1

(
ph

i

)
χp

h−1π−i/p
h| = 1.

The following maps are therefore well defined and clearly mutually inverse:

Xh = Spa(K〈υ, ω〉/(ωph − (πυ + 1)) � Spa(K〈χ〉) = B1

(υ, ω) 7→ ((χ+ π−1/ph)p
h − π−1, π1/phχ+ 1)

π−1/ph(ω − 1)←[ χ.

Consider the multiplicative map ] : K[〈υ1/p∞〉 = (K〈υ1/p∞〉)[ → K〈υ1/p∞〉 defined in [42,
Proposition 5.17]. By our assumptions on π the element (υ − 1)] − (υ − 1) is divisible
by π in K◦〈υ1/p∞〉 and therefore the rational set X̂ ∼= U (υ − 1 | π) of T̂1 coincides with
U
(
(υ − 1)] | π[]

)
. From [42, Theorem 6.3] we conclude X̂[ ∼= U

(
υ − 1 | π[

)
↪→ T̂[1 which is

isomorphic to B̂[1 hence the claim. �

From the previous proposition we conclude in particular that the perfectoid space B̂1 lies in
PerfSmgc.

1.3. Categories of adic motives

From now on, we fix a commutative ring Λ and work with Λ-enriched categories. In
particular, the term “presheaf” should be understood as “presheaf of Λ-modules” and similarly
for the tem “sheaf”. The presheaf Λ(X) represented by an object X of a category C sends an
object Y of C to the free Λ-module Λ Hom(Y,X).
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1.3.1. ASSUMPTION. Unless otherwise stated, we assume from now on that Λ is a Q-algebra
and we omit it from the notations.

We make extensive use of the theory of model categories and localization, following the
approach of Ayoub in [5] and [6]. Fix a site (C, τ). In our situation, this will be the étale site
of RigSm or R̂igSm. The category of complexes of presheaves Ch(Psh(C)) can be endowed
with the projective model structure for which weak equivalences are quasi-isomorphisms and
fibrations are maps F → F ′ such that F(X)→ F ′(X) is a surjection for all X in C (cfr [23,
Section 2.3] and [6, Proposition 4.4.16]).

Also the category of complexes of sheaves Ch(Shτ (C)) can be endowed with the projective
model structure defined in [6, Proposition 4.4.41]. In this structure, weak equivalences are
quasi-isomorphisms of complexes of sheaves.

1.3.2. REMARK. Let C be a category. As shown in [16] any projectively cofibrant complexF
in ChPsh(C) is a retract of a complex that is the filtered colimit of bounded above complexes,
each constituted by presheaves that are direct sums of representable ones.

Just like in [29], [36], [37] or [41], we consider the left Bousfield localization of
Ch(Psh(C)) with respect to the topology we select, and a chosen “contractible object”.
We recall that left Bousfield localizations with respect to a class of maps S (see [22, Chapter
3]) is the universal model categories in which the maps in S become weak equivalences. The
existence of such structures is granted only under some technical hypothesis, as shown in [22,
Theorem 4.1.1] and [6, Theorem 4.2.71].

1.3.3. PROPOSITION. Let (C, τ) be a site with finite direct products and let C′ be a full
subcategory of C such that every object of C has a covering by objects of C′. Let also I be an
object of C′.

(1) The projective model category ChPsh(C) admits a left Bousfield localization
ChI Psh(C) with respect to the set SI of all maps Λ(I × X)[i] → Λ(X)[i] as X
varies in C and i varies in Z.

(2) The projective model categories ChPsh(C) and ChPsh(C′) admit left Bousfield
localizations Chτ Psh(C) and Chτ Psh(C′) with respect to the class Sτ of maps
F → F ′ inducing isomorphisms on the ét-sheaves associated to Hi(F) and Hi(F ′)
for all i ∈ Z. Moreover, the two localized model categories are Quillen equivalent
and the sheafification functor induces a Quillen equivalence to the projective model
category ChShτ (C).

(3) The model categories Chτ Psh(C) and Chτ Psh(C′) admit left Bousfield localiza-
tions Chτ,I Psh(C) and Chτ,I Psh(C′) with respect to the set SI defined above.
Moreover, the two localized model categories are Quillen equivalent.

PROOF. The model structure on complexes is left proper and cellular. It follows that the
projective model structures in the statement are also left proper and cellular. Any such model
category admits a left Bousfield localization with respect to a set of maps ( [22, Theorem 4.1.1])
hence the first claim.

For the first part of second claim, it suffices to apply [6, Proposition 4.4.32, Lemma 4.4.35]
showing that the localization over Sτ is equivalent to a localization over a set of maps. The
second part is a restatement of [6, Corollary 4.4.43, Proposition 4.4.56].

Since by [6, Proposition 4.4.32] the τ -localization coincides with the Bousfield localization
with respect to a set, we conclude by [6, Theorem 4.2.71] that the model category Chτ Psh(C)
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is still left proper and cellular. The last statement then follows from [22, Theorem 4.1.1] and the
second claim. �

In the situation above, we will denote by S(τ,I) the union of the class Sτ and the set SI .

1.3.4. REMARK. A geometrically relevant situation is induced when I is endowed with a
multiplication map µ : I × I → I and maps i0 and i1 from the terminal object to I satisfying the
relations of a monoidal object with 0 as in the definition of an interval object (see [37, Section
2.3]). Under these hypotheses, we say that the triple (C, τ, I) is a site with an interval.

1.3.5. EXAMPLE. The affinoid rigid variety with good coordinates B1 = SpaK〈χ〉 is an
interval object with respect to the natural multiplication µ and maps i0 and i1 induced by the
substitution χ 7→ 0 and χ 7→ 1 respectively.

We now apply the constructions above to the sites introduced in the previous sections. We
recall that we consider adic spaces defined over a perfectoid field K.

1.3.6. COROLLARY. The following pairs of model categories are Quillen equivalent.
• Chét Psh(RigSm) and Chét Psh(RigSmgc).
• Chét,B1 Psh(RigSm) and Chét,B1 Psh(RigSmgc).
• Chét Psh(R̂igSm) and Chét Psh(R̂igSmgc).
• Chét,B1 Psh(R̂igSm) and Chét,B1 Psh(R̂igSmgc).

PROOF. It suffices to apply Proposition 1.3.3 to the sites with interval (RigSm, ét,B1) and
(R̂igSm, ét,B1) where C′ is in both cases the subcategory of varieties with good coordinates. �

1.3.7. DEFINITION. For η ∈ {ét,B1, (ét,B1)} we say that a map in ChPsh(RigSm) [resp.
ChPsh(R̂igSm)] is a η-weak equivalence if it is a weak equivalence in the model structure
Chη Psh(RigSm) [resp. Chη Psh(R̂igSm)]. The triangulated homotopy category associ-
ated to the localization Chét,B1 Psh(RigSm) [resp. Chét,B1 Psh(R̂igSm)] will be denoted
by RigDAeff

ét (K,Λ) [resp. R̂igDAeff
ét,B1(K,Λ)]. We will omit Λ from the notation whenever

the context allows it. The image of a variety X in one of these categories will be denoted
by Λ(X). We say that an object F of the derived category D = D(Psh(RigSm)) [resp.
D = D(Psh(R̂igSm))] is η-local if the functor HomD(·,F) sends maps in Sη to isomorphisms.
This amounts to say that F is quasi-isomorphic to a η-fibrant object.

We need to keep track of B1 in the notation of R̂igDAeff
ét,B1(K,Λ) since later we will perform

a localization on ChPsh(R̂igSm) with respect to a different interval object.

1.3.8. REMARK. Using the language of [8], the localizations defined above induce endo-
functors Cη of the derived categories D(Psh(RigSm)), D(Psh(RigSmgc)), D(Psh(R̂igSm))

and D(Psh(R̂igSmgc)) such that CηF is η-local for all F and there is a natural transformation
Cη → id which is a pointwise η-weak equivalencce. The functor Cη restricts to a triangulated
equivalence on the objects F that are η-local and one can compute the Hom set Hom(F ,F ′) in
the the homotopy category of the η-localization as D(F , CηF ′).

1.3.9. REMARK. By means of [6, Proposition 4.4.59] the complex C étF is such that
D(Λ(X)[−i], C étF) = Hi

ét(X,F) for all X in R̂igSm and all integers i. This property charac-
terizes C étF up to quasi-isomorphisms.
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We now show that the étale localization can alternatively be described in terms of étale
hypercoverings U• → X (see for example [15]). Any such datum defines a simplicial presheaf
n 7→

⊕
i Λ(Uni) whenever Un =

⊔
i hUni is the sum of the presheaves of sets hUni represented

by Uni. This simplicial presheaf can be associated to a normalized chain complex, that we
denote by Λ(U•). It is is endowed with a map to Λ(X).

1.3.10. PROPOSITION. The localization over Sét on ChPsh(RigSmgc) [resp. on
ChPsh(R̂igSmgc)] coincides with the localization over the set Λ(U•)[i] → Λ(X)[i] as
U• → X varies among bounded étale hypercoverings of the objects X of RigSmgc [resp.
R̂igSmgc] and i varies in Z.

PROOF. Any ét-local object F is also local with respect to the maps of the statement. We
are left to prove that a complex F which is local with respect to the maps of the statement is
also ét-local.

Since Λ contains Q the étale cohomology of an étale sheaf F coincides with the Nisnevich
cohomology (the same proof of [36, Proposition 14.23] holds also here). By means of [5, 1.2.19]
we conclude that any rigid variety X has a finite cohomological dimension. By [1, Theorem
V.7.4.1] and [48, Theorem 0.3], we obtain for any rigid varietyX and any complex of presheaves
F an isomorphism

Hn
ét(X,F) ∼= lim−→

U•∈HR∞(X)

H−n Hom•(Λ(U•),F)

whereHR∞(X) is the category of bounded étale hypercoverings ofX (see [1, V.7.3]) and Hom•
is the Hom-complex computed in the unbounded derived category of presheaves. Suppose now
F is local with respect to the maps of the statement. Then Hom•(Λ(U•),F) is quasi-isomorphic
to Hom•(X,F) for every bounded hypercovering U• hence H−nF(X) ∼= Hn

ét(X,F) by the
formula above. We then conclude that the map F → C étF is a quasi-isomorphism, proving the
proposition. �

As the following proposition shows, there are also alternative presentations of the homotopy
categories introduced so far, which we will later use.

1.3.11. PROPOSITION. Let Λ be a Q-algebra. The natural inclusion induces Quillen
equivalences LS Ch(Psh(R̂igSmgc)) � Chét Psh(R̂igSm

gc
) where LS denotes the Bousfield

localization with respect to the set S of shifts of the maps of complexes induced by étale Cech
hypercoverings U• → X of objects X in R̂igSmgc such that for some presentation X = lim←−hXh

the covering U0 → X descends to a covering of X0.

PROOF. Using Proposition 1.3.10, it suffices to prove that the map Λ(U•) → Λ(X) is
an isomorphism in the homotopy category LS Ch(Psh(R̂igSmgc)) for a fixed bounded étale
hypercovering U• of an object X in R̂igSmgc.

Since the inclusion functor Ch≥0 → Ch is a Quillen functor, it suffices to prove that
Λ(U•)→ Λ(X) is a weak equivalence in LT Ch≥0(Psh(R̂igSmgc)) where T is the set of shifts
of the maps of complexes induced by étale Cech hypercoverings descending at finite level. Let
LT̃ sPsh(R̂igSmgc) be the Bousfield localization of the projective model structure on simplicial
presheaves of sets with respect to the set T̃ formed by maps induced by étale Cech hypercoverings
U• → X descending at finite level. We remark that the Dold-Kan correspondence (see [46,
Section 4.1]) and the Λ-enrichment also define a left Quillen functor from LT̃ sPsh(R̂igSmgc)

to the category LT Ch≥0(Psh(R̂igSmgc)). It therefore suffices to prove that U• → X is a weak
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equivalence in LT̃ sPsh(R̂igSmgc) and this follows from the fact that bounded hypercovering
define the same localization as Cech hypercoverings (see [15, Theorem A.6]) together with the
fact that coverings descending to finite level define the same topology (Corollary 1.2.9) and
hence the same localization ([15, Corollary A.8]). We remark that [15, Corollary A.8] applies
in our case even if the coverings U → X descending to the finite level do not form a basis of
the topology, as their pullback via an arbitrary map Y → X may not have the same property.
However, the proof of the statement relies on [15, Proposition A.2], where it is only used that the
chosen family of coverings U → X generates the topology and that the fiber product U ×X U is
defined. �

1.3.12. REMARK. It is shown in the proof that the statements of Propositions 1.3.10 and
1.3.11 hold true without any assumptions on Λ under the condition that all varieties X have
finite cohomological dimension with respect to the étale topology.

As we pointed out in Remark 1.3.9, there is a characterization of C étF for any complex F .
This is also true for the B1-localization, described in the following part.

1.3.13. DEFINITION. We denote by � the Σ-enriched cocubical object (see [3, Appendix
A]) defined by putting �n = Bn = SpaK〈τ1, . . . , τn〉 and considering the morphisms dr,ε
induced by the maps Bn → Bn+1 corresponding to the substitution τr = ε for ε ∈ {0, 1}
and the morphisms pr induced by the projections Bn → Bn−1. For any variety X and any
presheaf F with values in an abelian category, we can therefore consider the Σ-enriched cubical
object F(X ×�) (see [3, Appendix A]). Associated to any Σ-enriched cubical object F there
are the following complexes: the complex C]

•F defined as C]
nF = Fn and with differential∑

(−1)r(d∗r,1 − d∗r,0); the simple complex C•F defined as CnF =
⋂n
r=1 ker d∗r,0 and with

differential
∑

(−1)rd∗r,1; the normalized complex N•F defined as NnF = Cn ∩F
⋂n
r=2 ker d∗r,1

and with differential−d∗1,1. By [4, Lemma A.3, Proposition A.8, Proposition A.11], the inclusion
N•F ↪→ C•F is a quasi-isomorphism and both inclusions C•F ↪→ C]

•F and N•F ↪→ C•F
split. For any complex of presheaves F we let SingB1 F be the total complex of the simple
complex associated to the Hom(Λ(�),F). It sends the object X to the total complex of the
simple complex associated to F(X ×�).

The following lemma is the cocubical version of [36, Lemma 2.18].

1.3.14. LEMMA. For any presheafF the two maps of cubical sets i∗0, i
∗
1 : F(�×B1)→ F(�)

induce chain homotopic maps on the associated simple and normalized complexes.

PROOF. Consider now the isomorphism sn : Bn+1 → Bn × B1 defined on points by sepa-
rating the last coordinate and let s∗n be the induced map F(�n × B1) → F(�n+1). We have
s∗n−1 ◦ d∗r,ε = d∗r,ε ◦ s∗n for all 1 ≤ r ≤ n and ε ∈ {0, 1}. We conclude that

s∗n−1 ◦
n∑
r=1

(−1)r(d∗r,1 − d∗r,0) +
n+1∑
r=1

(−1)r(d∗r,1 − d∗r,0) ◦ (−s∗n) =

= (−1)n(d∗n+1,1 ◦ s∗n − d∗n+1,0 ◦ s∗n) = (−1)n(i∗1 − i∗0).

Therefore, the maps {(−1)ns∗n} define a chain homotopy from i∗0 to i∗1 as maps of complexes
C]
•F(�× B1)→ C]

•F(�).
We automatically deduce that if an inclusion C ′•F → C]

•F has a functorial retraction, then
the maps i∗0, i

∗
1 : C ′•F(�× B1)→ C ′•F(�) are also chain homotopic. �
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The following proposition is the rigid analytic analogue of [3, Theorem 2.23], or the
cocubical analogue of [5, Lemma 2.5.31].

1.3.15. PROPOSITION. Let F be a complex in ChPsh(R̂igSm). Then SingB1 F is B1-local
and B1-weak equivalent to F in ChPsh(R̂igSm).

PROOF. In order to prove that SingB1 F is B1-local in ChPsh(R̂igSm) we need to check
that each homology presheaf Hn(SingB1 F) is homotopy-invariant. By means of [5, Proposition
2.2.37] it suffices to show that the maps i∗0, i

∗
1 : N•F(�× B1)→ N•F(�) are chain homotopic,

and this follows from Lemma 1.3.14.
We now prove that SingB1 F is B1-weak equivalent to F . We first prove that the canonical

map a : F → Hom(Λ(�n),F) has an inverse up to homotopy for a fixed n. Consider the map
b : Hom(Λ(�n),F)→ F induced by the zero section of �n. It holds that b ◦ a = id and a ◦ b
is homotopic to id via the map

H : Λ(B1)⊗ Hom(Λ(�n),F)→ Hom(Λ(�n),F)

which is deduced from the adjunction (Λ(B1)⊗ ·,Hom(Λ(B1), ·)) and the map

Hom(Λ(�n),F)→ Hom(Λ(B1 ×�n),F)

defined via the homothety of B1 on �n. As B1-weak equivalences are stable under filtered
colimits and cones, we also conclude that the total complex associated to the simple complex of
Hom(Λ(�),F) is B1-equivalent to the one associated to the constant cubical object F (see for
example the argument of [5, Corollary 2.5.36]) which is in turn quasi-isomorphic to F . �

1.3.16. COROLLARY. Let Λ be a Q-algebra. For any F in ChPsh(R̂igSm) the localization
CB1F is quasi-isomorphic to SingB1 F and the localization C ét,B1F is quasi-isomorphic to
SingB1

(C étF•).

PROOF. The first claim follows from Proposition 1.3.15. We are left to prove that the
complex SingB1

(C étF•) is ét-local. To this aim, we use the description given in Proposition
1.3.10 and we show that SingB1

(C étF•) is local with respect to shifts of maps Λ(U•)→ Λ(X)
induced by bounded hypercoverings U• → X .

Fix a bounded hypercovering U• → X . From the isomorphisms Hp Hom•(Λ(U• ×
�q), C étF) ∼= Hp Hom•(Λ(X ×�q), C étF) valid for all p, q and a spectral sequence argument
(see [48, Theorem 0.3]) we deduce D(Λ(X)[n], SingB1

C étF) ∼= D(Λ(U•)[n], SingB1

C étF)
for all n as wanted. �

We now investigate some of the natural Quillen functors which arise between the model
categories introduced so far. We start by considering the natural inclusion of categories
RigSm→ R̂igSm

1.3.17. PROPOSITION. The inclusion RigSm ↪→ R̂igSm induces a Quillen adjunction

ι∗ : Chét,B1 Psh(RigSm) � Chét,B1 Psh(R̂igSm) :ι∗.

Moreover, the functor Lι∗ : RigDAeff
ét (K)→ R̂igDAeff

ét,B1(K) is fully faithful.

PROOF. The first claim is a special instance of [6, Proposition 4.4.46].
We prove the second claim by showing that Rι∗Lι∗ is isomorphic to the identity. Let

F be a cofibrant object in Chét,B1 Psh(RigSm). We need to prove that the map F →
ι∗(SingB1

C ét(ι∗F)) is an (ét,B1)-weak equivalence. Since ι∗ commutes with SingB1

we are
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left to prove that the map ι∗ι∗F = F → ι∗C
ét(ι∗F) is an ét-weak equivalence. This follows

since ι∗ preserves ét-weak equivalences, as it commutes with ét-sheafification. �

We are now interested in finding a convenient set of compact objects which generate the
categories above, as triangulated categories with small sums. This will simplify many definitions
and proofs in what follows.

1.3.18. PROPOSITION. The category RigDAeff
ét (K) [resp. R̂igDAeff

ét,B1(K)] is compactly
generated (as a triangulated category with small sums) by motives Λ(X) associated to rigid
varieties X which are in RigSmgc [resp. R̂igSmgc].

PROOF. The statements are analogous, and we only consider the case of the cate-
gory R̂igDAeff

ét,B1(K). It is clear that the set of functors Hi Hom•(Λ(X), ·) detect quasi-
isomorphisms between étale local objects, by letting X vary in R̂igSmgc and i vary in Z. We are
left to prove that the motives Λ(X) with X in R̂igSmgc are compact. Since Λ(X) is compact in
D(Psh(R̂igSmgc)) and SingB1

commutes with direct sums, it suffices to prove that if {Fi}i∈I is
a family of ét-local complexes, then also

⊕
iFi is ét-local. If I is finite, the claim follows from

the isomorphisms H−n Hom•(X,
⊕

iFi) ∼=
⊕

iHn(X,Fi) ∼= Hn(X,
⊕

iFi). A coproduct
over an arbitrary family is a filtered colimit of finite coproducts, hence the claim follows from
the stability of ét-local complexes under filtered colimits [6, Proposition 4.5.62]. �

1.3.19. REMARK. The above proof shows that the statement of Proposition 1.3.18 holds true
without any assumptions on Λ under the condition that all varieties X have finite cohomological
dimension with respect to the étale topology.

We now introduce the category of motives associated to smooth perfectoids, using the same
formalism as before. In this category, the canonical choice of the “interval object” for defining
homotopies is the perfectoid ball B̂1.

1.3.20. EXAMPLE. The perfectoid ball B̂1 = Spa(K〈χ1/p∞〉, K◦〈χ1/p∞〉) is an interval
object with respect to the natural multiplication µ and maps i0 and i1 induced by the substitution
χ1/ph 7→ 0 and χ1/ph 7→ 1 respectively.

The perfectoid variety B̂1 naturally lives in R̂igSm and has good coordinates by Proposition
1.2.12. It can therefore be used to define another homotopy category out of ChPsh(R̂igSm)

and ChPsh(R̂igSmgc).

