A MOTIVIC VERSION OF THE THEOREM OF
FONTAINE AND WINTENBERGER

Dissertation
ZUr

Erlangung der naturwissenschaftlichen Doktorwiirde
(Dr. sc. nat.)

vorgelegt der
Mathematisch-naturwissenschaftlichen Fakultét
der
Universitat Ziirich
von
Alberto Vezzani
aus

[talien

Promotionskomitee

Prof. Dr. Joseph Ayoub, Vorsitz
Prof. Dr. Luca Barbieri Viale
Prof. Dr. Fabrizio Andreatta

Prof. Dr. Andrew Kresch

Ziirich, 2014






Zusammenfassung

Ein Satz von Fontaine und Wintenberger [17] besagt, dass es einen Isomorphismus zwischen
den absoluten Galoisgruppen der Vervollstindigung K des bewerteten Korpers Q, (p'/?™) und
der Vervollstindigung K’ des bewerteten Koérpers F,((t))(¢*/?”) gibt. Nach der Definition von
Scholze [42] bemerken wir, dass diese Korper beide perfektoid sind, d.h. vollstindige nicht-
archimedische, nicht-diskret bewertete Korper mit einem Restklassenkorper der Charakteristik
p und so, dass die Frobenius-Abbildung auf O /p surjektiv ist. In loc. cit. zeigt der Autor,
dass man fiir einen solchen Korper K das multiplikative Monoid K’ = @x K mit einer
Korperstruktur versehen kann, die perfektoid der Charakteristik p ist. Dieser Korper wird der
Tilt von K genannt. Dariiber hinaus induziert dieser “tilting”-Funktor eine Aquivalenz zwischen
endlichen étalen Algebren iiber K und iiber & und bietet damit eine Verallgemeinerung des
Satzes von Fontaine und Wintenberger.

In einer Motivsprache kann das obige Ergebnis mit den Worten beschrieben werden, dass
die Kategorien von Artin-Motiven iiber den beiden Korpern dquivalent sind. Das Ziel der
vorliegenden Arbeit ist, diese Aquivalenz auf die gesamte Kategorie der (triangulierten) Motive
analytischer Varietiten iiber K und iiber K° zu verallgemeinern.

Das natiirliche hoher-dimensionale Analogon zur Kategorie von Artin-Motiven iiber einem
lokalen Korper ist die Kategorie der analytischen Motive RigDM, welche von Ayoub eingefiihrt
und analysiert wurde [3]. In diesem Zusammenhang werden die Grundkorper mit ihren nicht-
archimedischen Strukturen betrachtet, und nicht nur als abstrakte Korper wie in der Definition
der Motive DM auf glatten Varietéten.

Das wichtigste Ergebnis unserer Arbeit ist der folgende Satz :

THEOREM. Sei K ein perfektoider Korper mit Tilt K°. Es gibt eine Aquivalenz von triangu-
lierten monoidalen Kategorien:

§: RigDM{{ (K’, Q) — RigDMg (K, Q).

Die Situation kann mit dem folgenden Diagramm zusammengefasst werden. Die Schreib-
weise wird in der Dissertation beschrieben und erldutert.

RigDM (k) RigDMg (K’ Q)
RigDAzg(K7 Q) ngDAFrobet( b? Q)
Lu
o Le*
RigDAST (K, Q) ~ ~ | L Perf*
H—‘j*

PerfDAST (K, Q) PerfDAS (K, Q)
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Introduction

A theorem of Fontaine and Wintenberger [17], later expanded by Scholze [42], states that
there is an isomorphism between the Galois groups of a perfectoid field K and the associated
(tilted) perfect field K of positive characteristic. The standard example of such a pair is formed
by the completions of the fields Q,(p*/?”) and F,((t))(t'/?™).

In a motivic language, the previous result can be rephrased by saying that the categories
of Artin motives over the two fields are equivalent. The goal of this paper is to extend this
equivalence to the whole category of (mixed derived) motives of rigid analytic varieties RigDM
over K and over K’ with Q-coefficients. As a matter of fact, the natural analogue in higher
dimension of the category of (derived) Artin motives over a local field is the category of rigid
motives, introduced and analyzed by Ayoub [5], where the base field is considered as a non-
archimedean valued field and not just as an abstract field as in the case of the category of
algebraic motives DM.

In this thesis, we prove the following (Theorem[I.7.8)):

THEOREM. Let K be a perfectoid field with tilt K° and let A be a Q-algebra. There is a
monoidal triangulated equivalence of categories

§: RigDMST (K’ A) — RigDMST (K, A).

We remark that the construction of the functor § requires a lot of machinery and uses
Scholze’s tilting functor in a crucial way. We can roughly sketch the construction of this
functor as follows. We start from a smooth rigid variety X over the perfectoid field of positive
characteristic K’ and we associate to it a perfectoid space X obtained by taking the perfection
of X. This operation can be performed canonically since > has characteristic p. We then use
Scholze’ S t theorem to tilt X obtaining a perfectoid space Y in mixed characteristic. Suppose
now that Y is the limit of a tower of rigid analytic varieties

e IR T R CE I 1)

such that Yj is étale over the Tate ball B” = Spa K (vy,...,v,) and each Y}, is obtained as
the pullback of Y; by the map B" — B" defined by taking the p"-powers of the coordinates
v > b ". Under such hypothesis (we will actually need slightly stronger conditions on the
tower above) we then “de-perfectoidify” Y by associating to it Y5 for a sufficiently big index h.

The main technical problem of this construction is to show that it is independent of the
choice of the tower, and on the index h. It is also by definition a local procedure, which is not
canonically extendable to arbitrary varieties by gluing. In order to overcome these obstacles, we
use in a crucial way some techniques of approximating maps between spaces up to homotopy
which are obtained by a generalization of the implicit function theorem in the non-archimedean
setting. We also need to introduce a subcategory of adic spaces (in the sense of Huber [26])
@Sm where to embed both rigid analytic and perfectoid spaces, and adapt the motivic tools to
develop homotopy theory on it.

Generalizing the results of [3, Appendix B], we also prove that the natural functor a, of
adding transfers induces and equivalence between the category of motives without transfers
RigDAST (K, A) and the category of motives with transfers RigDMZ¢ (I, A) in characteristic
zero. In positive characteristic, it induces an equivalence between RigDAS . (K* A) and
RigDM¢T (K, A) where the former category is obtained as a localization of RigDAST(K? A)
with respect to the set of relative Frobenius maps X — X Xy o K > for all rigid varieties X
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over K”. Our main theorem can therefore be stated as an equivalence between RigDA2£f (K,A)
and RigDAS! | (K*, A) for any perfectoid field K of characteristic 0.

The statements above involve only rigid analytic varieties and their proofs use Scholze’s
theory of perfectoid spaces only in an auxiliary way. Nonetheless, we can restate our main result
highlighting the role of perfectoid spaces as follows:

THEOREM. Let K be a perfectoid field and let A be a Q-algebra. There is a monoidal
triangulated equivalence of categories

RigDMST (K, A) 5 PerfDAST (K, A)
The category PerfDAST (I, A) is built in the same way as RigDAS! (K, A) using as a

starting point the big étale site of perfectoid spaces which are locally étale over some perfectoid
ball B".

The following diagram of categories of motives summarizes the situation. The equivalence
in the bottom line follows easily from the “tilting equivalence” of Scholze, see [42, Proposition
6.17]. The notation introduced in the theorems and in the diagram will be described in later

sections.

RigDMS (K, A) RigDMS (K?, A)

~
~ ~

RigDA (K, A) RigDA{T . (K, A)

Ly

RigDA®F (K, A) ~ ~ | L Perf*

ét,B1
Lj*

~

PerfDAST (K, A) PerfDAST (K, A).

The thesis is organized as follows. The first chapter is devoted to the proof of the main
theorem. In Section[I.T] we recall the basic definitions and the language of adic spaces while in
Section we define the environment in which we will perform our construction, namely the
category of semi-perfectoid spaces E%Sm and w/egeﬁne the étale topology on it. In Section
we define the categories of motives for RigSm, RigSm and PerfSm adapting the constructions
of Voevodsky’s and Ayoub’s. Thanks to the general model-categorical tools introduced in this
section, we give in Section [I.4]a motivic interpretation of some approximation results of maps
valid for non-archimedean Banach algebras. In Sections and 1.6/ we prove the existence of
the de-perfectoidification functor from perfectoid motives to rigid motives in zero and positive
characteristics, respectively. Finally, we give in Section [I.7]the proof of our main result.

In the second chapter we prove the equivalence between rigid motives with and without
transfers. In Section [2.1| we introduce the Frob-topology and the Frobét-topology, which plays
the same role of the étale topology in positive characteristic for our purposes. In Section 2.2 we
define the categories of motives associated to these sites, as well as the auxiliary categories of
motives of normal varieties and their relative counterpart. Finally in Section [2.3] we prove the
desired equivalence RigDAL . (K, A) = RigDMS (K, A).

In the appendix, we collect some technical theorems that are used along the proofs of the
first chapter. Specifically, we first present a generalization of the implicit function theorem in
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the rigid setting, and conclude a result about the approximation of maps modulo homotopy as
well as its geometric counterpart. We also prove the existence of compatible approximations
of a collection of maps {f1,..., fx} from a variety in §i\gSm of the form X x B" to a rigid
variety Y such that the compatibility conditions among the maps f; on the faces X x B"~! are
preserved. This fact has important consequences for computing maps to B!-local complexes of
presheaves in the motivic setting.
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CHAPTER 1

The tilting equivalence of motives of rigid analytic varieties

The purpose of this chapter is to construct the equivalence of categories between motives of
analytic varieties over a perfectoid field K and its tilt . To this aim, we first recall the theory
of perfectoid spaces and we introduce the categories of adic spaces that we will be interested in.

1.1. Generalities on adic spaces

We start by recollecting the language of adic spaces, as introduced by Huber [26] and
generalized by Scholze-Weinstein [45] including some terminology of Buzzard-Verberkmoes
[12]] and Wedhorn [52]. We will always work with adic spaces over a non-archimedean valued
field.

1.1.1. DEFINITION. A non-archimedean field is a toplological field K whose topology is
induced by a non-trivial valuation of rank one. The associated norm is a multiplicative map that
we denote by |- |: K — Rs( and its valuation ring is denoted by K°. A pair (K, K) is called a
valuation field if K is a non-archimedean field and K™ C K*° an open bounded valuation subring.
We say it is complete if K (and hence also K) is complete. A map (K, K*) — (L, L") of
valuation fields is local if the inverse image of L™ in K coincides with K.

1.1.2. REMARK. A map (K, K") — (L, L") is local if an only if the map K™ — Lt isa
local map between local rings. In that case, the two valuations on K induced by K+ and L™
coincide. The valuation on K induced by K has rank 1 precisely when K coincides with K°.

From now on, we fix a complete non-archimedean field KX and we pick a non-zero element
m € K with 7| < 1.

We now recall some definitions given in [25]. We also introduce the notion of a bounded
affinoid K-algebra.

1.1.3. DEFINITION. A Tate K-algebra is a topological K -algebra R for which there exists
a subring R, such that the set {7* Ry} forms a basis of neighborhoods of 0. A subring R, with
the above property is called a ring of definition.

1.1.4. DEFINITION. Let R be a Tate K -algebra.

e A subset S of R is bounded if it is contained in the set 7= R, for some integer N. An
element = of R is power-bounded if the set {z"},cy is bounded. The set of power-
bounded elements is a subring of R that we denote by [2°. We say that R is uniform if
R° is bounded.

e Anelement z of R is topologically nilpotent if lim,,_, ., ™ = 0. The set of topologi-
cally nilpotent elements is an ideal of R° that we denote by R°°.

1.1.5. REMARK. Suppose that R is a Tate K -algebra. The definition of a bounded set does
not depend on the choice of the ring of definition Ry. A subring of R is a ring of definition if and
only if it is bounded and open. By [25, Corollary 1.3] the ring 1?° is the filtered union of all rings
of definitions of R. In particular if x € R is algebraic over R° then it is algebraic over a ring of
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1.1. GENERALITIES ON ADIC SPACES 2

definition, and so it is power-bounded proving that R° is integrally closed in . Moreover, since
for any x € R the sequence x7" tends to zero, we conclude that z7" is contained in a ring of
definition R, for a sufficiently big index n and hence Ro[r~!] = R.

1.1.6. DEFINITION. Let K be a complete non-archimedean field.

e An affinoid K-algebra is a pair (R, RT) where R is a Tate K -algebra and R" is an
open and integrally closed K°-subalgebra of R°. A morphism (R, R™) — (S, S™) of
affinoid K -algebras is a pair of compatible K °-linear continuous maps of rings (f, /7).

e A bounded affinoid K -algebra is an affinoid K -algebra (R, R") such that R™ is a ring
of definition.

e An affinoid K -algebra (R, R") is called complete if R (and hence also R*) is complete.

1.1.7. REMARK. If (R, R") is an affinoid K-algebra and R is uniform then (R, R") is
bounded.

1.1.8. REMARK. If (R, R") is an affinoid K'-algebra and z is topologically nilpotent, then
there exists an integer N such that 2V € R* and hence € R* since R™ is integrally closed.
We then deduce that R™ contains the set R°°. The restricted topology on a ring of definition Ry
coincides with the m-adic topology. In particular, the topology of a bounded affinoid K -algebra
(R, R*") is uniquely determined by the K°-algebra R*.

1.1.9. EXAMPLE. By Remark|1.1.5] if R is a Tate K-algebra, then (R, R°) is an affinoid
K -algebra.

Any affinoid K-algebra (R, R") is endowed with a universal map (R, R*) — (R, R") to
a complete affinoid K '-algebra that we call the completion of (R, R™) (see [25, Lemma 1.6]).
In case (R, R") is bounded, then R* is the m-adic completion of R* and R is R* [r~']. More
generally, for any affinoid K-algebra (R, R") we can define the m-adic completion to be the
complete affinoid K -algebra (S, ST) where S+ is the -adic completion of R™ and S'is S*[7 ']
endowed with the topology generated by the sets {7*ST}.

Let {(R;, R;"), f;} be a direct system of maps of affinoid K -algebras. As remarked in [44], it
is not true in general that the direct limit (hﬂ R;, hﬂ R) endowed with the direct limit topology
is an affinoid K -algebra. In the bounded context, however, this nuisance can be easily solved.

1.1.10. LEMMA. Let {(R;, R;}), f;} be a direct system of maps of bounded affinoid K -
algebras. Endow the ring hﬂz R; with the topology for which hﬂz RY is a ring of defi-
nition. The pair (R, R") = (h_ngl Ri,ligi R}") is a bounded affinoid K-algebra and one
has Hom((R, R*1),(S,57)) = lér_nz((Rz, R, (S, ST)) for any bounded affinoid K-algebra
(S, 5™).

PROOF. A map from (R, R") to (S, S™) is uniquely determined by a K°-linear map from
Rt = limy R to S*. Similarly, a map from (R;, R;") to (S, ST) is uniquely determined by a
K°-linear map from R} to S*. From the isomorphism Hom(lim R;", S*) = lim Hom(R, S¥)
we then deduce the claim. O

From the lemma above, we conclude that the category of bounded affinoid K -algebras has
direct limits.
We now examine some examples.

1.1.11. EXAMPLE. Let v = (vy,...,vy) be an N-tuple of coordinates. If (R, R") is a
bounded affinoid K -algebra, then also the pair (R(v), R*(v)) is, where R(v) is the ring of
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strictly convergent power series in N variables with coefficients in R:

R{v) = {Z ajv’ € R[[v]]: Yk € N,a; € 7°R™ for almost all I}
I
with the topology having 7% R* (v) as a basis of neighborhoods of 0. In case R is normed, then
also R{v) is normed, with respect to the Gauss norm | >~ ; a;v’| := max;{|as|} and is complete
whenever R is (see [9, Section 1.4.1]).

1.1.12. EXAMPLE. If R is any normed K -algebra, then (R, R°) is an affinoid K -algebra.
The classical definition of Tate gives therefore examples of affinoid K -algebras.

1.1.13. DEFINITION. A fopologically of finite type Tate algebra (or simply tft Tate algebra)
is a Banach K -algebra R isomorphic to a quotient of the normed K -algebra K (vy, ..., v,) for
some 7.

If R is a tft Tate algebra, the pair (R, R°) is an affinoid K-algebra, which is bounded
whenever R is reduced (see [9, Theorem 6.2.4/1)]).
We now recall the definition of perfectoid pairs, introduced in [42]:

1.1.14. DEFINITION. A perfectoid field K is a complete non-archimedean field whose rank
one valuation is non-discrete, whose residue characteristic is p and such that the Frobenius is
surjective on K°/p. In case char K = p this last condition amounts to saying that K is perfect.

1.1.15. DEFINITION. Let K be a perfectoid field.

e A perfectoid algebra is a Banach K-algebra R such that R° is bounded and the
Frobenius map is surjective on R°/p.

e A perfectoid affinoid K -algebra is an affinoid K -algebra (R, R") over a perfectoid
field K such that R is perfectoid.

1.1.16. REMARK. Any perfectoid affinoid K -algebra is bounded. If R is a perfectoid algebra,
then (R, R°) is a perfectoid affinoid K -algebra.

1.1.17. EXAMPLE. Suppose that K is a perfectoid field. A basic example of a perfectoid
algebra is the following: let v = (vy, ..., vy) be a N-tuple of coordinates and K°[v'/P”] be the
ring @h K" ph] endowed with the sup-norm induced by the norm on K. We also denote
by K°(v'/?™) its m-adic completion. By [42, Proposition 5.20], the ring K°{v'/?™)[x7!] is a
perfectoid K -algebra which we will denote by K (v'/P”). The pair (K (v*/?™), K°(v'/?™))is a
perfectoid affinoid /K -algebra. We also define in the same way the perfectoid affinoid K -algebra
(K (0F/P7) | Ko (vF1/P™)) (see [43, Example 4.4]).

1.1.18. REMARK. K (v'/?™) is isomorphic as a K (v)-topological module to the completion
@K (v) of the free module ) K (v) with basis indexed by the set (Z[1/p] N [0,1))". By [9,
Proposition 2.1.5/7] there is an explicit description of this ring as a subring of [[ K (v).

The following theorem summarizes some results of Scholze, including the tilting equivalence
of perfectoid algebras which will play a crucial role in our construction.
1.1.19. THEOREM ([42]). Let K be a perfectoid field.
(1) ([42, Lemma 3.4]) The multiplicative monoid l'glmHmp K can be given a structure K°

of perfectoid field with the norm induced by the multiplicative map 4: K — K. The
field K has characteristic p and coincides with K in case char K = p.
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(2) ([42, Theorem 3.7]) The functor L — L’ for L finite étale over K induces an isomor-
phism Gal(K) = Gal(K").

(3) ([42, Lemma 6.2]) There is an equivalence of categories, the tilting equivalence,
from perfectoid affinoid K-algebras to perfectoid affinoid K°-algebras denoted by
(R, R*) — (R’, R°%) such that R’ is multiplicatively isomorphic to Wm R and
R** is multiplicatively isomorphic to lim v ias

(4) (|42, Proposition 5.20 and Corollary 68]) The tilting equivalence associates
(K @!/P™), Ko !/P™)) to (K*(u!/P™), K7 (u'/P™)) and (K (u*VP"), K°(u*'/"™))
to (Kb<yi1/p > Kbo< +1/p> >)

We now introduce a geometric category. We make use of a definition of Wedhorn [52,
Remark and Definition 8.9].

1.1.20. DEFINITION. Let X be a topological space and let B be a basis of open subsets of
X. A presheaf F on X with values in a category where projective limits exist is adapted to B if
for every open subset U of X one has F(U) = hm F(B).

1.1.21. REMARK. If F is a sheaf, it is adapted to any basis of open subsets. Vice-versa, if F
is a presheaf on X adapted to BB and a sheaf on B then it is a sheaf on X.

1.1.22. DEFINITION. Let K be a complete non-archimedean field.

e We denote by V , the following category: objects are triples (X, Ox, O%) with the
following properties:
— X is a topological space.
— Ox resp. OF is a presheaf on X of complete topological algebras over K resp.
over K° with Ox 2 O and the stalk at each point z is a local ring Ox, resp.
OX .- We denote by m,, the maximal ideal of Ox .
— There is a basis of open subsets B such that the presheaves Ox and OF are
adapted to it and the pair (O, O%) defines a presheaf on B of complete affinoid
K -algebras.
— For each point z in X the 7-adic completion of the pair (Ox ,, O ,) is a valuation
field (k(z), k(x)*) such that the map Ox. — k(z) factors over Ox ./m,.
A morphism f: (X, Ox, 0%) — (Y, Oy, 05) is a pair formed by a map of topological
spaces f: X — Y and a couple of maps of presheaves of topological K °-algebras
(f*, f): (Oy,07) — f.(Ox,O%) inducing local maps of valuation fields at each
Romt. _For each x € X we denote the totally ordered topological abelian group
k()" /k(x)™ by I'(z).
e We denote by V the full subcategory of V , formed by triples (X, Ox, OF) such that
Ox and OF; are sheaves of topological rings.

1.1.23. LEMMA. Let (X, 0%, Ox) be an object of V s, and x be a point of X.

(1) The completion map OF.  — /k:\(:v)+ and the map Ox , — /k\(:zr) are local.

2) If (f, f*, 9 (X, Ox, O*) — (Y, Oy, 0F) is a morphism of V. then the pairs (f, f*)
and (f, f*%) are morphisms of locally ringed spaces.

(3) The map Ox , — E(m) induces a continuous valuation | - (z)|: Ox, — I'(z) U{0}
and morphism of Vs, are compatible with these valuations.

(4) The ring OF, , coincides with the subring of elements f with | f(x)| < 1 and its maximal
ideal coincides with the set of elements f such that | f(z)| < 1.
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(5) The maximal ideal m, of Ox ., coincides with the set of elements f such that | f(x)| = 0.

(6) If (X, 0%, Ox) lies in'V then OF(X) coincides with the ring { f € O(X): |f(z)] <
Lforallx € X}.

(7) For any a,b € Ox(X) the sets {x: |a(x)| # 0} and {z: |a(z)| < |b(z)| # 0} are
open.

PROOF. We start by proving the first claim. The local map O}L{J — O;“m /m factors by the
completion map O . — k(z)* which is then also local. The claim about Ox , — k(x) follows
from the very definition of the category V.

For the second claim, we only need to prove that the induced maps O; Fa) O}J and
Oy, t@) — Ox, are local. This follows from the first claim and the fact that a local map of
valuation fields (k(y), k(y)") — (k(z), k(z)*) induces a local map k(y)* — k(z)*. This also
proves the third claim. R

If an element a in Ox, satisfies |a(z)| < 1 then a lies in k(z)" which is the 7-adic
completion of Oy . In particular, there exist elements a’,c € Oy, such that a — cm = a'.
We then deduce a € O;“(’x and hence the third claim. The fourth and fifth claims are easy
consequences of the previous ones.

If Ox and OF are sheaves, then also the subsheaf F of Ox defined as F(U) = {f €
Ox(U): |f(z)] < 1forall z € U} is a sheaf and by what proved above has the same stalks of
O They therefore coincide and this shows the sixth claim.

We now move to the last claim. Fix now a,b € Ox(X). From the previous results, we
deduce that |a(x)| # 0 is equivalent to a € O% , which is an open condition. In order to prove
that the second set is also open it therefore suffices to show that the condition |a(x)| < 1 is open.
From the third claim, this amounts to saying that a € O}’x which is again an open condition, as
wanted. U

By the above result, each object (X, Ox, 0% ) of V defines a triple (X, Ox, {v, }.ex) where
v, 1s a multiplicative valuation defined on the stalk Ox , and the maps of V are compatible
with them. The category V is then a subcategory of V as defined by Huber in [27, Section 2].
Our definition is more restrictive, as we assume that the valuation ring at each point coincides
with the 7-adic completion of the stalk of O3 . On the other hand, valuations at each point are
automatically induced by the properties of the stalks of (Ox, O%).

We now recall Huber’s construction of the spectrum of a valuation ring (see [26]).

1.1.24. CONSTRUCTION. Let (R, R") be an affinoid K-algebra. The set Spa(R, R™)
is the set of equivalence classes of continuous multiplicative valuations, i.e. multiplicative
maps | - |: R — ' U {0} where (I, ) is a totally ordered abelian group, such that |0| = 0,
11| = 1, |z 4+ y| < max{|z|, |y|} and |RT| < 1. It is endowed with the topology generated by
rational subsets {U(f1,..., fn | 9)} by letting f1,..., f,, g vary among elements in R such
that fi,..., f, generate R as an ideal and where the set U(f1,..., f, | ¢) is the set of those
valuations | - | satisfying | f;] < |g| for all 7. Rational subsets form a basis of quasi-compact sets
of the (quasi-compact) space Spa(R, R™) ([25, Theorem 3.5]).

