MiCMoS
 Milano Chemistry Molecular Simulation Description and User Manual

Tutorials

T11. Analyzing MC and MD trajectories

PURPOSE: In this tutorial, it is described how to employ service programs Geomet, Analys, Distrib, Correl, Redene, Datgro, Naverag and Debye programs to analyze MC and MD trajectories.

REFERENCE to main manual: Section 8 (service programs).

FILES: You can find all the files you need to run this tutorial here:
https://sites.unimi.it/xtal chem group/images/MiCMoS package/T11/b3mdc.dat https://sites.unimi.it/xtal chem group/images/MiCMoS package/T11/py1mdc.dat https://sites.unimi.it/xtal chem group/images/MiCMoS package/T11/py2mdc.dat https://sites.unimi.it/xtal chem group/images/MiCMoS package/T11/pyrid.oeh
The b3mdc and py1mdc starting .dat trajectory files have been produced in Tutorials T9 and T10 for liquid benzene (T9) and pyridone (T10). A 100 ps-long trajectory for the same pyridone crystal, py2mdc.dat, is also given, together with a pyrid. oeh file that should correspond to the structure file you produced in T9. You will also need macros to run Geomet, Analys, Distrib, Correl, Redene, Datgro, Naverag and Debye. Place the .dat files and the pertinent (Windows/Unix) macros into your working directory.

Very interesting physics is hidden in your trajectory files. You can extract relevant information by using MiCMoS service programs described in the main manual, Section 8. In this Tutorial, a brief overview is given to show you how it is possible to prepare graphical output and even animate your trajectories, with the aid of some other free software available on the web.

A first good practice is to perform geometric checks to make sure that no unusual molecular deformations occur during the simulation. The Geomet module needs .oeh and .top file, plus a valid trajecory (1 frame is enough). dat. Let's now perform the analysis on liquid benzene. The program is invoked by the command

```
./run.geomet benz benz b3mdc
```

using benz.oeh, benz.top and the b3mdc.dat trajectory. Output is in b3mdcgeo.pri. The program asks for:

The torsion angle spread is analyzed giving -50 to $+50^{\circ}$ range (TMIN, TMAX) with 21 steps (NTBIN); see manual, Section 8.1. Top oscillations are $<15^{\circ}$ both for C-C torsion and for improper torsion.

```
-50 50 21
    distances and angles check
    give d-r and d-theta limit values for printout
```

Excess train is analyzed by answering with $0.7 \AA$ for stretch deviations and 7° for bending deviations:

```
0.7 7
give step for n. of frame analysis
```

Answer 1 to check all frames or, say, 10 to perform the analysis every 10 moves (shorter output). For example, in this last case the program signals:

CAUTION: problems may arise in singular situations (e.g. all torsion angles very close to zero, as in very flat molecules) if some particular bins are not included in the histogram of torsion angles. In this case, for example, answering -50 5020 to the first question makes the program skipping the angle 0 , which is essentially the unique populated in the starting frame. Therefore, Geomet stops with a warning message:

```
frame n. 1 moves 0
    torsion angle n., molecule n. 1 8
    torsion angle out of range, try extend by +- 5*
```

To avoid this problem, you can either erase from the trajectory the offending frame (the first one) or change the step by using an odd number for NTBIN. If this does not work, you have to play with input parameters until you find the correct combination.

Open the b3mdcgeo.pri output. After recalling what are the dihedrals in the .top file, the cell and the atomic coordinates in the .oeh file, the program prints the distribution of torsion angles.

The first column in the table shows the angle bins; the subsequent columns represent one torsion angle each, in the same order as specified at the beginning of the output (and corresponding to that in the .top file). From the example above, we can see that the first torsion (C6-C2-C1-C3) is roughly evenly distributed between -15° and $+15^{\circ}$ after 1800 MD moves.

Then, the program prints all the bond distances and angles whose stretching and bending have implied a deformation larger than that specified as input ($0.7 \AA$ for stretch deviations and 7° for bending). The number of cases exceeding these thresholds is limited and the standard deviations of bond lengths and bond angles are acceptably small.

large bend mol,i,j,k,thezer, dev	1	1	6	12	120	. 00	7.65	
large bend mol,i,j,k,thezer, dev	1	3	4	10	120	. 00	9.49	
large bend mol,i,j,k,thezer, dev	239	5	4		120	. 00	7.04	
large bend mol,i,j,k,thezer, dev	239	5	6	12	120	. 00	-8.15	
large bend mol,i,j,k,thezer, dev	250	6	1	7	120	. 00	7.70	
n .molecules, n. stretch, total, n. devs, rmsd			250		12	3000	0	0.02337
n.molecules, n.bends, total, n.devs, rmsd center of mass coordinates -0.13			$\begin{array}{r} 250 \\ 0.00 \end{array}$		18 -0.	$\begin{aligned} & 4500 \\ & .00 \end{aligned}$	105	3.01

The output ends by summarizing relevant statistics on average stretching and bending deviations, plus information on their estimated standard deviations and overall centre of mass drift. We note that only 2% of bending degrees of freedom (d.o.f.) have deviated by more than $70(105 / 4500)$, with an overall estimated standard deviation as low as 3°. No relevant deviations in bond lengths have been found. Overall, the overall quality of the simulation is acceptable from the viewpoint of geometrical parameters.