1.3.21. COROLLARY. The following pairs of model categories are Quillen equivalent.
• Chét Psh(PerfSm) and Chét Psh(PerfSmgc).
• Chét,B̂1 Psh(PerfSm) and Chét,B̂1 Psh(PerfSmgc).

• Chét Psh(R̂igSm) and Chét Psh(R̂igSmgc).
• Chét,B̂1 Psh(R̂igSm) and Chét,B̂1 Psh(R̂igSmgc).

PROOF. It suffices to apply Proposition 1.3.3 to the sites with interval (PerfSm, ét, B̂1) and
(R̂igSm, ét, B̂1) where C′ is in both cases the subcategory of affinoid rigid varieties with good
coordinates. �

1.3.22. DEFINITION. For η ∈ {ét, B̂1, (ét, B̂1)} we say that a map in ChPsh(PerfSm)

[resp. ChPsh(R̂igSm)] is a η-weak equivalence if it is a weak equivalence in the model
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structure Chη Psh(PerfSm) [resp. Chη Psh(R̂igSm)]. We say that an object F of the de-
rived category D = D(Psh(PerfSm)) [resp. D = D(Psh(R̂igSm))] is η-local if the func-
tor HomD(·,F) sends maps in Sη to isomorphisms. This amounts to say that F is quasi-
isomorphic to a η-fibrant object. The triangulated homotopy category associated to the localiza-
tion Chét,B̂1 Psh(PerfSm) [resp. Chét,B̂1 Psh(R̂igSm)] will be denoted by PerfDAeff

ét (K,Λ)

[resp. R̂igDAeff
ét,B̂1(K,Λ)]. We will omit Λ whenever the context allows it. The image of a

variety X in one of these categories will be denoted by Λ(X).

We recall one of the main results of Scholze [42], reshaped in our derived homotopical
setting. It will constitute the bridge to pass from characteristic p to characteristic 0. We recall
that as summarized in Theorem 1.1.19 there is an equivalence of categories between perfectoid
affinoid K-algebras and perfectoid affinoid K[-algebras, extending to an equivalence between
the categories of perfectoid spaces over K and over K[ (see [42, Proposition 6.17]). We refer to
this equivalence as the tilting equivalence.

1.3.23. PROPOSITION. There exists an equivalence of triangulated categories

(−)] : PerfDAeff
ét (K[) � PerfDAeff

ét (K) :(−)[

induced by the tilting equivalence.

PROOF. The tilting equivalence induces an equivalence of the étale sites on perfectoid spaces
over K and over K[ (see [42, Theorem 7.12]). Moreover (T̂n)[ = T̂n and (B̂n)[ = B̂n. It there-
fore induces an equivalence of sites with interval (PerfSm /K, ét, B̂1) ∼= (PerfSm /K[, ét, B̂1)
hence the claim. �

We now investigate the triangulated functor between the categories of motives induced
by the natural embedding PerfSm → R̂igSm in the same spirit of what we did previously in
Proposition 1.3.17.

1.3.24. PROPOSITION. The inclusion PerfSm ↪→ R̂igSm induces a Quillen adjunction

j∗ : Chét,B̂1 Psh(PerfSm) � Chét,B̂1 Psh(R̂igSm) :j∗.

Moreover, the functor Lj∗ : PerfDAeff
ét (K)→ R̂igDAeff

ét,B̂1(K) is fully faithful.

PROOF. The result follows in the same way as Proposition 1.3.17. �

Also in this framework, the B̂1-localization has a very explicit construction. Most proofs are
straightforward analogues of those relative to the B1-localizations, and will therefore be omitted.

1.3.25. DEFINITION. We denote by �̂ the Σ-enriched cocubical object (see [4, Appendix
A]) defined by putting �̂n = B̂n = SpaK〈τ 1/p∞

1 , . . . , τ
1/p1/∞
n 〉 and considering the morphisms

dr,ε induced by the maps B̂n → B̂n+1 corresponding to the substitution τ 1/ph

r = ε for ε ∈ {0, 1}
and the morphisms pr induced by the projections B̂n → B̂n−1. For any complex of presheaves
F we let SingB̂1 F be the total complex of the simple complex associated to Hom(�̂,F). It
sends the object X to the total complex of the simple complex associated to F(X × �̂).

1.3.26. PROPOSITION. Let F be a complex in ChPsh(PerfSm) [resp. ChPsh(R̂igSm)].
Then SingB̂1 F is B̂1-local and B̂1-weak equivalent to F .
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PROOF. The fact that SingB̂1 F is B̂1-local in ChPsh(R̂igSm) can be deduced by Lemma
1.3.27 and Lemma 1.3.28. We are left to prove that SingB̂1 F is B̂1-weak equivalent to F and
this follows in the same way as in the proof of Proposition 1.3.15. �

The following lemmas are used in the previous proof.

1.3.27. LEMMA. A presheaf F in Psh(Sm Perf) [resp. in Psh(R̂igSm)] is B̂1-invariant if
and only if i∗0 = i∗1 : F(X × B̂1)→ F(X) for all X in Sm Perf [resp. in R̂igSm].

PROOF. This follows in the same way as [36, Lemma 2.16]. �

1.3.28. LEMMA. For any presheafF the two maps of cubical sets i∗0, i
∗
1 : F(�̂×B̂1)→ F(�̂)

induce chain homotopic maps on the associated simple and normalized complexes.

PROOF. This follows in the same way as Lemma 1.3.14. �

1.3.29. COROLLARY. Let F be in ChPsh(PerfSm) [resp. in ChPsh(R̂igSm)] the
(ét, B̂1)-localization C ét,B̂1F is quasi-isomorphic to SingB̂1

(C étF).

PROOF. This follows in the same way as Corollary 1.3.16. �

1.3.30. PROPOSITION. The category PerfDAeff
ét (K) [resp. R̂igDAeff

ét,B̂1(K)] is compactly
generated (as a triangulated category with small sums) by motives Λ(X) associated to rigid
varieties X which are in PerfSmgc [resp. R̂igSmgc].

PROOF. This follows in the same way as Proposition 1.3.18. �

1.3.31. REMARK. The above proof shows that the statement of Proposition 1.3.30 holds true
without any assumptions on Λ under the condition that all varieties X have finite cohomological
dimension with respect to the étale topology.

So far, we have defined two different Bousfield localizations on complexes of presheaves on
R̂igSm according to two different choices of intervals: B1 and B̂1. We remark that the second
constitutes a further localization of the first, in the following sense.

1.3.32. PROPOSITION. B1-weak equivalences in ChPsh(R̂igSm) are B̂1-weak equiva-
lences.

PROOF. It suffices to prove that X × B1 → X induces a B̂1-weak equivalence, for any
variety X in R̂igSm. This follows as the multiplicative homothety B̂1 × B1 → B1 induces a
homotopy between the zero map and the identity on B1. �

1.3.33. COROLLARY. The category R̂igDAeff
ét,B̂1(K) is equivalent to the full triangulated

subcategory of R̂igDAeff
ét,B1(K) formed by B̂1-local objects.

PROOF. Because of Proposition 1.3.32, the triangulated category R̂igDAeff
ét,B̂1(K) coin-

cides with the localization of R̂igDAeff
ét,B1(K) with respect to the set generated by the maps

Λ(B̂1
X)[n]→ Λ(X)[n] as X varies in R̂igSm and n in Z. �

We end this section by recalling the definition of rigid motives with transfers. The notion of
finite correspondence plays an important role in Voevodsky’s theory of motives. In the case of
rigid varieties over a field K correspondences give rise to the category RigCor(K) as defined in
[5, Definition 2.2.27]. For further details, we refer to Definition 2.2.3.
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1.3.34. DEFINITION. Additive presheaves over RigCor(K) are called presheaves with trans-
fers, and the category they form is denoted by PST(RigSm /K,Λ) or simply by PST(RigSm)
when the context allows it.

By [5, Definition 2.5.15], the projective model category ChPST(RigSm) admits a Bous-
field localization Chét,B1 PST(RigSm) with respect to the union of the class of maps F → F ′
inducing isomorphisms on the ét-sheaves associated to Hi(F) and Hi(F ′) for all i ∈ Z and the
set of all maps Λ(B1

X)[i]→ Λ(X)[i] as X varies in RigSm and i varies in Z.

1.3.35. DEFINITION. The triangulated homotopy category associated to the localization
Chét,B1 PST(RigSm) will be denoted by RigDMeff

ét (K,Λ). We will omit Λ from the notation
whenever the context allows it. The image of a variety X in will be denoted by Λtr(X).

1.3.36. REMARK. Since Λ is a Q-algebra, one can equivalently consider the Nisnevich
topology in the definition above and obtain a homotopy category RigDMeff

Nis(K,Λ) which is
equivalent to RigDMeff

ét (K,Λ).

1.3.37. REMARK. The faithful embedding of categories RigSm→ RigCor induces a Quillen
adjunction (see [5, Lemma 2.5.18]):

atr : Chét,B1 Psh(RigSm) � Chét,B1 PST(RigSm) :otr

such that atrΛ(X) = Λtr(X) for any X ∈ RigSm and otr is the functor of forgetting transfers.
These functors induce an adjoint pair:

Latr : RigDAeff
ét (K) � RigDMeff

ét (K) :Rotr.

1.4. Motivic interpretation of approximation results

In all this section, K is a perfectoid field of arbitrary characteristic. We begin by presenting
an approximation result whose proof is differed to Appendix A.

1.4.1. PROPOSITION. Let X = lim←−hXh be in R̂igSmgc. Let also Y be an affinoid rigid
variety endowed with an étale map Y → Bm. For a given finite set of maps {f1, . . . , fN} in
Hom(X × Bn, Y ) we can find corresponding maps {H1, . . . , HN} in Hom(X × Bn × B1, Y )
and an integer h̄ such that:

(1) For all 1 ≤ k ≤ N it holds i∗0Hk = fk and i∗1Hk factors over the canonical map
X → Xh̄.

(2) If fk ◦ dr,ε = fk′ ◦ dr,ε for some 1 ≤ k, k′ ≤ N and some (r, ε) ∈ {1, . . . , n} × {0, 1}
then Hk ◦ dr,ε = Hk′ ◦ dr,ε.

(3) If for some 1 ≤ k ≤ N and some h ∈ N the map fk ◦ d1,1 ∈ Hom(X × Bn−1, Y )
lies in Hom(Xh × Bn−1, Y ) then the element Hk ◦ d1,1 of Hom(X × Bn−1 × B1, Y ) is
constant on B1 equal to fk ◦ d1,1.

The statement above has the following interpretation in terms of complexes.

1.4.2. PROPOSITION. Let X = lim←−hXh be in R̂igSmgc and let Y be in RigSmgc. The
natural map

φ : lim−→
h

(SingB1

Λ(Y ))(Xh)→ (SingB1

Λ(Y ))(X)

is a quasi-isomorphism.
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PROOF. We need to prove that the natural map

φ : lim−→
h

C•Λ Hom(Xh ×�, Y )→ C•Λ Hom(X ×�, Y )

defines bijections on homology groups.
We start by proving surjectivity. As � is a Σ-enriched cocubical object, the complexes above

are quasi-isomorphic to the associated normalized complexes N• which will then be considered
instead. Suppose that β ∈ Λ Hom(X × �n, Y ) defines a cycle in Nn i.e. β ◦ dr,ε = 0 for
1 ≤ r ≤ n and ε ∈ {0, 1}. This means that β =

∑
λkfk with λk ∈ Λ, fk ∈ Hom(X ×�n, Y )

and
∑
λkfk ◦ dr,ε = 0. This amounts to say that for every k, r, ε the sum

∑
λk′ over the indices

k′ such that fk′ ◦ dr,ε = fk ◦ dr,ε is zero. By Proposition 1.4.1, we can find an integer h and maps
Hk ∈ Hom(X ×�n × B1, Y ) such that i∗0H = fk, i∗1H = φ(f̃k) with f̃k ∈ Hom(Xh ×�n, Y )
and Hk ◦ dr,ε = Hk′ ◦ dr,ε whenever fk ◦ dr,ε = fk′ ◦ dr,ε. If we denote by H the cycle∑
λkHk ∈ Λ Hom(X ×�n × B1, Y ) we therefore have d∗r,εH = 0 for all r, ε.
By Lemma 1.3.14, we conclude that i∗1H and i∗0H define the same homology class, and

therefore β defines the same class as i∗1H which is the image of a class in Λ Hom(Xh ×�n, Y )
as wanted.

We now turn to injectivity. Consider an element α ∈ Λ Hom(X0 × �n, Y ) such that
α◦dr,ε = 0 for all r, ε and suppose there exists an element β =

∑
λifi ∈ Λ Hom(X×�n+1, Y )

such that β ◦ dr,0 = 0 for 1 ≤ r ≤ n+ 1, β ◦ dr,1 = 0 for 2 ≤ r ≤ n + 1 and β ◦ d1,1 = φ(α).
Again, by Proposition 1.4.1, we can find an integer h̄ and maps Hk ∈ Hom(X ×�n+1 ×B1, Y )
such thatH :=

∑
λkHk satisfies i∗1H = φ(γ) for some γ ∈ Λ Hom(Xh̄×�n+1, Y ),H◦dr,0 = 0

for 1 ≤ r ≤ n+ 1, H ◦ dr,1 = 0 for 2 ≤ r ≤ n+ 1 and H ◦ d1,1 is constant on B1 and coincides
with φ(α). We conclude that γ ∈ Nn and dγ = α. In particular, α = 0 in the homology group,
as wanted. �

1.4.3. COROLLARY. Let F be a projectively cofibrant complex in ChPsh(RigSmgc). For
any X = lim←−hXh in R̂igSmgc the natural map

φ : lim−→
h

(SingB1 F)(Xh)→ (SingB1

ι∗F)(X)

is a quasi-isomorphism.

PROOF. As homology commutes with filtered colimits, by means of Remark 1.3.2 we can
assume that F is a bounded above complex formed by sums of representable presheaves. For
any X in R̂igSm the cohomology of SingB1 F(X) coincides with the cohomology of the total
complex associated to C•(F(X × �)). The result then follows from Proposition 1.4.2 and
the convergence of the spectral sequence associated to the double complex above, which is
concentrated in one quadrant. �

The following technical proposition is actually a crucial point of our proof, as it allows some
explicit computations of morphisms in the category R̂igDAeff

ét (K).

1.4.4. PROPOSITION. Let F be a cofibrant (B1, ét)-fibrant complex in ChPsh(RigSmgc).
Then SingB1

(ι∗F) is (B1, ét)-local in ChPsh(R̂igSmgc).

PROOF. The difficulty lies in showing that the object SingB1

(ι∗F) is ét-local. By Propo-
sitions 1.3.11 and 1.3.15, it suffices to prove that SingB1

(ι∗F) is local with respect to the
étale-Cech hypercoverings U• → X in R̂igSmgc of X = lim←−hXh descending at finite level. Let
U• → X be one of them. Without loss of generality, we assume that it descends to an étale
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covering of X0. In particular we conclude that Un = lim←−h Unh is a disjoint union of objects in

R̂igSmgc.
We need to show that Hom•(Λ(U•), SingB1

(ι∗F)) is quasi-isomorphic to SingB1

(ι∗F)(X).
Using Corollary 1.4.3, we conclude that the complex (SingB1

ι∗F)(Un) is quasi-isomorphic to
lim−→h

(SingB1

ι∗F)(Unh) for each n ∈ N. Passing to the homotopy limit on n on both sides, we get

that Hom•(Λ(U•), SingB1

ι∗F) is quasi-isomorphic to lim−→h
Hom•(Λ(U•h), SingB1

ι∗F). Using

again Corollary 1.4.3, we also obtain that the complex (SingB1

ι∗F)(X) is quasi-isomorphic to
lim−→h

(SingB1

ι∗F)(Xh).
From the exactness of lim−→ it suffices then to prove that the maps

Hom•(Λ(U•h), SingB1 F)→ Hom•(Λ(Xh), SingB1 F)

are quasi-isomorphisms. This follows once we show that the complex SingB1 F is ét-local.
We point out that since F is B1-local, then the canonical map F → SingB1 F is a quasi-

isomorphism. As F is ét-local we conclude that SingB1 F also is, hence the claim. �

We are finally ready to state the main result of this section.

1.4.5. PROPOSITION. Let X = lim←−hXh be in R̂igSmgc. For any complex of presheaves F
on RigSmgc the natural map

lim−→
h

RigDAeff
ét (K)(Λ(Xh),F)→ R̂igDAeff

ét,B1(K)(Λ(X),Lι∗F)

is an isomorphism.

PROOF. Since any complex F has a fibrant-cofibrant replacement in a model category, we
can assume that F is cofibrant and (ét,B1)-fibrant. Since it is B1-local, it is quasi-isomorphic to
SingB1 F . By Corollary 1.4.3, for any integer i one has

lim−→
h

Hom(Λ(Xh)[i], SingB1 F) ∼= Hom(Λ(X)[i], SingB1

ι∗F).

As Λ(X) is a cofibrant object in ChPsh(R̂igSm
gc

) and SingB1

ι∗F is a (B1, ét)-local replace-
ment of F in Chét,B1 Psh(R̂igSmgc) by Proposition 1.4.4, we conclude that the previous
isomorphism can be rephrased in the following way:

lim−→
h

RigDAeff
ét (K)(Λ(Xh)[i],F) ∼= R̂igDAeff

ét,B1(K)(Λ(X)[i],Lι∗F)

proving the claim. �

1.5. The de-perfectoidification functor in characteristic 0

The results proved in Section 1.4 are valid both for charK = 0 and charK = p. On the
contrary, the results of this section require that charK = 0. We will present later their variant
for the case charK = p.

We start by considering the adjunction between motives with and without transfers (see
Remark 1.3.37). Thanks to the following crucial theorem, we are allowed to add or ignore
transfers according to the situation.

1.5.1. THEOREM. Suppose that charK = 0. The functors (atr, otr) induce an equivalence:

Latr : RigDAeff
ét (K) � RigDMeff

ét (K) :Rotr.
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We postpone the proof of this fact to the second chapter, see Theorem 2.3.3.

1.5.2. REMARK. The proof of the statement above uses in a crucial way the fact that the
ring of coefficients Λ is a Q-algebra. This is the main reason of our assumption on Λ.

1.5.3. PROPOSITION. Suppose charK = 0. Let X = lim←−hXh be in R̂igSmgc. If h is big
enough, then the map Λ(Xh+1)→ Λ(Xh) is an isomorphism in RigDAeff

ét (K).

PROOF. By means of Proposition 1.5.1, we can equally prove the statement in the category
RigDMeff

ét (K). We claim that we can also make an arbitrary finite field extension L/K. Indeed
the transpose of the natural map YL → Y is a correspondence from Y to YL. Since Λ is
a Q-algebra, we conclude that Λtr(Y ) is a direct factor of Λtr(YL) = Le]Λtr(YL) for any
variety Y where Le] is the functor RigDMeff

ét (L) → RigDMeff
ét (K) induced by restriction

of scalars. In particular, if Λtr((Xh+1)L) → Λtr((Xh)L) is an isomorphism in RigDMeff
ét (L)

then Λtr((Xh+1)L) → Λtr((Xh)L) is an isomorphism in RigDMeff
ét (K) and therefore also

Λtr(Xh+1)→ Λtr(Xh) is.
By means of Lemma [5, 1.1.50], we can suppose that X0 = Spa(R0, R

◦
0) with R0 =

S〈σ, τ〉/(P (σ, τ)) where S = O(TM), σ = (σ1, . . . , σN) is a N -tuple of coordinates, τ =
(τ1, . . . , τm) is a m-tuple of coordinates and P is a set of m polynomials in S[σ, τ ] with
det(∂P

∂τ
) ∈ R×0 . In particular X1 = Spa(R1, R

◦
1) with R1 = S〈σ, τ〉/(P (σp, τ)) and the

map f : X1 → X0 is induced by σ 7→ σp, τ 7→ τ . Since the map f is finite and surjective, we
can also consider the transpose correspondence fT ∈ RigCor(X0, X1). The composition f ◦ fT

is associated to the correspondence X0
f← X1

f→ X0 which is the cycle deg(f)X0 = pN · idX0 .
The composition fT ◦ f is associated to the correspondence X1

p1← X1 ×X0 X1
p2→ X1. Since

TN〈σ1/p〉 ×TN TN〈σ1/p〉 ∼= TN〈σ1/p〉 × µNp we conclude that the above correspondence is
X1

p1← X1 × (µp)
N η→ X1 where η is induced by the multiplication map TN × µNp → TN .

Up to a finite field extension, we can assume that K has the p-th roots of unity. The above
correspondence is then equal to

∑
fζ where each fζ is a map X1 → X1 defined by σi 7→ ζiσi,

τ 7→ τ for each N -tuple ζ = (ζi) of p-th roots of unity. If we prove that each fζ is homotopically
equivalent to idX1 then we get 1

pN
fT ◦ f = id, f ◦ 1

pN
fT = id in RigDMeff

ét as wanted.
We are left to find a homotopy between id and fζ for a fixed ζ = (ζ1, . . . , ζn) up to

considering higher indices h. For the sake of clarity, we consider them as maps Spa R̄1 →
SpaR1 where we put R̄h = S〈σ̄, τ̄〉/(P (σ̄p

h
, τ̄)) for any integer h. The first map is induced by

σ 7→ σ̄, τ 7→ τ̄ and the second induced by σ 7→ ζσ̄, τ 7→ τ̄ . Let Fh =
∑

n an(σ − σ̄)n be the
unique array of formal power series in R̄h[[σ − σ̄]] centered in σ̄ associated to the polynomials
P (σp

h
, τ) in R̄h[σ, τ ] via Corollary A.1.2. Let also φh be the map R̄h → R̄h+1. From the

formal equalities P (σp
(h+1)

, Fh+1(σ)) = 0, P (σp
h
, φ(Fh(σ))) = φh(P (σp

h
, Fh(σ))) = 0 and

the uniqueness of Fh+1 we deduce Fh+1(σ) = φh(Fh(σ
p)).