Alternatively, Spa(R, R") is the set lim Hom((R, R"), (L, L™")) by letting (L, L™) vary in
the category of valuation fields over K and local maps. Its topology can be defined by declaring
the sets {¢: 0 # |o(f)] < |#(g)|} to be open, for all pairs of elements f, g in R.

Let (R, R") be an affinoid K -algebra, let fi,..., f,, be elements in R that generate R
as an ideal and g be in R. We can endow the ring R[1/g] with the topology generated by
7 Rolf1/9, - -, fn/g] where Ry is a ring of definition of R. If we let B be the integral closure
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of R*[f1/g, ..., f./g] in R[1/g] the pair (R[1/g], B) is an affinoid algebra, and its completion
will be denoted by (R(f1/g, ..., [n/9), R{f1/g,---, [n/g)T). If (R, RT) is bounded (or even
if R is uniform) the pair (R{f1/g,..., fn/9), R{(f1/9,--., [»/g)") may not be bounded (see
the proof of [12, Proposition 17]).

We associate to U(f1, ..., fn | g) the affinoid K -algebra

introduced above. Whenever a rational subspace U is contained in another one U’ there are
canonical maps pY : (O(U'),0F(U")) — (O(U),0*(U)) (see [26, Lemma 1.5]). For an
arbitrary open V' we can then define
oWV)= an o)
VDU rational

and similarly for O". This way, we define a pair of presheaves of complete topological K -
algebras (O, O7) on Spa(R, R") adapted to rational subsets. By [26, Lemma 1.5, Proposition
1.6] we have U = Spa(O(U), O*(U)) which is called a rational subspace of X = Spa(R, R")
and for any x € X the valuation at = extends to a valuation on Ox , such that the stalk O}J is
local and corresponds to {f € Ox,: |f(z)| < 1}. The triple (Spa(R, R"), Ox, O%) defines
an object of V4. The property at stalks is a consequence of [42, Proposition 2.25]. We point
out that (O(X), 0" (X)) = (R, R*) and that Spa(R, R*) = Spa(R, R") as remarked in [25|
Proposition 3.9].

By [26, Proposition 1.6] there holds O*(U) = {f € O(U): |f(x)| < 1forall z € U} for
any rational open U of Spa(R, R*1) so that O is a sheaf if O is a sheaf. By Tate’s acyclicity
theorem [9, Theorem 8.2.1/1] and Scholze’s acyclicity theorem [42, Theorem 6.3], if (R, R™) is
a tft Tate algebra or a perfectoid affinoid K -algebra, then O, O are sheaves. Sadly enough,
this does not hold in general as shown at the end of [26, Section 1].

1.1.25. REMARK. By [12, Theorem 7] if (R, R") is an affinoid K -algebra such that O(U)
is uniform for all rational subspaces U of Spa(R, R") (i.e. it is stably uniform following [12]))
then the presheaf O on Spa(R, R") is a sheaf.

1.1.26. REMARK. By abuse of notation, whenever R is a reduced tft Tate algebra we will
sometimes denote by Spa R the object Spa(R, R°) of V.

The category V must be thought of as the analogue of the category of locally ringed spaces,
and allows to have a completely abstract definition of the affinoid spectrum Spa(A, A™) akin to
the case of schemes (see [14, 1.1.2.1]) as the following fact shows. It is a slight generalization of
[26. Proposition 2.1(ii)].

1.1.27. PROPOSITION. Let (R, R") be an affinoid K -algebra and X be an object of V. The
global section functor induces a bijection

(X, Spa(R, R+)) = HomK—cont((ﬁa §+)7 (O<X)7 O+(X)))

where the set on the right is the set of continuous K°-linear maps of pairs of complete topological
rings.

Homvy

PROOF. We can assume that (R, R") is a complete affinoid /K -algebra. There is a canonical
map
[': Homy, , (X, Spa(R, R")) = Homg _cont((R, RT), (Ox(X), 0%(X)))
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induced by the global section functor. We now define a map
¢: Homg _con((R, RT), (Ox(X), 0% (X)) = Homy, (X, Spa(R, R"))).

Suppose we have amap a: (R, RT) — (Ox(X), 0% (X)). We associate to each x € X the
point ¢, (x) of Spa(R, RT) correponding to the composite map

(R, R") = (Ox(X), Ox (X)) = (k(x), k(x)").

The map x — ¢,(z) from X to Spa(R, R") is continuous, since the condition |a(f)(z)| <
la(g)(x)| # 0is open in X by Lemma|l.1.23] For each fi,..., f, € R generating R and any
g € RletV be the subset {x € X : |a(f;)(x)| < |a(g)(x)| # O for all 7}. It is open by Lemma
[I.1.23] For any subset B of V' in the basis B there exists an induced map of affinoid K -algebras

(05 02 ) (V) (R /G, fa) 9 BUF1 /G5 - ) 9)F) = (Ox(B), Ox(B))

deduced by the universal property of (R(f;/g), R{fi/g)") [26} Proposition 1.3]. Since Ox and
O are sheaves and since O and O™ are adapted to rational subsets the mapping above also
defines
(¢, aF)(U): (O(U),07(U)) = (Ox(¢7(U)), 0% (¢~ (U)))

for an arbitrary open subset U of Spa(R, R"). Therefore the triple (¢,, ¢%, ¢;*) defines an
element of Homy_, (X, Spa(R, R")) as wanted.

The composition I o ¢ is the identity by definition. We are left to check that ¢ o I is
the identity. Fix a map (f, f*, f**) in Homy,, (X, Spa(R, R")) and let a be the associated

map in Homp_cont((R, RT), (Ox(X), 0% (X))). For each z € X we deduce the following
commutative diagram:

(R, R) —— (Ox(X), 0% (X))

(7)), (1) L2 (), ()
where (f#, f}*) is a local map of valuation fields. Since the composite map
(R, RT) = (Ox(X), 0% (X)) = (k(x), k™ (2))

coincides with ¢, we deduce that ¢,, is equivalent to the valuation induced by the map (R, R*) —
(k(f(x)),k*(f(x))) hence f(x) = ¢,. Fix now a rational subset U of Spa(R, R*") and let V' be
f~YU). By covering it with open sets of B we conclude that the map a factors over

(/5 F)(V): (0(U), 0F(U)) = (Ox(V), 0% (V)

and it coincides with (¢%, ¢#)(V) by the universal property of (O(U), O*(U)). This proves
the claim. 4

1.1.28. REMARK. The functor Spa induces an adjunction between V and the category of
affinoid K -algebras such that the presheaf O on Spa(R, R™) is a sheaf, also known as sheafy
affinoid K -algebras using the language of [45], and these include reduced tft Tate algebras and
perfectoid affinoid K -algebras.

1.1.29. REMARK. Proposition|1.1.27|slightly differs from [26, Proposition 2.1(ii)] since we
do not assume that X is locally affinoid and that Spa(R, R™) isin V.

1.1.30. DEFINITION. Let X be an object of V.
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e We say that X is an affinoid adic space if it is isomorphic to Spa(R, R") for some
affinoid K-algebra (R, RT). It is called bounded if (R, R") is bounded.

e We say that X is an affinoid rigid variety if it is isomorphic to Spa(R, R°) for some
tft Tate algebra R and it is called reduced if R is reduced.

e We say that X is a perfectoid affinoid space if it is isomorphic to Spa(R, R™) for some
perfectoid affinoid K-algebra (R, R").

e We say that X is an adic space if it is locally isomorphic to an affinoid adic space.

e We say that X is a rigid variety if it is locally isomorphic to an affinoid rigid variety.
It is called reduced if it is locally isomorphic to a reduced affinoid rigid variety.

e We say that X is a perfectoid space if it is locally isomorphic to a perfectoid affinoid
space.

In this work we will always be dealing with stably uniform affinoid K -algebras. For this
reason, the adjectives “bounded” and “reduced” will sometimes be omitted.

There is an apparent clash of definitions between rigid varieties as presented above, and
as defined by Tate [49]. In fact, the two categories are canonically equivalent. We refer to
[26, Section 4] and [42, Section 2] for a more detailed collection of results on the comparison
between these theories.

1.1.31. ASSUMPTION. From now on, we will always assume that K is a perfectoid field.
We also make the extra assumption that the invertible element 7 of K satisfies |p| < || < 1
and coincides with (7°)* for a chosen 7” in K”. In particular, 7 is equipped with a compatible
system of p-power roots 7'/ " (see [42, Remark 3.5]).

We now consider some basic examples and fix some notation. Let v = (vq,...,vy) be a
N-tuple of coordinates. The Tate N-ball Spa(K (v), K°(v)) will be denoted by BY and the
N-torus Spa(K (vE!), K°(v*!)) by TV. It is the rational open subset U(1 | vy ... vy) of BY.
The map of spaces induced by the inclusion (K (v), K°(v)) — (K (0?"), K°(u'/?")) will be
denoted by BY (v!/?") — BN . We use the analogous notation T (v!/?") — TN for the torus.

These maps are clearly isomorphic to the endomorphism of B resp. T" induced by v; + v? "
The space defined by the perfectoid affinoid K -algebra (K (v'/P™), K°(v'/?™)) will be
denoted by BY and referred to as the perfectoid N-ball. The space defined by the perfectoid affi-
noid K -algebra (K (vF1/P™) | K°(v*1/P™)) coincides with the rational subspace U(1 | vy ... vy)
of BN will be denoted by T and will be referred to as the perfectoid N-torus.
We now recall the definition of étale maps on the category of adic spaces, taken from [42}
Section 7].

1.1.32. DEFINITION. A map of affinoid adic spaces f: Spa(S,S*) — Spa(R, R") is finite
étale if the associated map R — S is a finite étale map of rings, and if ST is the integral closure
of R™ in S. A map of adic spaces f: X — Y is étale if for any point x € X there exists
an open neighborhood U of x and an affinoid open subset V' of Y containing f(U) such that
flu: U — V factors as an open embedding U — W and a finite étale map W — V' for some
affinoid adic space V.

The previous definitions, when restricted to the case of tft Tate varieties, coincide with the
usual ones, as proved in [18, Proposition 8.1.2].
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1.1.33. REMARK. Suppose we are given a diagram of affinoid K -algebras

(R,R") — (S,5T)

|

(T,T7)

In general, it is not possible to define a push-out in the category of affinoid K -algebras. Nonethe-
less, this can be performed under some hypotheses. For example, if the affinoid K -algebras are
tft Tate algebras then the push-out exists and it is the tft Tate algebra associated to the completion
SRRT of S ®x T endowed with the norm of the tensor product (see [9, Section 3.1.1]). In case
the affinoid K -algebras are perfectoid affinoid, then the push-out exists and is also perfectoid
affinoid. It coincides with the completion of (L, L) where L is the ring S®zT endowed with
the norm of the tensor product and L™ is the algebraic closure of ST Qg+ T in L (see [42]
Proposition 6.18]). The same construction holds in case the map (R, R") — (5, S5") is finite
étale and (T, T) is a perfectoid affinoid (see [42, Lemma 7.3]). By Proposition the
constructions above give rise to fiber products in the category V.

1.2. Semi-perfectoid spaces

We can now introduce a convenient generalization of both smooth rigid varieties and smooth
perfectoid spaces. We recall that our base field K is a perfectoid field.

1.2.1. PROPOSITION. Letv = vy,..., vy andv = vy, ..., Vy be two systems of coordinates.
Let (Ry, R{) be a tft Tate algebra and let

f: Spa(Ro, Ry) — TV x TV = Spa K (v*!, v*)

be a map which is a composition of finite étale maps and rational embeddings. Let also
Spa(Rp, RS) be the affinoid rigid variety Spa(Ry, RS) xpn TN (0'/7"). The m-adic completion
(T, T") of (hﬂz R, lim, R?) represents the fiber product Spa(Ry, RY) X1~ TN and defines a
bounded affinoid adic space. Moreover, (T, T™) is isomorphic to the completion of (L, L")
where L is the ring Ry® () K (vYP™) endowed with the norm of the tensor product and L+ is
the integral closure of Rj in L.

PROOF. Let (T, T) be as in the last claim. We need to prove that W := Spa(T,T™") is
an adic space, i.e. that O is a sheaf on it. We let W’ be the fiber product of Spa(Ry, R;)
and TV x TM over TV x TM. If char K = 0 by [42, Proposition 6.3(iii), Lemma 7.3 and
Proposition 7.10] and the proof of [43, Lemma 4.5] it exists, is affinoid perfectoid repre-
sented by (7", 7'*) where T" is Ry® g () K (/P v*/?™) and where T"* is bounded in 7"
and corresponds to the completion of the algebraic closure of Rj® o, ) K° (¥P7 y/PY in
Ro®@ (o K (0P v1/P™) . The same is true if char K = p as in this case it coincides with the
completed perfection of X (see [19, Theorem 3.5.13]).

Let {U;} be a finite rational covering of W and let {U/} be the rational covering of W’
obtained by pullback. We first prove that the pullback of O(WW') and O(Uj;) over O(U}) coincides
with O(W). Since as pointed out in Remark the ring K (v'/?™) is isomorphic to @K (v) also
O(W’) is isomorphic to PO(W) and O(U) is isomorphic to PO(U;) using [9, Proposition
2.1.7/8]. By the explicit description of this set as a subset of [[ O(U;) given in [9, Proposition

2.1.5/7] we conclude that @O(W) X&ows) O(U;) = O(W) as claimed. We then conclude
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that the equalizer of the diagram

Ho )= [Jow:nuy)

i,
is obtained by pullback from equahzer of the diagram
H ow;) = [[ownu).
i,
Since the latter coincides with O(W’) we deduce that the former coincides wih O(W) as wanted.

Moreover, since the map Ry — I?, is finite, 2} is the algebraic closure in 12, of R by [9,
Theorem 6.3.5/1]. Passing to the direct limit, one finds that 7" is the completion of lim, Ry

We are left to prove that 7" is bounded, and this follows as it strictly embeds in 7"% which is
bounded in 7". O

1.2.2. COROLLARY. Let X be a reduced rigid variety with an étale map
f: X =TV x TY = Spa K (v*!, v*).
Then the fiber product X X~ TN exists.

PROOF. This follows from Proposition and the fact that every étale map is locally (on
the source) a composition of rational embeddings and finite étale maps. U

1.2.3. DEFINITION. We denote by ﬁ%SmgC /K the full subcategory of adic spaces whose
objects are isomorphic to spaces X = Xg X~ TV with respect to a map of affinoid rigid varieties
f: Xy — TN x TM that is a composition of rational embeddings and finite étale maps. Because
of Proposition such fiber products X = Xy X~ TN exist and are affinoid. Whenever
N = 0 these varieties are rigid analytic varieties and the full subcategory they form will be
denoted by RigSm®° / K and referred to as smooth affinoid rigid varieties with good coordinates.
Whenever M = 0 these varieties are perfectoid affinoid spaces and the full subcategory they
form will be denoted by PerfSm®® / K and referred to as smooth affinoid perfectoids with good
coordinates. A perfectoid space X in R1gSmgC /K will be sometimes denoted with X.

When X = X xpv TV is in R1gSmgc /K we denote by X}, the fiber product Xy X~
™ <Q1/ph) and we will write X = 1£1 N Xp. We say that a presentation X = Y&nh X, of an

object X in @Smgc /K has good reduction if the map X, — T™ x T™ has an étale formal
model X — Spf(K°(v*!,v*!)). We say that a presentation X = lim X, of an object X in

ﬁi\gSmgC / K has potentially good reduction if there exists a finite separable field extension L/ K
such that X = @h(X 1)z has good reduction in RigSme° /L. We warn the reader that the
association X +— X is not functorial and the varieties X, are not uniquely determined by X in
general.

We denote by @Sm /K the full subcategory of adic spaces which are locally isomorphic to
objects in ﬁ%SmgC /K ; we denote by RigSm /K the full subcategory of adic spaces which are
locally isomorphic to objects in RigSm®® /K and by PerfSm /K the one of adic spaces which
are locally isomorphic to objects in PerfSm®° /K. Whenever the context allows it, we omit K
from the notation.

1.2.4. REMARK. Any smooth rigid variety (see for example [S, Definition 1.1.39]) has
locally good coordinates over TV by [5], Corollary 1.1.49]. Hence RigSm coincides with the
category of smooth rigid varieties.
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We remark that the presentations of good reduction defined above are a special case of the
objects considered in [2]].

The notation X = @h X}, 18 justified by the following corollary, which is inspired by [43,
Proposition 2.4.5].

1.2.5. COROLLARY. LetY be a bounded affinoid adic space and let X be in ﬁi\gSmgC with
X =lim, Xj. Then Hom(Y, X) = lim, Hom(Y, Xp).

PROOF. This follows from Lemma|(l.1.10/and Proposition|1.2.1 U

Let { X}, fn}ner be a cofiltered diagram of rigid varieties and let {X — X} },c; be a
collection of compatible maps of adic spaces. We recall that, according to [27, Remark 2.4.5],
one writes X' ~ lim X when the following two conditions are satisfied:

(1) The induced map on topological spaces | X | — Jm, | X1| is a homeomorphism.
(2) For any z € X with images z;, € X, the map of residue fields ligih k(xp) — k(x) has
dense image.

The apparent clash of notations is solved by the following fact.

1.2.6. PROPOSITION. Let X = lim, X, be in RigSme°. Then X ~ lim, X
PROOF. This follows from TV ~ lim K (v*'/7") and from [42, Proposition 7.16]. O

Etale maps define a topology on ﬁiTgSm in the following way.

1.2.7. DEFINITION. A collection of étale maps of adic spaces {U; — X };c; is an étale cover
if the induced map | |, U; — X is surjective. These covers define a Grothendieck topology on
RigSm called the étale topology.

The following facts are shown in the proof of [42, Theorem 7.17] and of [27, Proposition
2.4.4].

1.2.8. PROPOSITION. Let X = 1&1}1 X}y, be an object of ﬁiTgSmgc.
(1) Any finite étale map U — X is isomorphic to Uy, X x,; X for some integer h and some
finite étale map U;, — Xj,.
(2) Any rational subspace U C X is isomorphic to Uj, X x; X for some integer H and
some rational subspace Uy, C X,

PROOF. The first statement follows from [42, Lemma 7.5]. The second statement follows
from [25, Lemma 3.10] and the fact that limy O(X}) is dense in O(X). O

1.2.9. COROLLARY. Let X = @h Xy, be an object ofﬁfgSmgC andletU = {f;: U; — X}

be an étale covering of adic spaces. There exists an integer h and a finite affine refinement
{V; — X} of U which is obtained by pullback of an étale covering {V;,; — X3} of Xj, and

such that V = @h Vij lies in ﬁiTgSmgC by letting Vy,; be Vi; X x; Xp for all h > h.

PROOF. Any étale map of adic spaces is locally a composition of rational embeddings and
finite étale maps and they descend because of Proposition [1.2.8] O

12.10. COROLLARY. A perfectoid space X lies in PerfSm if and only if it is locally étale
over TV.
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PROOF. Let X be locally étale over TN, Then it is locally open in a finite étale space over a
rational subaffinoid of TV = lim, TN (u=/#"). By Proposition|1.2.8, we conclude it is locally

of the form X, v TV for some étale map X, — TV = Spa(K (v*!), K°(v*!)) which is the
composition of rational embeddings and finite étale maps. U

1.2.11. REMARK. If X is a smooth affinoid perfectoid space, then it has a finite number of
connected components. Indeed, it is quasi-compact and locally isomorphic to a rational domain

of a perfectoid which is finite étale over a rational domain of T%.

For later use, we record the following simple example of a space X = I'&nh X}, for which
the varieties X}, are easy to understand.

1.2.12. PROPOSITION. Consider the smooth variety with good coordinates
Xo=U(v—1]7) = T" = Spa(K (v*")).
One has X}, = B! for all h and X = Y&nh X = B!
PROOF. By direct computation, the variety X, is isomorphic to Spa(K (v, w) /(w?" — (7v +

1))). Since |p| < || we deduce that ](p:)| < |r| forall 0 < i < p". In particular, in the ring
K(v,w)/(w”" — (v + 1)) one has

ph—1 h
h p i
(W=D =|mv+ > (Z)w | = |x.
=1

Analogously, in the ring K () one has

ph—1 h
—1/pM\ph =1 0" p ph=1 =i/ _q
e r Y =t =+ 3 (7)) =
The following maps are therefore well defined and clearly mutually inverse:
Xo = Spa(K (v,0) /(" = (w0 +1)) S Spa(K (x)) = B!
(v,w) > (O a7 =t w4 )
7P (W= 1)« x.
Consider the multiplicative map #: K’ (v'/P™) = (K (v'/?™))> — K (v'/P™) defined in [42,
Proposition 5.17]. By our assumptions on 7 the element (v — 1)* — (v — 1) is divisible
by 7 in K°(v'/P™) and therefore the rational set X = U (v — 1| ) of T! coincides with

U ((v—1)* | #*). From [42] Theorem 6.3] we conclude X' >U (v—1|7") < T°! which is
isomorphic to B"! hence the claim. U

From the previous proposition we conclude in particular that the perfectoid space B! lies in
PerfSm®°.

1.3. Categories of adic motives

From now on, we fix a commutative ring A and work with A-enriched categories. In
particular, the term “presheaf” should be understood as “presheaf of A-modules” and similarly
for the tem “sheaf”. The presheaf A(X) represented by an object X of a category C sends an
object Y of C to the free A-module A Hom(Y, X).
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1.3.1. ASSUMPTION. Unless otherwise stated, we assume from now on that A is a Q-algebra
and we omit it from the notations.

We make extensive use of the theory of model categories and localization, following the
approach of Ayoub in [5] and [6]. Fix a site (C, 7). In our situation, this will be the étale site

of RigSm or @Sm. The category of complexes of presheaves Ch(Psh(C)) can be endowed
with the projective model structure for which weak equivalences are quasi-isomorphisms and
fibrations are maps F — F’ such that (X ) — F'(X) is a surjection for all X in C (cfr [23|
Section 2.3] and [6, Proposition 4.4.16]).

Also the category of complexes of sheaves Ch(Sh,(C)) can be endowed with the projective
model structure defined in [6, Proposition 4.4.41]. In this structure, weak equivalences are
quasi-isomorphisms of complexes of sheaves.

1.3.2. REMARK. Let C be a category. As shown in [16] any projectively cofibrant complex F
in Ch Psh(C) is a retract of a complex that is the filtered colimit of bounded above complexes,
each constituted by presheaves that are direct sums of representable ones.

Just like in [29], [36], [37] or [41], we consider the left Bousfield localization of
Ch(Psh(C)) with respect to the topology we select, and a chosen “contractible object”.
We recall that left Bousfield localizations with respect to a class of maps S (see [22, Chapter
3]) is the universal model categories in which the maps in S become weak equivalences. The

existence of such structures is granted only under some technical hypothesis, as shown in [22]
Theorem 4.1.1] and [6, Theorem 4.2.71].

1.3.3. PROPOSITION. Let (C,7) be a site with finite direct products and let C' be a full
subcategory of C such that every object of C has a covering by objects of C'. Let also I be an
object of C'.

(1) The projective model category ChPsh(C) admits a left Bousfield localization
Ch; Psh(C) with respect to the set S; of all maps A(I x X)[i] — A(X)[i] as X
varies in C and i varies in 7.

(2) The projective model categories Ch Psh(C) and Ch Psh(C') admit left Bousfield
localizations Ch, Psh(C) and Ch, Psh(C’) with respect to the class S, of maps
F — F'inducing isomorphisms on the ét-sheaves associated to H;(F) and H;(F")
for all i € Z. Moreover, the two localized model categories are Quillen equivalent
and the shedfification functor induces a Quillen equivalence to the projective model
category Ch Sh,.(C).

(3) The model categories Ch, Psh(C) and Ch, Psh(C’) admit left Bousfield localiza-
tions Ch, ; Psh(C) and Ch, Psh(C’) with respect to the set S; defined above.
Moreover, the two localized model categories are Quillen equivalent.

PROOF. The model structure on complexes is left proper and cellular. It follows that the
projective model structures in the statement are also left proper and cellular. Any such model
category admits a left Bousfield localization with respect to a set of maps ( [22, Theorem 4.1.1])
hence the first claim.

For the first part of second claim, it suffices to apply [6, Proposition 4.4.32, Lemma 4.4.35]
showing that the localization over S; is equivalent to a localization over a set of maps. The
second part is a restatement of [6, Corollary 4.4.43, Proposition 4.4.56].