The graphical output for distributions of torsion angles can be obtained after importing data into the Microsoft Windows ${ }^{\circledR}$ EXCEL environment:

Obviously, to make the output as much as possible informative, it would be better to select just a subset of torsions.

For liquids, the Correl module calculates the translational root mean square deviation (rmsd) and the rotational correlation function $C(\mathbf{u}, \mathbf{u})$ using the structure trajectory file. See manual, Section 8.4 for more information. This program is invoked by the command

./run.correl b3mdc

The program prompts you to

```
give n.of reference frame,tot n.of frames,timestep
```

The analysis starts from frame 1 up to frame 50 (10000 steps with frames written every 200 steps, with $\Delta \mathrm{t}=2 \mathrm{fs}$) in the output b3mdc. dat file. Answer 1500.002 .

```
1 50 0.002
    give ns. of 5 indicators for rotn. axis,solute
```

To define the angle for rotational correlation type $10 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$ transannular C1-C4 vector (see Figure 8.1 in the manual).

```
1 0 4 0}
    give atom code for rmsDr (0=c.o.m.) and max dist
```

For the translation rmsd, use the center of mass (0) and a distance limit of $40 \AA$. See manual, Section 8.4 for more information.

```
    040
    atom numbers for rot.correl.axis, solute 1 0 4 0 0
        ++++++warning, transl. rms may be box-dependent++
    reference frame is n. 1 n.solute mols in first and ref frame 250
250
    correlation functions
        time/ps,rms displ.,rot.corr,nframe,n.mols,tot mass
\begin{tabular}{llllll}
0.4 & 37.642 & 91.034 & 2 & 250 & 19528.35 \\
0.8 & 93.573 & 83.273 & 3 & 250 & 19528.35
\end{tabular}
\begin{tabular}{llllll}
19.2 & 342.024 & -8.205 & 49 & 250 & 19528.35
\end{tabular}
        19.6 361.737 -4.442 50 250 19528.35
normal end of operation at frame 51
Thank you for using MiCMoS
```

Output is in b3mdccor.pri. Relevant columns are the first (time of the simulation step, in ps), the second (RMS displacement, equation 8.7 in the manual) and the third (rotational correlationfunction, equation 8.6 in the manual) ones.

CAUTION: The translational correlation is affected by discontinuities caused by the possible displacement of entire molecule through one or more box dimensions, occurring during the simulation to prevent molecules from leaving the box; hence it is unreliable. The rotational correlation function correctly shows a loss of rotational coherence within a few ps.

If you export the ASCII output of b3mdccor.pri in a graphical commercial software like EXCEL, you can tralslate the tabular output into a graphical one:

Liquid benzene, MD rotational correlation function.

The Analys module performs a variety of tasks as described in the manual, Section 8.2. If Geomet is mainly devoted to intramolecular geometry checks, Analys studies intermolecular contacts and provides us with centre-of-mass radial distribution functions (RDF's), as well as selected atom-atom RDF'. It is invoked by the command:

```
./run.analys benz b3mdc
```

Here "benz" is the prefix of benz.top and b3mdc that of the MD trajectory. The program asks for the following parameters on the fly:

```
Give start and final frame number,=1,1 if one frame
```

It is a good idea to limit the analysis to regions of the trajectory corresponding to a fully equilibrated system. This is not exactly the case for this simple tutorial; therefore, as an illustrative example of how the program works, we will use just the last 10 frames, where we are sure that the liquid is fully randomized as molecules have completely lost their correlation (see above). Thus, answer 3050.

```
30 50
    check short intermolecular distances
    give % of contact R, e.g.90., zero to skip
```

Answer 90: print intermolecular distances that are < 90% of sum of van der Waals atomic radii.

```
90.0
    g(R) calculations, 0=yes, 1=no
```

We want to see some RDF's, so type 0.

```
0
give pack coeff if box not present,0.5liq-0.7cry
```

The packing coefficient (cpack) is required at this stage, but it is used only for non-periodic systems (clusters, droplets). As we are dealing with a crystal with full periodicity, we can answer 0.0 and go on.

```
0.0
c.o.m. radial distribution function
    give rmin,step,n.bins, zeros to skip
```

Suggested parameters for the centre-of-mass distribution (c.o.m) RDF are: 2. 0.2700 . See the manual (Section 8.2) for detailed explanations. Briefly, the RDF will start from $2 \AA$, and it will consist of 70 steps each $0.2 \AA$ wide. Thus, the graph will end at $2+70 \cdot 0.2 \AA=16 \AA$. The last entry can be safely left 0 (see the manual).

```
2. 0.2 70 0.
atom-atom RDFs,INTERMOLECULAR ONLY
give rmin,step,n.bins max 300,zeros to skip
```

For the moment, we don't want atomic RDF's, as benzene has neither relevant nor structure determining atom-atom interactions, so set all values to $0(000)$.