We therefore have

Fh+1(σ) =
∑
n

φh(an)(σp − σ̄p)n =

=
∑
n

φh(an)

(
(σ − σ̄)p−1 +

p−1∑
j=1

(
p

j

)
(σ − σ̄)j−1σ̄p−j

)n

(σ − σ̄)n
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The expression

Q(x) = xp +

p−1∑
j=1

(
p

j

)
xjσ̄p−j

is a polynomial in x and it easy to show that the mapping x 7→ Q(x) extends to a map
R̄h+1〈x〉 → R̄h+1〈x〉 since R̄h+1 is complete and p divides

(
p
j

)
for 1 < j < p. We deduce that

we can read off the convergence in the circle of radius 1 around σ̄ and the values of Fh+1 on its
expression given above.

We remark that the norm of Q(σ − σ̄) in the circle of radius ρ ≤ 1 around σ̄ is bounded by
max{ρp, |p|} ≤ max{ρ, |p|}. Suppose that Fh converges in a circle of radius ρ with 0 < ρ ≤ 1
around σ̄ and in there it takes values in power-bounded elements. By the expression above,
the same holds true for Fh+1 in the circle of radius min{ρ|p|−1, 1} around σ̄. By induction
we conclude that for a sufficiently big h the power series Fh converges in a circle of radius
δ > |p|1/p around σ̄ and its values in it are power bounded. Up to rescaling indices, we suppose
that this holds for h = 1.

The value |p|1/p is larger than |ζi − 1| for all i since (ζi − 1)p is divisible by p. Also, from
the relation Fh+1(σ) = φh(Fh(σ

p)) we conclude F1(ζσ̄) = F1(σ̄) = τ̄ . Therefore, the map

X1 = Spa(S〈σ, τ〉/P (σp, τ))← X1 × B1 = Spa(S〈σ̄, τ̄ , χ〉/(P (σ̄p, τ̄))

(σi, τj) 7→ (σ̄i + (ζi − 1)σ̄iχ, F1(σ̄ + (ζ − 1)σ̄χ))

is a well defined map, inducing a homotopy between idX1 and fζ as claimed. �

It cannot be expected that all maps Xh+1 → Xh are isomorphisms in RigDAeff
ét (K):

consider for example X0 = T1〈τ 1/p〉 → T1. Then X0 is a connected variety, while X1 is
not. That said, there is a particular class of objects X = lim←−hXh in R̂igSmgc for which this
happens: this is the content of the following proposition which nevertheless will not be used in
the following.

We recall that a presentation X = lim←−hXh of an object in R̂igSmgc is of good reduction
if the map X0 → TN × TM has a formal model which is an étale map over Spf K◦〈υ±1, ν±1〉
and is of potentially good reduction if this happens after base change by a separable finite field
extension L/K.

1.5.4. PROPOSITION. Let charK = 0 and let X = lim←−hXh be a presentation of a variety

in R̂igSmgc of potentially good reduction. The maps Λ(Xh+1)→ Λ(Xh) are isomorphisms in
RigDAeff

ét (K) for all h.

PROOF. If the map X0 → TN × TM has an étale formal model, then also the map Xh →
TN〈υ1/ph〉 × TM does. It is then sufficient to consider only the case h = 0. Since L/K is finite
and Λ is a Q-algebra, by the same argument of the proof of Proposition 1.5.3 we can assume that
lim←−hXh has good reduction. Also, by means of Proposition 1.5.1 and the Cancellation theorem
[5, Corollary 2.5.49], we can equally prove the statement in the stable category RigDAét(K)
defined in [5, Definition 1.3.19].

Let X0 → Spf K◦〈υ±1, ν±1〉 be a formal model of the map X0 → Tn × Tm. We let X̄0

be the special fiber over the residue field k of K. The variety X1 has also a smooth formal
model X1 whose special fiber is X̄1. By definition, the natural map X̄1 → X̄0 is the push-out of
the (relative) Frobenius map AdimX

k → AdimX
k which is isomorphic to the relative Frobenius

map and hence an isomorphism of correspondences as p is invertible in Λ. We conclude that
Λtr(X̄1)→ Λtr(X̄0) is an isomorphism in DMét(k).
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Let FormDAét(K
◦) be the stable category of motives of formal varieties FSHM(K◦)

defined in [5, Definition 1.4.15] associated to the projective model category M = Ch(Λ -Mod).
Using the canonical equivalence DMét(k) ∼= DMét(k) [7, Theorem B.1] we deduce that the
map Λ(X̄1)→ Λ(X̄0) is an isomorphism in DAét(k) as is its image via the following functor
(see [5, Remark 1.4.30]) induced by the special fiber functor and the generic fiber functor:

DAét(k) FormDAét(K
◦)

(−)η //
∼

(−)σoo RigDAét(K).

This morphism is precisely the map Λ(X1)→ Λ(X0) proving the claim. �

We are now ready to present the main result of this section.

1.5.5. THEOREM. Let charK = 0. The functor Lι∗ : RigDAeff
ét (K) → R̂igDAeff

ét (K)
has a left adjoint Lι! and the counit map id → Lι!Lι∗ is invertible. Whenever X = lim←−hXh

is an object of R̂igSmgc then Lι!Λ(X) ∼= Λ(Xh) for a sufficiently large index h. If moreover
X = lim←−hXh is of potentially good reduction, then Lι!Λ(X) ∼= Λ(X0).

PROOF. We start by proving that the canonical map

RigDAeff
ét (K)(Λ(Xh̄),F)→ R̂igDAeff

ét (K)(Λ(X),Lι∗F)

is an isomorphism, for every X = lim←−hXh and for h̄ big enough. By Proposition 1.4.5, it
suffices to prove that the natural map

RigDAeff(K)(Λ(Xh̄),LatrF)→ lim−→
h

RigDAeff(K)(Λ(Xh),LatrF)

is an isomorphism for some h̄. This follows from Proposition 1.5.3 since all maps of the directed
diagram are isomorphisms for h ≥ h̄ for some h̄ big enough. In case lim←−hXh is of potentially
good reduction, then Proposition 1.5.4 ensures that we can choose h̄ = 0.

We conclude that the subcategory T of R̂igDAeff
ét,B̂1(K) formed by the objects M such

that the functor N 7→ R̂igDAeff
ét,B̂1(K)(M,Lι∗N) is corepresentable contains all motives Λ(X)

with X any object of R̂igSmgc. Since these objects form a set of compact generators of
R̂igDAeff

ét,B̂1(K) by Proposition 1.3.18, we deduce the existence of the functor Lι! by Lemma
1.5.6.

The formula Lι!Lι∗ ∼= id is a formal consequence of the fact that Lι! is the left adjoint of a
fully faithful functor Lι∗. �

1.5.6. LEMMA. Let G : T→ T′ be a triangulated functor of triangulated categories. The
full subcategory C of T′ of objects M such that the functor aM : N 7→ Hom(M,GN) is
corepresentable is closed under cones and small direct sums.

PROOF. For any object M in C we denote by FM the object corepresenting the functor aM .
Let now {Mi}i∈I be a set of objects in C. It is immediate to check that

⊕
i FMi corepresents

the functor a⊕
iMi

.
Let now M1, M2 be two objects of C and f : M1 → M2 be a map between them. There

are canonical maps ηi : Mi → GFMi induced by the identity FMi → FMi and the uni-
versal property of FMi. By composing with η2 we obtain a morphism Hom(M1,M2) →
Hom(M1,GFM2) ∼= Hom(FM1,FM2) sending f to a map Ff . Let C be the cone of f and D
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be the cone of Ff . We claim that D represents aC . From the triangulated structure we obtain a
map of distinguished triangles

M1
f //

η1

��

M2
//

η2

��

C //

��
GFM1

GFf // GFM2
// GD //

inducing for any object N of T the following maps of long exact sequences

Hom(M1,GN)oo Hom(M2,GN)oo Hom(C,GN)oo oo

Hom(GFM1,GN)oo

OO

Hom(GFM2,GN)oo

OO

Hom(GD,GN)oo

OO

oo

Hom(FM1, N)oo

OO

Hom(FM2, N)oo

OO

Hom(D,N)oo

OO

oo

Since the vertical compositions are isomorphisms for M1 and M2 we deduce that they all are,
proving that D corepresents aC as wanted. �

We remark that we used the fact that Λ is a Q-algebra at least twice in the proof of Theorem
1.5.5: to allow for field extensions and correspondences using Theorem 1.5.1 as well as to invert
the map defined by multiplication by p. Nonetheless, it is expected that after inverting the Tate
twist, Theorem 1.5.1 also holds for Z[1/p]-coefficients therefore providing a stable version of
previous result with more general coefficients.

The following fact is a straightforward corollary of Theorem 1.5.5.

1.5.7. PROPOSITION. Let charK = 0. The motive Lι!Λ(B̂1) is isomorphic to Λ.

PROOF. In order to prove the claim, it suffices to prove that Lι!Λ(B̂1) ∼= Λ(B1). This
follows from Proposition 1.2.12 and the description of Lι! given in Theorem 1.5.5. �

We recall that all the homotopy categories we consider are monoidal (see [6, Propositions
4.2.76 and 4.4.63]), and the tensor product Λ(X)⊗Λ(X ′) of two motives associated to varieties
X and Y coincides with Λ(X × X ′). The unit object is obviously the motive Λ. Due to the
explicit description of the functor Lι! we constructed above, it is easy to prove that it respects
the monoidal structures.

1.5.8. PROPOSITION. Let charK = 0. The functor

Lι! : R̂igDAeff
ét,B1(K)→ RigDAeff

ét (K)

is a monoidal functor.

PROOF. Since Lι! is the left adjoint of a monoidal functor Lι∗ there is a canonical natu-
ral tranformation of bifunctors Lι!(M ⊗M ′) → Lι!M ⊗ Lι!M ′. In order to prove it is an
isomorphism, it suffices to check it on a set of generators of R̂igDAeff

ét,B1 such as motives of
semi-perfectoid varieties X = lim←−hXh, X ′ = lim←−hX

′
h. Up to rescaling, we can suppose that

Lι!Λ(X) = Λ(X0) and Lι!Λ(X ′) = Λ(X ′0) by Theorem 1.5.5. In this case, by definition of the
tensor product, we obtain the following isomorphisms

Lι!(Λ(X)⊗Λ(X ′)) ∼= Lι!Λ(X×X ′) ∼= Λ(X0×X ′0) ∼= Λ(X0)⊗Λ(X ′0) ∼= Lι!Λ(X)⊗Lι!Λ(X ′)
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proving our claim.
�

The following proposition can be considered to be a refinement of Theorem 1.5.5.

1.5.9. PROPOSITION. Let charK = 0. The functor Lι! factors through R̂igDAeff
ét,B1 →

R̂igDAeff
ét,B̂1 and the image of the functor Lι∗ : RigDAeff

ét (K)→ R̂igDAeff
ét,B1(K) lies in the

subcategory of B̂1-local objects. In particular, the triangulated adjunction

Lι! : R̂igDAeff
ét,B1(K) � RigDAeff

ét (K) :Lι∗

restricts to a triangulated adjunction

Lι! : R̂igDAeff
ét,B̂1(K) � RigDAeff

ét (K) :Lι∗.

PROOF. By Propositions 1.5.7 and 1.5.8, Lι! is a monoidal functor sending Λ(B̂1) to Λ. This
proves the first claim.

From the adjunction (Lι!,Lι∗) we then obtain the following isomorphisms, for any X in
R̂igSmgc and any M in RigDAeff

ét (K):

R̂igDAeff
ét,B1(K)(Λ(X × B̂1),Lι∗M) ∼= RigDAeff

ét (K)(Lι!Λ(X)⊗ Λ,M) ∼=
∼= RigDAeff

ét (K)(Lι!Λ(X),M) ∼= R̂igDAeff
ét,B1(K)(Λ(X),Lι∗M)

proving the second claim. �

1.5.10. REMARK. In the statement of the proposition above, we make a slight abuse of
notation when denoting with (Lι!,Lι∗) both adjoint pairs. It will be clear from the context which
one we consider at each instance.

1.6. The de-perfectoidification functor in characteristic p

We now consider the case of a perfectoid field K[ of characteristic p and try to generalize
the results of Section 1.5. We will need to perform an extra localization on the model structure,
and in return we will prove a stronger result. In this section, we always assume that the base
perfectoid field has characteristic p. In order to emphasize this hypothesis, we will denote it
with K[.

In positive characteristic, we are not able to prove the equivalence of motives with and with-
out transfers (Theorem 1.5.1) as it is stated, and it is therefore not clear that the mapsXh+1 → Xh

associated to an object X = lim←−hXh of R̂igSm are isomorphisms in RigDAeff
ét (K[) for a suffi-

ciently big h. In order to overcome this obstacle, we localize our model category further.
For any variety X over K[ we denote by X(1) the pullback of X over the Frobenius map

Φ: K[ → K[, x 7→ xp. The absolute Frobenius morphism induces a K[-linear map X → X(1).
Since K[ is perfect, we can also denote by X(−1) the pullback of X over the inverse of the
Frobenius map Φ−1 : K[ → K[ and X ∼= (X(−1))(1). There is in particular a canonical map
X(−1) → X which is isomorphic to the map X ′ → X induced by the absolute Frobenius, where
we denote by X ′ the same variety X endowed with the structure map X → SpaK

Φ→ SpaK.

1.6.1. PROPOSITION. The model category Chét,B1 Psh(RigSm /K[) admits a left Bousfield
localization ChFrobét,B1 Psh(RigSm /K[) with respect to the set SFrob of relative Frobenius
maps Φ: Λ(X(−1))[i]→ Λ(X)[i] as X varies in RigSm and i varies in Z.
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PROOF. Since by [6, Proposition 4.4.32] the τ -localization coincides with the Bousfield
localization with respect to a set, we conclude by [6, Theorem 4.2.71] that the model category
Chét,B1 Psh(RigSm /K[) is still left proper and cellular. We can then apply [22, Theorem
4.1.1]. �

1.6.2. DEFINITION. We will denote by RigDAeff
Frobét(K

[,Λ) the homotopy category of
ChFrobét,B1 Psh(RigSm /K[). We will omit Λ whenever the context allows it. The image of a
rigid variety X in this category will be denoted by Λ(X).

The category RigDAeff
Frobét(K

[) is canonically isomorphic to the full triangulated subcat-
egory of RigDAeff

ét (K[) formed by Frob-local objects, i.e. objects that are local with respect
to the maps in SFrob. Modulo this identification, there is an obvious functor RigDAeff

ét (K[)→
RigDAeff

Frobét(K
[) associating to F a Frob-local object CFrobF .

Inverting Frobenius morphisms is enough to obtain an analogue of Theorem 1.5.1 in charac-
teristic p.

1.6.3. THEOREM. Let charK[ = p. The functors (atr, otr) induce an equivalence of
triangulated categories:

Latr : RigDAeff
Frobét(K

[) ∼= RigDMeff
ét (K[).

We postpone the proof of this fact to the second chapter, see Theorem 2.3.2.

1.6.4. REMARK. The proof of the statement above uses in a crucial way the fact that the
ring of coefficients Λ is a Q-algebra. This is the main reason of our assumption on Λ.

We now investigate the relations between the category RigDAeff
Frobét(K

[) we have just
defined, and the other categories of motives introduced so far.

1.6.5. PROPOSITION. Let X0 be in RigSm /K[ endowed with an étale map X0 → TN ×
TM = Spa(K[〈υ±1, ν±1〉). The map X1 = X0 ×TN TN〈υ±1/p〉 → X0 is invertible in
RigDAeff

Frobét(K
[).

PROOF. The map of the claim is a factor of X0 ×(BN×BM ) (BN〈υ1/p〉 × BM〈ν1/p〉) → X0

which is isomorphic to the relative Frobenius map X(−1)
0 → X0 (see for example [19, Theorem

3.5.13]). If we consider the diagram

X
(−1)
1

a→ X
(−1)
0

b→ X1
c→ X0

we conclude that the two compositions ba and cb are isomorphisms hence also c is an isomor-
phism, as claimed. �

1.6.6. PROPOSITION. The image via Lι∗ of a Frob-local object of RigDAeff
ét (K[) is B̂1-

local. In particular, the functor Lι∗ restricts to a functor

Lι∗ : RigDAeff
Frobét(K

[)→ R̂igDAeff
ét,B̂1(K[).

PROOF. LetX ′ = lim←−hX
′
h be in R̂igSmgc. We consider the objectX ′×B̂1 = lim←−h(X

′
h×Xh)

where we use the description B̂1 = lim←−hXh of Proposition 1.2.12. Let M be a Frob-local
object of RigDAeff

ét (K[). From Propositions 1.4.5 and 1.6.5 we then deduce the following
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isomorphisms

R̂igDAeff
ét,B1(K[)(X ′ × B̂1,Lι∗M) ∼= lim−→

h

RigDAeff
ét (K[)(X ′h ×Xh,M) ∼=

∼= RigDAeff
ét (K[)(X ′0 × B1,M) ∼= RigDAeff

ét (K[)(X ′0,M) ∼=
∼= lim−→

h

RigDAeff
ét (K[)(X ′h,M) ∼= R̂igDAeff

ét,B1(K[)(X ′,Lι∗M)

proving the claim. �

We remark that in positive characteristic the perfection Perf : X 7→ lim←−X
(−i) is functorial.

This makes the description of various functors a lot easier. We recall that we denote by

Lj∗ : PerfDAeff
ét (K[) � R̂igDAeff

ét,B̂1(K) :Rj∗

the adjoint pair induced by the inclusion of categories j : PerfSm→ R̂igSm.

1.6.7. PROPOSITION. The perfection functor Perf : R̂igSm→ PerfSm induces an adjunc-
tion

LPerf∗ : R̂igDAeff
ét,B1(K[) � PerfDAeff

ét (K[) :RPerf∗

and LPerf∗ factors through R̂igDAeff
ét,B1(K[) → R̂igDAeff

ét,B̂1(K[). Moreover, the functor

LPerf∗ coincides with Rj∗ on R̂igDAeff
ét,B̂1(K[).

PROOF. The perfection functor is continuous with respect to the étale topology and maps B1

and B̂1 to B̂1 hence the first claim.
We now consider the functors j : PerfSm→ R̂igSm and Perf : R̂igSm→ PerfSm. They

induce two Quillen pairs (j∗, j∗) and (Perf∗,Perf∗) on the associated (ét, B̂1)-localized model
categories of complexes. Since Perf is a right adjoint of j we deduce that Perf∗ is a right adjoint
of j∗ and hence we obtain an isomorphism j∗ ∼= Perf∗ which shows the second claim. �

1.6.8. PROPOSITION. Let Λ be a Q-algebra. The functor

LPerf∗ Lι∗ : RigDAeff
ét (K[)→ PerfDAeff

ét (K[)

factors over RigDAeff
Frobét(K

[) and is isomorphic to Rj∗Lι∗CFrob.

PROOF. The first claim follows as the perfection of X(−1) is canonically isomorphic to the
perfection of X for any object X in RigSm.

The second part of the statement follows from the first claim and the commutativity of the
following diagram, which is ensured by Propositions 1.6.6 and 1.6.7.

RigDAeff
Frobét(K

[)

��

Lι∗ // R̂igDAeff
ét,B̂1(K[)

��

Rj∗

((

PerfDAeff
ét (K[)

RigDAeff
ét (K[)

Lι∗ // R̂igDAeff
ét,B1(K[)

LPerf∗
66

�
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1.6.9. THEOREM. Let Λ be a Q-algebra. The functor LPerf∗ : RigDAeff
Frobét(K

[) →
PerfDAeff

ét (K[) defines a monoidal, triangulated equivalence of categories.

PROOF. Let X0 and Y be objects of RigSmgc. Suppose X0 is endowed with an étale map
over TN which is a composition of finite étale maps and inclusions, and let X̂ be lim←−hXh. We

can identify X̂ with Perf X0. Since CFrobΛ(Y ) is Frob-local, by Proposition 1.6.5 the maps

RigDAeff
ét (K[)(Λ(Xh), C

FrobΛ(Y ))→ RigDAeff
ét (K[)(Λ(Xh+1), CFrobΛ(Y ))

are isomorphisms for all h. Using Propositions 1.4.5, 1.6.6 and 1.6.8, we obtain the following
sequence of isomorphisms for any n ∈ Z:

RigDAeff
Frobét(K

[)(Λ(X0),Λ(Y )[n]) ∼= RigDAeff
ét (K[)(Λ(X0), CFrobΛ(Y )[n])

∼= lim−→
h

RigDAeff
ét (K[)(Λ(Xh), C

FrobΛ(Y )[n]) ∼= R̂igDAeff
ét,B1(K[)(Λ(X̂),Lι∗CFrobΛ(Y )[n])

∼= R̂igDAeff
ét,B̂1(K[)(Λ(X̂),Lι∗CFrobΛ(Y )[n])

∼= PerfDAeff
ét (K[)(Λ(X̂),Rj∗Lι∗CFrobΛ(Y )[n])

∼= PerfDAeff
ét (K[)(LPerf∗(X0),LPerf∗(Y )[n]).