Since by [6, Proposition 4.4.32] the 7-localization coincides with the Bousfield localization
with respect to a set, we conclude by [6, Theorem 4.2.71] that the model category Ch, Psh(C)
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is still left proper and cellular. The last statement then follows from [22, Theorem 4.1.1] and the
second claim. U

In the situation above, we will denote by S 1) the union of the class .S; and the set S7.

1.3.4. REMARK. A geometrically relevant situation is induced when I is endowed with a
multiplication map yp: [ x I — I and maps 7 and ¢; from the terminal object to I satisfying the
relations of a monoidal object with 0 as in the definition of an interval object (see [37, Section
2.3]). Under these hypotheses, we say that the triple (C, 7, I) is a site with an interval.

1.3.5. EXAMPLE. The affinoid rigid variety with good coordinates B! = Spa K () is an
interval object with respect to the natural multiplication x and maps ¢y and 7; induced by the
substitution y — 0 and x — 1 respectively.

We now apply the constructions above to the sites introduced in the previous sections. We
recall that we consider adic spaces defined over a perfectoid field K.

1.3.6. COROLLARY. The following pairs of model categories are Quillen equivalent.
Chg; Psh(RigSm) and Ch¢, Psh(RigSm®°).

Chyg; p: Psh(RigSm) and Chy; 51 Psh(RigSm®°).

Chyg, Psh(RigSm) and Chy, Psh(RigSm®).

Chy, 5 Psh(RigSm) and Chg, 51 Psh(RigSm#°).

PROOF. It suffices to apply Proposition to the sites with interval (RigSm, ét, B') and
(RigSm, ét, B') where C' is in both cases the subcategory of varieties with good coordinates. [J

1.3.7. DEFINITION. Forn € {ét, B!, (ét,B')} we say that a map in Ch Psh(RigSm) [resp.
Ch Psh(@Sm)] is a n-weak equivalence if it is a weak equivalence in the model structure
Ch,, Psh(RigSm) [resp. Ch,, Psh(ﬁiTgSm)]. The triangulated homotopy category associ-
ated to the localization Chy 51 Psh(RigSm) [resp. Chg; p: Psh(ﬁiTgSm)] will be denoted
by RigDAST (K, A) [resp. ﬁi\gDAngl (K, A)]. We will omit A from the notation whenever
the context allows it. The image of a variety X in one of these categories will be denoted
by A(X). We say that an object F of the derived category D = D(Psh(RigSm)) [resp.
D= D(Psh(ﬁiTgSm))] is -local if the functor Homp (-, ) sends maps in S, to isomorphisms.
This amounts to say that F is quasi-isomorphic to a n-fibrant object.

We need to keep track of B! in the notation of ﬁiTgDAEEBl (K, A) since later we will perform

a localization on Ch Psh(ﬁ%Sm) with respect to a different interval object.

1.3.8. REMARK. Using the language of [8], the localizations defined above induce endo-
functors C” of the derived categories D(Psh(RigSm)), D(Psh(RigSm®‘)), D(Psh(ﬁit\gSm))
and D(Psh(@Smgc)) such that C"F is n-local for all F and there is a natural transformation
C" — id which is a pointwise n-weak equivalencce. The functor C" restricts to a triangulated
equivalence on the objects F that are 7-local and one can compute the Hom set Hom(F, F') in
the the homotopy category of the n-localization as D(F, C"F’).

1.3.9. REMARK. By means of [6, Proposition 4.4.59] the complex C*'F is such that
D(A(X)[—1], C&F) = Hi (X, F) for all X in RigSm and all integers 4. This property charac-
terizes C**F up to quasi-isomorphisms.
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We now show that the étale localization can alternatively be described in terms of étale
hypercoverings U, — X (see for example [15]]). Any such datum defines a simplicial presheaf
n — @, A(U,;) whenever U,, = | |, hy,, is the sum of the presheaves of sets hy;,, represented
by U,;. This simplicial presheaf can be associated to a normalized chain complex, that we
denote by A(U,). It is is endowed with a map to A(X).

1.3.10. PROPOSITION. The localization over Sg on ChPsh(RigSm®®) [resp. on
Ch Psh(ﬁiTgSmgC) ] coincides with the localization over the set A(U,)[i] — A(X)[i] as
U, — X varies among bounded étale hypercoverings of the objects X of RigSm®® [resp.
Ei\gSmgC ] and i varies in 7.

PROOF. Any ét-local object F is also local with respect to the maps of the statement. We
are left to prove that a complex F which is local with respect to the maps of the statement is
also ét-local.

Since A contains Q the étale cohomology of an étale sheaf F coincides with the Nisnevich
cohomology (the same proof of [36, Proposition 14.23] holds also here). By means of [S, 1.2.19]
we conclude that any rigid variety X has a finite cohomological dimension. By [1, Theorem
V.7.4.1] and [48, Theorem 0.3], we obtain for any rigid variety X and any complex of presheaves
F an isomorphism

HZ (X, F) = hﬂ H_,, Hom,(A(U,), F)
Us €HRoo (X)
where H R, (X) is the category of bounded étale hypercoverings of X (see [1, V.7.3]) and Hom,
is the Hom-complex computed in the unbounded derived category of presheaves. Suppose now
F is local with respect to the maps of the statement. Then Hom, (A (U, ), F) is quasi-isomorphic
to Hom, (X, F) for every bounded hypercovering U, hence H_, F(X) = HJ (X, F) by the
formula above. We then conclude that the map F — C¢'F is a quasi-isomorphism, proving the
proposition. U

As the following proposition shows, there are also alternative presentations of the homotopy
categories introduced so far, which we will later use.

1.3.11. PROPOSITION. Let A be a Q-algebra. The natural inclusion induces Quillen
equivalences Lg Ch(Psh(ﬁiTgSmgc)) = Chy Psh(@Smgc) where Lg denotes the Bousfield
localization with respect to the set S of shifts of the maps of complexes induced by étale Cech
hypercoverings U, — X of objects X in ]f/{iTgSmgc such that for some presentation X = @h X
the covering Uy — X descends to a covering of X.

PROOF. Using Proposition it suffices to prove that the map A(U) — A(X) is
an isomorphism in the homotopy category Lg Ch(Psh(ﬁiTgSmgC)) for a fixed bounded étale
hypercovering U, of an object X in ﬁi\gSmgC.

Since the inclusion functor Ch>y — Ch is a Quillen functor, it suffices to prove that
A(U,) — A(X) is a weak equivalence in Ly Chzo(Psh(@Smgc)) where 7" is the set of shifts
of the maps of complexes induced by étale Cech hypercoverings descending at finite level. Let
Ly sPsh(ﬁi\gSmgC) be the Bousfield localization of the projective model structure on simplicial
presheaves of sets with respect to the set T formed by maps induced by étale Cech hypercoverings
U, — X descending at finite level. We remark that the Dold-Kan correspondence (see [46,

Section 4.1]) and the A-enrichment also define a left Quillen functor from L sPsh(R/igSmgC)
to the category L Ch>((Psh(RigSm®°)). It therefore suffices to prove that Uy — X is a weak
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equivalence in L sPsh(ﬁiTgSmgC) and this follows from the fact that bounded hypercovering
define the same localization as Cech hypercoverings (see [15, Theorem A.6]) together with the
fact that coverings descending to finite level define the same topology (Corollary [1.2.9) and
hence the same localization ([15, Corollary A.8]). We remark that [15, Corollary A.8] applies
in our case even if the coverings ¢/ — X descending to the finite level do not form a basis of
the topology, as their pullback via an arbitrary map ¥ — X may not have the same property.
However, the proof of the statement relies on [135, Proposition A.2], where it is only used that the
chosen family of coverings I/ — X generates the topology and that the fiber product & x x U is
defined. U

1.3.12. REMARK. It is shown in the proof that the statements of Propositions [1.3.10]and
1.3.11| hold true without any assumptions on A under the condition that all varieties X have
finite cohomological dimension with respect to the étale topology.

As we pointed out in Remark1.3.9] there is a characterization of C¢*F for any complex F.
This is also true for the B!-localization, described in the following part.

1.3.13. DEFINITION. We denote by [ the Y-enriched cocubical object (see [3, Appendix
A]) defined by putting (0" = B" = Spa K(7,...,7,) and considering the morphisms d,. .
induced by the maps B" — B"*! corresponding to the substitution 7, = € for e € {0,1}
and the morphisms p, induced by the projections B® — B"~!. For any variety X and any
presheaf F with values in an abelian category, we can therefore consider the Y-enriched cubical
object F(X x O) (see [3, Appendix A]). Associated to any -enriched cubical object F there
are the following complexes: the complex C#F defined as C*F = F,, and with differential
>.(=1)7(d;, — d;p); the simple complex C,F defined as C,, F = (_, kerd;, and with
differential ) (—1)"d; ;; the normalized complex N, F defined as N,,.F = C,, N F(\'_, ker d;
and with differential —d ;. By [4, Lemma A.3, Proposition A.8, Proposition A.11], the inclusion
N,F — C,F is a quasi-isomorphism and both inclusions C,F < C:F and N, F — C,F
split. For any complex of presheaves F we let SingIBI F be the total complex of the simple
complex associated to the Hom(A(), F). It sends the object X to the total complex of the
simple complex associated to F(X x [J).

The following lemma is the cocubical version of [36, Lemma 2.18].

1.3.14. LEMMA. For any presheaf F the two maps of cubical sets i}y, 7% : F(OxB') — F(O)
induce chain homotopic maps on the associated simple and normalized complexes.

PROOF. Consider now the isomorphism s,,: B"*! — B" x B! defined on points by sepa-
rating the last coordinate and let s, be the induced map F(O0" x B') — F(O"™'). We have
sy_yody =d; os)foralll <r <mnandeec {0,1}. We conclude that

n n+1

Sp1© Z(_l)r(di,l —dyo) + Z(_l)r(dig —dyg)o(=s,) =
r=1

r=1
= (_1)n(d2+1,1 0S8, — d;+1,o os,) = (=1)"(i] —ip).

Therefore, the maps {(—1)"s;} define a chain homotopy from i to i} as maps of complexes
CIF(Ox BY) — CEF(O).

We automatically deduce that if an inclusion C’ F — C!F has a functorial retraction, then
the maps 45, 4% : CLF (0 x B') — C.F(0J) are also chain homotopic. O
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The following proposition is the rigid analytic analogue of [3, Theorem 2.23], or the
cocubical analogue of [S, Lemma 2.5.31].

1.3.15. PROPOSITION. Let F be a complex in Ch Psh(§i\g8m). Then SingB1 F is Bl-local
and B'-weak equivalent to F in Ch Psh(RigSm).

PROOF. In order to prove that SingB1 F is B'-local in Ch Psh(f/{ESm) we need to check
that each homology presheaf Hn(SingIBgl F) is homotopy-invariant. By means of [5, Proposition
2.2.37] it suffices to show that the maps i, i3 : NoJ (O x B') — N, F(O) are chain homotopic,
and this follows from Lemma

We now prove that Sing® F is B'-weak equivalent to 7. We first prove that the canonical
map a: F — Hom(A(O"), F) has an inverse up to homotopy for a fixed n. Consider the map
b: Hom(A(O"), F) — F induced by the zero section of [1". It holds that boa = id and a o b
is homotopic to id via the map

H: A(B') ® Hom(A(O"), F) — Hom(A(C"), F)
which is deduced from the adjunction (A(B') ® -, Hom(A(B!), -)) and the map
Hom(A(O"), F) — Hom(A(B' x O"), F)

defined via the homothety of B! on [1". As B'-weak equivalences are stable under filtered
colimits and cones, we also conclude that the total complex associated to the simple complex of
Hom(A(O), F) is B'-equivalent to the one associated to the constant cubical object F (see for
example the argument of [5, Corollary 2.5.36]) which is in turn quasi-isomorphic to F. U

1.3.16. COROLLARY. Let A be a Q-algebra. For any F in Ch Psh(ﬁif\gSm) the localization
CE' F is quasi-isomorphic to SingIBI F and the localization C“B' F s quasi-isomorphic to
Sing® (CF*).

PROOF. The first claim follows from Proposition [1.3.15] We are left to prove that the
complex Sing]Bl (C%F*) is ét-local. To this aim, we use the description given in Proposition
and we show that Sing® (C¢*F*) is local with respect to shifts of maps A(U,) — A(X)
induced by bounded hypercoverings U, — X.

Fix a bounded hypercovering Uy — X. From the isomorphisms H, Hom.(A(U, %
[9), C*F) = H,Hom,(A(X x [9), C*F) valid for all p, ¢ and a spectral sequence argument
(see [48, Theorem 0.3]) we deduce D(A(X)[n], Sing® C*F) = D(A(U,)[n], Sing® C¢F)
for all n as wanted. U

We now investigate some of the natural Quillen functors which arise between the model
categories introduced so far. We start by considering the natural inclusion of categories

RigSm — RigSm
1.3.17. PROPOSITION. The inclusion RigSm —» @Sm induces a Quillen adjunction
*: Chg g Psh(RigSm) = Chy; p: Psh(ﬁgSm) s
Moreover, the functor Li*: RigDAS (K) — P/{i\gDAngl(K ) is fully faithful.

PROOF. The first claim is a special instance of [6, Proposition 4.4.46].
We prove the second claim by showing that R¢,[L.* is isomorphic to the identity. Let
F be a cofibrant object in Chy; 1 Psh(RigSm). We need to prove that the map F —

1.(Sing® C¢(,*F)) is an (ét, B')-weak equivalence. Since ¢, commutes with Sing® we are
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left to prove that the map ¢,.*F = F — 1,C%(,*F) is an ét-weak equivalence. This follows
since ¢, preserves ét-weak equivalences, as it commutes with ét-sheafification. U

We are now interested in finding a convenient set of compact objects which generate the
categories above, as triangulated categories with small sums. This will simplify many definitions
and proofs in what follows.

1.3.18. PROPOSITION. The category RigDAS (K) [resp. @DAESW (K)] is compactly
generated (as a triangulated category with small sums) by motives \(X) associated to rigid
varieties X which are in RigSm®° [resp. RigSm®°].

PROOF. The statements are analogous, and we only consider the case of the cate-
gory I/{%DAEEW(K ). It is clear that the set of functors H; Hom,(A(X),-) detect quasi-
isomorphisms between étale local objects, by letting X vary in §i\g8mgc and ¢ vary in Z. We are
left to prove that the motives A(X) with X in RigSm® are compact. Since A(X) is compact in

D(Psh(ﬁgSmgc)) and Sing® commutes with direct sums, it suffices to prove that if {F; };c; is
a family of ét-local complexes, then also @z JF; 1s ét-local. If [ is finite, the claim follows from
the isomorphisms H_,, Hom,(X, P, F;) = P, H" (X, F;) = H"(X, P, Fi). A coproduct
over an arbitrary family is a filtered colimit of finite coproducts, hence the claim follows from
the stability of ét-local complexes under filtered colimits [6, Proposition 4.5.62]. U

1.3.19. REMARK. The above proof shows that the statement of Proposition|1.3.18|holds true
without any assumptions on A under the condition that all varieties X have finite cohomological
dimension with respect to the étale topology.

We now introduce the category of motives associated to smooth perfectoids, using the same
formalism as before. In this category, the canonical choice of the “interval object” for defining

homotopies is the perfectoid ball B!

1.3.20. EXAMPLE. The perfectoid ball B! = Spa(K (x'/*™), K°(x'/?™)) is an interval
object with respect to the natural multiplication ; and maps ¢y and 7; induced by the substitution
7"+ 0 and x'/*" — 1 respectively.

The perfectoid variety B! naturally lives in f/{i\gSm and has good coordinates by Proposition
1.2.12} It can therefore be used to define another homotopy category out of Ch Psh(RigSm)
and Ch Psh(RigSm®°).

1.3.21. COROLLARY. The following pairs of model categories are Quillen equivalent.

e Ch¢ Psh(PerfSm) and Chg Psh(PerfSm®).
° Chét,@l Psh(PerfSm) and Chét,ﬁl Psh(PerfSm®°).

e Ch, Psh(RigSm) and Chg, Psh(RigSm®).
o Chy, 5 Psh(RigSm) and Chy, 5, Psh(RigSm*).

PROOF. It suffices to apply Proposition to the sites with interval (PerfSm, ét, Iﬁ%l) and

(ﬁi\gSm, ét, 1/8\31) where C’ is in both cases the subcategory of affinoid rigid varieties with good
coordinates. U

1.3.22. DEFINITION. For € {ét, B!, (6t, B')} we say that a map in Ch Psh(PerfSm)
[resp. ChPsh(RigSm)] is a n-weak equivalence if it is a weak equivalence in the model
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structure Ch,, Psh(PerfSm) [resp. Ch,, Psh(ﬁfgSm)]. We say that an object F of the de-
rived category D = D(Psh(PerfSm)) [resp. D = D(Psh(EiTg;Sm))] is n-local if the func-
tor Homp (-, F) sends maps in S5, to isomorphisms. This amounts to say that F is quasi-
isomorphic to a n-fibrant object. The triangulated homotopy category associated to the localiza-

tion Chy, 5, Psh(PerfSm) [resp. Ch,, 5, Psh(RigSm)] will be denoted by PerfDAg (K, A)
[resp. E/{%DAZE]@ (K, A)]. We will omit A whenever the context allows it. The image of a
variety X in one of these categories will be denoted by A(X).

We recall one of the main results of Scholze [42], reshaped in our derived homotopical
setting. It will constitute the bridge to pass from characteristic p to characteristic 0. We recall
that as summarized in Theorem there is an equivalence of categories between perfectoid
affinoid K -algebras and perfectoid affinoid /°-algebras, extending to an equivalence between
the categories of perfectoid spaces over K and over K’ (see [42, Proposition 6.17]). We refer to
this equivalence as the tilting equivalence.

1.3.23. PROPOSITION. There exists an equivalence of triangulated categories
(=) PerfDAST (K) = PerfDAST(K) :(—)’
induced by the tilting equivalence.
PROOF. The tilting equivalence induces an equivalence Qf the étfl\le sites on perfectoid spaces
over K and over K’ (see [42, Theorem 7.12]). Moreover (T")" = T" and (B")* = B™. It there-

fore induces an equivalence of sites with interval (PerfSm /K, ét, B!) 2 (PerfSm /K, ét, BY)
hence the claim. O

We now investigate the triangulated functor between the categories of motives induced
by the natural embedding PerfSm — RigSm in the same spirit of what we did previously in

Proposition

1.3.24. PROPOSITION. The inclusion PerfSm — @Sm induces a Quillen adjunction
j*: Chy, 5, Psh(PerfSm) = Chy, 5, Psh(RigSm) ..
Moreover; the functor Lj*: PerfDAST (K) — @DAZE@ (K) is fully faithful.
PROOF. The result follows in the same way as Proposition|1.3.17 U

Also in this framework, the B!-localization has a very explicit construction. Most proofs are
straightforward analogues of those relative to the B!-localizations, and will therefore be omitted.

1.3.25. DEFINITION. We denote by [J the S-enriched cocubical object (see [4, Appendix
A]) defined by putting (" = B" = Spa K (1,7, ..., Tﬁ/pl/oo> and considering the morphisms
d,.. induced by the maps B~ — B! corresponding to the substitution /P "~ cforee {0,1}
and the morphisms p,. induced by the projections B" — B"L. For any complex of presheaves
F we let SingI§1 F be the total complex of the simple complex associated to Ho_rn(f], F). It

sends the object X to the total complex of the simple complex associated to F (X x El)

1.3.26. PROPOSITION. Let F be a complex in Ch Psh(PerfSm) [resp. Ch Psh(§i\g8m)].
Then SingIBl F is B'-local and B'-weak equivalent to F.
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PROOF. The fact that Smg ' Fis B!-local in Ch Psh(ngSm) can be deduced by Lemma

1.3.27/and Lemma|1.3.28] We are left to prove that Sing® ' Fis B'-weak equivalent to F and
this follows in the same way as in the proof of Proposition |I. 0

The following lemmas are used in the previous proof.

1.3.27. LEMMA. A presheaf F in Psh(Sm Perf) [resp. in Psh(ngSm)] is B'-invariant if
and only if it = it F(X x BY) — F(X) for all X in Sm Perf [resp. in RigSm].

PROOF. This follows in the same way as [36, Lemma 2.16]. ]

1.3.28. LEMMA. For any presheaf F the two maps of cubical sets i), i} : F(Ox @1) — F(D)
induce chain homotopic maps on the associated simple and normalized complexes.

PROOF. This follows in the same way as Lemma[I.3.14] O

1.3.29. COROLLARY. Let F be in Ch Psh(Perme) [resp. in Ch Psh(@Sm)] the
(6t, BY)-localization C**®' F is quasi-isomorphic to Sing® (C¢ F).

PROOF. This follows in the same way as Corollary [1.3.16] d

1.3.30. PROPOSITION. The category PerfDAS (K) [resp. Ei\gDAefBl( )] is compactly
generated (as a triangulated category with small sums) by motives A(X ) associated to rigid

varieties X which are in PerfSm®° [resp. RigSm®°].
PROOF. This follows in the same way as Proposition [1.3.18 U

1.3.31. REMARK. The above proof shows that the statement of Proposition[I.3.30/holds true
without any assumptions on A under the condition that all varieties X have finite cohomological
dimension with respect to the étale topology.

So far, we have defined two different Bousfield localizations on complexes of presheaves on

f/{ESm according to two different choices of intervals: B! and B!. We remark that the second
constitutes a further localization of the first, in the following sense.

1.3.32. PROPOSITION. B!-weak equivalences in Ch Psh(ﬁif\gSm) are B'-weak equiva-
lences.

PROOF. It suffices to prove that X x B! — X induces a Bl-weak equivalence, for any

variety X in RigSm. This follows as the multiplicative homothety B! x B! — B! induces a
homotopy between the zero map and the identity on B!. U

1.3.33. COROLLARY. The category I/{ngAef]Bl

subcategory of EE;DA;’EW (K) formed by B!-local objects.

(K) is equivalent to the full triangulated

PROOF. Because of Proposition (1.3.32} the triangulated category ﬁi?gDAfoﬁl(K ) coin-

cides with the localization of ngDAet g1 (K) with respect to the set generated by the maps
ABLY)[n] = A(X)[n] as X varies in RigSm and n in Z. O

We end this section by recalling the definition of rigid motives with transfers. The notion of
finite correspondence plays an important role in Voevodsky’s theory of motives. In the case of
rigid varieties over a field K correspondences give rise to the category RigCor(K) as defined in
[5, Definition 2.2.27]. For further details, we refer to Definition[2.2.3]
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1.3.34. DEFINITION. Additive presheaves over RigCor(K) are called presheaves with trans-
fers, and the category they form is denoted by PST(RigSm /K, A) or simply by PST(RigSm)
when the context allows it.

By [5, Definition 2.5.15], the projective model category Ch PST(RigSm) admits a Bous-
field localization Chg z: PST(RigSm) with respect to the union of the class of maps F — F'
inducing isomorphisms on the ét-sheaves associated to H;(F) and H;(F") for all i € Z and the
set of all maps A(B%)[i] — A(X)[¢] as X varies in RigSm and ¢ varies in Z.

1.3.35. DEFINITION. The triangulated homotopy category associated to the localization
Chyg, g PST(RigSm) will be denoted by RigDMS! (K, A). We will omit A from the notation
whenever the context allows it. The image of a variety X in will be denoted by Ay, (X).

1.3.36. REMARK. Since A is a (Q-algebra, one can equivalently consider the Nisnevich
topology in the definition above and obtain a homotopy category RigDMZSI (K, A) which is
equivalent to RigDMST (K, A).

1.3.37. REMARK. The faithful embedding of categories RigSm — RigCor induces a Quillen
adjunction (see [S, Lemma 2.5.18]):

ar: Chy pr Psh(RigSm) & Chg, g PST(RigSm) @0y,

such that a;.A(X) = A (X) for any X € RigSm and oy, is the functor of forgetting transfers.
These functors induce an adjoint pair:

La;,: RigDAST(K) = RigDMS! (K) :Roy,.

1.4. Motivic interpretation of approximation results

In all this section, K is a perfectoid field of arbitrary characteristic. We begin by presenting
an approximation result whose proof is differed to Appendix [A]

1.4.1. PROPOSITION. Let X = @h Xy, be in P/{%Smgc. Let also Y be an affinoid rigid

variety endowed with an étale map Y — B™. For a given finite set of maps {f1,..., fx} in
Hom(X x B",Y) we can find corresponding maps {Hy, ..., Hy} in Hom(X x B" x B',Y)

and an integer h such that:

(1) For all 1 < k < N it holds iyH);, = fi and 1{H}, factors over the canonical map
X — Xﬁ.

(2) If fr odyc = fi od,.c for some 1 < k, k' < N and some (r,¢) € {1,...,n} x {0,1}
then Hy o d, . = Hy o d,.

(3) If for some 1 < k < N and some h € N the map fi, o dy; € Hom(X x B"1Y)
lies in Hom (X}, x B"™1Y') then the element Hy, o dy 1 of Hom(X x B"~! x B! Y) is
constant on B! equal to f o dy ;.

The statement above has the following interpretation in terms of complexes.

1.4.2. PROPOSITION. Let X = T&nh Xy, be in ﬁiv\gSmgC and let Y be in RigSm®°. The
natural map

o: lim(Sing® A(Y))(X,) — (Sing® A(Y))(X)

is a quasi-isomorphism.
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PROOF. We need to prove that the natural map
¢: lim C,A Hom(X, x00,Y) - C;,AHom(X x O,Y)
h

defines bijections on homology groups.

We start by proving surjectivity. As [ is a >:-enriched cocubical object, the complexes above
are quasi-isomorphic to the associated normalized complexes N, which will then be considered
instead. Suppose that 5 € AHom(X x 0" Y) defines a cycle in N, i.e. fod,.. = 0 for
1 <r<mnande € {0,1}. This means that 3 = >_ A\, fr with A\ € A, fr, € Hom(X x O™, Y)
and ) A\, fi o d,. = 0. This amounts to say that for every &, r, € the sum ) | \;s over the indices
k' such that fys od, . = fi od, is zero. By Proposition _ we can find an integer / and maps
H, € Hom(X x 0" x B',Y) such that it H = f;,, i*H = ¢(f,) with f, € Hom(X,, x 0" Y)
and H, od,. = Hy o d,. whenever f; od,. = fk/ od,.. If we denote by H the cycle
> Ay, € AHom(X x 0" x B',Y') we therefore have d; . H = 0 for all r, e.

By Lemma [I.3.14] we conclude that i} H and ijH define the same homology class, and
therefore /3 defines the same class as ij H which is the image of a class in A Hom(X,, x 0", Y))
as wanted.

We now turn to injectivity. Consider an element & € A Hom(X, x 0" Y') such that
aod, . = 0 forall r, e and suppose there exists an element 3 = > \;f; € AHom(X x "1 Y)
suchthat od, g =0forl <r<n+1,8od.; =0for2<r <m+1landfod; = ¢(a).
Again, by Pr0p0s1t10n- we can find an integer h and maps H;, € Hom(X x O"*! x B!, Y)
such that H := > Ay H, satisfies i H = ¢(y) for some v € A Hom(Xj; xO"™Y), Hod,.o = 0
forl1<r<n+1 Hod,; =0for2 <r <n+1and H od,; is constant on ]B%1 and coincides
with ¢(a). We conclude that v € N,, and dy = «. In particular, @ = 0 in the homology group,
as wanted. U

1.4.3. COROLLARY. Let F be a projectively cofibrant complex in Ch Psh(RigSm®®). For
any X = l'&lh Xy, in RigSm®° the natural map

o liﬂ(SingB1 F)(X,) — (Sing® *F)(X)
h

is a quasi-isomorphism.
PROOF. As homology commutes with filtered colimits, by means of Remark [I.3.2] we can

assume that F is a bounded above complex formed by sums of representable presheaves. For

any X in f/{ESm the cohomology of SingB1 F(X) coincides with the cohomology of the total
complex associated to Co(F (X x [)). The result then follows from Proposition and
the convergence of the spectral sequence associated to the double complex above, which is
concentrated in one quadrant. U

The following technical proposition is actually a crucial point of our proof, as it allows some
explicit computations of morphisms in the category RigDAST (K).

1.4.4. PROPOSITION. Let F be a cofibrant (B!, ét)-fibrant complex in Ch Psh(RigSm&°).
Then Sing® (.*F) is (B, ét)-local in Ch Psh(RigSm®°).

PROOF. The difficulty lies in showing that the object Sing®' (t*F) is ét-local. By Propo-
sitions |1.3.11| and |1.3.15|, it suffices to prove that SingBl(L*f ) is local with respect to the
étale-Cech hypercoverings i/, — X in ﬁiTgSmgC of X = @h X}, descending at finite level. Let
U, — X be one of them. Without loss of generality, we assume that it descends to an étale
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covering of Xj. In particular we conclude that U,, = @h U1, 1s a disjoint union of objects in
RigSm®.

We need to show that Hom, (A(U4,), Sing® (¢* F)) is quasi-isomorphic to Sing®' (¢* F)(X).
Using Corollary we conclude that the complex (Singlﬂ%1 t*F)(U,) is quasi-isomorphic to
liénh(Sing]Bl V*F)(U,p,) for each n € N. Passing to the homotopy limit on n on both sides, we get

that Hom, (A(U,), Sing® * F) is quasi-isomorphic to lim, Hom, (A(Uen), Sing® ¢*F). Using
again Corollary , we also obtain that the complex (SimgB1 t*F)(X) is quasi-isomorphic to
lim, (Sing® 1 F)(X4).
From the exactness of hg it suffices then to prove that the maps
Hom, (A(Usy), Sing® F) — Hom, (A(X},), Sing®' F)

are quasi-isomorphisms. This follows once we show that the complex SingIBl F is ét-local.
We point out that since F is B!-local, then the canonical map F — SingIBI F is a quasi-
isomorphism. As F is ét-local we conclude that Sing® " F also is, hence the claim. U

We are finally ready to state the main result of this section.

1.4.5. PROPOSITION. Let X = @h Xy, be in @Smgc. For any complex of presheaves F
on RigSm®® the natural map

lim RigDAZ (K)(A(X)), F) — RigDAG: (K)(A(X), L F)
h

is an isomorphism.

PROOF. Since any complex F has a fibrant-cofibrant replacement in a model category, we
can assume that F is cofibrant and (ét, B')-fibrant. Since it is B*-local, it is quasi-isomorphic to

SimgIBl F. By Corollary , for any integer ¢ one has
lim Hom(A(X),)[i], Sing® F) = Hom(A(X)[i], Sing™ ¢*F).
h

As A(X) is a cofibrant object in Ch Psh(ﬁiTgSmgc) and Sing® *F is a (B!, ét)-local replace-
ment of F in Chy g Psh(RigSm®) by Proposition |1.4.4, we conclude that the previous
isomorphism can be rephrased in the following way:

lim RigDAE (K) (A(X,)[i], F) = RigDAg (K)(A(X)[i], Le*F)

proving the claim. U

1.5. The de-perfectoidification functor in characteristic 0

The results proved in Section [1.4|are valid both for char X' = 0 and char X' = p. On the
contrary, the results of this section require that char &' = (0. We will present later their variant
for the case char K = p.

We start by considering the adjunction between motives with and without transfers (see
Remark [I.3.37). Thanks to the following crucial theorem, we are allowed to add or ignore
transfers according to the situation.

1.5.1. THEOREM. Suppose that char K = 0. The functors (a4, 04) induce an equivalence:
La;,: RigDAST(K) = RigDMS! (K) :Roy,.
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We postpone the proof of this fact to the second chapter, see Theorem [2.3.3]

1.5.2. REMARK. The proof of the statement above uses in a crucial way the fact that the
ring of coefficients A is a Q-algebra. This is the main reason of our assumption on A.

1.5.3. PROPOSITION. Suppose char K = 0. Let X = l'glh Xy, be in @Smgc. If h is big
enough, then the map A(X; 1) — A(X},) is an isomorphism in RigDAST (K).

PROOF. By means of Proposition we can equally prove the statement in the category
RigDM¢T (K). We claim that we can also make an arbitrary finite field extension L /K. Indeed
the transpose of the natural map Y;, — Y is a correspondence from Y to Y. Since A is
a Q-algebra, we conclude that Ay, (Y") is a direct factor of Ay, (Y,) = LeyAy,(Yy) for any
variety Y where Le is the functor RigDM¢! (L) — RigDMZS (K) induced by restriction
of scalars. In particular, if Ay ((Xpi1)r) — Aw((X3)z) is an isomorphism in RigDMS! (L)
then Ay ((Xpi1)z) — Aw((X3)r) is an isomorphism in RigDMZST(K) and therefore also
A (Xni1) = Ape(Xp) is.

By means of Lemma [5, 1.1.50], we can suppose that X, = Spa(Ry, R{) with Ry =
S{o,7)/(P(c,7)) where S = O(TM), ¢ = (04,...,0n) is a N-tuple of coordinates, 7 =
(T1,...,Tm) is @ m-tuple of coordinates and P is a set of m polynomials in S|o, 7] with
det(28) € Rf. In particular X; = Spa(R;, R}) with Ry = S(o,7)/(P(c?,7)) and the
map f: X; — Xy is induced by o — o, 7 — 7. Since the map f is finite and surjective, we
can also consider the transpose correspondence 7 € RigCor(X,, X;). The composition f o f©

is associated to the correspondence X L x 1 EN X, which is the cycle deg(f) X, = p" - idx,.
The composition f7 o f is associated to the correspondence X; 2 X, x X, X1 2Xx 1. Since
TN(o'/?) sxpw TN(c'/P) = TN(c'/?) x p' we conclude that the above correspondence is
X1 & Xy x ()Y 5 X; where 7 is induced by the multiplication map TV x plY — TV,
Up to a finite field extension, we can assume that KX has the p-th roots of unity. The above
correspondence is then equal to ) _ f. where each f; is amap X; — X defined by o; — (;03,
7+ 7 for each N-tuple ¢ = ((;) of p-th roots of unity. If we prove that each fg is homotopically
equivalent to idx, then we get pLN ffof=id, fo pLN fT =id in RigDMS" as wanted.

We are left to find a homotopy between id and f, for a fixed ( = ((1,...,(,) up to
considering higher indices h. For the sake of clarity, we consider them as maps Spa R; —
Spa Ry where we put R, = S(7,7)/(P(a”",7)) for any integer /. The first map is induced by
o+ &, 7+ T and the second induced by o — (7, 7 — 7. Let F}, = Y a,(c — )" be the
unique array of formal power series in R, [[c — ]| centered in & associated to the polynomials
P(c”",7) in Ryo, 7] via Corollary ’F2L Let also ¢, be the map R, — Rj,. From the
formal equalities P(c?"™" Fj,11(0)) = 0, P(c?", ¢(Fy(0))) = ¢n(P(c?", Fy(0))) = 0 and
the uniqueness of £}, 1 we deduce Fj,11(0) = ¢n(Fp(oP)).

We therefore have

Fhia(o Z¢h an)(0? —o¥)" =

:;W%)(@ SRS 31 ) ) g
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The expression
p—1
Q) =+ Y ()etor
. J
7j=1

is a polynomial in x and it easy to show that the mapping z — Q(z) extends to a map
Rp1(x) — Ryy1(x) since Ry, is complete and p divides (i’) for 1 < j < p. We deduce that
we can read off the convergence in the circle of radius 1 around ¢ and the values of F},; on its
expression given above.

We remark that the norm of Q)(¢ — &) in the circle of radius p < 1 around & is bounded by
max{p?, [p|} < max{p,|p|}. Suppose that F}, converges in a circle of radius p with 0 < p <1
around & and in there it takes values in power-bounded elements. By the expression above,
the same holds true for Fj,,; in the circle of radius min{p|p|~!, 1} around . By induction
we conclude that for a sufficiently big h the power series Fj, converges in a circle of radius
§ > |p|'/? around & and its values in it are power bounded. Up to rescaling indices, we suppose
that this holds for h = 1.

The value |p|'/? is larger than |(; — 1| for all i since (¢; — 1)P is divisible by p. Also, from
the relation F}, (o) = ¢n(Fr(oP)) we conclude F((a) = F(d) = 7. Therefore, the map

X, = Spa(S{o,7)/P(c?,7)) + X; x B" = Spa(S{(7,7,x)/(P(5",7))
(04,75) = (05 4+ (G — Daix, F1(6 + (¢ — 1)ox))
is a well defined map, inducing a homotopy between idx, and f, as claimed. U

It cannot be expected that all maps X, 1 — X}, are isomorphisms in RigDAS(K):
consider for example X, = T'(r'/?) — T'. Then X, is a connected variety, while X is
not. That said, there is a particular class of objects X = 1'£1h Xp 1n ﬁiTgSmgc for which this
happens: this is the content of the following proposition which nevertheless will not be used in
the following.

We recall that a presentation X = l'glh X}, of an object in I/{%Smgc is of good reduction
if the map Xy — TV x T has a formal model which is an étale map over Spf K°{v*!, v*1)
and is of potentially good reduction if this happens after base change by a separable finite field
extension L/K.

1.5.4. PROPOSITION. Let char K = 0 and let X = @h Xy, be a presentation of a variety

in f/{i\gSmgc of potentially good reduction. The maps AN(Xy11) — A(X},) are isomorphisms in
RigDASY(K) for all h.

PROOF. If the map X, — TV x TM has an étale formal model, then also the map X, —
TN (v!/?") x TM does. It is then sufficient to consider only the case h = 0. Since L/K is finite
and A is a Q-algebra, by the same argument of the proof of Proposition[I.5.3|we can assume that
@h X}, has good reduction. Also, by means of Proposition and the Cancellation theorem
[, Corollary 2.5.49], we can equally prove the statement in the stable category RigDA ., (K)
defined in [5, Definition 1.3.19].

Let Xy — Spf K°(vt!, v*!) be a formal model of the map X, — T" x T™. We let X,
be the special fiber over the residue field £ of K. The variety X; has also a smooth formal
model X; whose special fiber is X;. By definition, the natural map X; — Xj, is the push-out of
the (relative) Frobenius map AJmX — AdmX which is isomorphic to the relative Frobenius
map and hence an isomorphism of correspondences as p is invertible in A. We conclude that
Awr(X1) = Ay (Xp) is an isomorphism in DM (k).
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Let FormDA (K °) be the stable category of motives of formal varieties FSHoy(K°)
defined in [5] Definition 1.4.15] associated to the projective model category 9t = Ch(A-Mod).
Using the canonical equivalence DM (k) = DM, (k) [7, Theorem B.1] we deduce that the
map A(X;) — A(Xy) is an isomorphism in DA (k) as is its image via the following functor
(see [, Remark 1.4.30]) induced by the special fiber functor and the generic fiber functor:

DA (k) <2~ FormDA (K°) % RigDA,, (K).

This morphism is precisely the map A(X;) — A(Xj) proving the claim. O
We are now ready to present the main result of this section.

1.5.5. THEOREM. Let char K = 0. The functor L.*: RigDAS (K) — @DAZ?(K)
has a left adjoint L., and the counit map id — LulL.* is invertible. Whenever X = l‘&lh Xn

is an object of P/{i\gSmgC then LuA(X) = A(X},) for a sufficiently large index h. If moreover
X = lim X, is of potentially good reduction, then LuA(X) = A(Xp).

PROOF. We start by proving that the canonical map
RigDA{{ (K)(A(X5), F) = RigDAL (K)(A(X), Lo F)

is an isomorphism, for every X = @h X}, and for h big enough. By Proposition , it
suffices to prove that the natural map

RigDA™ (K)(A(X3), LagF) — lim RigDA® (K)(A(X,), Lag, F)
h

is an isomorphism for some A. This follows from Proposition since all maps of the directed
diagram are isomorphisms for h > h for some h big enough. In case @h Xy, 1s of potentially
good reduction, then Proposition ensures that we can choose h = 0.

We conclude that the subcategory T of RigDAszﬁ1 (K') formed by the objects M such
that the functor N +— RigDAfo@1 (K)(M,LLc*N) is corepresentable contains all motives A(X)
with X any object of ﬁiTgSmgC. Since these objects form a set of compact generators of
RigDAZtﬁﬁ1 (K') by Proposition|1.3.18] we deduce the existence of the functor LLi; by Lemma

1.5.6]
The formula Ly [Le* =2 id is a formal consequence of the fact that L., is the left adjoint of a
fully faithful functor L.*. U

1.5.6. LEMMA. Let &: T — T’ be a triangulated functor of triangulated categories. The
full subcategory C of T' of objects M such that the functor ap: N — Hom(M,BN) is
corepresentable is closed under cones and small direct sums.

PROOF. For any object M in C we denote by §M the object corepresenting the functor a ;.
Let now {M, };c; be a set of objects in C. It is immediate to check that €, §M; corepresents
the functor agy, ;-

Let now M, M, be two objects of C and f: M; — M, be a map between them. There
are canonical maps 7,: M; — BFM,; induced by the identity §M; — FM,; and the uni-
versal property of §M;. By composing with 75 we obtain a morphism Hom (M, My) —
Hom(M;, 8FM,) = Hom(FM;, FM-) sending f to a map Ff. Let C be the cone of f and D
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be the cone of § f. We claim that D represents ac. From the triangulated structure we obtain a
map of distinguished triangles

M, M, C

P

BFM; —= BF M, 6D

inducing for any object N of T the following maps of long exact sequences

<~—— Hom(M;, &N) Hom(M,, BN) Hom(C,BN) <——

| | |

~— Hom(6FM;, 5N) ~— Hom(F M, 8N) ~— Hom(SD, BN) ~——

| | |

Hom(§M;, N) Hom(FM,, N) Hom(D,N) <——

Since the vertical compositions are isomorphisms for M; and M, we deduce that they all are,
proving that D corepresents a¢ as wanted. U

We remark that we used the fact that A is a (Q-algebra at least twice in the proof of Theorem
[1.5.5} to allow for field extensions and correspondences using Theorem[I.5.1]as well as to invert
the map defined by multiplication by p. Nonetheless, it is expected that after inverting the Tate
twist, Theorem [I.5.1]also holds for Z[1/p]-coefficients therefore providing a stable version of
previous result with more general coefficients.

The following fact is a straightforward corollary of Theorem

1.5.7. PROPOSITION. Let char K = 0. The motive LL!A(ﬁl) is isomorphic to A.

PROOF. In order to prove the claim, it suffices to prove that LL!A(@I) ~ A(B'). This
follows from Proposition [1.2.12|and the description of L., given in Theorem U

We recall that all the homotopy categories we consider are monoidal (see [6, Propositions
4.2.76 and 4.4.63]), and the tensor product A(X) ® A(X") of two motives associated to varieties
X and Y coincides with A(X x X’). The unit object is obviously the motive A. Due to the
explicit description of the functor [L¢; we constructed above, it is easy to prove that it respects
the monoidal structures.

1.5.8. PROPOSITION. Let char K = 0. The functor
Lu: RigDAS, (K) — RigDAS (K)
is a monoidal functor.

PROOF. Since L, is the left adjoint of a monoidal functor L.* there is a canonical natu-
ral tranformation of bifunctors Lu(M @ M') — LyM ® LuyM’. In order to prove it is an

isomorphism, it suffices to check it on a set of generators of ﬁiTgDAgg gt such as motives of
semi-perfectoid varieties X = lim Xj, X’ = lim Xj}. Up to rescaling, we can suppose that
LuA(X) = A(Xp) and Loy A(X') = A(X{) by Theorem[1.5.5] In this case, by definition of the
tensor product, we obtain the following isomorphisms

Luy(A(X)®A(X")) 22 LuA(X x X') 2 A(Xpx X}) 22 A(Xo) A (X]) = LuA(X)@LuA(X)
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proving our claim.

The following proposition can be considered to be a refinement of Theorem [I.5.5]

1.5.9. PROPOSITION. Let char K = 0. The functor L, factors through P/{i\gDAggBl —
ngDAeHIBl and the image of the functor L.*: RigDAST(K) — ngDAet g1 (K) lies in the
subcategory of B!-local objects. In particular, the triangulated adjunction

Lu: RigDAS, (K) = RigDAS(K) :L.*
restricts to a triangulated adjunction

Lu: RigDAT. (K) = RigDAS(K) :L*.

ét,B1
PROOF. By Propositions and , ¢, is a monoidal functor sending A(I@l) to A. This
proves the first claim.
From the adjunction (L, L:*) we then obtain the following isomorphisms, for any X in

RigSm®° and any M in RigDAS(K):
RigDAST, (K)(A(X x BY), L M) = RigDAST (K)(LuA(X) @ A, M) =
= RigDA{ (K)(LuA(X), M) = RigDAg,: (K)(A(X), L* M)
proving the second claim. U

1.5.10. REMARK. In the statement of the proposition above, we make a slight abuse of
notation when denoting with (LL¢;, L.*) both adjoint pairs. It will be clear from the context which
one we consider at each instance.

1.6. The de-perfectoidification functor in characteristic p

We now consider the case of a perfectoid field K” of characteristic p and try to generalize
the results of Section[I.5] We will need to perform an extra localization on the model structure,
and in return we will prove a stronger result. In this section, we always assume that the base
perfectoid field has characteristic p. In order to emphasize this hypothesis, we will denote it
with K°.

In positive characteristic we are not able to prove the equivalence of motives with and with-
out transfers (Theorem[I.5.1)) as it is stated and it is therefore not clear that the maps X, — X,
associated to an object X = @h X, of ngSm are isomorphisms in RigDAST () for a suffi-
ciently big h. In order to overcome this obstacle, we localize our model category further.

For any variety X over K” we denote by X (! the pullback of X over the Frobenius map
$: K* — K°, z — 2P. The absolute Frobenius morphism induces a /°-linear map X — X,
Since K" is perfect, we can also denote by X(~1) the pullback of X over the inverse of the
Frobenius map ®~!: K* — K’ and X = (X)), There is in particular a canonical map
XD — X which is isomorphic to the map X’ — X induced by the absolute Frobenius, where
we denote by X' the same variety X endowed with the structure map X — Spa K 2 Spa K.

1.6.1. PROPOSITION. The model category Chgy, 1 Psh(RigSm /K”) admits a left Bousfield

localization Chyyopg gt Psh(RigSm /K *) with respect to the set Sgyop, Of relative Frobenius
maps ®: A(XTV)[i] = A(X)[i] as X varies in RigSm and i varies in Z.
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PROOF. Since by [6, Proposition 4.4.32] the 7-localization coincides with the Bousfield
localization with respect to a set, we conclude by [6, Theorem 4.2.71] that the model category
Chyg, 1 Psh(RigSm /K”) is still left proper and cellular. We can then apply [22, Theorem
4.1.1]. g

1.6.2. DEFINITION. We will denote by RigDAS . (K”, A) the homotopy category of
Chyyone 5t Psh(RigSm /K”). We will omit A whenever the context allows it. The image of a
rigid variety X in this category will be denoted by A(X).

The category RigDAS! | (K?) is canonically isomorphic to the full triangulated subcat-
egory of RigDAZf(K ») formed by Frob-local objects, i.e. objects that are local with respect
to the maps in Sgy,,. Modulo this identification, there is an obvious functor RigDAST (K?) —
RigDAT . (K”) associating to F a Frob-local object C*™P F,

Inverting Frobenius morphisms is enough to obtain an analogue of Theorem[I.5.1]in charac-
teristic p.

1.6.3. THEOREM. Let char K° = p. The functors (ay., 04.) induce an equivalence of
triangulated categories:

Lay, : RigDA 6 (K’) = RigDMg (K”).
We postpone the proof of this fact to the second chapter, see Theorem [2.3.2]

1.6.4. REMARK. The proof of the statement above uses in a crucial way the fact that the
ring of coefficients A is a Q-algebra. This is the main reason of our assumption on A.

We now investigate the relations between the category RigDAST (K®) we have just
defined, and the other categories of motives introduced so far.

1.6.5. PROPOSITION. Let X, be in RigSm /K° endowed with an étale map X, — TV x
TM = Spa(K’(v*!, v*)). The map X, = Xy xqv TN{(uTV/P) — X, is invertible in
RigDA%frfobét (K”).

PROOF. The map of the claim is a factor of X X g gary (BN (0!/7) x BM(11/7)) — X,

which is isomorphic to the relative Frobenius map X, é_l)

3.5.13]). If we consider the diagram

— X (see for example [19, Theorem

XU e xEDL xS X

we conclude that the two compositions ba and cb are isomorphisms hence also c is an isomor-
phism, as claimed. O

1.6.6. PROPOSITION. The image via Li* of a Frob-local object of RigDAST (K°) is B!-
local. In particular, the functor IL.* restricts to a functor

Lo*: RigDAST . (K) — RigDAST (K).