In particular, we deduce that the triangulated functor LPerf∗ maps a set of compact generators
to a set of compact generators (see Propositions 1.3.18 and 1.3.30) and on these objects it is
fully faithful. By means of [5, Lemma 1.3.32], we then conclude it is a triangulated equivalence
of categories, as claimed. �

1.6.10. REMARK. From the proof of the previous claim, we also deduce that the inverse
RPerf∗ of LPerf∗ sends the motive associated to an object X = lim←−hXh to the motive of X0.
This functor is then analogous to the de-perfectoidification functor Lj∗ ◦ Lι! of Theorem 1.5.5.

1.7. The main theorem

Thanks to the results of the previous sections, we can reformulate Theorem 1.5.5 in terms
of motives of rigid varieties. We will always assume that charK = 0 since the results of this
section are tautological when charK = p.

1.7.1. COROLLARY. There exists a triangulated adjunction of categories

F: RigDMeff
ét (K[) � RigDMeff

ét (K) :G

such that F is a monoidal functor.

PROOF. From Theorem 1.5.5 and Proposition 1.5.8, we can define an adjunction

F′ : RigDAeff
Frobét(K

[) � RigDAeff
ét (K) :G′

by putting F′ := Lι! ◦ Lj∗ ◦ (−)] ◦ LPerf∗. We remark that by Proposition 1.5.8, F′ is also
monoidal. The claim then follows from the equivalence of motives with and without transfers
(see Propositions 1.5.1 and 1.6.3). �

Our goal is to prove that the adjunction of Corollary 1.7.1 is an equivalence of categories. To
this aim, we recall the construction of the stable versions of the rigid motivic categories given in
[5, Definition 2.5.27].
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1.7.2. DEFINITION. Let T be the cokernel in PST(RigSm /K) of the unit map Λtr(K)→
Λtr(T1). We denote by RigDMét(K,Λ) or simply by RigDMét(K) the homotopy category
associated to the stable (ét,B1)-local model structure on the category of symmetric spectra
SpectΣ

T (Chét,B1 PST(RigSm /K)).

As explained in [5, Section 2.5], T is cofibrant and the cyclic permutation induces the
identity on T⊗3 in RigDMeff

ét . Moreover, by [24, Theorem 9.3], T ⊗− is a Quillen equivalence
in this category, which is actually the universal model category where this holds (in some weak
sense made precise by [24, Theorem 5.1, Proposition 5.3 and Corollary 9.4]). We recall that the
canonical functor RigDMeff

ét (K)→ RigDMét(K) is fully faithful, as proved in [5, Corollary
2.5.49] as a corollary of the Cancellation Theorem [5, Theorem 2.5.38].

1.7.3. DEFINITION. We denote by Λ(1) the motive T [−1] in RigDMeff
ét (K). For any

positive integer d we let Λ(d) be Λ(1)⊗d. The functor (·)(d) := (·)⊗Λ(d) is an auto-equivalence
of RigDMét(K) and its inverse will be denoted with (·)(−d).

1.7.4. DEFINITION. We denote by RigDMct
ét(K,Λ) or simply by RigDMct

ét(K) the full
triangulated subcategory of RigDMét(K,Λ) whose objects are the compact ones. They are of
the form M(d) for some compact object M in RigDMeff

ét (K) and some d in Z. This category
is called the category of constructible motives.

We now present an important result that is a crucial step toward the proof of our main
theorem. The motivic property it induces will be given right afterwards.

1.7.5. PROPOSITION. Let X̂ be a smooth affinoid perfectoid. The natural map of complexes

SingB̂1

(Λ(T̂d))(X̂)→ SingB̂1

(Λ(Td))(X̂)

is a quasi-isomorphism.

PROOF. We let X̂ be Spa(R,R+). A map f in Hom(X̂ × B̂n,Td) [resp. in Hom(X̂ ×
B̂n, T̂d)] corresponds to d elements f1, . . . , fd in the group (R+〈τ 1/p∞

1 , . . . , τ
1/p∞
n 〉)× [resp. in

the group (R[+〈τ 1/p∞

1 , . . . , τ
1/p∞
n 〉)×] and the map between the two objects is induced by the

multiplicative tilt map R[+〈τ 1/p∞

1 , . . . , τ
1/p∞
n 〉 → R+〈τ 1/p∞

1 , . . . , τ
1/p∞
n 〉.

We now present some facts about homotopy theory for cubical objects, which mirror classical
results for simplicial objects (see for example [35, Chapter IV]). We remark that the map of the
statement is induced by a map of enriched cubical Λ-vector spaces (see [3, Definition A.6]),
which is obtained by adding Λ-coefficients to a map of enriched cubical sets

Hom(X̂ × �̂, T̂d)→ Hom(X̂ × �̂,Td).
Any enriched cubical object has connections in the sense of [10, Section 1.2], induced by the
maps mi in [3, Definition A.6]. We recall that the category of cubical sets with connections can
be endowed with a model structure by which all objects are cofibrant and weak equivalences
are defined through the geometric realization (see [30]). Moreover, its homotopy category is
canonically equivalent to the one of simplicial sets, as cubical sets with connections form a strict
test category by [34].

The two cubical sets appearing above are abelian groups on each level and the maps defining
their cubical structure are group homomorphisms. They therefore are cubical groups. By
[50], they are fibrant objects and their homotopy groups πi coincide with the homology HiN
of the associated normalized complexes of abelian groups (see Definition 1.3.13). The Λ-
enrichment functor is tensorial with respect to the monoidal structure of cubical sets introduced
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in [11, Section 11.2] and the cubical Dold-Kan functor, associating to a cubical Λ-module with
connection its normalized complex (see [11, Section 14.8]) is a left Quillen functor. We deduce
that in order to prove the statement of the proposition it suffices to show that the two normalized
complexes of abelian groups are quasi-isomorphic. We also remark that it suffices to consider
the case d = 1.

We prove the following claim: the n-th homology of the complex N((R⊗̂O(�̂))+×) is 0

for n > 0. Let f be invertible in R+〈τ 1/p∞

1 , . . . , τ
1/p∞
n 〉 with dr,εf = 1 for all (r, ε). We claim

that f − 1 is topologically nilpotent. Up to adding a topological nilpotent element, we can
assume that f ∈ R+[τ ]. Since f is invertible, its image in (R+/R◦◦)[τ 1/p∞ ] is invertible as well.
Invertible elements in this ring are just the invertible constants. We deduce that all coefficients
of f − f(0) = f − 1 are topologically nilpotent and hence f − 1 is topologically nilpotent.
In particular, the element H = f + τn+1(1 − f) in R+〈τ 1/p∞ , τ

1/p∞

n+1 〉 is invertible, satisfies
dr,εH = 1 for all ε and all 1 ≤ r ≤ n and determines a homotopy between f and 1. This proves
the claim.

We can also prove that the 0-th homology of the complex N((R⊗̂O(�̂))+×) coincides with
R+×/(1 +R◦◦). This amounts to showing that the image of the ring map

{f ∈ R+〈τ 1/p∞〉× : f(0) = 1} → R+×

f 7→ f(1)

coincides with 1+R◦◦. Let f be invertible in R+〈τ 1/p∞〉 with f(0) = 1. As proved above, f −1
is topologically nilpotent so that also f(1)− 1 is. Vice-versa if a ∈ R is topologically nilpotent
then the element 1 + aτ ∈ R+〈τ 1/p∞〉 is invertible, satisfies f(0) = 1 and f(1) = 1 + a proving
the claim.

We are left to prove that the multiplicative map ] induces an isomorphism (R[+)×/(1 +
R[◦◦)→ (R+)×/(1 +R◦◦). We start by proving it is injective. Let a ∈ R[+ such that (a] − 1)
is topologically nilpotent. Since (a] − 1) = (a − 1)] in R+/π we deduce that the element
(a− 1)] − (a] − 1) is also topologically nilpotent. We conclude that (a− 1)] as well as (a− 1)
are topologically nilpotent, as wanted.

We now prove surjectivity. Let a be invertible in R+. In particular both a and a−1 are
power-bounded. From the isomorphism R[+/π[ ∼= R+/π we deduce that there exists an element
b ∈ R[+ such that b] = a + πα = a(1 + παa−1) for some (power bounded) element α ∈ R+.
We deduce that (1 + παa−1) lies in 1 + R◦◦ and that b] is invertible. Since the multiplicative
structure of R[ is isomorphic to lim←−x7→xp R and ] is given by the projection to the last component,
we deduce that as b] is invertible, then also b is. In particular, the image of b ∈ (R[+)× in
(R+)×/(1 +R◦◦) is equal to a as wanted. �

We recall that by Corollary 1.7.1 there is an adjunction

F: RigDMeff
ét (K[) � RigDMeff

ét (K) :G

and our goal is to prove it is an equivalence.

1.7.6. PROPOSITION. The motive GΛ(d) is isomorphic to Λ(d) for any positive integer d.

PROOF. The natural map Λ(d) → GΛ(d) is induced by the isomorphism FΛ(d) ∼= Λ(d).
We need to prove it is an isomorphism. The motive Λ(d) is a direct factor of the motive
Λ(Td)[−d] and the map above is induced by Λ(Td) → GΛ(Td). It suffices then to prove that
the map Λ(Td)→ GΛ(Td) is an isomorphism.
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By the definition of the adjoint pair (F,G) given in Corollary 1.7.1, we can equivalently
consider the adjunction

Lι!Lj∗ : PerfDAeff
ét (K) � RigDAeff

ét (K) :Rj∗Lι∗

and prove that Λ(T̂d)→ (Rj∗ ◦ Lι∗)Λ(Td) is an isomorphism in PerfDAeff
ét (K).

From Proposition 1.7.5 we deduce that the complexes SingB̂1

Λ(T̂d) and j∗ SingB̂1

Λ(Td)
are quasi-isomorphic in ChPsh(PerfSm). By means of Remark 1.7.7 the quasi-isomorphism
above can be restated as

SingB̂1

Λ(T̂d) ∼= Rj∗ SingB̂1

Λ(Td).
Due to Proposition 1.3.26 the complex SingB̂1 F is B̂1-equivalent to F for any complex F .
This fact, together with the isomorphism Lι∗Λ(Td) ∼= Λ(Td) implies Λ(T̂d) ∼= Rj∗Lι∗Λ(Td) as
wanted.

�

1.7.7. REMARK. Since j∗ commutes with ét-sheafification, it preserves ét-weak equivalences.
It also commutes with SingB̂1

and therefore preserves B1-weak equivalences. We conclude that
Rj∗ = j∗ and in particular Rj∗ commutes with small direct sums.

We are finally ready to present the proof of our main result.

1.7.8. THEOREM. The adjunction

F: RigDMeff
ét (K[) � RigDMeff

ét (K) :G

is a monoidal triangulated equivalence of categories.

PROOF. By Theorem 1.5.5 the functor Lι!Lj∗ : PerfDAeff
ét (K) → RigDAeff

ét (K) sends
the motive Λ(X̂) associated to a perfectoid X̂ = lim←−hXh to the motive Λ(X0) associated to
X0 up to rescaling indices. It is triangulated, commutes with sums, and its essential image
contains motives Λ(X0) of varieties X0 having good coordinates X0 → TN and such that
Xh = X0 ×TN TN〈υ1/ph〉 → X0 is an isomorphism in RigDAeff

ét (K) for all h. We call these
rigid varieties with very good coordinates. By Proposition 1.5.3, for every rigid variety with
good coordinatesX0 → TN there exists an index h such thatXh = X0×TN TN〈υ±1/ph〉 has very
good coordinates. Since charK = 0 the map TN〈υ±1/ph〉 → TN is finite étale, and therefore
also the map Xh → X0 is. We conclude that any rigid variety with good coordinates has a finite
étale covering with very good coordinates, and hence the motives associated to varieties with
very good coordinates generate the étale topos. In particular, the motives associated to them
generate RigDAeff

ét (K) and hence the functor Lι! ◦ Lj∗ maps a set of compact generators to a
set of compact generators.

Since F is monoidal and F(Λ(1)) = Λ(1) it extends formally to a monoidal functor from
the category RigDAct

ét(K
[) to RigDAét(K) by putting F(M(−d)) = F(M)(−d). Let now

M , N in RigDMét(K
[) be twists of the motives associated to the analytification of smooth

projective varieties X resp. X ′. They are strongly dualizable objects of RigDMét(K
[) since

Λtr(X) and Λtr(X
′) are strongly dualizable in DMét(K

[). Fix an integer d such that N∨(d)
lies in RigDMeff

ét (K[). The objects M , N , M∨ and N∨ lie in RigDMct
ét(K

[) and moreover
F(N∨) = F(N)∨. From Lemma 1.7.9 we also deduce that the functor F induces a bijection

RigDMct
ét(K

[)(M ⊗N∨,Λ) ∼= RigDMét(K)(F(M)⊗ F(N)∨,Λ).

By means of the Cancellation theorem [5, Corollary 2.5.49] the first set is isomorphic to the
set RigDMeff

ét (K[)(M,N) and the second is isomorphic to RigDMeff
ét (K)(F(M),F(N)). We
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then deduce that all motives M associated to the analytification of smooth projective varieties
lie in the left orthogonal of the cone of the map N → GFN which is closed under direct
sums and cones. Since Λ is a Q-algebra, such motives generate RigDMeff

ét (K[) by means of
[5, Theorem 2.5.35]. We conclude that N ∼= GFN . Therefore the category T of objects N
such that N ∼= GFN contains all motives associated to the analytification of smooth projective
varieties. It is clear that T is closed under cones. The functors F and Lι∗ commute with direct
sums as they are left adjoint functors. As pointed out in Remark 1.7.7 also the functor Rj∗ does.
Since G is a composite of Rj∗Lι∗ with equivalences of categories, it commutes with small sums
as well. We conclude that T is closed under direct sums. Using again [5, Theorem 2.5.35] we
deduce T = RigDMeff

ét (K[) proving that F is fully faithful. This is enough to prove it is an
equivalence of categories, by applying [5, Lemma 1.3.32]. �

1.7.9. LEMMA. Let M be an object of RigDAct
ét(K

[). The functor F induces an isomor-
phism

RigDMct
ét(K

[)(M,Λ) ∼= RigDMét(K)(F(M),Λ).

PROOF. Suppose that d is an integer such that M(d) lies in RigDAeff
ét (K[). One has

FΛ(d) ∼= Λ(d) and by Proposition 1.7.6 the unit map η : Λ(d)→ GFΛ(d) is an isomorphism.
In particular from the adjunction (F,G) we obtain a commutative square

RigDMeff
ét (K[)(M(d),Λ(d))

F //

=

��

RigDMeff
ét (K)(FM(d),FΛ(d))

∼
��

RigDMeff
ét (K[)(M(d),Λ(d))

η

∼
// RigDMeff

ét (K)(M(d), (GF)Λ(d))

in which the top arrow is then an isomorphism. By the Cancellation theorem [5, Corollary
2.5.49] we also obtain the following commutative square

RigDMct
ét(K

[)(M(d),Λ(d))
F //

∼
��

RigDMét(K)(FM(d),Λ(d))

∼
��

RigDMeff
ét (K[)(M(d),Λ(d))

F

∼
// RigDMeff

ét (K)(FM(d),Λ(d))

and hence also the top arrow is an isomorphism. We conclude the claim from the following
commutative square, whose vertical arrows are isomorphisms since the functor (·)(d) is invertible
in RigDMét(K):

RigDMct
ét(K

[)(M,Λ)
F //

∼(·)(d)
��

RigDMét(K)(FM,Λ)

∼(·)(d)

��
RigDMct

ét(K
[)(M(d),Λ(d))

F

∼
// RigDMét(K)(FM(d),Λ(d)).

�

1.7.10. REMARK. In the proof of Theorem 1.7.8 we again used the hypothesis that Λ is a
Q-algebra in order to apply [5, Theorem 2.5.35] which states that the motives associated to the
analytification of smooth projective varieties generate RigDMeff

ét (K[).

We remark that the proof above also induces the following statement.
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1.7.11. COROLLARY. The functor

F : RigDMct
ét(K

[)→ RigDMct
ét(K)

is a monoidal equivalence of categories.

1.7.12. REMARK. The reader may wonder if the equivalence RigDMeff
ét (K,Λ) ∼=

RigDMeff
ét (K[,Λ) still holds true for an arbitrary ring of coefficients Λ such that p ∈ Λ×. With

this respect, the case of rational coefficients that we tackled in this thesis is particularly mean-
ingful. Indeed, it is expected that if l is coprime to p then the category RigDMeff

ét (K,Z/lZ)
coincides with the derived category of Z/lZ-Galois representations, in analogy to the case
of DMeff

ét (K,Z/lZ). It would then be equivalent to RigDMeff
ét (K[,Z/lZ) by the theorem of

Fontaine and Wintenberger.



CHAPTER 2

Rigid motives with and without transfers

The purpose of this chapter is to prove an equivalence of categories RigDAeff
Frobét(K,Λ) ∼=

RigDMeff
ét (K,Λ) adapting the proof of [3, Theorem B.1] and [7, Theorem B.1] to the rigid

analytic setting and to an arbitrary characteristic. To this aim, we first need to present a
refinement of the étale topology.

2.1. The Frob-topology

In all this section, we assume that K is a perfect field which is complete with respect to a
non-archimedean norm. Unless otherwise stated, we will use the term “variety” to indicate an
affinoid rigid analytic variety over K.

2.1.1. DEFINITION. A map f : Y → X of varieties over K is called a Frob-cover if it is
finite, surjective and for every affinoid U in X the affinoid inverse image V = f−1(U) is such
that the induced map of rings O(U)→ O(V ) is radicial.

2.1.2. REMARK. By [21, Corollary IV.18.12.11] a morphism of schemes is finite, surjective
and radicial if and only if it is a finite universal homeomorphism. The same holds true for rigid
analytic varieties.

If charK = p and X is a variety over K then the absolute n-th Frobenius map X → X
given by the elevation to the pn-th power, factors over a map X → X(n) where we denote
by X(n) the base change of X by the absolute n-th Frobenius map K → K. We denote by
Φ(n) the map X → X(n) and we call it the relative n-th Frobenius. Since K is perfect, X(n)

is isomorphic to X endowed with the structure map X → SpaK
Φ−n→ SpaK and the relative

n-th Frobenius is isomorphic to the absolute n-th Frobenius of X over Fp. We can also define
X(n) for negative n to be the base change of X over the the map Φn : K → K which is again

isomorphic to X endowed with the structure map X → SpaK
Φ−n→ SpaK. The Frobenius map

induces a morphism X(−1) → X and the collection of maps {X(−1) → X} defines a coverage
(see for example [31, Definition C.2.1.1]).

We also define X(n) to be X and the maps Φ: X(n−1) → X(n) to be the identity maps for
all n ∈ Z in case charK = 0.

2.1.3. PROPOSITION. Let Y → X be a Frob-cover between normal varieties over K. There
exists an integer n and a map X(−n) → Y such that the composite map X(−n) → Y → X
coincides with Φn and the composite map Y → X → Y (n) coincides with Φn.

PROOF. We can equally prove the statement for affine schemes. Let f : Y → X a finite
universal homeomorphism of affine normal schemes over K. By [33, Proposition 6.6] there
exists an integer n and a map h : X → Y (n) such that the composite map Y → X → Y (n)

coincides with the relative n-th Frobenius. We remark that the map Y → X is an epimorphism
(in the categorical sense) of normal varieties. From the equalities fhf (n) = Φ

(n)
Y f (n) = fΦ

(n)
X

37
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we then conclude that the composite map X → Y (n) → X(n) coincides with the n-relative
Frobenius. This proves the claim. �

2.1.4. DEFINITION. Let B be a normal variety over K. We define RigSm /B to be the
category of varieties which are smooth over B. We denote by τét the étale topology.

2.1.5. DEFINITION. Let B be a normal variety over K. We define RigNor /B to be the
category of normal varieties over B.

• We denote by τFrob the topology on RigNor /B induced by Frob-covers.
• We denote by τét the étale topology.
• We denote by τFrobét the topology generated by τFrob and τét.
• We denote by τfh the topology generated by covering families {fi : Xi → X}i∈I such

that I is finite, and the induced map tfi : ti∈I Xi → X is finite and surjective.
• We denote by τfhét the topology generated by τfh and τét.

2.1.6. REMARK. The fhét-topology is often denoted by qfh (see [51]). We stick to the
notation fhét in order to be consistent with [3].

We are not imposing any additivity condition on the Frob-topology, i.e. the families {Xi →
ti∈IXi}i∈I are not Frob-covers. This does not interfere much with our theory since we will
mostly be interested in the Frobét-topology, with respect to which such families are covering
families.

2.1.7. REMARK. The fh-topology is obviously finer that the Frob-topology, which is the
trivial topology in case charK = 0.

2.1.8. REMARK. The category of normal affinoid is not closed under fiber products, and the
fh-coverings do not define a Grothendieck pretopology. Nonetheless, they define a coverage
which is enough to have a convenient description of the topology they generate (see for example
[31, Section C.2.1]).

2.1.9. REMARK. A particular example of fh-covers is given by pseudo-Galois covers which
are finite, surjective maps f : Y → X of normal integral affinoid varieties such that the field
extension K(Y ) → K(X) is obtained as a composition of a Galois extension and a finite,
purely inseparable extension. The Galois group G associated to the extension coincides with
Aut(Y/X). As shown in [5, Corollary 2.2.5], a presheaf F on RigNor /B with values in a
complete and cocomplete category is an fh-sheaf if and only if the two following conditions are
satisfied.

(1) For every finite set {Xi}i∈I of objects in RigNor /B it holds F(ti∈IXi) ∼=∏
i∈I F(Xi).

(2) For every pseudo-Galois covering Y → X with associated Galois group G the map
F(X)→ F(Y )G is invertible.