PROOF. Let X" = lim, X} bein RigSm®. We consider the object X’ x B! = I'&nh(X,’l x Xp)
where we use the description B! = l’mh X}, of Proposition |1.2.12] Let M be a Frob-local
object of RigDAST(K”). From Propositions [1.4.5| and [1.6.5| we then deduce the following
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isomorphisms

RigDAZ 5 (K7)(X' x B, Le* M) 2 lim RigDAZ (K°) (X}, x X, M) =
h

> RigDAZ (K°)(X( x B', M) = RigDA (K)(X{, M) =
~ Jim RigDAY (K°)(X}, M) = RigDA& 5 (K*) (X', Lo M)
h

proving the claim. U

We remark that in positive characteristic the perfection Perf: X — lim X (=% is functorial.
This makes the description of various functors a lot easier. We recall that we denote by

Lj*: PerfDAST(K?) = RigDA™ (K) :Rj,

ét,B1
the adjoint pair induced by the inclusion of categories j: PerfSm — I/{%Sm.

1.6.7. PROPOSITION. The perfection functor Perf: f/{i\gSm — PerfSm induces an adjunc-
tion
L Perf*: RigDAS,, (K?) = PerfDAS (K”) R Perf,
and 1L Pert* factors through ngDAet 5 (K") — RigDA®
L Perf* coincides with Rj, on ngDAe (K).

tB1<Kb)' Moreover, the functor

6t,B1

PROOF. The perfection functor is continuous with respect to the étale topology and maps B!
and B! to B! hence the first claim. - -

We now consider the functors j: PerfSm — RigSm and Perf: RigSm — PerfSm. They
induce two Quillen pairs (j*, j,) and (Perf*, Perf,) on the associated (ét, B!)-localized model
categories of complexes. Since Perf is a right adjoint of j we deduce that Perf” is a right adjoint
of j* and hence we obtain an isomorphism j, = Perf”™ which shows the second claim. U

1.6.8. PROPOSITION. Let A be a Q-algebra. The functor
L Perf* L.*: RigDAST(K’) — PerfDAST (K”)
factors over RigDAS | . (K") and is isomorphic to Rj,Li*CteP,
PROOF. The first claim follows as the perfection of X (=) is canonically isomorphic to the
perfection of X for any object X in RigSm.
The second part of the statement follows from the first claim and the commutativity of the
following diagram, which is ensured by Propositions [1.6.6and [1.6.7]

ngDAFrobet (Kb) —— ngDAet B (Kb)

Rjw

PerfDAST(K?)

RigDA{ (K’) —~ RigDAY: (K”)
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1.6.9. THEOREM. Let A be a Q-algebra. The functor LPerf*: RigDAS (K*) —
PerfDAgilc (K") defines a monoidal, triangulated equivalence of categories.

PROOF. Let X and Y be objects of RigSm®°. Suppose X is endowed with an étale map
over TV which is a composition of finite étale maps and inclusions, and let X be l'mh X We
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can identify X with Perf Xo. Since C*™PA(Y) is Frob-local, by Proposition |1.6.5| the maps
RigDA (K)(A(X4), C™PA(Y)) — RigDAE (K7)(A(Xp+1), CTPA(Y))

are isomorphisms for all A. Using Propositions [1.4.5] [1.6.6{and |1.6.8] we obtain the following
sequence of isomorphisms for any n € Z:

RigDAGL,.(K°)(A(X0), A(Y)[n]) = RigDAS (K”)(A(Xo), C™"A(Y ) n])
~ lim RigD A (K*)(A(X,), C™PA(Y) [n]) = RigDAL 5 (K*)(A(X), Lo C7A(Y)[n])

=~ RigDAS, (K7)(A(X), Lo C™ P A(Y)[n])
=~ PerfDAS (K")(A(X), Rj, L C™PA(Y)[n])
>~ PerfDAST (K?) (L Perf*(X,), L Perf*(Y)[n]).

In particular, we deduce that the triangulated functor IL Perf* maps a set of compact generators
to a set of compact generators (see Propositions[1.3.18|and [1.3.30) and on these objects it is
fully faithful. By means of S, Lemma 1.3.32], we then conclude it is a triangulated equivalence
of categories, as claimed. O

1.6.10. REMARK. From the proof of the previous claim, we also deduce that the inverse
R Perf, of L Perf® sends the motive associated to an object X = l'mh X, to the motive of X.
This functor is then analogous to the de-perfectoidification functor ILj* o LL¢; of Theorem

1.7. The main theorem

Thanks to the results of the previous sections, we can reformulate Theorem[1.5.5]in terms
of motives of rigid varieties. We will always assume that char K = 0 since the results of this
section are tautological when char K = p.

1.7.1. COROLLARY. There exists a triangulated adjunction of categories
§: RigDM¢T(K*) = RigDMY(K) : &
such that § is a monoidal functor.
PROOF. From Theorem|[I.5.5/and Proposition[I.5.8] we can define an adjunction
§': RigDAf 4 (K") = RigDAZ (K) :&'

by putting §’ := L o Lj* o (—)* o L Perf*. We remark that by Proposition [1.5.8 F' is also
monoidal. The claim then follows from the equivalence of motives with and without transfers

(see Propositions[1.5.1]and [1.6.3)). U

Our goal is to prove that the adjunction of Corollary is an equivalence of categories. To
this aim, we recall the construction of the stable versions of the rigid motivic categories given in
[5, Definition 2.5.27].
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1.7.2. DEFINITION. Let 7" be the cokernel in PST(RigSm /K) of the unit map A, (K) —
A (T'). We denote by RigDM,, (K, A) or simply by RigDM,, (K) the homotopy category
associated to the stable (ét, B')-local model structure on the category of symmetric spectra
Spect’(Chg, g PST(RigSm /K)).

As explained in [8 Section 2.5], T is cofibrant and the cyclic permutation induces the
identity on 73 in RigDMgf. Moreover, by [24, Theorem 9.3], ' ® — is a Quillen equivalence
in this category, which is actually the universal model category where this holds (in some weak
sense made precise by [24, Theorem 5.1, Proposition 5.3 and Corollary 9.4]). We recall that the
canonical functor RigDM$T (K) — RigDM,, (K) is fully faithful, as proved in [3 Corollary
2.5.49] as a corollary of the Cancellation Theorem [, Theorem 2.5.38].

1.7.3. DEFINITION. We denote by A(1) the motive T[—1] in RigDM¢ (K). For any
positive integer d we let A(d) be A(1)®9. The functor (-)(d) := (-) ® A(d) is an auto-equivalence
of RigDM, (K) and its inverse will be denoted with (-)(—d).

1.7.4. DEFINITION. We denote by RigDMC¢, (K, A) or simply by RigDMZ; (K) the full
triangulated subcategory of RigDM,, (K, A) whose objects are the compact ones. They are of
the form M (d) for some compact object M in RigDMZ¢! (K') and some d in Z. This category
is called the category of constructible motives.

We now present an important result that is a crucial step toward the proof of our main
theorem. The motivic property it induces will be given right afterwards.

1.7.5. PROPOSITION. Let X be a smooth affinoid perfectoid. The natural map of complexes
Sing™ (A(T))(X) — Sing™ (A(T)(X)
is a quasi-isomorphism.

PROOF. We let X be Spa(R, R*). A map f in Hom(X x @",T‘i) [resp. in Hom()A( X

B", T¢)] corresponds to d elements fi, .. . , f; in the group (R (71", ..., 72/""))* [resp. in
the group (R**(r1/*™, ..., 7a/""})*] and the map between the two objects is induced by the

multiplicative tilt map R+ (77" ... /"7y = RH(PT /P,

We now present some facts about homotopy theory for cubical objects, which mirror classical
results for simplicial objects (see for example [3S, Chapter IV]). We remark that the map of the
statement is induced by a map of enriched cubical A-vector spaces (see [3, Definition A.6]),
which is obtained by adding A-coefficients to a map of enriched cubical sets

Hom(X x O, T%) — Hom(X x O, T%).

Any enriched cubical object has connections in the sense of [10, Section 1.2], induced by the
maps m; in [3, Definition A.6]. We recall that the category of cubical sets with connections can
be endowed with a model structure by which all objects are cofibrant and weak equivalences
are defined through the geometric realization (see [30]). Moreover, its homotopy category is
canonically equivalent to the one of simplicial sets, as cubical sets with connections form a strict
test category by [34].

The two cubical sets appearing above are abelian groups on each level and the maps defining
their cubical structure are group homomorphisms. They therefore are cubical groups. By
[S0], they are fibrant objects and their homotopy groups 7; coincide with the homology H; N
of the associated normalized complexes of abelian groups (see Definition [[.3.13). The A-
enrichment functor is tensorial with respect to the monoidal structure of cubical sets introduced



1.7. THE MAIN THEOREM 33

in [11}, Section 11.2] and the cubical Dold-Kan functor, associating to a cubical A-module with
connection its normalized complex (see [11, Section 14.8]) is a left Quillen functor. We deduce
that in order to prove the statement of the proposition it suffices to show that the two normalized
complexes of abelian groups are quasi-isomorphic. We also remark that it suffices to consider
the case d = 1. N

We prove the following claim: the n-th homology of the complex N ((R®O(L))**) is 0
forn > 0. Let f be invertible in R (717" ... 72/"") with d,.f = 1 for all (r,¢). We claim
that f — 1 is topologically nilpotent. Up to adding a topological nilpotent element, we can
assume that f € R*[r]. Since f is invertible, its image in (R*/R°°)[7}/7™] is invertible as well.
Invertible elements in this ring are just the invertible constants. We deduce that all coefficients
of f — f(0) = f — 1 are topologically nilpotent and hence f — 1 is topologically nilpotent.
In particular, the element H = f + 7,,,1(1 — f) in RT(z/7* 71/"™) is invertible, satisfies
d,H = 1forall e and all 1 < r < n and determines a homotopy between f and 1. This proves
the claim. N

We can also prove that the 0-th homology of the complex N ((R®O(J))**) coincides with
R™ /(1 + R°°). This amounts to showing that the image of the ring map

{f € RE (VP £(0) =1} — R™™
f= f(1)

coincides with 1+ R°°. Let f be invertible in R+ (71/7™) with f(0) = 1. As proved above, f — 1
is topologically nilpotent so that also f(1) — 1 is. Vice-versa if a € R is topologically nilpotent
then the element 1 + a7 € R*(7/7™) is invertible, satisfies f(0) = 1 and f(1) = 1+ a proving
the claim.

We are left to prove that the multiplicative map # induces an isomorphism (R**)* /(1 +
R°) — (R*)* /(1 4+ R*°). We start by proving it is injective. Let a € R** such that (a* — 1)
is topologically nilpotent. Since (a* — 1) = (a — 1)* in R* /7 we deduce that the element
(a —1)* — (a* — 1) is also topologically nilpotent. We conclude that (a — 1)* as well as (a — 1)
are topologically nilpotent, as wanted.

We now prove surjectivity. Let a be invertible in R*. In particular both a and a~! are
power-bounded. From the isomorphism R** /7" = RT /7 we deduce that there exists an element
b € R°* such that b* = a + 7o = a(1 + maa™") for some (power bounded) element o € R*.
We deduce that (1 + maa™!) lies in 1 + R°° and that b* is invertible. Since the multiplicative
structure of R’ is isomorphic to l'glthp R and { is given by the projection to the last component,

we deduce that as b is invertible, then also b is. In particular, the image of b € (R’*)* in
(RT)*/(1+ R®°) is equal to a as wanted. O

We recall that by Corollary there is an adjunction
3: RigDM$' (K’) = RigDM$ (K) : &
and our goal is to prove it is an equivalence.
1.7.6. PROPOSITION. The motive ®A(d) is isomorphic to A(d) for any positive integer d.

PROOF. The natural map A(d) — &A(d) is induced by the isomorphism FA(d) = A(d).
We need to prove it is an isomorphism. The motive A(d) is a direct factor of the motive
A(T9)[—d] and the map above is induced by A(T?) — BA(T?). It suffices then to prove that
the map A(T¢) — BA(T?) is an isomorphism.
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By the definition of the adjoint pair (§, ®) given in Corollary|1.7.1, we can equivalently
consider the adjunction

LuLj*: PerfDAST(K) = RigDAS(K) :Rj,L.*
and prove that A(T%) — (Rj, o Le*)A(T?) is an isomorphism in APerfDAzif(K )

From Proposition we deduce that the complexes Sing”®' A(Td) and 7j, Sing®' A(T9)
are quasi-isomorphic in Ch Psh(PerfSm). By means of Remark the quasi-isomorphism
above can be restated as S -

Sing® A(T?) = Rj, Sing® A(T?).
Due to Proposition |1.3.26| the complex SingB1 Fis @1-equivalent to F for any complex F.
This fact, together with the isomorphism Le*A(T?) = A(T?) implies A(T?) = Ry, Lo*A(T?) as
wanted.
U

1.7.7. REMARK. Since j, commutes with ét-sheafification, it preserves ét-weak equivalences.

It also commutes with SingIBl and therefore preserves B!-weak equivalences. We conclude that
Rj. = j. and in particular Rj, commutes with small direct sums.

We are finally ready to present the proof of our main result.
1.7.8. THEOREM. The adjunction
§: RigDM¢ST(K*) = RigDMY(K) : &
is a monoidal triangulated equivalence of categories.

PROOF. By Theorem the functor LyLj*: PerfDAST(K) — RigDAST(K) sends
the motive A(X) associated to a perfectoid X = im, X, to the motive A(Xy) associated to
Xy up to rescaling indices. It is triangulated, commutes with sums, and its essential image
contains motives A(X,) of varieties X having good coordinates X, — TY and such that
X), = Xo xonx TV (0/P") = X{ is an isomorphism in RigDAST (K) for all h. We call these
rigid varieties with very good coordinates. By Proposition [I.5.3] for every rigid variety with
good coordinates X, — T there exists an index & such that X, = X v TV (0£/#") has very
good coordinates. Since char K = 0 the map TV (v=1/7") — TV is finite étale, and therefore
also the map X, — X is. We conclude that any rigid variety with good coordinates has a finite
étale covering with very good coordinates, and hence the motives associated to varieties with
very good coordinates generate the étale topos. In particular, the motives associated to them
generate RigDAgff (K') and hence the functor L., o Lj* maps a set of compact generators to a
set of compact generators.

Since § is monoidal and F(A(1)) = A(1) it extends formally to a monoidal functor from
the category RigDAS (K”) to RigDA, (K) by putting F(M(—d)) = F(M)(—d). Let now
M, N in RigDMy, (K”) be twists of the motives associated to the analytification of smooth
projective varieties X resp. X'. They are strongly dualizable objects of RigDM,, (K”) since
A:(X) and A (X') are strongly dualizable in DMy, (K”). Fix an integer d such that NV (d)
lies in RigDMZST(K?). The objects M, N, MY and NV lie in RigDM$'(K”) and moreover
F(NY) = F(N)V. From Lemma[1.7.9| we also deduce that the functor § induces a bijection

RigDM¢(K”)(M @ NY, A) = RigDM, (K)(§(M) © F(N)", A).

By means of the Cancellation theorem [S, Corollary 2.5.49] the first set is isomorphic to the
set RigDMS! (K?)(M, N) and the second is isomorphic to RigDMS! (K)(F(M), F(N)). We
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then deduce that all motives M associated to the analytification of smooth projective varieties
lie in the left orthogonal of the cone of the map N — &§FN which is closed under direct
sums and cones. Since A is a Q-algebra, such motives generate RigDMZ¢ (k) by means of
[5, Theorem 2.5.35]. We conclude that N = &FN. Therefore the category T of objects NV
such that N = BFN contains all motives associated to the analytification of smooth projective
varieties. It is clear that T is closed under cones. The functors § and L.* commute with direct
sums as they are left adjoint functors. As pointed out in Remark[1.7.7]also the functor Ry, does.
Since & is a composite of Rj,L¢* with equivalences of categories, it commutes with small sums
as well. We conclude that T is closed under direct sums. Using again [S, Theorem 2.5.35] we
deduce T = RigDMZtﬁ(K >) proving that § is fully faithful. This is enough to prove it is an
equivalence of categories, by applying [S, Lemma 1.3.32]. U

1.7.9. LEMMA. Let M be an object of RigDAS (K”). The functor § induces an isomor-
phism
RigDM; (K”)(M, A) = RigDM, (K)(§(M), A).
PROOF. Suppose that d is an integer such that M (d) lies in RigDAST(K?). One has
§A(d) = A(d) and by Proposition the unit map n: A(d) — SFA(d) is an isomorphism.
In particular from the adjunction (§F, ®) we obtain a commutative square

RigDMT(K°)(M(d), A(d)) —— RigDM(K)(FM (d), FA(d))
RigDMSI (k) (M (d), A(d)) —— RigDMT (K)(M(d), (6F)A(d))

in which the top arrow is then an isomorphism. By the Cancellation theorem [3, Corollary
2.5.49] we also obtain the following commutative square

RigDM! (K°)(M(d), A(d)) —— RigDM,, (K)(§M(d), A(d))
RigDMT (K*)(M(d), A(d)) ——~ RigDMT (K)(FM(d), A(d))

and hence also the top arrow is an isomorphism. We conclude the claim from the following
commutative square, whose vertical arrows are isomorphisms since the functor (-)(d) is invertible
in RigDM,, (K):

RigDMg (K")(M, A)

RigDM,, (K)(3M, A)
(~)(d)l~ ()(d) LN
RigDM (K?)(M(d), A(d)) —— RigDM,, (K)(FM(d), A(d)).
[

1.7.10. REMARK. In the proof of Theorem|[I.7.8| we again used the hypothesis that A is a
(Q-algebra in order to apply [5, Theorem 2.5.35] which states that the motives associated to the
analytification of smooth projective varieties generate RigDMZST (K?).

We remark that the proof above also induces the following statement.
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1.7.11. COROLLARY. The functor
3: RigDM¢ (K’) — RigDMS(K)
is a monoidal equivalence of categories.

1.7.12. REMARK. The reader may wonder if the equivalence RigDMS! (K, A) =
RigDM¢T (K", A) still holds true for an arbitrary ring of coefficients A such that p € A*. With
this respect, the case of rational coefficients that we tackled in this thesis is particularly mean-
ingful. Indeed, it is expected that if [ is coprime to p then the category RigDMS' (K, Z./17)
coincides with the derived category of Z/[7Z-Galois representations, in analogy to the case
of DMS¥ (K, Z/IZ). 1t would then be equivalent to RigDMZ¢ (K", Z /IZ) by the theorem of

Fontaine and Wintenberger.



CHAPTER 2

Rigid motives with and without transfers

The purpose of this chapter is to prove an equivalence of categories RigDAS . (K, A) =
RigDME?(K , \) adapting the proof of [3, Theorem B.1] and [7, Theorem B.1] to the rigid
analytic setting and to an arbitrary characteristic. To this aim, we first need to present a
refinement of the étale topology.

2.1. The Frob-topology

In all this section, we assume that K is a perfect field which is complete with respect to a
non-archimedean norm. Unless otherwise stated, we will use the term “variety” to indicate an
affinoid rigid analytic variety over K.

2.1.1. DEFINITION. A map f: Y — X of varieties over K is called a Frob-cover if it is
finite, surjective and for every affinoid U in X the affinoid inverse image V = f~!(U) is such
that the induced map of rings O(U) — O(V) is radicial.

2.1.2. REMARK. By [21} Corollary IV.18.12.11] a morphism of schemes is finite, surjective
and radicial if and only if it is a finite universal homeomorphism. The same holds true for rigid
analytic varieties.

If char K = p and X is a variety over K then the absolute n-th Frobenius map X — X
given by the elevation to the p”-th power, factors over a map X — X (™ where we denote
by X(™ the base change of X by the absolute n-th Frobenius map K — K. We denote by
®™ the map X — X ™ and we call it the relative n-th Frobenzus Slnce K is perfect, X

is isomorphic to X endowed with the structure map X — Spa K 2y Spa K and the relative
n-th Frobenius is isomorphic to the absolute n-th Frobenius of X over IF,. We can also define
X ™ for negative n to be the base change of X over the the map ®": K — K which is again

isomorphic to X endowed with the structure map X — Spa K 2y Spa K. The Frobenius map
induces a morphism X~ — X and the collection of maps { X(~") — X} defines a coverage
(see for example [31, Deﬁnition C.2.1.1)).

We also define X ™ to be X and the maps ®: X1 — X to be the identity maps for
all n € Z in case char K = 0.

2.1.3. PROPOSITION. Let Y — X be a Frob-cover between normal varieties over K. There
exists an integer n and a map X — Y such that the composite map X™" =Y — X
coincides with ®" and the composite map Y — X — Y™ coincides with ®".

PROOF. We can equally prove the statement for affine schemes. Let f: Y — X a finite
universal homeomorphism of affine normal schemes over K. By [33, Proposition 6.6] there
exists an integer 7 and a map h: X — Y such that the composite map ¥ — X — Y™
coincides with the relative n-th Frobenius. We remark that the map ¥ — X is an epimorphism

(in the categorical sense) of normal varieties. From the equalities fhf(™ = <I>(n f) = f <I>
37
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we then conclude that the composite map X — Y™ — X coincides with the n-relative
Frobenius. This proves the claim. U

2.1.4. DEFINITION. Let B be a normal variety over K. We define RigSm /B to be the
category of varieties which are smooth over B. We denote by 74 the étale topology.

2.1.5. DEFINITION. Let B be a normal variety over K. We define RigNor /B to be the
category of normal varieties over 5.

e We denote by g1, the topology on RigNor /B induced by Frob-covers.

e We denote by 7¢; the étale topology.

e We denote by Tonst the topology generated by 701, and 7.

e We denote by 7p, the topology generated by covering families { f;: X; — X };c; such
that I is finite, and the induced map LIf;: Ll;c; X; — X is finite and surjective.

e We denote by 7,4 the topology generated by 7, and 7.

2.1.6. REMARK. The fhét-topology is often denoted by qth (see [51]]). We stick to the
notation thét in order to be consistent with [3]].

We are not imposing any additivity condition on the Frob-topology, i.e. the families {X; —
Uier X }ier are not Frob-covers. This does not interfere much with our theory since we will
mostly be interested in the Frobét-topology, with respect to which such families are covering
families.

2.1.7. REMARK. The th-topology is obviously finer that the Frob-topology, which is the
trivial topology in case char K = 0.

2.1.8. REMARK. The category of normal affinoid is not closed under fiber products, and the
th-coverings do not define a Grothendieck pretopology. Nonetheless, they define a coverage

which is enough to have a convenient description of the topology they generate (see for example
[31, Section C.2.1]).

2.1.9. REMARK. A particular example of fh-covers is given by pseudo-Galois covers which
are finite, surjective maps f: Y — X of normal integral affinoid varieties such that the field
extension K (Y) — K(X) is obtained as a composition of a Galois extension and a finite,
purely inseparable extension. The Galois group GG associated to the extension coincides with
Aut(Y/X). As shown in [5, Corollary 2.2.5], a presheaf F on RigNor /B with values in a
complete and cocomplete category is an th-sheaf if and only if the two following conditions are
satisfied.

(1) For every finite set {X;};,c; of objects in RigNor /B it holds F(U;c;X;) =

Hie[ F (XZ)
(2) For every pseudo-Galois covering Y — X with associated Galois group G the map
F(X) — F(Y)Y is invertible.

2.1.10. DEFINITION. Let B be a normal variety over K.

e We denote by RigSm /B! the 2-limit category 2-lim RigSm /B (=7) with respect to
the functors RigSm /B(~"~1) — RigSm /B(~™ induced by the pullback along the map
B(==1 — B More explicitly, it is equivalent to the category C3[S~!] where Cp
is the category whose objects are pairs (X, —n) withn € N and X € RigSm /B
and morphisms Cg((X, —n), (X', —n’)) are maps f: X — X' forming commutative
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squares

X X'

|

Bn _*_ p=n)

and where S is the class of canonical maps (X' X gy B, —n) — (X', —n') for
each X € RigSm /B(_”') and n > n’ (see [20, Definition VI.6.3]).

e We say that a map (X, —n) — (X', —n/) of RigSm /BY*"! is a Frob-cover if the map
X — X'is a Frob-cover. We denote by 7, the topology on RigSm /BY*™! induced
by Frob-covers.

e We say that a collection of maps {(X;, —n;) — (X, —n)}ics is an étale cover if the
induced collection {X; — X} is. We denote by 7 the topology on RigSm /BFerf
generated by the étale coverings. It coincides with the one induced by putting the étale
topology on each category RigSm /B(~™ (see [, Theorem VI.8.2.3]).

e We denote by Tronst the topology generated by Tgo, and 7.

We now investigate some properties of the Frob-topology.