2.1.10. DEFINITION. Let B be a normal variety over K.

• We denote by RigSm /BPerf the 2-limit category 2−lim−→n
RigSm /B(−n) with respect to

the functors RigSm /B(−n−1) → RigSm /B(−n) induced by the pullback along the map
B(−n−1) → B(−n). More explicitly, it is equivalent to the category CB[S−1] where CB

is the category whose objects are pairs (X,−n) with n ∈ N and X ∈ RigSm /B(−n)

and morphisms CB((X,−n), (X ′,−n′)) are maps f : X → X ′ forming commutative
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squares

X

��

f // X ′

��

B(−n) Φ // B(−n′)

and where S is the class of canonical maps (X ′ ×B(−n′) B(−n),−n)→ (X ′,−n′) for
each X ∈ RigSm /B(−n′) and n ≥ n′ (see [20, Definition VI.6.3]).
• We say that a map (X,−n)→ (X ′,−n′) of RigSm /BPerf is a Frob-cover if the map
X → X ′ is a Frob-cover. We denote by τFrob the topology on RigSm /BPerf induced
by Frob-covers.
• We say that a collection of maps {(Xi,−ni) → (X,−n)}i∈I is an étale cover if the

induced collection {Xj → X} is. We denote by τét the topology on RigSm /BPerf

generated by the étale coverings. It coincides with the one induced by putting the étale
topology on each category RigSm /B(−n) (see [1, Theorem VI.8.2.3]).
• We denote by τFrobét the topology generated by τFrob and τét.

We now investigate some properties of the Frob-topology.

2.1.11. PROPOSITION. Let B be a normal variety over K.
• A presheaf F on RigNor /B is a Frob-sheaf if and only if F(X(−1)) ∼= F(X) for all

objects X in RigNor /B.
• A presheaf F on RigSm /BPerf is a Frob-sheaf if and only if F(X(−1),−n − 1) ∼=
F(X,−n) for all objects (X,−n) in RigSm /BPerf .

PROOF. The two statements are analogous and we only prove the claim for RigNor /B. By
means of [31, Lemma C.2.1.6 and Lemma C.2.1.7] the topology generated by maps f : Y → X
which factor a power of Frobenius X(−n) → X is the same as the one generated by the coverage
X(−1) → X . Using Proposition 2.1.3, we conclude that the Frob-topology coincides with the
one generated by the coverage {X(−1) → X}. Since the Frobenius map is a monomorphism of
normal varieties, the sheaf condition associated to the coverage X(−1) → X is simply the one of
the statement by [31, Lemma 2.1.3]. �

2.1.12. COROLLARY. Let B be a normal variety over K.
• The class Φ of maps {X(−r) → X}r∈N,X∈RigNor /B admits calculus of fractions, and its

saturation consists of Frob-covers. In particular, the continuous map

(RigNor /B,Frob)→ RigNor /B[Φ−1]

defines an equivalence of topoi.
• The class Φ of maps {(X(−r),−n− r)→ (X,−n)}r∈N,(X,n)∈RigSm /BPerf admits calcu-

lus of fractions, and its saturation consists of Frob-covers. In particular, the continuous
map

(RigSm /BPerf ,Frob)→ RigSm /BPerf [Φ−1]

defines an equivalence of topoi.

PROOF. We only prove the first claim. The fact that Φ admits calculus of fractions is an
easy check, and the characterization of its saturation follows from Proposition 2.1.3. The sheaf
condition for a presheaf F with respect to the Frob-topology is simply F(X(−1)) ∼= F(X) by
Corollary 2.1.11 hence the last claim. �
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2.1.13. REMARK. We follow the notations introduced in Definition 2.1.10. Any pullback of
a finite, surjective radicial map between normal varieties is also finite, surjective and radicial. In
particular, ifB is a normal variety, the maps in the class S are invertible in RigNor /B[Φ−1]. The
functor CB → RigNor /B[Φ−1] defined by mapping (X,−n) to X factors through a functor
RigSm /BPerf → RigNor /B[Φ−1]. In particular, there is a functor RigSm /BPerf [Φ−1] →
RigNor /B[Φ−1] defined by sending (X,−n) to X hence, by Corollary 2.1.12, there is a functor
ShFrob(RigSm /BPerf)→ ShFrob(RigNor /B).

2.1.14. REMARK. If e : B′ → B is a finite map of normal varieties, any étale hypercover
U → B′ has a refinement by a hypercover U ′ obtained by pullback from an étale hypercover V
of B (see for example [47, Section 44.45]). In particular, the functor e∗ : Psh(RigSm /B′)→
Psh(RigSm /B) commutes with the functor aét of ét-sheafification. The same holds true for
the functor e∗ : Psh(RigSm /B′Perf)→ Psh(RigSm /BPerf).

From now on, we fix a commutative ring Λ and work with Λ-enriched categories. In
particular, the term “presheaf” should be understood as “presheaf of Λ-modules” and similarly
for the term “sheaf”. It follows that the presheaf Λ(X) represented by an object X of a category
C sends an object Y of C to the free Λ-module Λ Hom(Y,X).

2.1.15. ASSUMPTION. Unless otherwise stated, we assume from now on that Λ is a Q-
algebra and we omit it from the notations.

The following facts are immediate, and will also be useful afterwards.

2.1.16. PROPOSITION. Let B be a normal variety over K.
• If F is an étale sheaf on RigSm /BPerf [resp. on RigNor /B] then aFrobF is a Frobét-

sheaf.
• If F is a Frob-sheaf on RigSm /BPerf [resp. on RigNor /B] then aétF is a Frobét-

sheaf.

PROOF. We only prove the claims for RigNor /B. First, suppose that F is an étale sheaf.
By Proposition 2.1.3, we obtain that aFrobF(X) = lim−→n

F(X(−n)). Whenever U → X is étale,
then U ×X X(−n) ∼= U (−n) and U (−n) ×X(−n) U (−n) ∼= (U ×X U)(−n) so that the following
diagram is exact

0→ F(X(−n))→ F(U (−n))→ F((U ×X U)(−n)).

The first claim the follows by taking the limit over n.
We now prove the second claim. Suppose F is a Frob-sheaf. For any étale covering U → X

we indicate with U ′ the associated covering of X(−1) obtained by pullback. From Remark 2.1.14
one can compute the sections of aétF(X(−1)) with the formula

aétF(X(−1)) = lim−→
U→X

ker (F(U ′0)→ F(U ′1))

where U → X varies among hypercovers of X . Since F is a Frob-sheaf, then F(U ′0) ∼= F(U0)
and F(U ′1) ∼= F(U1). The formula above then implies

aétF(X(−1)) = lim−→
U→X

ker (F(U0)→ F(U1)) = aétF(X)

proving the claim. �

2.1.17. PROPOSITION. Let B be a normal variety over K. If F is a fh-sheaf on RigNor /B
then aétF is a fhét-sheaf.
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PROOF. Let f : X ′ → X be a pseudo-Galois cover with associated group G. In light of
Remark 2.1.9, we need to show that aétF(X) ∼= aétF(X ′)G. For any étale covering U → X we
indicate with U ′ the associated covering of X ′ obtained by pullback. From Remark 2.1.14 one
can compute the sections of aétF(X ′) with the formula

aétF(X ′) = lim−→
U→X

ker (F(U ′0)→ F(U ′1))

where U → X varies among hypercovers of X . Taking the G-invariants is an exact functor as Λ
is a Q-algebra and when applied to the formula above it yields

aétF(X ′)G = lim−→
U→X

ker
(
F(U ′0)G → F(U ′1)G

)
= lim−→
U→X

ker (F(U0)→ F(U1)) = aétF(X)

as wanted. �

2.1.18. PROPOSITION. Let B be a normal variety over K. The canonical inclusions

oFrob : ShFrob(RigNor /B)→ Psh(RigNor /B)

oFrob : ShFrob(RigSm /BPerf)→ Psh(RigSm /BPerf)

ofh : Shfh(RigNor /B)→ Psh(RigNor /B)

are exact.

PROOF. In light of Proposition 2.1.11 the statements about oFrob are obvious. Since Λ is
a Q-algebra, the functor of G-invariants from Λ[G]-modules to Λ-modules is exact. The third
claim then follows from Remark 2.1.9. �

We now investigate the functors of the topoi introduced above induced by a map of varieties
B′ → B.

2.1.19. PROPOSITION. Let f : B′ → B be a map of normal varieties over K.
• Composition with f defines a functor f] : RigNor /B′ → RigNor /B which induces

the following adjoint pair

f] : ChShFrobét(RigNor /B′) � ChShFrobét(RigNor /B) :f ∗

• The base change over f defines functors f (−n)∗ : RigSm /B(−n) → RigSm /B′(−n)

which induce the following adjoint pair

f ∗ : ChShFrobét(RigSm /BPerf) � ChShFrobét(RigSm /B′Perf) :f∗

• If f is a Frob-cover, the functors above are equivalences of categories.
• If f is smooth, the composition with f defines functors f (−n)

] : RigSm /B′(−n) →
RigSm /B(−n) which induce the following adjoint pair

f] : ChShFrobét(RigSm /B′Perf) � ChShFrobét(RigSm /BPerf) :f ∗

PROOF. We initially remark that the functors f (−n)∗ induce a functor f ∗ : CB → CB′ where
CB is the fibered category introduced in Definition 2.1.10. As cartesian squares are mapped to
cartesian squares, they also induce a functor f ∗ : RigSm /BPerf → RigSm /BPerf .

The existence of the first two adjoint pairs is then a formal consequence of the continuity of
the functors f] and f ∗.

Let now f be a Frob-cover. The functors f ∗ : RigSm /BPerf [Φ−1]→ RigSm /B′Perf [Φ−1]
and f] : RigNor /B′[Φ−1] → RigNor /B[Φ−1] are equivalences, and we conclude the third
claim by what proved above and Corollary 2.1.12.
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For the fourth claim, we use a different model for the Frobét-topos on RigSm /BPerf . The
fibered category CB can be endowed with the Frob-topology and the Frobét-topology. Follow-
ing the proof of Corollary 2.1.12, the map (CB,Frob)→ CB[Φ−1] induces an equivalence of
topoi. Moreover, the canonical functor CB[Φ−1]→ RigSm /BPerf [Φ−1] induces an equivalence
of categories.

The existence of the last Quillen functor is therefore a formal consequence of the continuity
of the functor f] : (CB′ [Φ

−1], ét)→ (CB[Φ−1], ét). �

2.1.20. REMARK. Let f : B′ → B be a map of normal varieties. The image via f ∗ of the
presheaf represented by (X,−n) is the the presheaf represented by (X ×B B′(−n),−n) and if f
is smooth, the image via f] of the presheaf represented by (X ′,−n) is the sheaf represented by
(X ′,−n).

2.2. Rigid motives and Frob-motives

We apply the techniques and the terminology of Section 1.3 to the relative étale and Frob-
étale site. We recall that the ring of coefficients Λ is assumed to be a Q-algebra.

The category of complexes of presheaves Ch(Psh(C)) can be endowed with the projective
model structure for which weak equivalences are quasi-isomorphisms and fibrations are maps
F → F ′ such that F(X)→ F ′(X) is a surjection for all X in C (cfr [23, Section 2.3] and [6,
Proposition 4.4.16]).

We recall that from Proposition 1.3.3, whenever (C, τ, I) is a site with an interval, the Bous-
field localization over τ -local, I-local and (τ, I)-local maps is well defined. The induced model
categories will be denoted by Chτ Psh(C), ChI Psh(C) and Chτ,I Psh(C) respectively. The
model category Chτ Psh(C) is canonically Quillen equivalent to the projective model structure
on the category of complexes of sheaves ChShτ (C)

2.2.1. DEFINITION. Let B be a normal variety over K.
• The triangulated homotopy category of the localization Chét,B1 Psh(RigSm /B) will

be denoted by RigDAeff
ét (B,Λ).

• The triangulated homotopy category of the localization Chét,B1 Psh(RigSm /BPerf)

will be denoted by RigDAeff
ét (BPerf ,Λ) while the triangulated homotopy category of

ChFrobét,B1 Psh(RigSm /BPerf) will be denoted by RigDAeff
Frobét(B

Perf ,Λ).
• The triangulated homotopy category of the localization ChFrobét,B1 Psh(RigNor /B)

will be denoted by DFrobét,B1(RigNor /B,Λ) while the triangulated homotopy category
of Chfhét,B1 Psh(RigNor /B) will be denoted by Dfh

ét,B1(RigNor /B,Λ).
• If C is one of the categories RigSm /B, RigSm /BPerf and RigNor /B and η ∈
{ét,Frob, fh,Frobét, fhét,B1, (ét,B1), (Frobét,B1), (fhét,B1)} we say that a map in
ChPsh(C) is a η-weak equivalence if it is a weak equivalence in the model structure
Chη Psh(C) whenever this makes sense.
• We will omit Λ from the notation whenever the context allows it. The image of a

variety X in one of these categories will be denoted by Λ(X).

We now want to introduce the analogue of the previous definitions for motives with trans-
fers. By Remark 2.1.13 the map (X,−n) 7→ X induces a functor ShFrob(RigSm /BPerf) →
ShFrob(RigNor /B). If we compose it with the Yoneda embedding and the functor afh of
fh-sheafification we obtain a functor

RigSm /BPerf → ShFrob(RigSm /BPerf)→ Shfh(RigNor /B).
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2.2.2. DEFINITION. Let B be a normal variety over K.
• We define the category RigCor /B as the category whose objects are those of

RigSm /B and whose morphisms Hom(X, Y ) are computed in Shfh(RigNor /B).
The category Psh(RigCor /B) will be denoted by PST(RigSm /B).
• We define the category RigCor /BPerf as the category whose objects are those of

RigSm /BPerf and whose morphisms Hom(X, Y ) are computed in Shfh(RigNor /B).
The category Psh(RigCor /BPerf) will be denoted by PST(RigSm /BPerf).

We remark that, as Λ is a Q-algebra, our definition of RigCor /B is equivalent to the one
given in [5, Definition 2.2.17]. We also remark that the inclusions of categories RigSm /B →
RigCor /B and RigSm /BPerf → RigCor /BPerf induce the following adjunctions:

atr : ChPsh(RigSm /B) � ChPST(RigSm /B) :otr.

atr : ChPsh(RigSm /BPerf) � ChPST(RigSm /BPerf) :otr.

We now define the category of motives with transfers.

2.2.3. PROPOSITION. Let B be a normal variety over K and let C be either the category
RigSm /B or the category RigSm /BPerf . The projective model category ChPST(C) admits
a left Bousfield localization Chét PST(C) with respect to Sét, the class of of maps f such that
otr(f) is a ét-weak equivalence. It also admits a further Bousfield localization Chét,B1 PST(C)
with respect to the set formed by all maps Λ(B1

X)[i] → Λ(X)[i] by letting X vary in C and i
vary in Z.

PROOF. The proof of [5, Theorem 2.5.7] also applies in our situation. For the second
statement, it suffices to apply [22, Theorem 4.1.1]. �

2.2.4. REMARK. By means of an étale version of [5, Corollary 2.5.3], if F is a presheaf
with transfers then the associated étale sheaf aétF can be endowed with a unique structure of
presheaf with transfers such that F → aétF is a map of presheaves with transfers. The class Sét

can then be defined intrinsecally, as the class of maps F → F ′ inducing isomorphisms of étale
sheaves with transfers aétHiF → aétHiF ′.

2.2.5. DEFINITION. Let B be a normal variety over K.
• The triangulated homotopy category of the localization Chét,B1 PST(RigSm /B) will

be denoted by RigDMeff
ét (B,Λ).

• The triangulated homotopy category of the localization Chét,B1 PST(RigSm /BPerf)

will be denoted by RigDMeff
ét (BPerf ,Λ).

• We will omit Λ from the notation whenever the context allows it. The image of a
variety X in one of these categories will be denoted by Λtr(X).

We remark that if charK = 0 the two definitions above coincide. Also, if B is the spectrum
of the perfect field K the category RigDMeff

ét (BPerf) coincides with RigDMeff
ét (K). In this

case, the definition of RigDAeff
Frobét(B

Perf) also coincides with the one of RigDAeff
Frobét(K)

given in Definition 1.6.2, as the following fact shows.

2.2.6. PROPOSITION. Let B be a normal variety over K. There is a Quillen equiva-
lence between the category ChFrobét(RigSm /BPerf) and the left Bousfield localization of
Chét Psh(RigSm /BPerf) over the set of all shifts of maps Λ(X(−1),−n− 1)→ Λ(X,−n) as
(X,−n) varies in RigSm /BPerf .
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PROOF. From Lemmas 2.1.16, 2.1.18 and 2.2.7 we conclude that Frobét-local objects are
those which are Frob-local and ét-local. We can then conclude using Lemma 2.2.8. �

2.2.7. LEMMA. Let C be a category endowed with two Grothendieck topologies τ1, τ2 and let
τ3 be the topology generated by τ1 and τ2. We denote by aτi the associated sheafification functor
and with oτi their right adjoint functors. If oτ1 is exact and aτ3 = aτ2aτ1 then the following
categories are canonically equivalent:

(1) The homotopy category of Chτ3 Psh(C).
(2) The full triangulated subcategory of D(Psh(C)) formed by objects which are τ3-local.
(3) The full triangulated subcategory of D(Psh(C)) formed by objects which are τ1-local

and τ2-local.

PROOF. The equivalence between the first and the second category follows by definition of
the Bousfield localization. We are left to prove the equivalence between the second and the third.
We remark that τ3-local objects are in particular (τ1, τ2)-local.

Since oτ1 is exact, the category of τ1-local objects coincides with the category of complexes
quasi-isomorphic to complexes of τ1-sheaves. Consider the model category Chτ3(Shτ1(C))
which is the Bousfield localization of Ch(Shτ1(C)) over the class of maps of complexes
inducing isomorphisms on the τ3-sheaves associated to the homology presheaves, that we will
call τ3-equivalences. From the assumption aτ3 = aτ2aτ1 the class of τ3-equivalences coincides
with the class of maps Sτ2 of complexes inducing isomorphisms on the τ2-sheaves associated
to the homology τ1-sheaves. Hence Chτ3(Shτ1(C)) coincides with Chτ2(Shτ1(C)) and its
derived category is equivalent to the category of (τ1, τ2)-local complexes.

Because of the following Quillen adjunction

Laτ1 = aτ1 : Ho(Chτ3 Psh(C) � Ho(Chτ3 Shτ1(C)) :Roτ1 = oτ1 .

we conclude that the image via oτ1 of a τ2-local complex of sheaves i.e. a (τ1.τ2)-local complex,
is τ3-local, as wanted. �

2.2.8. LEMMA. Let B be a normal variety over K. A projectively fibrant object of
ChPsh(RigSm /BPerf) is Frob-local if and only if it is local with respect to the set of all
shifts of maps Λ(X(−1),−n− 1)→ Λ(X,−n) as (X,−n) varies in RigSm /BPerf .

PROOF. We initially remark that a fibrant complex F is local with respect to the set of
maps in the claim if and only if (HiF)(X,−n) ∼= (HiF)(X(−1),−n− 1) for all X and i. By
Proposition 2.1.3, this amounts to say that HiF is a Frob-sheaf for all i.

Suppose now that F is fibrant and Frob-local. Since the map of presheaves Λ(X(−1),−n−
1) → Λ(X,−n) induces an isomorphism on the associated Frob-sheaves, we deduce that
(HiF)(X(−1),−n− 1) ∼= (HiF)(X,−n). This implies that HiF is a Frob-sheaf and hence F
is local with respect to the maps of the claim, as wanted.

Suppose now that F is fibrant and local with respect to the maps of the claim. Let F →
CFrobF a Frob-weak equivalence to a fibrant Frob-local object. By definition, we deduce that
the Frob-sheaves associated to HiF and to HiC

FrobF are isomorphic. On the other hand, we
know that these presheaves are already Frob-sheaves, and hence the map F → CFrobF is a
quasi-isomorphism of presheaves and F is Frob-local. �

We now want to find another model for the category Dfh
ét,B1(RigNor /B). This is possible by

means of the model-categorical machinery developed above.
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By Remark 2.1.9 an object F in ChPsh(RigNor /B) is fh-local if and only if it is additive
and

DPsh(RigNor /B)(Λ(X),F)→ DPsh(RigNor /B)(Λ(X ′),F)Aut(X′/X)

is an isomorphism, for all pseudo-Galois coverings X ′ → X . Therefore, if we consider
DFrobét,B1(RigNor /B) as the subcategory of (B1,Frobét)-local objects in DPsh(RigNor /B)
we say that an object F of DFrobét,B1(RigNor /B) is fh-local if and only if

DFrobét,B1(RigNor /B)(Λ(X),F)→ DFrobét,B1(RigNor /B)(Λ(X ′),F)Aut(X′/X)

is an isomorphism, for all pseudo-Galois coverings X ′ → X .

2.2.9. PROPOSITION. Let B be a normal variety over K. The category Dfh
ét,B1(RigNor /B)

is canonically isomorphic to the category of fh-local objects in DFrobét,B1(RigNor /B).

PROOF. It suffices to prove the claim before performing the B1-localization on each category.
The statement then follows from Propositions 2.1.16 and 2.1.17 together with Lemmas 2.1.18
and 2.2.7. �

We now study some functoriality properties of the categories just defined, and later prove a
fundamental fact: the locality axiom (see [37, Theorem 3.2.21]).

2.2.10. PROPOSITION. Let f : B′ → B be a map of normal varieties over K. The first two
adjoint pairs of Proposition 2.1.19 induce the following Quillen pairs:

Lf] : DFrobét,B1(RigNor /B′) � DFrobét,B1(RigNor /B) :Rf ∗

Lf ∗ : RigDAeff
Frobét(B

Perf) � RigDAeff
Frobét(B

′Perf) :Rf∗
which are equivalences whenever f is a Frob-covering. Moreover, if f is a smooth map, the
third adjoint pair of Proposition 2.1.19 induces a Quillen pair:

Lf] : RigDAeff
Frobét(B

′Perf) � RigDAeff
Frobét(B

Perf) :Lf ∗

PROOF. The statement is a formal consequence of Proposition 2.1.19 and the formulas
f ∗(B1

X) = B1
f∗(X) and f](B1

X) = B1
X . �

2.2.11. PROPOSITION. Let e : B′ → B be a finite map of normal varieties over K. The
functor

e∗ : ChPsh(RigSm /B′Perf)→ ChPsh(RigSm /BPerf)

preserves the (Frobét,B1)-equivalences.

PROOF. Let e : B′ → B be a finite map of normal varieties. The functor e∗ is induced by the
map RigSm /BPerf → RigSm /B′Perf sending (X,−n) to (X ×B(−n) B′(−n),−n). From Re-
mark 2.1.14 it commutes with ét-sheafification. As the image of (X(−1),−n− 1) is isomorphic
to ((X×B(−n)B′(−n))(−1),−n−1) we deduce from Corollary 2.1.12 that e∗ commutes with Frob-
sheafification. Therefore by Proposition 2.1.16 we deduce that e∗ : Psh(RigSm /B′Perf) →
Psh(RigSm /BPerf) commutes with the functor aFrobét of Frobét-sheafification, hence it pre-
serves Frobét-equivalences.

We now prove that it also preserves B1-equivalences. By [6, Proposition 4.2.74] it suffices
to show that e∗(Λ(B1

V )→ Λ(V )) is a B1-weak equivalence for any V in RigSm /X ′Perf . This
follows from the explicit homotopy between the identity and the zero map on e∗(Λ(B1

V )) (see
the argument of [5, Theorem 2.5.24]). �

The following property is an extension of [5, Theorem 1.4.20] and referred to as the locality
axiom.



2.2. RIGID MOTIVES AND FROB-MOTIVES 46

2.2.12. THEOREM. Let i : Z ↪→ B be a closed immersion of normal varieties over K and
let j : U ↪→ B be the open complementary. For every object M in RigDAeff

Frobét(B
Perf) there is

a distinguished triangle
Lj]Lj∗M →M → Ri∗Li∗M →

In particular, the pair (Lj∗,Li∗) is conservative.

PROOF. First of all, we remark that by Proposition 2.2.11 one has Ri∗ = i∗. In partic-
ular it suffices to prove the claim before performing the localization over the shifts of maps
Λ(X(−1),−n− 1)→ Λ(X,−n) i.e. in the category RigDAeff

ét (BPerf).
The functors Lj] Lj∗ and Li∗ commute with small sums because they admit right adjoint

functors. Also Ri∗ does, since it holds Ri∗ = i∗. We conclude that the full subcategory of
RigDAeff

Frobét(B
Perf) of objects M such that

Lj]Lj∗M →M → Ri∗Li∗M →
is a distinguished triangle is closed under cones, and under small sums. We can then equivalently
prove the claim in the subcategory RigDAct

ét(B
Perf) of compact objects, since these motives

generate RigDAeff
ét (BPerf) as a triangulated category with small sums.

Because of Lemma 2.2.13 and Proposition 2.2.11, we can prove the claim for each
category RigDAeff

ét (B(−n)). Therefore, it suffices to prove the claim for the categories
RigDAeff

Nis(B
(−n)) as defined in [5], since the category RigDAeff

ét (B(−n)) is a further localiza-
tion of RigDAeff

Nis(B
(−n)). In this case, the statement is proved in [5, Theorem 1.4.20]. �

2.2.13. LEMMA. Let B be a normal variety over K. The functors RigSm /B(−n) →
RigSm /BPerf induce a triangulated equivalence of categories

lim−→
n

RigDAct
ét(B

(−n)) ∼= RigDAct
ét(B

Perf)

where we denote by RigDAct
ét(B

(−n)) [resp. with RigDAct
ét(B

Perf)] the subcategory of compact
objects of RigDAeff

ét (B(−n)) [resp. of RigDAeff
ét (BPerf)].

PROOF. The functor lim−→n
RigDAct

ét(B
(−n))→ RigDAct

ét(B
Perf) is triangulated and sends

the objects Λ(X)[i] which are compact generators of the first category, to a set of compact
generators of the second. Up to shifting indeces, it therefore suffices to show that for X , Y in
RigSm /B one has

lim−→
n

RigDAeff
ét (B(−n))(Λ(X ×B B(−n)),Λ(Y ×B B(−n))) ∼= RigDAeff

ét (BPerf)(Λ(X̄),Λ(Ȳ ))

where we denote by X̄ = (X, 0) and Ȳ = (Y, 0) the object of RigSm /BPerf associated to X
resp. Y . To this aim, we simply follow the proof of [5, Proposition 1.A.1]. For the convenience
of the reader, we reproduce it here.

Step 1: We consider the directed diagram B formed the maps B(−n−1) → B(−n) and we
let RigSm /B be the the category of rigid smooth varieties over it as defined in [5, Section
1.4.2]. We can endow the category ChPsh(RigSm /B) with the (ét,B1)-local model struc-
ture, and consider the Quillen adjunctions induced by the map of diagrams αn : B(−n) → B,
fnm : B(−n) → B(−m):

α∗n : ChPsh(RigSm /B) � ChPsh(RigSm /B(−n)) :αn∗

αn] : ChPsh(RigSm /B(−n)) � ChPsh(RigSm /B) :α∗n

f ∗nm : ChPsh(RigSm /B(−m)) � ChPsh(RigSm /B(−n)) :fnm∗



2.2. RIGID MOTIVES AND FROB-MOTIVES 47

We also remark that the canonical map RigSm /B(−n) → RigSm /BPerf induces a Quillen
adjunction

f ∗∞n : ChPsh(RigSm /B(−n)) � ChPsh(RigSm /BPerf) :f∞n∗.

Consider a trivial cofibration α0∗Λ(Y )→ R with target R that is (ét,B1)-fibrant. Since α∗n is
a left and right Quillen functor and α∗nα0∗ = f ∗n0 we deduce that the map Λ(Y ×B B(−n)) =
f ∗n0Λ(Y )→ α∗nR is also an (ét,B1)-trivial cofibration with an (ét,B1)-fibrant target.

Step 2: By applying the left Quillen functors f ∗nm and f ∗∞m we also obtain that f ∗n0Λ(Y ) =
f ∗nmf

∗
m0Λ(Y ) → f ∗nmα

∗
mR and f ∗∞0Λ(Y ) = f ∗∞mf

∗
m0Λ(Y ) → f ∗∞mα

∗
mR are (ét,B1)-trivial

cofibrations. By the 2-out-of-3 property of weak equivalences applied to the composite map

f ∗n0Λ(Y )→ f ∗nmα
∗
mR→ α∗nR

we then deduce that the map f ∗nmα
∗
mR→ α∗nR is an (ét,B1)-weak equivalence.

Step 3: We now claim that the natural map Λ(Ȳ ) → R̂ with R̂ := colimn f
∗
∞nα

∗
iR is an

(ét,B1)-weak equivalence in ChPsh(RigSm /BPerf). By what shown in Step 2, it suffices to
prove that the functor

colim: ChPsh(RigSm /BPerf)N → ChPsh(RigSm /BPerf)

preserves (ét,B1)-weak equivalences. First of all, we remark that it is a Quillen left functor with
respect to the projective model structure on the diagram category ChPsh(RigSm /BPerf)N

induced by the pointwise (ét,B1)-structure. Hence, it preserves (ét,B1)-weak equivalences
between cofibrant objects. On the other hand, as directed colimits commute with homology, it
also preserves weak equivalences of presheaves. Since any complex is quasi-isomorphic to a
cofibrant one, we deduce the claim.

Step 4: We now prove that R̂ is B1-local. Consider a variety U smooth over B(−n). From
the formula

R̂(Ū) = colimm≥n α
∗
mR(U ×B(−n) B(−m))

and the fact that α∗mR is B1-local, we deduce a quasi-isomorphism R̂(U) ∼= R̂(B1
U) as wanted.

Step 5: We now prove that R̂ is ét-local. It suffices to show that for any U smooth over
B(−n) one has Hk

ét(Ū , R̂) ∼= H−kR̂(Ū). The topos associated to Et /U is equivalent to the one
of lim−→Et /(U ×B(−n) B(−m)) and all these sites have a bounded cohomological dimension since
Λ is a Q-algebra. By applying [1, Theorem VI.8.7.3] together with a spectral sequence argument
given by [48, Theorem 0.3], we then deduce the formula

Hk
ét(Ū , R̂) ∼= colimmHk

ét(U ×B(−n) B(−m), α∗mR).

On the other hand, as α∗mR is ét-local, we conclude that

colimmHk
ét(U ×B(−n) B(−m), α∗iR) ∼= colimmH−k(α

∗
mR)(U ×B(−n) B(−m)) ∼= H−kR̂(Ū)

proving the claim.
Step 6: From Steps 3-5, we conclude that we can compute RigDAeff

ét (BPerf))(Λ(X̄),Λ(Ȳ ))

as R̂(X̄) which coincides with colimn(α∗nR)(X ×B B(−n)). By what is proved in Step 1, we
also deduce that α∗nR is a (ét,B1)-fibrant replacement of Λ(Y ×B B(−n)) and hence the last
group coincides with colimnRigDAeff

ét (B(−n))(Λ(X ×B B(−n)),Λ(Y ×B B(−n))) proving the
statement. �
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2.3. The equivalence between motives with and without transfers

We can finally present the main result of this section. We recall that the ring of coefficients
Λ is assumed to be a Q-algebra.

2.3.1. THEOREM. LetB be a normal variety overK. The functor atr induces an equivalence
of triangulated categories:

Latr : RigDAeff
Frobét(B

Perf) ∼= RigDMeff
ét (BPerf).

As a corollary, we obtain the two following results, which are indeed our main motivation.

2.3.2. THEOREM. The functor atr induces an equivalence of triangulated categories:

Latr : RigDAeff
Frobét(K) ∼= RigDMeff

ét (K).

2.3.3. THEOREM. Let B be a normal variety over a field K of characteristic 0. The functor
atr induces an equivalence of triangulated categories:

Latr : RigDAeff
ét (B) ∼= RigDMeff

ét (B).

2.3.4. REMARK. The statement of Theorem 2.3.1 in caseB is a normal affinoid rigid analytic
variety immediately implies the statement for the case of an arbitrary normal rigid analytic
variety B. Therefore, we can suppose that B is affinoid, being consistent with our notations on
the term “variety”.

The proof of Theorem 2.3.1 is divided into the following steps.

(1) We first produce a triangulated functor Latr : RigDAeff
Frobét(B

Perf) → RigDMeff
ét (BPerf)

commuting with sums, sending a set of compact generators of the first category into a set of
compact generators of the second.

(2) We define a fully faithful functor Li∗ : RigDAeff
Frobét(B

Perf)→ Dfh
Frobét,B1(RigNor /B).

(3) We define a fully faithful functor Lj∗ : RigDMeff
ét (BPerf)→ Dfh

Frobét,B1(RigNor /B).
(4) We check that Lj∗ ◦ Latr is isomorphic to Li∗ proving that Latr is also fully faithful.

We now prove the first step.

2.3.5. PROPOSITION. Let B be a normal variety over K. The functor atr induces a triangu-
lated functor

Latr : RigDAeff
Frobét(B

Perf)→ RigDMeff
ét (BPerf)

commuting with sums, sending a set of compact generators of the first category into a set of
compact generators of the second.

PROOF. The functor atr induces a Quillen functor

Latr : Chét Psh(RigSm /BPerf)→ Chét PST(RigSm /BPerf)

sending Λ(X,−n) to Λtr(X). We are left to prove that it factors over the Frob-localization,
i.e. that the map Λtr(X

(−1)) → Λtr(X) is an isomorphism in RigDMeff
ét (BPerf) for all X ∈

RigSm /B(−n). Actually, since the map X(−1) → X induces an isomorphism of fh-sheaves, we
deduce that it is an isomorphism in the category RigCor /BPerf hence also in RigDMeff

ét (BPerf).
�

We are now ready to prove the second step.
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2.3.6. PROPOSITION. Let B be a normal variety over K. The functors RigSm /B(−n) →
RigNor /B induce a fully faithful functor

Li∗B : RigDAeff
Frobét(B

Perf)→ DFrobét,B1(RigNor /B).

PROOF. We let CB be the category introduced in Definition 2.1.10. As already remarked
in the proof of Proposition 2.1.19 we can endow it with the Frobét-topology and the topos
associated to it is equivalent to the Frobét-topos on RigSm /BPerf . In particular, the continuous
functor iB : CB → RigNor /B induces an adjunction

Li∗B : RigDAeff
Frobét(B

Perf) � DFrobét,B1(RigNor /B) :RiB∗.
As iB∗i∗B is isomorphic to the identity, it suffices to show that RiB∗ = iB∗ so that RiB∗Li∗B is
isomorphic to the identity as well.

The functor iB∗ commutes with Frobét-sheafification, and hence it preserves Frobét-weak
equivalences, and since iB∗(Λ(B1

V )) ∼= Λ(B1
B)⊗ iB∗(Λ(V )) is weakly equivalent to iB∗(Λ(V ))

for every V in RigNor /B we also conclude that it preserves B1-weak equivalences, as wanted.
�

2.3.7. REMARK. As a corollary of the proof of Proposition 2.3.6 we obtain that the functor
iB∗ preserves (Frobét,B1)-equivalences.

We remark that the previous result does not yet prove our claim. This is reached by the
following crucial fact.

2.3.8. PROPOSITION. Let B be a normal variety over K. The image of Li∗B is contained in
the subcategory of fh-local objects.

PROOF. Let M be an object of RigDAeff
Frobét(B

Perf) let f : X → B be a normal irreducible
variety over B and let r : X ′ → X be a pseudo-Galois covering in RigNor /B with G =
Aut(X ′/X). We are left to prove that

DFrobét,B1(RigNor /B)(Λ(X),Li∗M)→ DFrobét,B1(RigNor /B)(Λ(X ′),Li∗M)G

is an isomorphism. Using Lemma 2.3.9 we can equally prove that

RigDAeff
Frobét(X

Perf)(Λ,Lf ∗M)→ RigDAeff
Frobét(X

′Perf)(Λ,Lr∗Lf ∗M)G

is an isomorphism. Using the notation of Lemma 2.3.12, it suffices to prove that the natural
transformation id→ (Rr∗Lr∗)G is invertible.

Using Lemma 2.3.13, we can define a stratification (Xi)0≤i≤n of X made of locally closed
connected normal subvarieties ofX such that ri : X ′i → Xi is a composition of an étale cover and
a Frob-cover of normal varieties, by letting X ′i be the reduction of the subvariety Xi ×X X ′ ⊂
X ′. Using the locality axiom (Theorem 2.2.12) for RigDAeff

Frobét applied to the inclusions
ui : Xi → X we can then restrict to proving that each transformation Lu∗i → Lu∗i (Rr∗Lr∗)G ∼=
(Rri∗Lr∗i )GLu∗i is invertible, where the last isomorphism follows from Lemma 2.3.12. It suffices
then to prove that id → (Rri∗Lr∗i )G is invertible. If s : Z → T is a Frob-cover, the functors
(Ls∗,Rs∗) define an equivalence of categories RigDAeff

Frobét(T
Perf) ∼= RigDAeff

Frobét(Z
Perf) by

Proposition 2.2.10 hence we can assume that the maps ri are étale covers. Moreover, since
Lr∗i : RigDAeff

Frobét(X
Perf
i )→ RigDAeff

Frobét(X
′Perf
i ) is conservative by Lemma 2.3.11, we can

equivalently prove that Lr∗i → Lr∗i (Rri∗Lr∗i )G ∼= (Rr′i∗Lr′∗i )GLr∗i is invertible, where r′i is
the base change of ri over itself (see Lemma 2.3.12). By the assumptions on ri we conclude
that r′i is a projection

⊔
X ′i → X ′i with G acting transitively on the fibers, so that the functor

(Rr′i∗Lr′∗i )G is the identity, proving the claim. �
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The following lemmas were used in the proof of the previous proposition.

2.3.9. LEMMA. Let f : B′ → B be a map of normal rigid varieties over K. For any
M ∈ RigDAFrobét(B) there is a canonical isomorphism

DFrobét,B1(RigNor /B)(Λ(B′),Li∗BM) ∼= RigDAFrobét(B
′)(Λ,Lf ∗M).

PROOF. Consider the following diagram of functors:

Psh(CB[Φ−1])
i∗B //

f∗

��

Psh(RigNor /B[Φ−1])

f∗

��
Psh(CB′ [Φ

−1])
i∗
B′ // Psh(RigNor /B′[Φ−1])

Let F be in Psh(CB[Φ−1]) and X ′ be in RigNor /B′. One has (i∗B′f
∗)(F)(X ′) = colimF(V )

where the colimit is taken over the maps X ′ → V ×B(−n) B′(−n) in RigNor /B′[Φ−1] by
letting V vary among varieties which are smooth over some B(−n). On the other hand, one
has (f ∗i∗B)(F)(X ′) = colimF(V ) where the colimit is taken over the maps X ′ → V in
RigNor /B[Φ−1] by letting V vary among varieties which are smooth over some B(−n). Since
V ×B(−n) B′(−n) ∼= (V ×B B′)red in RigSm /B′[Φ−1] we deduce that the indexing categories
are equivalent, hence the diagram above is commutative and therefore by Corollary 2.1.12 and
what shown in the proof of Proposition 2.1.19 also the following one is:

ChShFrobét(RigSm /BPerf)
i∗B //

f∗

��

ChShFrobét(RigNor /B)

f∗

��
ChShFrobét(RigSm /B′Perf)

i∗
B′ // ChShFrobét(RigNor /B′)

This fact together with Lemma 2.3.10 implies f ∗Li∗B ∼= Li∗B′Lf ∗. By Propositions 2.2.10 and
2.3.6 we then deduce

DFrobét,B1(RigNor /B)(Λ(B′),Li∗BM) = DFrobét,B1(RigNor /B)(Lf](Λ),Li∗BM) ∼=
∼= DFrobét,B1(RigNor /B′)(Λ, f ∗Li∗BM) ∼= DFrobét,B1(RigNor /B′)(Λ,Li∗B′Lf ∗M) ∼=
∼= DFrobét,B1(RigNor /B′)(Li∗B′Λ,Li∗B′Lf ∗M) ∼= RigDAFrobét(B

′)(Λ,Lf ∗M)

as claimed. �

2.3.10. LEMMA. Let f : B′ → B be a map of normal varieties over K. The functor

f ∗ : ChPsh(RigNor /B)→ ChPsh(RigNor /B′)

preserves the (Frobét,B1)-equivalences.

PROOF. Since f ∗ commutes with Frobét-sheafification and with colimits, it preserves
Frobét-equivalences. Since f ∗(Λ(B1

V )) ∼= B1
B ⊗ f ∗(Λ(V )) is weakly equivalent to f ∗(Λ(V ))

for every V in RigNor /B we also conclude that f ∗ preserves B1-weak equivalences, hence the
claim. �

2.3.11. LEMMA. Let B be a normal variety over K and let f : X → Y be a composition
of Frob-coverings and ét-coverings in RigNor /B. The functor Lf ∗ : RigDAeff

Frobét(Y
Perf)→

RigDAeff
Frobét(X

Perf) is conservative.
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PROOF. If f is a Frob-cover, then Lf ∗ is an equivalence by Proposition 2.2.10. We are left
to prove the claim in case f is an ét-covering. In this case, we can use the proof of the analogous
statement in algebraic geometry [7, Lemma 3.4]. �

2.3.12. LEMMA. Let e : X ′ → X be a finite morphism of normal varieties over K and let G
be a finite group acting on Re∗Le∗. There exists a subfunctor (Re∗Le∗)G of Re∗Le∗ such that
for all M , N in RigDAeff

Frobét(X
Perf) one has

RigDAeff
Frobét(X

Perf)(M, (Re∗Le∗)GN) ∼= RigDAeff
Frobét(X

Perf)(M,Re∗Le∗N)G.

Moreover for any map f : Y → X of normal rigid varieties factoring into a closed embedding
followed by a smooth map, and any diagram of normal varieties

(Y ×X X ′)red
f ′ //

e′

��

X ′

e

��
Y

f // X

there is an induced action of G on Re′∗Le′∗ and an invertible transformation Lf ∗(Re∗Le∗)G
∼→

(Re′∗Le′∗)GLf ∗.

PROOF. We define (Re∗Le∗)G to be subfunctor obtained as the image of the projector
1
|G|
∑
g acting on Re∗Le∗.

In order to prove the second claim, it suffices to prove that Lf ∗Re∗Le∗ ∼= Re′∗Le′∗Lf ∗. As
the latter term coincides with Re′∗L(fe′)∗ = Re′∗L(ef ′)∗ = Re′∗Lf ′∗Le∗ it suffices to show that
the base change transformation Lf ∗Re∗ → Re′∗Lf ′∗ is invertible. We can consider individually
the case in which f is smooth, and the case in which f is a closed embedding.

Step 1: Suppose that f is smooth. Then f ∗ has a left adjoint f]. We can equally prove that
the natural tranformation Lf ′]Le′∗ → Le∗Lf] is invertible. This follows from the isomorphism
between the functors f ′]e

′∗ and e∗f] from Psh(RigSm /X ′Perf) to Psh(RigSm /Y Perf) obtained
by direct inspection.