2.1.11. PROPOSITION. Let B be a normal variety over K.
e A presheaf F on RigNor /B is a Frob-sheaf if and only if F(X (=) = F(X) for all
objects X in RigNor /B.
e A presheaf F on RigSm /B is a Frob-sheaf if and only if F(XY, —n — 1) =
F (X, —n) for all objects (X, —n) in RigSm /BY™,

PROOEF. The two statements are analogous and we only prove the claim for RigNor /B. By
means of [31, Lemma C.2.1.6 and Lemma C.2.1.7] the topology generated by maps f: Y — X
which factor a power of Frobenius X~ — X is the same as the one generated by the coverage
X1 5 X Using Proposition we conclude that the Frob-topology coincides with the
one generated by the coverage {X(~!) — X}. Since the Frobenius map is a monomorphism of
normal varieties, the sheaf condition associated to the coverage X (~") — X is simply the one of
the statement by [31, Lemma 2.1.3]. |

2.1.12. COROLLARY. Let B be a normal variety over K.

e The class ® of maps {X = 5 X }reN, X eRigNor /B admits calculus of fractions, and its
saturation consists of Frob-covers. In particular, the continuous map

(RigNor /B, Frob) — RigNor /B[®™]

defines an equivalence of topoi.

e The class ® of maps {(X7), —n —r) = (X, —1N) }reN,(X,n)eRigSm /BPert admits calcu-
lus of fractions, and its saturation consists of Frob-covers. In particular, the continuous
map

(RigSm /B Frob) — RigSm /B [}
defines an equivalence of topoi.

PROOF. We only prove the first claim. The fact that ® admits calculus of fractions is an
easy check, and the characterization of its saturation follows from Proposition[2.1.3] The sheaf
condition for a presheaf F with respect to the Frob-topology is simply (X (1) = F(X) by
Corollary 2.1.TT| hence the last claim. O
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2.1.13. REMARK. We follow the notations introduced in Definition Any pullback of
a finite, surjective radicial map between normal varieties is also finite, surjective and radicial. In
particular, if B is a normal variety, the maps in the class S are invertible in RigNor /B[®~!|. The
functor Cp — RigNor /B[®~!] defined by mapping (X, —n) to X factors through a functor
RigSm /B — RigNor /B[®~!]. In particular, there is a functor RigSm /BY*f[®d~1] —
RigNor /B[®~1] defined by sending (X, —n) to X hence, by Corollary there is a functor
ShFrob (ngSm /B‘Perf) — Sthb(RigNOI“ /B)

2.1.14. REMARK. If e: B’ — B is a finite map of normal varieties, any étale hypercover
U — B’ has a refinement by a hypercover U’ obtained by pullback from an étale hypercover V
of B (see for example [47, Section 44.45]). In particular, the functor e,: Psh(RigSm /B’) —
Psh(RigSm /B) commutes with the functor ae;, of ét-sheafification. The same holds true for
the functor e, : Psh(RigSm /B'Fe!) — Psh(RigSm /BFeT).

From now on, we fix a commutative ring A and work with A-enriched categories. In
particular, the term “presheaf” should be understood as “presheaf of A-modules” and similarly
for the term “sheaf”. It follows that the presheaf A(X) represented by an object X of a category
C sends an object Y of C to the free A-module A Hom(Y, X).

2.1.15. AsSUMPTION. Unless otherwise stated, we assume from now on that A is a Q-
algebra and we omit it from the notations.

The following facts are immediate, and will also be useful afterwards.

2.1.16. PROPOSITION. Let B be a normal variety over K.
e If F is an étale sheaf on RigSm / B [resp. on RigNor / B] then agyopF is a Frobét-
shea.
e If F is a Frob-sheaf on RigSm /B [resp. on RigNor /B] then agF is a Frobét-
sheaf.

PROOF. We only prove the claims for RigNor /B. First, suppose that F is an étale sheaf.
By Proposition 2.1.3} we obtain that apopF(X) = lim F(X™). Whenever U — X is étale,
then U xx X7 = U™ and U™ x oy U™ 22 (U xx U)™ so that the following
diagram is exact

0— F(XE) = FUT) - F(U xx U)).

The first claim the follows by taking the limit over n.

We now prove the second claim. Suppose F is a Frob-sheaf. For any étale covering U/ — X
we indicate with I/’ the associated covering of X (~!) obtained by pullback. From Remark [2.1.14
one can compute the sections of asF (X (=) with the formula

ae F(XCY) = liny ker (FUy) — FU))
U—X
where U — X varies among hypercovers of X. Since F is a Frob-sheaf, then F(U)) = F(Up)
and F(U;) = F(U). The formula above then implies
aétf(X(il)) = hﬂ ker (F(Uy) — F(Ur)) = aeF (X)
U—X

proving the claim. O

2.1.17. PROPOSITION. Let B be a normal variety over K. If F is a th-sheaf on RigNor /B
then ag F is a thét-sheaf.
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PROOF. Let f: X’ — X be a pseudo-Galois cover with associated group G. In light of
Remark [2.1.9] we need to show that ag F(X) = agF(X')¢. For any étale covering U — X we
indicate with ¢’ the associated covering of X’ obtained by pullback. From Remark [2.1.14] one
can compute the sections of agF(X') with the formula

ag F(X') = lim ker (F(Uy) — F(Uy))
U—X
where U/ — X varies among hypercovers of X. Taking the G-invariants is an exact functor as A
is a (Q-algebra and when applied to the formula above it yields
ag F(X')C = lim ker (FU)E — FU)°) = lim ker (F(Uo) — F(U)) = aaF (X)
U—X U—X
as wanted. U

2.1.18. PROPOSITION. Let B be a normal variety over K. The canonical inclusions
OFrob: Shpon(RigNor /B) — Psh(RigNor /B)
Orrob: Shpop(RigSm /BY") — Psh(RigSm /B"*")
om: Shg(RigNor /B) — Psh(RigNor /B)

are exact.

PROOF. In light of Proposition [2.1.11] the statements about o}, are obvious. Since A is
a Q-algebra, the functor of G-invariants from A[G]-modules to A-modules is exact. The third
claim then follows from Remark 0

We now investigate the functors of the topoi introduced above induced by a map of varieties
B"— B.

2.1.19. PROPOSITION. Let f: B' — B be a map of normal varieties over K.
o Composition with f defines a functor f;: RigNor /B’ — RigNor /B which induces
the following adjoint pair
fﬁl Ch ShFrobét(RigNOI" /B/) = Ch ShFrObét(RigNOI /B) Zf*

e The base change over f defines functors f(~™*: RigSm /B — RigSm /B'(—™
which induce the following adjoint pair

f*: Ch Shppe (RigSm /BY™) = Ch Shyygpe (RigSm /BT : f,

o If f is a Frob-cover, the functors above are equivalences of categories.
e If [ is smooth, the composition with [ defines functors fﬁ(_n) . RigSm /B —
RigSm /B which induce the following adjoint pair

fi: Ch Shgype (RigSm /B'T™) 2 Ch Shyyone (RigSm /BY) : f*

PROOF. We initially remark that the functors f(~* induce a functor f*: Cz — Cp where
Cp is the fibered category introduced in Definition[2.1.10] As cartesian squares are mapped to
cartesian squares, they also induce a functor f*: RigSm /BY*f — RigSm /BYe !,

The existence of the first two adjoint pairs is then a formal consequence of the continuity of
the functors f; and f*.

Let now f be a Frob-cover. The functors f*: RigSm /BY"[®~1] — RigSm /B'Fef[d~!]
and f;: RigNor /B'[®'] — RigNor /B[®~!] are equivalences, and we conclude the third
claim by what proved above and Corollary 2.1.12]
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For the fourth claim, we use a different model for the Frobét-topos on RigSm /BY*™f. The
fibered category Cp can be endowed with the Frob-topology and the Frobét-topology. Follow-
ing the proof of Corollary the map (Cp, Frob) — Cg[®~!| induces an equivalence of
topoi. Moreover, the canonical functor C[®~!] — RigSm /BY*[®~!] induces an equivalence

of categories.
The existence of the last Quillen functor is therefore a formal consequence of the continuity
of the functor f;: (Cp/[®71], ét) — (Cp[®'], ét). 0O

2.1.20. REMARK. Let f: B’ — B be a map of normal varieties. The image via f* of the
presheaf represented by (X, —n) is the the presheaf represented by (X x 3 B’ —n) and if f
is smooth, the image via f; of the presheaf represented by (X', —n) is the sheaf represented by
(X', —n).

2.2. Rigid motives and Frob-motives

We apply the techniques and the terminology of Section [1.3|to the relative étale and Frob-
étale site. We recall that the ring of coefficients A is assumed to be a Q-algebra.

The category of complexes of presheaves Ch(Psh(C)) can be endowed with the projective
model structure for which weak equivalences are quasi-isomorphisms and fibrations are maps
F — F' such that F(X) — F'(X) is a surjection for all X in C (cfr [23| Section 2.3] and [6,
Proposition 4.4.16]).

We recall that from Proposition whenever (C, 7, I) is a site with an interval, the Bous-
field localization over 7-local, I-local and (7, I)-local maps is well defined. The induced model
categories will be denoted by Ch,. Psh(C), Ch; Psh(C) and Ch. ; Psh(C) respectively. The
model category Ch, Psh(C) is canonically Quillen equivalent to the projective model structure
on the category of complexes of sheaves Ch Sh,(C)

2.2.1. DEFINITION. Let B be a normal variety over K.

e The triangulated homotopy category of the localization Chy z: Psh(RigSm /B) will
be denoted by RigDAS (B, A).

e The triangulated homotopy category of the localization Chg; z: Psh(RigSm /BY*")
will be denoted by RigDAgf(BPerf, A) while the triangulated homotopy category of
Chpyobe st Psh(RigSm /BP') will be denoted by RigDA | . (BYf, A).

e The triangulated homotopy category of the localization Chp,ope; 51 Psh(RigNor /B)
will be denoted by Dyohet 51 (RigNor /B, A) while the triangulated homotopy category
of Chyy g1 Psh(RigNor /B) will be denoted by Dg&Bl (RigNor /B, A).

e If C is one of the categories RigSm /B, RigSm /B! and RigNor /B and n €
{ét, Frob, fh, Frobét, thét, B!, (ét, B'), (Frobét, B!), (fhét, B')} we say that a map in
Ch Psh(C) is a n-weak equivalence if it is a weak equivalence in the model structure
Ch,, Psh(C) whenever this makes sense.

e We will omit A from the notation whenever the context allows it. The image of a
variety X in one of these categories will be denoted by A(X).

We now want to introduce the analogue of the previous definitions for motives with trans-
fers. By Remark [2.1.13|the map (X, —n) — X induces a functor Shg,.,(RigSm /BYf) —
Shyg,on(RigNor /B). If we compose it with the Yoneda embedding and the functor ag, of
fh-sheafification we obtain a functor

RigSm /B"™ — Shp,,,(RigSm /BY*") — Shy,(RigNor /B).
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2.2.2. DEFINITION. Let B be a normal variety over K.

e We define the category RigCor /B as the category whose objects are those of
RigSm /B and whose morphisms Hom(X,Y') are computed in Shg,(RigNor /B).
The category Psh(RigCor /B) will be denoted by PST(RigSm /B).

e We define the category RigCor /BY*™ as the category whose objects are those of
RigSm /BY! and whose morphisms Hom (X, Y) are computed in Shg,(RigNor /B).
The category Psh(RigCor /BY*") will be denoted by PST(RigSm / BF*T).

We remark that, as A is a Q-algebra, our definition of RigCor /B is equivalent to the one
given in [5 Definition 2.2.17]. We also remark that the inclusions of categories RigSm /B —
RigCor /B and RigSm /BY*f — RigCor /B! induce the following adjunctions:

at;: ChPsh(RigSm /B) = ChPST(RigSm /B) :o,.
ai: Ch Psh(RigSm /BY") = Ch PST(RigSm /B"™) :0,,.

We now define the category of motives with transfers.

2.2.3. PROPOSITION. Let B be a normal variety over K and let C be either the category
RigSm /B or the category RigSm /BY®. The projective model category Ch PST(C) admits
a left Bousfield localization Chg, PST(C) with respect to S, the class of of maps f such that
o (f) is a ét-weak equivalence. It also admits a further Bousfield localization Chg, g1 PST(C)
with respect to the set formed by all maps A(B%)[i| — A(X)[i] by letting X vary in C and i
vary in 7.

PROOF. The proof of [S, Theorem 2.5.7] also applies in our situation. For the second
statement, it suffices to apply [22, Theorem 4.1.1]. U

2.2.4. REMARK. By means of an étale version of [S, Corollary 2.5.3], if F is a presheaf
with transfers then the associated étale sheaf asF can be endowed with a unique structure of
presheaf with transfers such that 7 — a¢JF is a map of presheaves with transfers. The class Se;
can then be defined intrinsecally, as the class of maps F — F’ inducing isomorphisms of étale
sheaves with transfers ag H; F — ag H; F' .

2.2.5. DEFINITION. Let B be a normal variety over K.

e The triangulated homotopy category of the localization Chg g1 PST(RigSm /B) will
be denoted by RigDMST (B, A).

e The triangulated homotopy category of the localization Chg; g PST(RigSm /BY*™)
will be denoted by RigDMZST (BPerf A).

e We will omit A from the notation whenever the context allows it. The image of a
variety X in one of these categories will be denoted by A, (X).

We remark that if char K = 0 the two definitions above coincide. Also, if B is the spectrum
of the perfect field K the category RigDMZST ( BP'f) coincides with RigDMS! (K). In this

case, the definition of RigDAST (BPef) also coincides with the one of RigDAS! (K
given in Definition [[.6.2] as the following fact shows.

2.2.6. PROPOSITION. Let B be a normal variety over K. There is a Quillen equiva-
lence between the category Chyyops (RigSm /BY*™) and the left Bousfield localization of
Chy, Psh(RigSm / BY) over the set of all shifts of maps (XY, —n — 1) — A(X, —n) as
(X, —n) varies in RigSm / BYe™,
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PROOF. From Lemmas[2.1.16] [2.1.18|and [2.2.7] we conclude that Frobét-local objects are
those which are Frob-local and ét-local. We can then conclude using Lemma O

2.2.7. LEMMA. Let C be a category endowed with two Grothendieck topologies T, T, and let
T3 be the topology generated by 11 and To. We denote by a., the associated sheafification functor
and with o, their right adjoint functors. If o, is exact and a,, = a,,a,, then the following
categories are canonically equivalent:

(1) The homotopy category of Ch,, Psh(C).

(2) The full triangulated subcategory of D(Psh(C)) formed by objects which are T3-local.

(3) The full triangulated subcategory of D(Psh(C)) formed by objects which are T1-local
and 1o-local.

PROOF. The equivalence between the first and the second category follows by definition of
the Bousfield localization. We are left to prove the equivalence between the second and the third.
We remark that 73-local objects are in particular (71, 73)-local.

Since o, is exact, the category of 7;-local objects coincides with the category of complexes
quasi-isomorphic to complexes of 71-sheaves. Consider the model category Ch,,(Sh,, (C))
which is the Bousfield localization of Ch(Sh,,(C)) over the class of maps of complexes
inducing isomorphisms on the 73-sheaves associated to the homology presheaves, that we will
call 73-equivalences. From the assumption a., = a,,a,, the class of 73-equivalences coincides
with the class of maps 5., of complexes inducing isomorphisms on the 75-sheaves associated
to the homology 7;-sheaves. Hence Ch.,(Sh,, (C)) coincides with Ch,,(Sh,, (C)) and its
derived category is equivalent to the category of (77, 75)-local complexes.

Because of the following Quillen adjunction

La, = a,: Ho(Ch,, Psh(C) = Ho(Ch,, Sh,,(C)) :Ro,, = o,,.

we conclude that the image via o,, of a To-local complex of sheaves i.e. a (77.72)-local complex,
is 73-local, as wanted. O

2.2.8. LEMMA. Let B be a normal variety over K. A projectively fibrant object of
Ch Psh(RigSm /BY*) is Frob-local if and only if it is local with respect to the set of all
shifts of maps A(XY, —n — 1) = A(X, —n) as (X, —n) varies in RigSm /B,

PROOF. We initially remark that a fibrant complex F is local with respect to the set of
maps in the claim if and only if (H;F)(X, —n) = (H;F)(XY, —n — 1) for all X and i. By
Proposition this amounts to say that H;F is a Frob-sheaf for all 4.

Suppose now that F is fibrant and Frob-local. Since the map of presheaves A(X (™Y —n —
1) — A(X, —n) induces an isomorphism on the associated Frob-sheaves, we deduce that
(H,F) (XY, —n — 1) = (HF)(X, —n). This implies that H;F is a Frob-sheaf and hence F
is local with respect to the maps of the claim, as wanted.

Suppose now that F is fibrant and local with respect to the maps of the claim. Let /' —
C™ob F a Frob-weak equivalence to a fibrant Frob-local object. By definition, we deduce that
the Frob-sheaves associated to H;F and to H;C™°PF are isomorphic. On the other hand, we
know that these presheaves are already Frob-sheaves, and hence the map F — C™PF is a
quasi-isomorphism of presheaves and F is Frob-local. U

We now want to find another model for the category Dg&Bl (RigNor /B). This is possible by

means of the model-categorical machinery developed above.
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By Remark an object F in Ch Psh(RigNor /B) is fh-local if and only if it is additive

and
D Psh(RigNor /B)(A(X), F) — D Psh(RigNor /B)(A(X'), F)AutX/X)
is an isomorphism, for all pseudo-Galois coverings X’ — X. Therefore, if we consider
Dryonet 51 (RigNor / B) as the subcategory of (B, Frobét)-local objects in D Psh(RigNor /B)
we say that an object F of Dgyoner 51 (RigNor /B) is fh-local if and only if
Diyopes st (RigNor /B)(A(X), F) — Diyoperst (RigNor /B)(A(X'), F)AuE/X)

is an isomorphism, for all pseudo-Galois coverings X' — X.

2.2.9. PROPOSITION. Let B be a normal variety over K. The category D! ., (RigNor /B)
is canonically isomorphic to the category of th-local objects in Dgyonet 51 (RigNor /B).

PROOF. It suffices to prove the claim before performing the B!-localization on each category.
The statement then follows from Propositions [2.1.16|and [2.1.17] together with Lemmas[2.1.18
and2.2.7 O

We now study some functoriality properties of the categories just defined, and later prove a
fundamental fact: the locality axiom (see [37, Theorem 3.2.21]).

2.2.10. PROPOSITION. Let f: B' — B be a map of normal varieties over K. The first two
adjoint pairs of Proposition|2.1.19|induce the following Quillen pairs:

]Lfﬁ DFrobét,IBl (ngNOI‘ /B,) <:) DFrobét,]Bl (ngNOI‘ /B) ]Rf*
Lf*: RigDA{,,,(B™) = RigDAGL, . (B™) :Rf,

which are equivalences whenever [ is a Frob-covering. Moreover, if [ is a smooth map, the
third adjoint pair of Proposition induces a Quillen pair:

Lf;: RigDAfone (B'™") & RigDAf e (B :Lf*

PROOF. The statement is a formal consequence of Proposition [2.1.19| and the formulas
f*(By) = B (x) and f;(B) = By. B

2.2.11. PROPOSITION. Let ¢: B' — B be a finite map of normal varieties over K. The
functor

e,: ChPsh(RigSm /B'"*") — Ch Psh(RigSm /B"")
preserves the (Frobét, B!)-equivalences.

PROOF. Lete: B’ — B be a finite map of normal varieties. The functor e, is induced by the
map RigSm /BY*f — RigSm /B’ sending (X, —n) to (X X g B'"™, —n). From Re-
mark it commutes with ét-sheafification. As the image of (X (=1, —n — 1) is isomorphic
to ((X X g(—m B'"™)=1 —n—1) we deduce from Corollary that e, commutes with Frob-
sheafification. Therefore by Proposition we deduce that e, : Psh(RigSm /B'Pet) —
Psh(RigSm /BF*!) commutes with the functor agy.pe; of Frobét-sheafification, hence it pre-
serves Frobét-equivalences.

We now prove that it also preserves B'-equivalences. By [6, Proposition 4.2.74] it suffices
to show that e, (A(Bi,) — A(V)) is a B'-weak equivalence for any V in RigSm / X'P*, This
follows from the explicit homotopy between the identity and the zero map on e, (A(B5,)) (see
the argument of [S, Theorem 2.5.24]). ]

The following property is an extension of [S, Theorem 1.4.20] and referred to as the locality
axiom.
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2.2.12. THEOREM. Leti: Z — B be a closed immersion of normal varieties over K and
let j: U < B be the open complementary. For every object M in RigDASE | (BYet) there is
a distinguished triangle

LjLg*M — M — Re Li*M —

In particular, the pair (Lj*,1Li*) is conservative.

PROOF. First of all, we remark that by Proposition [2.2.11] one has Ri, = 4,. In partic-
ular it suffices to prove the claim before performing the localization over the shifts of maps
AXED, —n —1) = A(X, —n) i.e. in the category RigDAST (BPerf),

The functors Lj; Lj* and Lz* commute with small sums because they admit right adjoint
functors. Also Rz, does, since it holds Ri, = 7,. We conclude that the full subcategory of

RigDAST  (BP*) of objects M such that
LjLj*M — M — Ri Li*M —

is a distinguished triangle is closed under cones, and under small sums. We can then equivalently

C

prove the claim in the subcategory RigDAS ( BF*) of compact objects, since these motives

generate RigDAEf(BPerf) as a triangulated category with small sums.

Because of Lemma [2.2.13] and Proposition we can prove the claim for each
category RigDAzf(B(_”)). Therefore, it suffices to prove the claim for the categories
RigDASE (B(-™) as defined in [5], since the category RigDAST (B(-")) is a further localiza-
tion of RigDASE (B(=")). In this case, the statement is proved in [5, Theorem 1.4.20]. U

2.2.13. LEMMA. Let B be a normal variety over K. The functors RigSm /B(_”) —
RigSm /B! induce a triangulated equivalence of categories

lim RigDAg (B") = RigDAg (B"™")

et

where we denote by RigDAS! (B™) [resp. with RigDAS! (BY) ] the subcategory of compact

objects of RigDAST (B™) [resp. of RigDAST (BPf)).
PROOF. The functor lim RigDAZ(B™") — RigDAg(B"") is triangulated and sends

the objects A(X)[:] which are compact generators of the first category, to a set of compact
generators of the second. Up to shifting indeces, it therefore suffices to show that for X, Y in
RigSm /B one has

lim RigDAZ (BU)(A(X x5 BT™), A(Y x5 B™™)) = RigDAZ (B"™")(A(X), A(Y))

where we denote by X = (X,0) and Y = (Y, 0) the object of RigSm /BY*' associated to X
resp. Y. To this aim, we simply follow the proof of [S), Proposition 1.A.1]. For the convenience
of the reader, we reproduce it here.

Step 1: We consider the directed diagram B formed the maps B(~"~Y — B() and we
let RigSm /B3 be the the category of rigid smooth varieties over it as defined in [5, Section
1.4.2]. We can endow the category Ch Psh(RigSm /B) with the (ét, B!)-local model struc-
ture, and consider the Quillen adjunctions induced by the map of diagrams «,,: B (=) 5 B,
fom: BE™ — B

o : ChPsh(RigSm /B) = ChPsh(RigSm /B"™™) :a,,,
us: Ch Psh(RigSm /B™™) = Ch Psh(RigSm /B) :a,
f:: ChPsh(RigSm /B""™) = ChPsh(RigSm /B"™) : f,m.
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We also remark that the canonical map RigSm /B~ — RigSm /BY* induces a Quillen
adjunction

f%,: ChPsh(RigSm /B""™) = ChPsh(RigSm /B : f._....

Consider a trivial cofibration ag.A(Y) — R with target R that is (ét, B')-fibrant. Since o is
a left and right Quillen functor and o o, = f7, we deduce that the map A(Y x5 B(™™) =
f5A(Y) — i R is also an (ét, B')-trivial cofibration with an (ét, B')-fibrant target.