Step 2: Suppose that f is a closed immersion. Let j : U → X be the open immersion
complementary to f and j′ be the open immersion complementary to f ′. By the locality axiom
(Theorem 2.2.12) we can equally prove that Lj]Re′∗ → Re∗Lj′] is invertible.

Step 3: It is easy to prove that the transformation Lj]Re′∗ → Re∗Lj′] is invertible once
we know that e∗, e′∗, j] and j′] preserve the (Frobét,B1)-equivalences. Indeed, if this is the
case, the functors derive trivially and it suffices to prove that for any Frobét-sheaf F the map
(j]e

′
∗)(F)→ (e∗j

′
])(F) is invertible. This follows from the very definitions.

Step 4: The fact that j] (and similarly j′]) preserves the (Frobét)-weak equivalences follows
from the fact that it respects quasi-isomorphisms of complexes of Frobét-sheaves, since it is
the functor of extension by 0. In order to prove that it preserves the B1-equivalences, by [6,
Proposition 4.2.74] we can prove that j](Λ(B1

V )→ Λ(V )) is a B1-weak equivalence for all V in
RigSm /UPerf and this is clear. The fact that e∗ (and similarly e′∗) preserves the (Frobét,B1)-
equivalences is proved in Proposition 2.2.11. We then conclude the claim in case f is a closed
immersion. �

2.3.13. LEMMA. Let f : X ′ → X be a pseudo-Galois map of normal varieties over K.
There exists a finite stratification (Xi)1≤i≤n of locally closed normal subvarieties of X such that
each induced map fi : (X ′×X Xi)red → Xi is a composition of an étale cover and a Frob-cover
of normal rigid varieties.
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PROOF. For every affinoid rigid variety Spa(R,R◦) there is a map of ringed spaces
Spa(R,R◦)→ SpecR which is surjective on points, and such that the pullback of a finite étale
map SpecS → SpecR [resp. of an open inclusion U → SpecR] over Spa(R,R◦)→ SpecR
exists (following the notation of [26, Lemma 3.8]) and is finite étale [resp. an open inclusion].
The claim then follows from the analogous statement valid for schemes over K. �

2.3.14. REMARK. In the proof of Proposition 2.3.8, we made use of the fact that Λ is a
Q-algebra in a crucial way, for instance, in order to define the functor (Re∗Le∗)G.

The following result proves the second step.

2.3.15. COROLLARY. Let B be a normal variety over K. The composite functor

RigDAeff
Frobét(B

Perf)→ DFrobét,B1(RigNor /B)→ Dfh
ét,B1(RigNor /B)

is fully faithful.

PROOF. This follows at once from Proposition 2.2.9 and Proposition 2.3.8. �

We now move to the third step. We recall that the category RigCor(BPerf) is a subcategory
of Shfh(RigNor /B). We denote by j this inclusion of categories.

2.3.16. PROPOSITION. Let B be a normal variety over K. The functor j induces a fully
faithful functor Lj∗ : RigDMeff(BPerf)→ Dfh

ét,B1(RigNor /B).

PROOF. The functor j extends to a functor PST(RigSm /BPerf)→ Shfh(RigNor /B) and
induces a Quillen pair j∗ : ChPST(RigSm /BPerf) � ChShfh(RigNor /B) :j∗ with respect
to the projective model structures. We prove that it is a Quillen adjunction also with respect to
the (ét,B1)-model structure on the two categories by showing that j∗ preserves (ét,B1)-local
objects. From the following commutative diagram

RigSm /BPerf //

��

Psh(RigSm /BPerf)

atr

��

i // ShFrob(RigNor /B)

afh

��
RigCor /BPerf // PST(RigSm /BPerf)

j // Shfh(RigNor /B)

we deduce that otrj∗ = i∗ofh which is a right Quillen functor. It therefore suffices to show
that if otrF is (ét,B1)-local then also F is, for every fibrant object F . Let F → F ′ be a
(ét,B1)-weak equivalence to a (ét,B1)-fibrant object of ChPST(RigSm /BPerf). By Lemma
2.3.17, we deduce that otrF → otrF ′ is a (ét,B1)-weak equivalence between (ét,B1)-fibrant
objects, hence it is a quasi-isomorphism. As otr reflects quasi-isomorphisms, we conclude that
F is quasi-isomorphic to F ′ hence (ét,B1)-local.

We now prove that Lj∗ is fully faithful by proving that Rj∗Lj∗ is isomorphic to the identity.
As j∗j∗ is isomorphic to the identity, it suffices to show that Rj∗ = j∗. We start by proving that
j∗ preserves Frobét-weak equivalences. As shown in Remark 2.3.7, the functor i∗ preserves
Frobét-equivalences. It is also clear that ofh does. Since otr reflects Frobét-weak equivalences,
the claim follows from the equality otrj∗ = i∗ofh. Since j∗(Λ(B1

V )) ∼= Λ(B1
B) ⊗ j∗(Λ(V )) is

weakly equivalent to j∗(Λ(V )) for every V in RigNor /B, we also conclude that j∗ preserves
B1-weak equivalences, hence the claim. �

2.3.17. LEMMA. Let B be a normal variety over K. The functor

otr : ChPST(RigSm /BPerf)→ ChPsh(RigSm /BPerf)

preserves (ét,B1)-weak equivalences.
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PROOF. The argument of [3, Lemma 2.111] easily generalizes to our context. �

The fourth step is just an easy check, as the next proposition shows.

2.3.18. PROPOSITION. Let B be a normal variety over K. The composite functor Lj∗ ◦Latr

is isomorphic to Li∗. In particular Latr is fully faithful.

PROOF. It suffices to check that the following square is quasi-commutative.

Psh(RigSm /BPerf)

i
��

atr // PST(RigSm /BPerf)

j

��
ShFrob(RigNor /B)

afh // Shfh(RigNor /B)

This can be done by inspecting the two composite right adjoints, which are canonically
isomorphic. �

This also ends the proof of Theorem 2.3.1.
We remark that in caseK is endowed with the trivial norm, we obtain a result on the category

of motives constructed from schemes over K. It is the natural generalization of [3, Theorem B.1]
in positive characteristic. We recall that the ring of coefficients Λ is assumed to be a Q-algebra.

2.3.19. THEOREM. Let B be a normal algebraic variety over a perfect field K. The functor
atr induces an equivalence of triangulated categories:

Latr : DAeff
Frobét(B

Perf) ∼= DMeff
ét (BPerf).

We now define the stable version of the categories of motives introduced so far, and remark
that Theorem 2.3.3 extends formally to the stable case providing a generalization of the result
[13, Theorem 15.2.16].

2.3.20. DEFINITION. We denote by RigDAFrobét(B
Perf) [resp. by RigDMét(B

Perf)] the
homotopy category associated to the model category of symmetric spectra (see [6, Section
4.3.2]) SpΣ

T ChFrobét,B1 Psh(RigSm /BPerf) [resp. SpΣ
T Chét,B1 PST(RigSm /BPerf)] where T

is the cokernel of the unit map Λ(B)→ Λ(T1
B) [resp Λtr(B)→ Λtr(T1

B)].

2.3.21. COROLLARY. Let B be a normal variety over K. The functor atr induces an
equivalence of triangulated categories:

Latr : RigDAFrobét(B
Perf) ∼= RigDMét(B

Perf).

PROOF. Theorem 2.3.3 states that the adjunction

atr : ChFrobét,B1 Psh(RigSm /BPerf) � ChFrobét,B1 PST(RigSm /BPerf) :otr

is a Quillen equivalence. It therefore induces a Quillen equivalence on the categories of
symmetric spectra

atr : SpΣ
T ChFrobét,B1 Psh(RigSm /BPerf) � SpΣ

T ChFrobét,B1 PST(RigSm /BPerf) :otr

by means of [6, Proposition 4.3.35]. �

We now assume that Λ equals Z if charK = 0 and equals Z[1/p] if charK = p. In analogy
with the statement DAét(B,Λ) ∼= DMét(B,Λ) proved for motives associated to schemes (see
[7, Appendix B]) it is expected that the following result also holds.
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2.3.22. CONJECTURE. Let B be a normal variety over K. The functors (atr, otr) induce an
equivalence of triangulated categories:

Latr : RigDAét(B,Λ) ∼= RigDMét(B,Λ).

We remark that in the above statement differs from Corollary 2.3.21 for two main reasons:
the ring of coefficients is no longer assumed to be a Q-algebra, and the class of maps with
respect to which we localize are the ét-local maps and no longer the Frobét-local maps.

In order to reach this twofold generalization, using the techniques developed in [7], it would
suffice to show the two following formal properties of the 2-functor RigDAét:

• Separateness: for any Frob-cover B′ → B the functor

RigDAét(B,Λ)→ RigDAét(B
′,Λ)

is an equivalence of categories.
• Rigidity: if charK - N the functor

DShét(Et /B,Z/NZ)→ RigDAét(B,Z/NZ)

is an equivalence of categories where Et /B is the small étale site over B.



APPENDIX A

An implicit function theorem and approximation results

The aim of this appendix is to prove approximation results for maps defined from objects
lim←−Xh in R̂igSmgc to rigid analytic varieties. We will show that, up to homotopy, any such map
factors over an analytic space Xh in the direct system.

Along this chapter, we assume that K is a complete non-archimedean field.

A.1. A non-archimedean implicit function theorem

We begin our analysis with the analogue of the inverse mapping theorem, which is a variant
of [28, Theorem 2.1.1].

A.1.1. PROPOSITION. Let R be a K-algebra, let σ = (σ1, . . . , σn) and τ = (τ1, . . . , τm) be
two systems of coordinates and let P = (P1, . . . , Pm) be a collection of polynomials in R[σ, τ ]
such that P (σ = 0, τ = 0) = 0 and det(∂Pi

∂τj
)(σ = 0, τ = 0) ∈ R×. There exists a unique

collection F = (F1, . . . , Fm) of m formal power series in R[[σ]] such that F (σ = 0) = 0 and
P (σ, F (σ)) = 0 in R[[σ]].

Moreover, if R is a Banach K-algebra, then the polynomials P1, . . . , Pn have a positive
radius of convergence.

PROOF. Let f be the polynomial det(∂Pi
∂τj

) in R[σ, τ ] and let S be the ring R[σ, τ ]f/(P ).
The induced map R[σ]→ S is étale, and from the hypothesis f(0, 0) ∈ R× we conclude that
the map R[σ, τ ]/(P )→ R, (σ, τ) 7→ 0 factors through S.

Suppose given a factorization as R[σ]-algebras S → R[σ]/(σ)n → R of the map S → R.
By the étale lifting property (see [21, Definition IV.17.1.1 and Corollary IV.17.6.2]) applied to
the square

R[σ]

��

// R[σ]/(σ)n+1

��
S //

∃!
88

R[σ]/(σ)n

we obtain a uniquely defined R[σ]-linear map S → R[σ]/(σ)n+1 factoring S → R and hence by
induction a uniquely definedR[σ]-linear mapR[σ, τ ]/(P )→ R[[σ]] factoringR[σ, τ ]/(P )→ R
as wanted. The power series Fi is the image of τi via this map.

Assume now that R is a Banach K-algebra. We want to prove that the array F =
(F1, . . . , Fm) of formal power series in R[[σ]] constructed above is convergent around 0. As R
is complete, this amounts to proving estimates on the valuation of the coefficients of F . To
this aim, we now try to give an explicit description of them, depending on the coefficients of P .
Whenever I is a n-multi-index I = (i1, . . . , in) we denote by σI the product σi11 · . . . · σinn and
we adopt the analogous notation for τ .

We remark that the claim is not affected by any invertible R-linear transformation of the
polynomials Pi. Therefore, by multiplying the column vector P by the matrix (∂Pi

∂τj
)(0, 0)−1

55
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we reduce to the case in which (∂Pi
∂τj

)(0, 0) = δij . We can then write the polynomials Pi in the
following form:

Pi(σ, τ) = τi −
∑

|J |+|H|>0

ciJHσ
JτH

where J is an n-multi-index, H is an m-multi-index and the coefficients ciJH equal 0 whenever
|J | = 0 and |H| = 1.

We will determine the functions Fi(σ) explicitly. We start by writing them as

Fi(σ) =
∑
|I|>0

diIσ
I

with unknown coefficients diI for any n-multi-index I . We denote their q-homogeneous parts by

Fiq(σ) :=
∑
|I|=q

diIσ
I .

We need to solve the equation P (σ, F (σ)) = 0 which can be rewritten as

Fi(σ) =
∑
J,H

ciJHσ
J

(
m∏
r=1

Fr(σ)hr

)
where we denote by hr the components of the m-multi-index H .

By comparing the q-homogeneous parts we get

Fiq(σ) =
∑

(J,H,Φ)∈Σiq

ciJHσ
J

m∏
r=1

hr∏
s=1

Fr,Φ(r,s)(σ)

where the set Σiq consists of triples (J,H,Φ) in which J is a n-multi-index,H is am-multi-index
and Φ is a function that associates to any element (r, s) of the set

{(r, s) : r = 1, . . . ,m; s = 1, . . . , hr}
a positive (non-zero!) integer Φ(r, s) such that

∑
Φ(r, s) = q − |J |.

If Φ(r, s) ≥ q for some r we see by definition that |J | = 0, |H| = 1 and we know that in
this case ci0H = 0. In particular, we conclude that the right hand side of the formula above
involves only Frq′’s with q′ < q. Hence, we can determine the coefficients diI by induction on
|I|. Moreover, by construction, each coefficient diI can be expressed as

(1) diI = QiI(ciJH)

where each QiI is a polynomial in ciJH for |J |+ |H| ≤ |I| with coefficients in N.
We can fix a non-zero topological nilpotent element π such that ||ciJK || ≤ |π|−1 for all

i, J,H . From the argument above, we deduce inductively that each coefficient diI is a finite
sum of products of the form

∏
ckJH with

∑
|J | ≤ |I|. In particular, each product has at most

|I| factors and hence ||diI || ≤ |π|−|I|. We conclude ||diIπ2|I||| ≤ |π||I| which tends to 0 as
|I| → ∞. �

The previous statement has an immediate generalization.

A.1.2. COROLLARY. Let R be a non-archimedean Banach K-algebra, let σ = (σ1, . . . , σn)
and τ = (τ1, . . . , τm) be two systems of coordinates, let σ̄ = (σ̄1, . . . , σ̄n) and τ̄ = (τ̄1, . . . , τ̄m)
two sequences of elements of R and let P = (P1, . . . , Pm) be a collection of polynomials
in R[σ, τ ] such that P (σ = σ̄, τ = τ̄) = 0 and det(∂Pi

∂τj
)(σ = σ̄, τ = τ̄) ∈ R×. There
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exists a unique collection F = (F1, . . . , Fm) of m formal power series in R[[σ − σ̄]] such
that F (σ = σ̄) = τ̄ and P (σ, F (σ)) = 0 in R[[σ − σ̄]] and they have a positive radius of
convergence around σ̄.

PROOF. If we apply Proposition A.1.1 to the polynomials P ′i := P (σ̄ + η, τ̄ + θ) we
obtain an array of formal power series F ′ = (F1, . . . , F

′
m) in R[[η]] with positive radius of

convergence such that P ′(η, F ′(η)) = 0. If we now put σ := σ̄ + η and F := τ̄ + F ′ we get
P (σ, F (σ − σ̄)) = 0 in R[[σ − σ̄]] as wanted. �

We now assume that K is perfectoid and we come back to the category R̂igSmgc that
we introduced above (see Definition 1.2.3). We recall that an object X = lim←−hXh of this

category is the pullback over T̂N → TN of a map X0 → TN × TM that is a composition
of rational embeddings and finite étale maps from an affinoid tft adic space X0 to a torus
TN × TM = SpaK〈υ±1, ν±1〉 and Xh denotes the pullback of X0 by TN〈υ1/ph〉 → TN .

A.1.3. PROPOSITION. Let X = lim←−hXh be an object of R̂igSmgc. If an element ξ ofO+(X)

is algebraic and separable over each generic point of SpecO(X0) then it lies in O+(Xh̄) for
some h̄.

PROOF. Let X0 be Spa(R0, R
◦
0) let Xh be Spa(Rh, R

◦
h) and X be Spa(R,R+). For any

h ∈ N one has Rh = R0⊗̂K〈υ±1〉K〈υ±1/ph〉 and R+ coincides with the π-adic completion of
lim−→h

R◦h by Proposition 1.2.1.The proof is divided in several steps.
Step 1: We can suppose that R is perfectoid. Indeed, we can consider the refined tower

X ′h = X0 ×TN×TM (TN〈υ1/ph〉 × TM〈ν1/ph〉) whose limit X̂ is perfectoid. If the claim is true
for this tower, we conclude that ξ lies in the intersection of O(X ′h) and O(X) inside O(X̂) for
some h. By Remark 1.1.18 this is the intersection(⊕̂

I∈(Z[1/p]∩[0,1))N
R0υ

I

)
∩

(⊕̂
I∈{a/ph : 0≤a<ph}N
J∈{a/ph : 0≤a<ph}M

R0υ
IνJ

)
which coincides with ⊕̂

I∈{a/ph : 0≤a<ph}N
R0υ

I = Rh.

Step 2: We can always assume that each Rh is an integral domain. Indeed, the number
of connected components of SpaRh may rise, but it is bounded by the number of connected
components of the affinoid perfectoid X which is finite by Remark 1.2.11.

We deduce that the number of connected components of SpaRh stabilizes for h large enough.
Up to shifting indices, we can then suppose that SpaR0 is the finite disjoint union of irreducible
rigid varieties SpaRi0 for i = 1, . . . , k such that Rih = Ri0⊗̂K〈υ±1〉K〈υ±1/ph〉 is a domain for
all h. We denote by Ri the ring Ri0⊗̂K〈υ±1〉K〈υ±1/p∞〉. Let now ξ = (ξi) be an element in
R+ =

∏
R+
i that is separable over

∏
FracRi i.e. each ξi is separable over FracRi. If the

proposition holds for Ri we then conclude that ξi lies in R◦ih for some large enough h so that
ξ ∈ R◦h as claimed.

Step 3: We prove that we can consider a non-empty rational subspace U0 = SpaR0〈fi/g〉 of
X0 instead. Indeed, using Remark 1.1.18 if the result holds for U0 assuming h̄ = 0 we deduce
that ξ lies in the intersection of R ∼=

⊕̂
R0 and of R0〈fi/g〉 inside R〈fi/g〉 ∼=

⊕̂
R0〈fi/g〉

which coincides with R0.
Step 4: We prove that we can assume ξ to be integral over R0. Indeed, let Pξ be its minimal

polynomial over Frac(R0). We can suppose there is a common denominator d such that Pξ has
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coefficients in R0[1/d][x]. By [9, Proposition 6.2.1/4(ii)] we can also assume that |d| = 1. In
particular, by [9, Proposition 7.2.6/3], the rational subset associated to R0〈1/d〉 is not empty. By
Step 3, we can then restrict to it and assume ξ integral over R0 and R0[ξ] ∼= R0[x]/Pξ(x).

Step 5: We can suppose that Pξ(x) is the minimal polynomial of ξ with respect to all non-
empty rational subspaces of Xh for all h. If it is not the case, from the previous steps we can
rescale indices and restrict to a rational subspace with respect to which the degree of Pξ(x) is
lower. Since the degree is bounded from below, we conclude the claim.

Step 6: We prove that we can assume that the sup-norm on Rh is multiplicative for all h. By
[9, Proposition 6.2.3/5] this is equivalent to state that R̃h := R◦h/R

◦◦
h is a domain. The maps

Rh → Rh+1 induce inclusions R̃h → R̃h+1 by [9, Lemma 3.8.1/6] and these rings are included
in R̃ := R◦/R◦◦ which is isomorphic to R̃[ by [42, Proposition 5.17]. Up to considering a
rational subspace, we can assume that R[ is the perfection of a smooth affinoid rigid variety
R[

0 and R̃[ is a domain if and only if R̃[
0 is. As this last ring is reduced, there is a Zariski open

in which it is a domain, and hence by [9, Proposition 7.2.6/3] there is a non-empty rational
subspace of Spa(R[, R[+) and therefore of Spa(R,R+) with the required property (the tilting
equivalence preserves rational subspaces as proved in [42, Proposition 6.17]). We conclude the
claim since rational subspaces of X descend to Xh for h big enough by Proposition 1.2.8. We
can assume this happens at h = 0.

Step 7: Since R is the completion of lim−→h
Rh with respect to the sup-norms, by the previous

step we deduce that the norm || · || on R is multiplicative. Fix a separable closure L of the
completion of FracR with respect to || · ||. The element ξ and its conjugates ξ1, . . . , ξn that are
different from ξ all lie in the integral closure S of the ring lim−→h

Rh in L which coincides with
the integral closure of R0 since all maps R0 → Rh are integral. We can assume that for all i
the minimal polynomial of ξ − ξi over R0 coincides with the one over all rings Rh〈1/f〉 with
|f | = 1. Otherwise, restrict to some rational subspace U(1 | f̄) of Xh̄ with |f̄ | = 1 where this
holds and rescale indices. By [9, Proposition 7.2.6/3] the hypotheses of the previous step are
still preserved. Because R0 is normal, by means of [9, Proposition 3.8.1/7] we can also endow
S with the sup-norm | · |. Let ε be the positive number min{|ξ − ξi|}. By the density of lim−→h

Rh

in R we can find an element β ∈ Rh̄ for some h̄ such that ||ξ − β|| < ε. Up to rescaling indices,
we can assume h̄ = 0.

Step 8: We prove that we can assume that the sup-norm on R0[ξ] is multiplicative. We
remark that this ring is a tft TateK-algebra by [9, Proposition 6.1.1/6]. The ring R̃0[ξ] is reduced,
contains the domain R̃0 and is finite over it (see [9, Proposition 1.2.5/7, Lemma 3.8.1/6, Theorem
6.3.1/6 and Theorem 6.3.5/1]). Up to considering an open of Spec R̃0 and hence restricting to
a non-empty rational subset U(1 | f) of SpaR0 with |f | = 1 (see [9, Proposition 7.2.6/3]) we
can then assume that the variety Spec R̃0[ξ] is a disjoint union of integral schemes. Since the
spectrum of R0[ξ] ∼= R0[x]/Pξ(x) is connected, we deduce that Spec R̃0[ξ] is also connected
hence integral, and the sup norm on R0[ξ] is multiplicative by means of [9, Proposition 6.2.3/5].
We also remark that, by the construction of our restrictions, the rings R̃h are still domains hence
the sup-norm is multiplicative on Rh. Moreover, the inequalities ||ξ − β|| < ε and |ξ − ξi| > ε
still hold since the maps Rh → Rh〈1/f〉 are isometries with respect to the sup-norm (see
[9, Lemma 6.3.1/6]) and because of our hypotheses from Step 7 together with the formulas
computing the sup-norm on S (see [9, Proposition 3.8.1/7]).

Step 9: We prove that we the norm on R0[ξ] induced by R coincides with the sup-norm
on this ring. By Step 7 and Step 8 the norm || · || on R and the sup-norm | · |sup on R0[ξ] are
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multiplicative, and both extend the sup-norm on R0. Since the map R0[ξ]→ R is continuous,
there is an integer n such that |b|sup ≤ |π|n implies ||b|| ≤ 1 for all b ∈ R0[ξ]. By Lemma A.1.4
we deduce that the two norms | · |sup and || · || on R0[ξ] coincide, as claimed.

Step 10: In this last step we argue as for Krasner’s Lemma (see [9, Section 3.4.2]). The maps
Rh → S and R0[ξ] → S are all isometries with respect to sup-norms by [9, Lemma 3.8.1/6].
By the previous step, we deduce |ξ − β| < ε with respect to the sup-norm on R0[ξ]. We now
show that n = 0 i.e. that the degree of the separable polynomial Pξ(x) is 1 and therefore ξ lies
in R0. We argue by contradiction and we assume n ≥ 1. Any choice of an element ξi induces a
R0-linear isomorphism τi : R0[ξ] ∼= R0[ξi] which is an isometry with respect to the sup-norm.
Therefore one has |ξ− ξi| ≤ max{|ξ−β|, |ξi−β|} = max{|ξ−β|, |τi(ξ−β)|} = |ξ−β| < ε
leading to a contradiction. �

A.1.4. LEMMA. Let R→ S be an integral extension of integral domains over K. Let | · | be
a multiplicative K-algebra norm on R and let | · |1 and | · |2 be two multiplicative norms on S
extending the one ofR such that |b|1 ≤ ε implies |b|2 ≤ 1 for all b ∈ S for a fixed ε ∈ (0, 1] ⊂ R.
Then | · |1 = | · |2.

PROOF. We can suppose that ε = |α| for some α ∈ K×. We first prove the inequality
ε|b|2 ≤ |b|1 for all b ∈ S. Fix an element b ∈ S and a sequence of rational numbers in Z[1/p]
such that |π|mi/ni converges to |b|1 from above. From the inequality |π−mi/niαb|1 ≤ ε we
deduce ε|b|2 ≤ |π|mi/ni and hence ε|b|2 ≤ |b|1 as claimed.

We can endow the field FracS with the extensions | · |i of the norms of S by putting
|f/g|i := |f |i/|g|i. They are well defined and multiplicative. Since S is integral over R any
element of FracS is of the form f/g with g ∈ R. From what we proved above, one has
ε|b|2 ≤ |b|1 for all b ∈ FracS.

From standard valuation theory we then conclude that the two norms are equivalent on
FracS (for example, apply [38, Theorem II.3.4] with a1 = 0 and a2 = 1). Since they agree on
K we conclude that they actually coincide on FracS hence on S. �

A.2. Approximation of maps of adic spaces

We introduce now the geometric application of Propositions A.1.1 and A.1.3. It states that
a map from lim←−hXh ∈ R̂igSm to a rigid variety factors, up to B1-homotopy, over one of the
intermediate varieties Xh. Analogous statements are widely used in in [5] (see for example [5,
Theorem 2.2.49]): there, these are obtained as corollaries of Popescu’s theorem ([39] and [40]),
which is not available in our non-noetherian setting.

A.2.1. PROPOSITION. Let X = lim←−hXh be in R̂igSmgc. Let Y be an affinoid rigid variety
endowed with an étale map Y → Bn and let f : X → Y be a map of adic spaces.

(1) There exist m polynomials Q1, . . . , Qm in K[σ1, . . . , σn, τ1, . . . , τm] such that Y ∼=
SpaA with A ∼= K〈σ, τ〉/(Q) and det(∂Qi

∂τj
) ∈ A×.

(2) There exists a map H : X × B1 → Y such that H ◦ i0 = f and H ◦ i1 factors over the
canonical map X → Xh for some integer h.

Moreover, if f is induced by the map K〈σ, τ〉 → O(X), σ 7→ s, τ 7→ t the map H can be
defined via

(σ, τ) 7→ (s+ (s̃− s)χ, F (s+ (s̃− s)χ))

where F is the unique array of formal power series in O(X)[[σ − s]] associated to the polyno-
mials P (σ, τ) by Corollary A.1.2, and s̃ is any element in lim−→h

O+(Xh) such that the radius of
convergence of F is larger than ||s̃− s|| and F (s̃) lies in O+(X).
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PROOF. The first claim follows from the proof of [5, Lemma 1.1.50]. We turn to the
second claim. Let X0 be Spa(R0, R

◦
0) and X be Spa(R,R+). For any h ∈ N we denote

R0⊗̂K〈υ〉K〈υ±1/ph〉 with Rh so that R+ coincides with the π-adic completion of lim−→h
R◦h by

Proposition 1.2.1.
The map f is determined by the choice of n elements s = (s1, . . . , sn) and m elements

t = (t1, . . . , tm) of R+ such that P (s, t) = 0. We prove that the formula for H provided in the
statement defines a map H with the required properties.

By Corollary A.1.2 there exists a collection F = (F1, . . . , Fm) of m formal power series
in R[[σ − s]] with a positive radius of convergence such that F (s) = t and P (σ, F (σ)) = 0.
As lim−→h

R◦h is dense in R+ we can find an integer h̄ and elements s̃i ∈ R◦h̄ such that ||s̃− s|| is
smaller than the convergence radius of F . By renaming the indices, we can assume that h̄ = 0.
As F is continuous and R+ is open, we can also assume that the elements Fj(s̃) lie in R+. We
are left to prove that they actually lie in lim−→h

R◦h. Since the determinant of (∂Pi
∂τj

)(s̃, F (s̃)) is
invertible, the field L := Frac(R0)(F1(s̃), . . . , Fm(s̃)) is algebraic and separable over Frac(R0).
We can then apply Proposition A.1.3 to conclude that each element Fj(s̃) lies in R◦h for a
sufficiently big integer h. �

The goal of the rest of this section is to prove Proposition 1.4.1. To this aim, we present a
generalization of the results above for collections of maps. As before, we start with an algebraic
statement and then translate it into a geometrical fact for our specific purposes.

A.2.2. PROPOSITION. Let R be a Banach K-algebra and let {Rh}h∈N be a collection of
nested complete subrings of R such that lim−→Rh is dense in R. Let s1, . . . , sN be elements of
R〈θ1, . . . , θn〉. For any ε > 0 there exists an integer h and elements s̃1, . . . , s̃N ofRh〈θ1, . . . , θn〉
satisfying the following conditions.

(1) |sα − s̃α| < ε for each α.
(2) For any α, β ∈ {1, . . . , N} and any k ∈ {1, . . . , n} such that sα|θk=0 = sβ|θk=0 we

also have s̃α|θk=0 = s̃β|θk=0.
(3) For any α, β ∈ {1, . . . , N} and any k ∈ {1, . . . , n} such that sα|θk=1 = sβ|θk=1 we

also have s̃α|θk=1 = s̃β|θk=1.
(4) For any α ∈ {1, . . . , N} if sα|θ1=1 ∈ Rh′〈θ〉 for some h′ then s̃α|θ1=1 = sα|θ1=1.

PROOF. We will actually prove a stronger statement, namely that we can reinforce the
previous conditions with the following:

(5) For any α, β ∈ {1, . . . , N} any subset T of {1, . . . , n} and any map σ : T → {0, 1}
such that sα|σ = sβ|σ then s̃α|σ = s̃β|σ.

(6) For any α ∈ {1, . . . , N} any subset T of {1, . . . , n} containing 1 and any map σ : T →
{0, 1} such that sα|σ ∈ Rh〈θ〉 for some h then s̃α|σ = sα|σ.

Above we denote by s|σ the image of s via the substitution (θt = σ(t))t∈T . We proceed by
induction on N , the case N = 0 being trivial.

Consider the conditions we want to preserve that involve the index N . They are of the form

si|σ = sN |σ
and are indexed by some pairs (σ, i) where i is an index and σ varies in a set of maps Σ. Our
procedure consists in determining by induction the elements s̃1, . . . , s̃N−1 first, and then deduce
the existence of s̃N by means of Lemma A.2.5 by lifting the elements {s̃i|σ}(σ,i). Therefore,
we first define ε′ := 1

C
ε where C = C(Σ) is the constant introduced in Lemma A.2.5 and then

apply the induction hypothesis to the first N − 1 elements with respect to ε′.
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By the induction hypothesis, the elements s̃i|σ satisfy the compatibility condition of Lemma
A.2.5 and lie in Rh〈θ〉 for some integer h. Without loss of generality, we assume h = 0. By
Lemma A.2.5 we can find an element s̃N of Rh〈θ〉 lifting them such that |s̃N − sN | < Cε′ = ε
as wanted. �

The following lemmas are used in the proof of the previous proposition.

A.2.3. LEMMA. For any normed ring R and any map σ : Tσ → {0, 1} defined on a subset
Tσ of {1, . . . , n} we denote by Iσ the ideal of R〈θ〉 generated by θi − σ(i) as i varies in Tσ. For
any finite set Σ of such maps and any such map η one has

(⋂
σ∈Σ Iσ

)
+ Iη =

⋂
σ∈Σ(Iσ + Iη).

PROOF. We only need to prove the inclusion
⋂

(Iσ + Iη) ⊆ (
⋂
Iσ) + Iη. We can make

induction on the cardinality of Tη and restrict to the case in which Tη is a singleton. By changing
variables, we can suppose Tη = {1} and η(1) = 0 so that Iη = (θ1).

We first suppose that 1 /∈ Tσ for all σ ∈ Σ. Let s be an element of
⋂

(Iσ + (θ1)). This means
we can find elements sσ ∈ Iσ and polynomials pσ ∈ R〈θ〉 such that s = sσ + pσθ1. Since Iσ is
generated by polynomials of the form θi − ε with i 6= 1 we can suppose that sσ contains no θ1

by eventually changing pσ. Let now σ, σ′ be in Σ. From the equality

sσ = (sσ + pσθ1)|θ1=0 = (sσ′ + pσ′θ1)|θ1=0 = sσ′

we conclude that sσ ∈
⋂
Iσ. Therefore s ∈

⋂
Iσ + (θ1) as claimed.

We now move to the general case. Suppose σ̄(1) = 1 for some σ̄ ∈ Σ. Then Iσ̄ + Iη = R〈θ〉
and if f ∈

⋂
σ 6=σ̄ Iσ then f = −f(θ1 − 1) + fθ1 ∈

⋂
σ Iσ + (θ1). Therefore, the contribution of

Iσ̄ is trivial on both sides and we can erase it from Σ. We can therefore suppose that σ(1) = 0
whenever 1 ∈ Tσ.

For any σ ∈ Σ let σ′ be its restriction to Tσ\{1}. We have Iσ′ ⊆ Iσ and Iσ′+(θ1) = Iσ+(θ1)
for all σ ∈ Σ. By what we already proved, the statement holds for the set Σ′ := {σ′ : σ ∈ Σ}.
Therefore: ⋂

σ∈Σ

(Iσ + (θ1)) =
⋂
σ′∈Σ′

(Iσ′ + (θ1)) =
⋂
σ′∈Σ′

Iσ′ + (θ1) ⊆
⋂
σ∈Σ

Iσ + (θ1)

proving the claim. �

We recall (see [9, Definition 1.1.9/1]) that a morphism of normed groups φ : G → H is
strict if the homomorphism G/ kerφ → φ(G) is a homeomorphism, where the former group
is endowed with the quotient topology and the latter with the topology inherited from H . In
particular, we say that a sequence of normed K-vector spaces

R
f→ S

g→ T

is strict and exact at S if it exact at S and if f is strict i.e. the quotient norm and the norm
induced by S on R/ ker(f) ∼= ker(g) are equivalent.

A.2.4. LEMMA. For any map σ : Tσ → {0, 1} defined on a subset Tσ of {1, . . . , n} we
denote by Iσ the ideal of R〈θ〉 = R〈θ1 . . . , θn〉 generated by θi − σ(i) as i varies in Tσ. For
any finite set Σ of such maps and any complete normed K-algebra R the following sequence of
Banach K-algebras is strict and exact

0→ R〈θ〉/
⋂
σ∈Σ

Iσ →
∏
σ∈Σ

R〈θ〉/Iσ →
∏

σ,σ′∈Σ

R〈θ〉/(Iσ + Iσ′)

and the ideal
⋂
σ∈Σ Iσ is generated by a finite set of polynomials with coefficients in Z.
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PROOF. We follow the notation and the proof of [32]. For a collection of ideals I = {Iσ}
we let A(I) be the kernel of the map

∏
σ R〈θ〉/Iσ →

∏
σ,σ′ R〈θ〉/(Iσ + Iσ′) and O(I) be the

cokernel of R〈θ〉/
⋂
σ Iσ → A(I). We make induction on the cardinality m of I. The case

m = 1 is obvious.
Let I ′ be I ∪ {Iη}. From the diagram

0

��

// R〈θ〉

��

id // R〈θ〉

��

// 0

0 // W // A(I ′) // A(I)

we obtain by the snake lemma the exact sequence

0→ Iη ∩
⋂

Iσ →
⋂

Iσ → W → O(I ′)→ O(I).

By direct computation, it holds W =
⋂

(Iσ + Iη)/Iη. By the induction hypothesis, we obtain
O(I) = 0. Moreover, since

⋂
Iσ + Iη =

⋂
(Iσ + Iη) by Lemma A.2.3, we conclude that the

map
⋂
Iσ → W is surjective and hence O(I ′) = 0 proving the main claim.

The ideals Iσ are defined over Z. In order to prove that the ideal
⋂
Iσ is also defined over Z

and that the sequence is strict, by means of [9, Proposition 2.1.8/6] it suffices to consider the
cases R = K = Qp or R = K = Fp((t)) for which the statement is clear. �

Let σ and σ′ be maps defined from two subsets Tσ resp. Tσ′ of {1, . . . , n} to {0, 1}. We say
that they are compatible if σ(i) = σ′(i) for all i ∈ Tσ ∩ Tσ′ and in this case we denote by (σ, σ′)
the map from Tσ ∪ Tσ′ extending them.

A.2.5. LEMMA. Let X = lim←−hXh be an object in R̂igSm and Σ a set as in Lemma A.2.4.
We denote O(X) by R and O(Xh) by Rh. For any σ ∈ Σ let f̄σ be an element of R〈θ〉/Iσ such
that f̄σ|(σ,σ′) = f̄σ′ |(σ,σ′) for any couple σ, σ′ ∈ Σ of compatible maps.

(1) There exists an element f ∈ R〈θ〉 such that f |σ = f̄σ.
(2) There exists a constantC = C(Σ) such that if for some g ∈ R〈θ〉 one has |f̄σ−g|σ| < ε

for all σ then the element f can be chosen so that |f − g| < Cε. Moreover, if
f̄σ ∈ R0〈θ〉/Iσ for all σ then the element f can be chosen inside Rh〈θ〉 for some
integer h.

PROOF. The first claim and the first part of the second are simply a restatement of Lemma
A.2.4, where C = C(Σ) is the constant defining the compatibility || · ||1 ≤ C|| · ||2 between the
norm || · ||1 onR〈θ〉/

⋂
Iσ induced by the quotient and the norm || · ||2 induced by the embedding

in
∏
R〈θ〉/Iσ. We now turn to the last sentence of the second claim.

We apply Lemma A.2.4 to each Rh and to R. We then obtain exact sequences of Banach
spaces:

0→ Rh〈θ〉/
⋂
σ∈Σ

Iα →
∏
σ∈Σ

Rh〈θ〉/Iσ →
∏

σ,σ′∈Σ

Rh〈θ〉/(Iσ + Iσ′)

0→ R〈θ〉/
⋂
σ∈Σ

Iα →
∏
σ∈Σ

R〈θ〉/Iσ →
∏

σ,σ′∈Σ

R〈θ〉/(Iσ + Iσ′)

where all ideals that appear are finitely generated by polynomials with Z-coefficients, depending
only on Σ.

In particular, there exist two lifts of {f̄σ}: an element f1 of R0〈θ〉 and an element f2 of
R〈θ〉 such that |f2 − g| < Cε and their difference lies in

⋂
Iσ. Hence, we can find coefficients
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γi ∈ R〈θ〉 such that f1 = f2 +
∑

i γipi where {p1, . . . , pM} are generators of
⋂
Iσ which

have coefficients in K. Let now γ̃i be elements of Rh〈θ〉 with |γ̃i − γi| < Cε/M |pi|. The
element f3 := f1 −

∑
i γ̃ipi lies in lim−→h

(Rh〈θ〉) is another lift of {f̄σ} and satisfies |f3 − g| ≤
max{|f2 − g|, |f2 − f3|} < Cε proving the claim. �

We can now finally prove the apporximation result that played a crucial role in Section 1.4.

PROOF OF PROPOSITION 1.4.1. For any h ∈ Z we will denote O(Xh)〈θ1, . . . , θn〉 by Rh.
We also denote the π-adic completion of lim−→h

R◦h by R+ and R+[π−1] by R.
By Proposition A.2.1 we conclude that there exist integers m and n and a m-tuple of

polynomials P = (P1, . . . , Pm) in K[σ, τ ] where σ = (σ1, . . . , σn) and τ = (τ1 . . . , τm)
are systems of variables such that K〈σ, τ〉/(P ) ∼= O(Y ) and each fk is induced by maps
(σ, τ) 7→ (sk, tk) from K〈σ, τ〉/(P ) to R for some m-tuples sk and n-tuples tk in R. Moreover,
there exists a sequence of power series Fk = (Fk1, . . . , Fkm) associated to each fk such that

(σ, τ) 7→ (sk + (s̃k − sk)χ, Fk(sk + (s̃k − sk)χ) ∈ R〈χ〉 ∼= O(X × Bn × B1)

defines a map Hk satisfying the first claim, for any choice of s̃k ∈ lim−→h
R◦h such that s̃k is in the

convergence radius of Fk and Fk(s̃k) is in R+.
Let now ε be a positive real number, smaller than all radii of convergence of the series Fkj

and such that F (a) ∈ R+ for all |a− s| < ε. Denote by s̃ki the elements associated to ski by
applying Proposition A.2.2 with respect to the chosen ε. In particular, they induce a well defined
map Hk and the elements s̃ki lie in R◦

h̄
〈θ1 . . . , θn〉 for some integer h̄. We show that the maps

Hk induced by this choice also satisfy the second and third claims of the proposition.
Suppose that fk ◦ dr,ε = fk′ ◦ dr,ε for some r ∈ {1, . . . , n} and ε ∈ {0, 1}. This means that

s̄ := sk|θr=ε = sk′ |θr=ε and t̄ := tk|θr=ε = tk′|θr=ε. This implies that both Fk|θr=ε and Fk′|θr=ε
are two m-tuples of formal power series F̄ with coefficients inO(X ×Bn−1) converging around
s̄ and such that P (σ, F̄ (σ)) = 0, F̄ (s̄) = t̄. By the unicity of such power series stated in
Corollary A.1.2, we conclude that they coincide.

Moreover, by our choice of the elements s̃k it follows that ¯̃s := s̃k|θr=ε = s̃k′ |θr=ε. In
particular one has

Fk((s̃k − sk)χ)|θr=ε = F̄ ((¯̃s− s̄)χ) = Fk′((s̃k′ − sk′)χ)|θr=ε
and therefore Hk ◦ dr,ε = Hk′ ◦ dr,ε proving the second claim.

The third claim follows immediately since the elements s̃ki satisfy the condition (4) of
Proposition A.2.2. �



Bibliography
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cubical homotopy groupoids, With contributions by Christopher D. Wensley and Sergei V. Soloviev.

[12] Kevin Buzzard and Alain Verberkmoes. Stably uniform affinoids are sheafy. arXiv:1404.7020 [math.NT],
2014.
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Appl., 11(2):309–326, 2009.
[35] J. Peter May. Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11. D. Van

Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
[36] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic cohomology, volume 2 of

Clay Mathematics Monographs. American Mathematical Society, Providence, RI, 2006.
[37] Fabien Morel and Vladimir Voevodsky. A1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ.

Math., (90):45–143 (2001), 1999.
[38] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992
German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
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