Step 2: By applying the left Quillen functors f and f%  we also obtain that [} A(Y) =
Finfioh(Y) = frnan R and froh(Y) = foFioA(Y) = foak R are (ét,B)-trivial
cofibrations. By the 2-out-of-3 property of weak equivalences applied to the composite map

Fih(Y) = frnoiuR = aiRR

mm

we then deduce that the map f*, «of R — o R is an (ét, B!)-weak equivalence.
Step 3: We now claim that the natural map A(Y) — R with R := colim,, f* R is an

(6t, B')-weak equivalence in Ch Psh(RigSm /BF*). By what shown in Step 2, it suffices to
prove that the functor

colim: ChPsh(RigSm /B — Ch Psh(RigSm /B")

preserves (ét, B')-weak equivalences. First of all, we remark that it is a Quillen left functor with
respect to the projective model structure on the diagram category Ch Psh(RigSm /BPerf)N
induced by the pointwise (ét, B')-structure. Hence, it preserves (ét, B')-weak equivalences
between cofibrant objects. On the other hand, as directed colimits commute with homology, it
also preserves weak equivalences of presheaves. Since any complex is quasi-isomorphic to a
cofibrant one, we deduce the claim.

Step 4: We now prove that 12 is B!-local. Consider a variety U smooth over B(~™). From
the formula

R(U) = colimy, >, a, R(U X gy BT™)

and the fact that o, R is B'-local, we deduce a quasi-isomorphism R(U) 22 R(B},) as wanted.

Step 5: We now prove that R is ét-local. It suffices to show that for any U smooth over
B one has HE, (U, R) = H_,R(U). The topos associated to Et /U is equivalent to the one
of lim Et /(U X g(-n B™™)) and all these sites have a bounded cohomological dimension since
A is a Q-algebra. By applying [1, Theorem VI1.8.7.3] together with a spectral sequence argument
given by [48, Theorem 0.3], we then deduce the formula

HE, (T, R) =2 colim,, HY (U X gy BT™, o, R).
On the other hand, as o, R is ét-local, we conclude that
colim,, HY (U x gy B©™, o R) 22 colim,, H_(a,R)(U X g—my BU™) 2 H_ R(U)

proving the claim.

Step 6: From Steps 3-5, we conclude that we can compute RigDAST (BP*))(A(X), A(Y))
as R(X) which coincides with colim, (a*R)(X xp B("™). By what is proved in Step 1, we
also deduce that o R is a (ét, B')-fibrant replacement of A(Y x 3 B(~™) and hence the last
group coincides with colim,, RigDAST (BE)(A(X x5 BE™), A(Y xp BE™)) proving the
statement. U
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2.3. The equivalence between motives with and without transfers

We can finally present the main result of this section. We recall that the ring of coefficients
A is assumed to be a Q-algebra.

2.3.1. THEOREM. Let B be a normal variety over K. The functor a,, induces an equivalence
of triangulated categories:

Lay, : RigDAL . (B™) = RigDMg (B™).

[S)

As a corollary, we obtain the two following results, which are indeed our main motivation.

2.3.2. THEOREM. The functor a., induces an equivalence of triangulated categories:
Lag, : RigDAf . (K) = RigDMg (K).

2.3.3. THEOREM. Let B be a normal variety over a field K of characteristic 0. The functor
ay- induces an equivalence of triangulated categories:

La;,: RigDAST(B) = RigDMS(B).

2.3.4. REMARK. The statement of Theorem[2.3.1{in case B is a normal affinoid rigid analytic
variety immediately implies the statement for the case of an arbitrary normal rigid analytic
variety B. Therefore, we can suppose that B is affinoid, being consistent with our notations on
the term “variety”.

The proof of Theorem [2.3.1]is divided into the following steps.

(1) We first produce a triangulated functor Lay,: RigDAS . (BPf) — RigDMS! (BPef)
commuting with sums, sending a set of compact generators of the first category into a set of
compact generators of the second.

(2) We define a fully faithful functor Li*: RigDAS | . (BYef) — Db (RigNor /B).

Frobét, B!

(3) We define a fully faithful functor Lj*: RigDM¢ (BYf) — DI s.m (RigNor /B).
(4) We check that ILj* o Lay, is isomorphic to LLi* proving that Lay, is also fully faithful.

We now prove the first step.

2.3.5. PROPOSITION. Let B be a normal variety over K. The functor ay, induces a triangu-
lated functor

Lag,: RigDAGE . (B7) — RigDMT (B

ét

commuting with sums, sending a set of compact generators of the first category into a set of
compact generators of the second.

PROOF. The functor a, induces a Quillen functor
Lai.: Chg Psh(RigSm /BY) — Chg PST(RigSm /BY*T)

sending A(X, —n) to A, (X). We are left to prove that it factors over the Frob-localization,
i.e. that the map Ay, (XV) — A (X) is an isomorphism in RigDMST (BY') for all X €
RigSm /B(~™. Actually, since the map X (=% — X induces an isomorphism of fh-sheaves, we

deduce that it is an isomorphism in the category RigCor / B"*'f hence also in RigDMZ¢" (Berf).
U

We are now ready to prove the second step.
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2.3.6. PROPOSITION. Let B be a normal variety over K. The functors RigSm /B —
RigNor /B induce a fully faithful functor

Lij: RigDAR 6 (B™") = Dpyobers1 (RigNor /B).

PROOF. We let Cp be the category introduced in Definition As already remarked
in the proof of Proposition [2.1.19| we can endow it with the Frobét-topology and the topos
associated to it is equivalent to the Frobét-topos on RigSm /BY*™, In particular, the continuous
functor ig: Cp — RigNor /B induces an adjunction

Liy: RigDAS . (BY) 2 Dpgpe s (RigNor /B) :Rig,.

As ip,i} is isomorphic to the identity, it suffices to show that Rip, = ip, so that Rip,Li}; is
isomorphic to the identity as well.

The functor 75, commutes with Frobét-sheafification, and hence it preserves Frobét-weak
equivalences, and since ip.(A(B{,)) = A(BL) ® ip.(A(V)) is weakly equivalent to ip,(A(V))
for every V in RigNor /B we also conclude that it preserves B'-weak equivalences, as wanted.

i

2.3.7. REMARK. As a corollary of the proof of Proposition we obtain that the functor
ips preserves (Frobét, B')-equivalences.

We remark that the previous result does not yet prove our claim. This is reached by the
following crucial fact.

2.3.8. PROPOSITION. Let B be a normal variety over K. The image of Lt} is contained in
the subcategory of th-local objects.

PROOF. Let M be an object of RigDAS . (B let f: X — B be a normal irreducible
variety over B and let 7: X’ — X be a pseudo-Galois covering in RigNor /B with G =
Aut(X'/X). We are left to prove that

Dryobet gt (RigNor /B)(A(X), Li* M) — Dyyober 1 (RigNor /B)(A(X'), Li*M)C
1s an isomorphism. Using Lemma [2.3.9| we can equally prove that
RigD A6 (X7 (A, Lf* M) — RigD A6 (X7 (A, Lo Lf*M)“

is an isomorphism. Using the notation of Lemma [2.3.12] it suffices to prove that the natural
transformation id — (Rr,Lr*)¢ is invertible.

Using Lemma[2.3.13] we can define a stratification (X;)o<;<, of X made of locally closed
connected normal subvarieties of X such that;: X — X; is a composition of an étale cover and
a Frob-cover of normal varieties, by letting X! be the reduction of the subvariety X; x x X' C
X'. Using the locality axiom (Theorem for RigDAS . applied to the inclusions
u;: X; — X we can then restrict to proving that each transformation Lu} — Lu} (Rr,Lr*)¢ =
(Rr;, Lry)SLu is invertible, where the last isomorphism follows from Lemma It suffices
then to prove that id — (Rr;LLr})¢ is invertible. If s: Z — T is a Frob-cover, the functors
(Ls*,Rs,) define an equivalence of categories RigDA . (TP*f) = RigDA | . (ZF") by
Proposition hence we can assume that the maps r; are étale covers. Moreover, since
Lry: RigDAFrobct(X Perfy ngDAFmth(X ! Perf) is conservative by Lemma L we can
equivalently prove that Ly} — Lr}(Rr;,Lr?)¢ = (Rr/ Lr7)“Lr} is invertible, where i is
the base change of r; over itself (see Lemma[2.3.12). By the assumptions on ; we conclude
that . is a projection | | X! — X/ with G acting transitively on the fibers, so that the functor
(Rr!, ILri*)¢ is the identity, proving the claim. O
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The following lemmas were used in the proof of the previous proposition.

2.3.9. LEMMA. Let f: B' — B be a map of normal rigid varieties over K. For any
M € RigDA, v (B) there is a canonical isomorphism

DFrobét,]Bl(RigNor /B)(A(B/), Li*BM) = RigDAFrobét(B/>(A7 Lf*M)-

PROOF. Consider the following diagram of functors:

Psh(Cp[d1]) B Psh(RigNor /B[®~1])

b |

Psh(Cp [@1]) —Z~ Psh(RigNor /B/[®1])

Let F be in Psh(Cp[®7!]) and X’ be in RigNor /B’. One has (i%, f*)(F)(X’) = colim F(V)
where the colimit is taken over the maps X' — V X B'"™ in RigNor /B'[®~!] by
letting V' vary among varieties which are smooth over some B(~™). On the other hand, one
has (f*i%)(F)(X’) = colim F(V) where the colimit is taken over the maps X’ — V in
RigNor /B[®~'] by letting V' vary among varieties which are smooth over some B(~™). Since
V X gemy BT 2 (V xp B')™ in RigSm /B'[®~!] we deduce that the indexing categories
are equivalent, hence the diagram above is commutative and therefore by Corollary and
what shown in the proof of Proposition also the following one is:

Ch Shpyope (RigSm /BFef) —2~ Ch Shpyope(RigNor /B)

; )
Ch Shypape (RigSm /B'P") — 2~ Ch Shy,one (RigNor /B')
This fact together with Lemma [2.3.10|implies f*Li}; = Li}, L f*. By Propositions and
we then deduce
Dryonet gt (RigNor /B)(A(B'), Lij; M) = Dyyober 5t (RigNor /B) (L fy(A), Lip M) =
= Dgpober st (RigNor /B') (A, f*Li M) = Dyyober st (RigNor /B") (A, Ly Lf*M) =
2 Dipyope s (RigNor /B) (Ll A, L'y Lf* M) 2= RigDA pyone (B) (A, Lf* M)
as claimed. U
2.3.10. LEMMA. Let f: B' — B be a map of normal varieties over K. The functor
/*: ChPsh(RigNor /B) — ChPsh(RigNor /B’)
preserves the (Frobét, B!)-equivalences.

PROOF. Since f* commutes with Frobét-sheafification and with colimits, it preserves
Frobét-equivalences. Since f*(A(B})) = By ® f*(A(V)) is weakly equivalent to f*(A(V))
for every V in RigNor /B we also conclude that f* preserves B!-weak equivalences, hence the
claim. i

2.3.11. LEMMA. Let B be a normal variety over K and let f: X — Y be a composition
of Frob-coverings and ét-coverings in RigNor / B. The functor Lf*: RigDAG . (Yo —
RigDAST (XT) is conservative.
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PROOF. If f is a Frob-cover, then IL f* is an equivalence by Proposition [2.2.10l We are left
to prove the claim in case f is an ét-covering. In this case, we can use the proof of the analogous
statement in algebraic geometry [7, Lemma 3.4]. U

2.3.12. LEMMA. Let e: X' — X be a finite morphism of normal varieties over K and let G
be a finite group acting on Re,lLe*. There exists a subfunctor (Re,lLe*) of Re,lLe* such that
forall M, N in RigDAZ | (XT) one has

RigDAR 6 (X7 (M, (Re.Le*)“N) 2 RigDAG 6, (X ) (M, Re.Le* N)©.
Moreover for any map f: Y — X of normal rigid varieties factoring into a closed embedding

followed by a smooth map, and any diagram of normal varieties

(Y X x X')red —> X

y— 1 _x

there is an induced action of G on Re_ILe™ and an invertible transformation L f*(Re,Le*)% =

(Re! Le™)CILf~.

PROOF. We define (Re,LLe*)¢ to be subfunctor obtained as the image of the projector
|—é| > g acting on Re,LLe*.

In order to prove the second claim, it suffices to prove that L f*Re,Le* = Re! Le* L f*. As
the latter term coincides with Re,IL(fe')* = Re L(ef’)* = Re. L f*LLe* it suffices to show that
the base change transformation L f*Re, — Re’IL f* is invertible. We can consider individually
the case in which f is smooth, and the case in which f is a closed embedding.

Step 1: Suppose that f is smooth. Then f* has a left adjoint f;. We can equally prove that
the natural tranformation L f{lL.e” — Le*L f; is invertible. This follows from the isomorphism
between the functors f/e"* and e* f; from Psh(RigSm /X'"*"") to Psh(RigSm /Y "*"") obtained
by direct inspection.

Step 2: Suppose that f is a closed immersion. Let j: U — X be the open immersion
complementary to f and j’ be the open immersion complementary to f’. By the locality axiom
(Theorem we can equally prove that Lj;Re/, — Re,ILjj is invertible.

Step 3: It is easy to prove that the transformation Lj;Re, — Re,lLj; is invertible once
we know that e,, €/, j; and jé preserve the (Frobét, B')-equivalences. Indeed, if this is the
case, the functors derive trivially and it suffices to prove that for any Frobét-sheaf F the map
(Js€l ) (F) = (exj;)(F) is invertible. This follows from the very definitions.

Step 4: The fact that j; (and similarly jé) preserves the (Frobét)-weak equivalences follows
from the fact that it respects quasi-isomorphisms of complexes of Frobét-sheaves, since it is
the functor of extension by 0. In order to prove that it preserves the B!-equivalences, by [6,
Proposition 4.2.74] we can prove that j;(A(B{,) — A(V)) is a B'-weak equivalence for all V' in
RigSm /UYe! and this is clear. The fact that e, (and similarly €.) preserves the (Frobét, B!)-
equivalences is proved in Proposition We then conclude the claim in case f is a closed
immersion. U

2.3.13. LEMMA. Let f: X' — X be a pseudo-Galois map of normal varieties over K.
There exists a finite stratification (X;)1<;<n of locally closed normal subvarieties of X such that
each induced map f;: (X' X x X;)rea — Xi is a composition of an étale cover and a Frob-cover
of normal rigid varieties.
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PROOF. For every affinoid rigid variety Spa(R, R°) there is a map of ringed spaces
Spa(R, R°) — Spec R which is surjective on points, and such that the pullback of a finite étale
map Spec .S — Spec R [resp. of an open inclusion U — Spec R] over Spa(R, R°) — Spec R
exists (following the notation of [26, Lemma 3.8]) and is finite étale [resp. an open inclusion].
The claim then follows from the analogous statement valid for schemes over K. U

2.3.14. REMARK. In the proof of Proposition 2.3.8] we made use of the fact that A is a
(Q-algebra in a crucial way, for instance, in order to define the functor (Re*Le*)G.

The following result proves the second step.
2.3.15. COROLLARY. Let B be a normal variety over K. The composite functor
RigDA{L . (B™") = Dpygper (RigNor /B) — D i (RigNor /B)
is fully faithful.
PROOF. This follows at once from Proposition [2.2.9)and Proposition [2.3.8] U

We now move to the third step. We recall that the category RigCor(BY°) is a subcategory
of Shg, (RigNor /B). We denote by j this inclusion of categories.

2.3.16. PROPOSITION. Let B be a normal variety over K. The functor j induces a fully
faithful functor Lj* : RigDM*"(B*") — D ., (RigNor /B).

PROOF. The functor j extends to a functor PST(RigSm /BY*f) — Shg,(RigNor /B) and
induces a Quillen pair j*: Ch PST(RigSm /BY*!) = Ch Shg,(RigNor /B) :j, with respect
to the projective model structures. We prove that it is a Quillen adjunction also with respect to
the (ét, B')-model structure on the two categories by showing that j, preserves (ét, B!)-local
objects. From the following commutative diagram

RigSm /B! — ~ Psh(RigSm /BP*') — > Shp,, (RigNor /B)

RigCor / BP — PST(RigSm /B*") —— Shy, (RigNor /B)

we deduce that oy,j. = %.0m which is a right Quillen functor. It therefore suffices to show
that if o, F is (ét,B')-local then also F is, for every fibrant object F. Let F — F’ be a
(6t, B')-weak equivalence to a (ét, B!)-fibrant object of Ch PST(RigSm /BY*!). By Lemma
we deduce that o, F — o, F' is a (ét, B')-weak equivalence between (ét, B!)-fibrant
objects, hence it is a quasi-isomorphism. As oy, reflects quasi-isomorphisms, we conclude that
F is quasi-isomorphic to F” hence (ét, B')-local.

We now prove that ILj* is fully faithful by proving that Rj,ILj* is isomorphic to the identity.
As j,7* is isomorphic to the identity, it suffices to show that Rj, = j,. We start by proving that
J« preserves Frobét-weak equivalences. As shown in Remark the functor 7, preserves
Frobét-equivalences. It is also clear that og, does. Since o, reflects Frobét-weak equivalences,
the claim follows from the equality o, j. = i.0p. Since j.(A(B})) = A(BL) ® j.(A(V)) is
weakly equivalent to j.(A(V)) for every V in RigNor /B, we also conclude that j, preserves
B!-weak equivalences, hence the claim. tl

2.3.17. LEMMA. Let B be a normal variety over K. The functor
0y ChPST(RigSm /B") — Ch Psh(RigSm /B")

preserves (ét, BY)-weak equivalences.
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PROOF. The argument of [3, Lemma 2.111] easily generalizes to our context. U
The fourth step is just an easy check, as the next proposition shows.

2.3.18. PROPOSITION. Let B be a normal variety over K. The composite functor ILj* o Lay,
is isomorphic to 1Li*. In particular LLay, is fully faithful.

PROOF. It suffices to check that the following square is quasi-commutative.

Psh(RigSm /B"f) = PST(RigSm /B )

| E
Shg.,(RigNor /B) e Shy, (RigNor /B)

This can be done by inspecting the two composite right adjoints, which are canonically
isomorphic. O

This also ends the proof of Theorem [2.3.1

We remark that in case K is endowed with the trivial norm, we obtain a result on the category
of motives constructed from schemes over K. It is the natural generalization of [3, Theorem B.1]
in positive characteristic. We recall that the ring of coefficients A is assumed to be a Q-algebra.

2.3.19. THEOREM. Let B be a normal algebraic variety over a perfect field K. The functor
ay- induces an equivalence of triangulated categories:

Lay, DA%ifobét(BPerf) = DME?(BPM)-

We now define the stable version of the categories of motives introduced so far, and remark
that Theorem [2.3.3]extends formally to the stable case providing a generalization of the result
[13, Theorem 15.2.16].

2.3.20. DEFINITION. We denote by RigDA ;.. (BY®") [resp. by RigDM,, (BY*)] the
homotopy category associated to the model category of symmetric spectra (see [6, Section
4.3.2]) Sp7 Chpyopes mt Psh(RigSm / BY) [resp. Spy Chy, z1 PST(RigSm /BY*)] where T
is the cokernel of the unit map A(B) — A(TY) [resp A (B) — A (TH)].

2.3.21. COROLLARY. Let B be a normal variety over K. The functor a;. induces an
equivalence of triangulated categories:

Lay, RigDAHobét<BPerf) = RigDMét(BPerf)-
PROOF. Theorem states that the adjunction
atr: Chpyope st Psh(RigSm /BY™) 2 Chpyopep PST(RigSm /B @0,

is a Quillen equivalence. It therefore induces a Quillen equivalence on the categories of
symmetric spectra

arr: Sp7 Chpyope st Psh(RigSm /BY) 2 SpZ Chyyope, st PST(RigSm /BYY) oy,
by means of [6, Proposition 4.3.35]. U

We now assume that A equals Z if char K = 0 and equals Z[1/p] if char K = p. In analogy
with the statement DA (B, A) = DMy (B, A) proved for motives associated to schemes (see
[7, Appendix B]) it is expected that the following result also holds.
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2.3.22. CONJECTURE. Let B be a normal variety over K. The functors (ay, 0y.) induce an
equivalence of triangulated categories:

Lay, : RigDA,, (B, A) = RigDM,, (B, A).

We remark that in the above statement differs from Corollary for two main reasons:
the ring of coefficients is no longer assumed to be a (Q-algebra, and the class of maps with
respect to which we localize are the ét-local maps and no longer the Frobét-local maps.

In order to reach this twofold generalization, using the techniques developed in [7], it would
suffice to show the two following formal properties of the 2-functor RigDA ;:

e Separateness: for any Frob-cover B’ — B the functor
RigDA, (B, A) — RigDA(B', A)

is an equivalence of categories.
e Rigidity: if char K 1 N the functor

D Sh (Et /B, 7Z/N7) — RigDA,(B,Z/NZ)

is an equivalence of categories where Et /B is the small étale site over B.



APPENDIX A

An implicit function theorem and approximation results

The aim of this appendix is to prove approximation results for maps defined from objects
lim X, in ﬁiTgSmgc to rigid analytic varieties. We will show that, up to homotopy, any such map
actors over an analytic space X}, in the direct system.
Along this chapter, we assume that K is a complete non-archimedean field.

A.1. A non-archimedean implicit function theorem

We begin our analysis with the analogue of the inverse mapping theorem, which is a variant
of [28, Theorem 2.1.1].

A.1.1. PROPOSITION. Let R be a K-algebra, let 0 = (01,...,0,) and 7 = (11, ...,Tm) be
two systems of coordinates and let P = (Py, ..., P,,) be a collection of polynomials in R[o, 7|
such that P(o = 0,7 = 0) = 0 and det(g—i?)(a = 0,7 = 0) € R*. There exists a unique
collection F = (F1,. .., F,,) of m formal power series in R||c]| such that F'(c = 0) = 0 and
P(o,F(0)) = 0in R][0]].

Moreover, if R is a Banach K-algebra, then the polynomials P, ..., P, have a positive
radius of convergence.

PROOF. Let f be the polynomial det(g—g) in R[o, 7] and let S be the ring R[o, 7];/(P).
The induced map R[o] — S is étale, and from the hypothesis f(0,0) € R* we conclude that
the map R|o, 7]/(P) — R, (0, 7) — 0 factors through S.

Suppose given a factorization as R|c|-algebras S — R[o]|/(c)" — R of the map S — R.
By the étale lifting property (see [21, Definition IV.17.1.1 and Corollary IV.17.6.2]) applied to
the square

Rlo] — Rlo]/(o)""

we obtain a uniquely defined R[o]-linear map S — R|o]/(o)" ! factoring S — R and hence by
induction a uniquely defined R[o]-linear map R|o, 7|/(P) — R|[[o]] factoring R[o, 7]/(P) — R
as wanted. The power series F; is the image of 7; via this map.

Assume now that I? is a Banach K-algebra. We want to prove that the array F' =
(Fy,..., F,,) of formal power series in R[[c]| constructed above is convergent around 0. As R
is complete, this amounts to proving estimates on the valuation of the coefficients of F'. To
this aim, we now try to give an explicit description of them, depending on the coefficients of P.
Whenever [ is a n-multi-index I = (4y, ... ,14,) we denote by o/ the product ¢! - ... - o’ and
we adopt the analogous notation for 7.

We remark that the claim is not affected by any invertible R-linear transformation of the
polynomials P;. Therefore, by multiplying the column vector P by the matrix (%)(0, 0)~!

7j

55
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we reduce to the case in which (g—f;) (0,0) = &;;. We can then write the polynomials P, in the
following form:
Pi(o,7) =7 — Z ciyno’ T
|J|+H|>0
where J is an n-multi-index, H is an m-multi-index and the coefficients ¢;;; equal 0 whenever
|J| =0and |H| = 1.
We will determine the functions F;(o) explicitly. We start by writing them as
Fi(o) = Z diro’

|[1]>0

with unknown coefficients d;; for any n-multi-index /. We denote their g-homogeneous parts by
Fi (o) := Z diro’.
[=q

We need to solve the equation P(c, F'(¢)) = 0 which can be rewritten as

Fi(o) = Z cipo’ (H Fr(a)hr>

JH

where we denote by h,. the components of the m-multi-index H.
By comparing the g-homogeneous parts we get

m  hy
Fiq<g) - Z CiJHUJ H H Fr,@(r,s) (U)
(JH,®)eX;q r=1 s=1

where the set ¥, consists of triples (.J, H, ®) in which J is a n-multi-index, H is a m-multi-index
and @ is a function that associates to any element (7, s) of the set

{(rys):r=1,....m;s=1,...,h.}

a positive (non-zero!) integer ®(r, s) such that Y ®(r,s) = q — |J|.

If ®(r,s) > ¢ for some r we see by definition that |J| = 0, | H| = 1 and we know that in
this case c,opy = 0. In particular, we conclude that the right hand side of the formula above
involves only F,,’s with ¢’ < ¢. Hence, we can determine the coefficients d;; by induction on
|I|. Moreover, by construction, each coefficient d;; can be expressed as

(D dir = QiI(CiJH)

where each ();; is a polynomial in ¢; sy for |J| + |H| < |I| with coefficients in N.

We can fix a non-zero topological nilpotent element 7 such that ||c;sx|| < |7|~! for all
1, J, H. From the argument above, we deduce inductively that each coefficient d;; is a finite
sum of products of the form [ [ ¢xsi with > |J| < |I]. In particular, each product has at most
|I| factors and hence ||d;;|| < |7|7l. We conclude ||d;;7%!!|| < |=|!l which tends to 0 as
|| — oo. d

The previous statement has an immediate generalization.

A.1.2. COROLLARY. Let R be a non-archimedean Banach K-algebra, let 0 = (04, ... ,0,)
and T = (11, ..., Tm) be two systems of coordinates, let 5 = (1, ...,0,) and T = (T1, ..., Tm)
two sequences of elements of R and let P = (P, ..., P,) be a collection of polynomials

in Rlo, 7| such that P(c = o,7 = 7) = 0 and det(gf?)(o = 0,7 = T) € R*. There
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exists a unique collection F = (F\,..., F,,) of m formal power series in R|[c — G]| such
that F(oc = ¢) = 7T and P(o,F(0)) = 0 in R[[oc — &|] and they have a positive radius of
convergence around G.

PROOF. If we apply Proposition to the polynomials P/ := P(c + 1,7 + 0) we

obtain an array of formal power series F' = (Fy,..., F) ) in R[[n]] with positive radius of
convergence such that P'(n, F'(n)) = 0. If we now put o := ¢ +nand F' := 7 + F’ we get
P(o,F(0c —&)) = 0in R[[c — 7] as wanted. O

We now assume that K is perfectoid and we come back to the category ﬁfgSmgc that
we introduced above (see Deﬁmtlon _ We recall that an object X = @h X, of this

category is the pullback over TV — T of a map Xo — TV x TM that is a composition
of rational embeddings and finite étale maps from an affinoid tft adic space X, to a torus
TV x TM = Spa K (v*!, v*!) and X, denotes the pullback of X, by TN (v'/#") — TN,

A.1.3. PROPOSITION. Let X = l'glh X}, be an object of @Smg‘i If an element £ of O1(X)

is algebraic and separable over each generic point of Spec O(Xy) then it lies in O" (Xj,) for
some h.

PROOF. Let X be Spa(Ry, Rj) let X}, be Spa(Ry, R;,) and X be Spa(R, RT). For any
h € None has R, = Ry® Ky K (v*/ ph) and R™ coincides with the m-adic completion of
%ﬂh R; by Proposition The proof is divided in several steps.

Step 1: We can suppose that R is perfectoid. Indeed, we can consider the refined tower
X! = Xo oy (TN (0/P") x TM (y1/7")) whose limit X is perfectoid. If the claim is true
for this tower, we conclude that & lies in the intersection of O(X}) and O(X) inside O(X) for
some h. By Remark [I.1.1§]this is the intersection

s I s 1,7
(@Ie(z[l/p]m[o,l))NRoy ) M (@16{0/19’“ 0<a<ph}y UV )

Je{a/p™: 0<a<ph}M

which coincides with

—

R()QI = Rh.

Step 2: We can always assume that each R}, is an integral domain. Indeed, the number
of connected components of Spa 7, may rise, but it is bounded by the number of connected
components of the affinoid perfectoid X which is finite by Remark [1.2.11]

We deduce that the number of connected components of Spa R, stabilizes for h large enough.
Up to shifting indices, we can then suppose that Spa Ry is the finite disjoint union of irreducible
rigid varieties Spa R;, for i = , k such that R;;, = R;jy® Ky K (yﬂ/ ph> 1s a domain for
all h. We denote by R, the rlng Rzo® K K (uEY/P7). Let now € = (&) be an element in
RT™ = J[ R; that is separable over [] Frac R; i.e. each &; is separable over Frac R;. If the
proposition holds for R; we then conclude that §; lies in R;, for some large enough £ so that
¢ € Rj, as claimed.

Step 3: We prove that we can consider a non-empty rational subspace Uy = Spa Ro(f;/g) of
X, instead. Indeed, using Remark [1.1.18§ m\lf the result holds for U, assuming h = 0 we deduce
that £ lies in the intersection of R = @R, and of Ry(f;/g) inside R(f;/g) = @RO( 1i/9)
which coincides with R.

Step 4: We prove that we can assume § to be integral over RR. Indeed, let P be its minimal
polynomial over Frac(R,). We can suppose there is a common denominator d such that P has

@Ie{a/ph : 0<a<p}N
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coefficients in Ry[1/d|[z]. By [9, Proposition 6.2.1/4(ii)] we can also assume that |d| = 1. In
particular, by [9] Proposition 7.2.6/3], the rational subset associated to Rq(1/d) is not empty. By
Step 3, we can then restrict to it and assume & integral over Ry and Ro[{] = Ry|x]/ P (z).

Step 5: We can suppose that P (x) is the minimal polynomial of ¢ with respect to all non-
empty rational subspaces of X}, for all h. If it is not the case, from the previous steps we can
rescale indices and restrict to a rational subspace with respect to which the degree of P;(z) is
lower. Since the degree is bounded from below, we conclude the claim.

Step 6: We prove that we can assume that the sup-norm on Ry, is multiplicative for all /. By
[9, Proposition 6.2.3/5] this is equivalent to state that Ry, := R; /R;° is a domain. The maps
R, — Rjp.4 induce inclusions Rh — Rhﬂ by [9, Lemma 3.8.1/6] and these rings are included
in R = R° /R°° which is isomorphic to R by [42, Proposition 5.17]. Up to considering a
rational subspace, we can assume that R’ is the perfection of a smooth affinoid rigid variety
R and R’ is a domain if and only if R} is. As this last ring is reduced, there is a Zariski open
in which it is a domain, and hence by [9, Proposition 7.2.6/3] there is a non-empty rational
subspace of Spa(R’, R°*) and therefore of Spa(R, R*) with the required property (the tilting
equivalence preserves rational subspaces as proved in [42, Proposition 6.17]). We conclude the
claim since rational subspaces of X descend to X}, for i big enough by Proposition We
can assume this happens at i = 0.

Step 7: Since R is the completion of li N R;, with respect to the sup-norms, by the previous
step we deduce that the norm || - || on R is multiplicative. Fix a separable closure L of the
completion of Frac R with respect to || - ||. The element £ and its conjugates &, . . ., &, that are
different from ¢ all lie in the integral closure S of the ring hﬂh Ry, in L which coincides with
the integral closure of Ry since all maps Ry — R}, are integral. We can assume that for all ¢
the minimal polynomial of £ — ; over R, coincides with the one over all rings R, (1/f) with
|f| = 1. Otherwise, restrict to some rational subspace U(1 | f) of X}, with | f| = 1 where this
holds and rescale indices. By [9, Proposition 7.2.6/3] the hypotheses of the previous step are
still preserved. Because R, is normal, by means of [9, Proposition 3.8.1/7] we can also endow
S with the sup-norm | - |. Let € be the positive number min{|{ — &;|}. By the density of lim, Ry,

in R we can find an element 3 € Rj, for some & such that || — || < e. Up to rescaling indices,
we can assume h = 0.
Step 8: We prove that we can assume that the sup-norm on R[] is multiplicative. We

remark that this ring is a tft Tate /-algebra by [9] Proposition 6.1.1/6]. The ring Ry [¢] is reduced,
contains the domain R, and is finite over it (see [9, Proposition 1.2.5/7, Lemma 3.8.1/6, Theorem

6.3.1/6 and Theorem 6.3.5/1]). Up to considering an open of Spec Ry and hence restricting to
a non-empty rational subset U(1 | f) of Spa Ry with |f| = 1 (see [9, Proposition 7.2.6/3]) we

can then assume that the variety Spec Ry[¢] is a disjoint union of integral schemes. Since the

—~—

spectrum of Ry[¢] = Ro[z|/P¢(z) is connected, we deduce that Spec Ry[¢] is also connected
hence integral, and the sup norm on R[] is multiplicative by means of [9, Proposition 6.2.3/5].
We also remark that, by the construction of our restrictions, the rings ]:Eh are still domains hence
the sup-norm is multiplicative on R,. Moreover, the inequalities || — 3|| < eand | — &;| > €
still hold since the maps R, — R,(1/f) are isometries with respect to the sup-norm (see
[9, Lemma 6.3.1/6]) and because of our hypotheses from Step 7 together with the formulas
computing the sup-norm on S (see [9, Proposition 3.8.1/7]).

Step 9: We prove that we the norm on Ry[¢] induced by R coincides with the sup-norm
on this ring. By Step 7 and Step 8 the norm || - || on R and the sup-norm | - |s,, on Ry[¢] are
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multiplicative, and both extend the sup-norm on Ry. Since the map Ry[¢] — R is continuous,
there is an integer n such that |b|s,, < |7|™ implies |[b]| < 1 forall b € Ry[¢]. By Lemma[A.1.4]
we deduce that the two norms | - |, and || - || on Ry[¢] coincide, as claimed.

Step 10: In this last step we argue as for Krasner’s Lemma (see [9, Section 3.4.2]). The maps
R, — S and Ry[§] — S are all isometries with respect to sup-norms by [9, Lemma 3.8.1/6].
By the previous step, we deduce | — 3| < e with respect to the sup-norm on Ry[¢]. We now
show that n = 0 i.e. that the degree of the separable polynomial P (z) is 1 and therefore ¢ lies
in Ry. We argue by contradiction and we assume n > 1. Any choice of an element ; induces a
Ry-linear isomorphism 7;: Ry[§] = Ry[&;] which is an isometry with respect to the sup-norm.

Therefore one has |¢ — &| < max{[¢ — f], & — B[} = max{[|§ — 8], |7(§ = B)[} = [ =P <€

leading to a contradiction. Il

A.1.4. LEMMA. Let R — S be an integral extension of integral domains over K. Let | - | be
a multiplicative K-algebra norm on R and let | - |, and | - |5 be two multiplicative norms on S
extending the one of R such that |b|, < € implies |bly < 1forallb € S forafixede € (0,1] C R.
Then|-|1:|-|2.

PROOF. We can suppose that ¢ = |a| for some o« € K*. We first prove the inequality
elbla < |b]; for all b € S. Fix an element b € S and a sequence of rational numbers in Z[1/p]
such that |7r|™/™ converges to |b|; from above. From the inequality |7~/ abl; < & we
deduce ¢|b|, < |7|™/™ and hence €|b|, < |b]; as claimed.

We can endow the field Frac S with the extensions | - |; of the norms of S by putting
|f/gli == 1fli/]gl;- They are well defined and multiplicative. Since S is integral over R any
element of Frac S is of the form f/g with ¢ € R. From what we proved above, one has
elble < |b]; for all b € Frac S.

From standard valuation theory we then conclude that the two norms are equivalent on
Frac S (for example, apply [38, Theorem II.3.4] with a; = 0 and as = 1). Since they agree on
K we conclude that they actually coincide on Frac S hence on S. U

A.2. Approximation of maps of adic spaces

We introduce now the geometric application of Propositions|A.1.1|and|A.1.3] It states that
a map from 1é'r_nh Xy € I/{%Sm to a rigid variety factors, up to B'-homotopy, over one of the
intermediate varieties X;. Analogous statements are widely used in in [5] (see for example [S]
Theorem 2.2.49]): there, these are obtained as corollaries of Popescu’s theorem ([39] and [40]),
which is not available in our non-noetherian setting.

A.2.1. PROPOSITION. Let X = l'glh Xy, bein @Smge, Let Y be an affinoid rigid variety
endowed with an étale map Y — B" and let f: X — Y be a map of adic spaces.
(1) There exist m polynomials Q1,...,Qu in Klo1,...,0,,T1,...,Tm| such that Y =
Spa Awith A= K(o,7)/(Q) and det(%;?;) € Ax.
(2) There exists amap H: X x B' — Y such that H o iy = f and H o i, factors over the
canonical map X — X, for some integer h.

Moreover, if [ is induced by the map K{o,7) — O(X), 0 — s,7 +— t the map H can be
defined via

(0,7) = (s + (5 = s)x, F(s + (5 = 5)x))
where F is the unique array of formal power series in O(X)|[[o — s|| associated to the polyno-
mials P(o,T) by Corollary and § is any element in %ﬂh O (X},) such that the radius of

convergence of F is larger than ||§ — s|| and F(5) lies in OT (X).
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PROOF. The first claim follows from the proof of [S, Lemma 1.1.50]. We turn to the
second claim. Let X, be Spa(Ry, R]) and X be Spa(R, R™). For any h € N we denote
Ro® K K (/?") with Ry, so that RT coincides with the 7-adic completion of lim R by
Proposition [I.2.1]

The map f is determined by the choice of n elements s = (s1,...,s,) and m elements
t = (t1,...,t,) of RT such that P(s,t) = 0. We prove that the formula for H provided in the
statement defines a map H with the required properties.

By Corollary there exists a collection F' = (F},..., F,,) of m formal power series
in R[[c — s]] with a positive radius of convergence such that F'(s) = t and P(o, F'(0)) = 0.
As lim R} is dense in R we can find an integer h and elements §; € R such that |[5 — s|| is
smaller than the convergence radius of F'. By renaming the indices, we can assume that o = 0.
As F is continuous and R™ is open, we can also assume that the elements F}(5) lie in R*. We
are left to prove that they actually lie in ligh R;. Since the determinant of (g—g)(é, F(3)) is

invertible, the field L := Frac(Ry)(F1(3),. .., F,(5)) is algebraic and separable over Frac(R,).
We can then apply Proposition to conclude that each element F}(5) lies in R; for a
sufficiently big integer h. U

The goal of the rest of this section is to prove Proposition [[.4.1] To this aim, we present a
generalization of the results above for collections of maps. As before, we start with an algebraic
statement and then translate it into a geometrical fact for our specific purposes.

A.2.2. PROPOSITION. Let R be a Banach K-algebra and let { Ry }nen be a collection of
nested complete subrings of R such that 11&1 Ry, is dense in R. Let sy, ...,SyN be elements of
R(by,...,0,). Forany e > 0 there exists an integer h and elements 31, . .., 5y of Ry (01, ..., 0,)
satisfying the following conditions.

(1) |Sa — Sal| < € foreach c.

(2) Forany o, € {1,...,N} and any k € {1,...,n} such that s,|o,—0 = Sslo,—0 we
also have 3,\0,—0 = 589, —o0-

(3) Forany o, € {1,...,N} and any k € {1,...,n} such that s,|o,—1 = Sslo,=1 we
also have 3,)0,—1 = 5pg,—1-

(4) Forany a € {1,..., N} if solg,=1 € Ry (0) for some h' then 3,|g,—=1 = Salg,=1-

PROOF. We will actually prove a stronger statement, namely that we can reinforce the
previous conditions with the following:
(5) Forany o, 5 € {1,..., N} any subset 7" of {1,...,n} and any map o: T — {0, 1}
such that s, |, = ss|, then 5,|, = $5],.
(6) Forany a € {1,..., N} any subset T of {1,...,n} containing 1 and any map o: T" —
{0,1} such that s, |, € R,(0) for some h then 3,|, = Su |-
Above we denote by s|, the image of s via the substitution (6; = o(t));er. We proceed by
induction on N, the case N = 0 being trivial.
Consider the conditions we want to preserve that involve the index N. They are of the form

Si|o - SN|O'

and are indexed by some pairs (o, ) where ¢ is an index and o varies in a set of maps . Our
procedure consists in determining by induction the elements sy, ..., sy_1 first, and then deduce
the existence of Sy by means of Lemma by lifting the elements {§i|a}(m- . Therefore,
we first define ¢’ := %5 where C' = C'(X) is the constant introduced in Lemma and then
apply the induction hypothesis to the first N — 1 elements with respect to ’.
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By the induction hypothesis, the elements 3;|, satisfy the compatibility condition of Lemma
and lie in Ry, (0) for some integer h. Without loss of generality, we assume h = 0. By
Lemma we can find an element $y of R, (6) lifting them such that |5y — sy| < Ce' = ¢
as wanted. U

The following lemmas are used in the proof of the previous proposition.

A.2.3. LEMMA. For any normed ring R and any map o: T, — {0, 1} defined on a subset
T, of {1,...,n} we denote by I, the ideal of R(0) generated by 0; — o (i) as i varies in T,. For
any finite set Y. of such maps and any such map 1 one has (ﬂ I ) + I = Nyex (Lo + Iy).

ceEY, "0

PROOF. We only need to prove the inclusion (\(I, + I,,) € ((I,) + 1,- We can make
induction on the cardinality of 7}, and restrict to the case in which 7;, is a singleton. By changing
variables, we can suppose 7, = {1} and (1) = 0 so that I,, = (6,).

We first suppose that 1 ¢ T, for all o € X. Let s be an element of ()(, + (1)). This means
we can find elements s, € I, and polynomials p, € R(f) such that s = s, + p,6;. Since I, is
generated by polynomials of the form 6; — € with ¢ # 1 we can suppose that s, contains no ¢,
by eventually changing p,. Let now o, ¢’ be in 3. From the equality

So = (SU "‘]90(91)’01:0 = (SU’ +p0’91)‘91=0 = Sg!

we conclude that s, € () I,. Therefore s € (I, + (6;) as claimed.

We now move to the general case. Suppose (1) = 1 for some ¢ € X. Then I; + I, = R(6)
andif f € (N, I, then f = —f(61 — 1) + f01 € (), I, + (61). Therefore, the contribution of
I is trivial on both sides and we can erase it from . We can therefore suppose that o(1) = 0
whenever 1 € T,.

Forany o € ¥ let o’ be its restriction to 7, \ {1}. We have I, C I, and I,»+(61) = I,+(6,)
for all ¢ € ¥. By what we already proved, the statement holds for the set ¥/ := {0’ : 0 € ¥}.
Therefore:

ﬂ (Lo + (61)) = m (Lo + (61)) = ﬂ I +(61) C ﬂ I, + (01)

o€S ey o'esy sE
proving the claim. O

We recall (see [9, Definition 1.1.9/1]) that a morphism of normed groups ¢: G — H is
strict if the homomorphism G/ ker ¢ — ¢(G) is a homeomorphism, where the former group
is endowed with the quotient topology and the latter with the topology inherited from H. In
particular, we say that a sequence of normed / -vector spaces

RA 5%

is strict and exact at S if it exact at S and if f is strict i.e. the quotient norm and the norm
induced by S on R/ ker(f) = ker(g) are equivalent.

A2.4. LEMMA. For any map o: T, — {0,1} defined on a subset T, of {1,...,n} we
denote by I, the ideal of R{0) = R(0;...,0,) generated by 0; — o (i) as i varies in T,. For
any finite set X of such maps and any complete normed K -algebra R the following sequence of
Banach K-algebras is strict and exact

0— RO/ (VI = [[ RO/, = ] RO/ + 1)

oEY oEY o,0'€X

and the ideal [\, .y, I, is generated by a finite set of polynomials with coefficients in Z.

oeY
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PROOF. We follow the notation and the proof of [32]. For a collection of ideals Z = {I, }
we let A(Z) be the kernel of the map [ [, R(0)/1, — ][], R{(0)/(I, + I,+) and O(Z) be the
cokernel of R(6)/(, I, = A(Z). We make induction on the cardinality m of Z. The case
m = 1 1s obvious.

Let Z' be Z U {1, }. From the diagram

0 R(#) —~ R() — 0

]

0— W — A7) — A(2)
we obtain by the snake lemma the exact sequence
0= IL,N( )L — ()l =W = O() = O().

By direct computation, it holds W = (\(I, + I,,)/1,,. By the induction hypothesis, we obtain
O(Z) = 0. Moreover, since (I, + I,, = (\(I, + I,;) by Lemma[A.2.3] we conclude that the
map () I, — W is surjective and hence O(Z') = 0 proving the main claim.

The ideals I,, are defined over Z. In order to prove that the ideal () I, is also defined over Z
and that the sequence is strict, by means of [9, Proposition 2.1.8/6] it suffices to consider the
cases R = K = Q, or R = K = F,((t)) for which the statement is clear. O

Let o and ¢’ be maps defined from two subsets 7, resp. T,» of {1,...,n} to {0,1}. We say
that they are compatible if (i) = o'(i) for all i € T,, N T, and in this case we denote by (o, ')
the map from 7, U 7, extending them.

A.2.5. LEMMA. Let X = @h X}, be an object in @Sm and X a set as in LemmalA.2.4
We denote O(X) by R and O(X},) by Ry,. For any o € X let f, be an element of R(0) /1, such

that f|(o.01) = [o'|(0.01) for any couple o, 0" € ¥ of compatible maps.

(1) There exists an element f € R{0) such that f|, = f,.

(2) There exists a constant C' = C(X) such that if for some g € R{0) one has |f,—g|,| < ¢
for all o then the element f can be chosen so that |f — g| < Ce. Moreover, if
fr € Rol0)/1, for all o then the element f can be chosen inside Ry, {(0) for some
integer h.

PROOF. The first claim and the first part of the second are simply a restatement of Lemma
where C' = (C'(X) is the constant defining the compatibility || - ||; < C| - || between the
norm ||-||; on R{#)/ (N I, induced by the quotient and the norm || - ||5 induced by the embedding
in [[ R(#)/1,. We now turn to the last sentence of the second claim.

We apply Lemma[A.2.4]to each R}, and to R. We then obtain exact sequences of Banach
spaces:

0= Ru(0)/ () In = [[ But®)/ T, = T Bu®)/(I+ 1)

oY oceEX o,0'eX
0= RO/ (1o — [[RO)/I, - ][] RO/ + 1)
oEY oEY o,0'eX

where all ideals that appear are finitely generated by polynomials with Z-coefficients, depending
only on ..

In particular, there exist two lifts of {f,}: an element f; of Ry(f) and an element f, of
R(0) such that | f, — g| < Ce and their difference lies in [ I,. Hence, we can find coefficients
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v € R(0) such that fi = fo + Y. v;p; where {p1,...,pa} are generators of () I, which
have coefficients in K. Let now 7; be elements of Rj,(#) with |y; — v;| < Ce/M|p;|. The
element f5 := f; — >, ;p; lies in ligh(Rh (6)) is another lift of {f,} and satisfies | f3 — g| <
max{|fs — gl,|fe — f3]} < Ce proving the claim. O

We can now finally prove the apporximation result that played a crucial role in Section[I.4]

PROOF OF PROPOSITION [L4.T]. For any h € Z we will denote O(X},){6;,...,0,) by Ry,.
We also denote the 7-adic completion of lim, R} by R* and R™[r!] by R.

By Proposition [A.2.1] we conclude that there exist integers m and n and a m-tuple of
polynomials P = (P,...,P,,) in K[o,7] where 0 = (01,...,0,) and 7 = (71...,7Tp)
are systems of variables such that K (o, 7)/(P) = O(Y) and each f is induced by maps
(0,7) = (sk, tg) from K (o, 7)/(P) to R for some m-tuples s, and n-tuples t; in R. Moreover,
there exists a sequence of power series Fy, = (Fy, ..., Fr,) associated to each f, such that

(o,7) = (s1 + (8 — s1)X, Fr(sk + (3 — s1)x) € R{x) 2 O(X x B" x B')
defines a map Hj, satisfying the first claim, for any choice of 5, € ligh R} such that 5, is in the
convergence radius of F}, and Fj,(§;) isin R™.

Let now ¢ be a positive real number, smaller than all radii of convergence of the series Fy,;
and such that F'(a) € R* for all |a — s| < e. Denote by $;; the elements associated to sy; by
applying Proposition[A.2.2] with respect to the chosen ¢. In particular, they induce a well defined
map H}, and the elements 5y; lie in R2(6; . .., 0,,) for some integer h. We show that the maps
Hy, induced by this choice also satisfy the second and third claims of the proposition.

Suppose that fy, o d,. = fr od, forsomer € {1,...,n} and € € {0, 1}. This means that
S = Sklar:e = 3k’|97n:5 and ¢ := tk|9r:5 = tk’|¢97n:e- This implies that both Fk|9r:e and P’]€/|9r:E
are two m-tuples of formal power series F' with coefficients in O(X x B"~!) converging around
5 and such that P(o, F(0)) = 0, F(5) = t. By the unicity of such power series stated in
Corollary[A.1.2] we conclude that they coincide.

Moreover, by our choice of the elements 3, it follows that § := Sklo,—e = Skrlg,=c. In
particular one has

Fi((8k = s1)X)o.=e = F((5 = 5)x) = Fir((3r — s1)x) |0, =
and therefore H}, o d,. = Hj o d, . proving the second claim.
The third claim follows immediately since the elements 5y, satisfy the condition () of

Proposition[A.2.2] O
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