The program will scan the requested frames (30-50) and for each of them will print a list of short atom-atom interactions, followed by the RDF distribution in a tabular form. Have a look at the b3mdcanl.pri output file:

```
+++++++++ MiCMOS 2.2 jul 2023 +++++++++
    This is the New-Analys module
dat file is trajectory at MD st solutes and solvents 250 12 0 0
frame n. 30 moves 5800
short inter, at-mol-types 1 1 1 12 lllllllll
short inter, at-mol-types 4 1 12 5 5 51 12 3.16 3.54
short inter, at-mol-types 4 244 12 9 246 2 2.41 2.87
short inter, at-mol-types 
solute-solute intermol.dist,given limit,min val
        2 12 12.583 
        12 12 3.186 77 2.739
c.o.m. radial functions,unsmoothed-smoothed
    solute-solute, solvent-solvent,solute-solvent
        2.100 0.000 0.000
        2.300 0.000 0.000
    15.700 1.002 1.016
    15.900 1.032 1.028
```

As for the short distances, lines beginning with "short inter, at-mol-types" contain: number of the atom in the first molecule (same order as in the .top file), number of the first molecule (same order as in the .dat file), atomic species code number (as in Table 1.1), number of the atom in the second molecule (same order as in the .top file), number of the second molecule (same order as in the .dat file), atomic species code number (as in Table 1.1), actual distance (\AA), van der Waals contact distance (\AA). Finally, total number of contacts are summarized: for example, we have $85 \mathrm{H}^{\cdots} \mathrm{C}$ short contacts with minimum distance of $2.377 \AA$ and $77 \mathrm{C} \cdots \mathrm{C}$ ones with minimum distance of $2.739 \AA$. They are both significantly shorter than the corresponding sums of van der Waals radii ($2.583 \AA$ and $3.186 \AA$).

The output (b3mdcanl.pri) reveals quite a number of short contacts, as is appropriate for the liquid state where rotational and translational diffusion causes continuing clashes.

Note that the RDF consists of two "y" columns: the second one is relevant, as it has been smoothed by an ad-hoc algorithm.

The analysis of the MD/MC output should be made on an average of the last frames of the MD/MC run: this can be obtained using module Distrib (manual, Section 8.3). the running command is:

./run.distri.b b3mdc

where "b3mdc" is the prefix of the b3mdcanl.prif file produced by Analys. Distrib recognizes that the Analys output contains more than one distribution, and provides an average one, together with point-by-point estimates of the corresponding standard deviations.

The printfile is b3mdcdistr.pri. Let's open it:

+++++++++ MiCMoS 2.2 jul 2023 ++++++++++ This is the Distr module
Distr module version 1.0-2020
Average COM RDF from 21 frames: solute-solute
R / A RDF ESD
$2.100 \quad 0.000$ 0.000
$2.300 \quad 0.000 \quad 0.000$
15.7000 .9950 .012
$15.900 \quad 1.013 \quad 0.008$

You may now plot this distribution with EXCEL:
Liquid benzene MD, centre-of-mass RDF from the last 21 frames of the simulation

RDF > 1 corresponds to centre-of-mass distances that are significantly more frequent than in an uniform and totally random distribution, mirroring relevant structural aspects of packing. The present c.o.m. RDF shows a broad peak near $5 \AA$, as observed experimentally.

We now switch to a crystal case (pyridone, whose simulation has carried out in Tutorial T10). Proceed with Analys as above; the running command is now

```
./run.analys pyrid py1mdc
```

You must have both the py1mdc. dat trajectory and the pyrid.top file in your working directory. When prompted, use 2.00 .11000 .0 for rmin, step, $\mathrm{n} . \mathrm{bins}^{\mathrm{b}} \mathrm{cpack}$ for c.o.m. RDF. When it comes to atom-atom RDF's, do not type 0 and confirm the same parameters:

```
atom-atom RDFs,INTERMOLECULAR ONLY
    give rmin, step,n.bins max 300,zeros to skip
2.0 0.1 100
```

Now the program will want $n c p u$, the number of specie pairs for the "solute". Individual RDF will be computed for each of the ncpu pairs of atomic species.

```
give ncpu,number of solute rdfs, 0 skip, -1=do all
```


Be careful: Computing the RDFs for all the atom-atom pair types is very time-consuming, especially when large or complex molecules are studied. In this case, we will focus just on atoms that could be reveal interesting properties of the hydrogen bond network in crystalline pyridone. See the scheme on the left: they are H12 (atom specie id 7, Table 1.1 in the main manual) and O 2 (atom id specie 27, Table 1.1 in the main manual). Thus, it is wise to focus just on contacts between atomic species 7 and 27 . Answer 1 to the former request and proceed by typing in the desired specie id numbers:

```
1}\mathrm{ now give ncpu pairs of atom types ***i-j with i<j***
727
give ncpv, number of solvent rdfs 0 skip -1 do all
```

We have no solvent, so we can answer 0 to both this request and the next one:

```
O
0
radial function smoothing, 0=yes, 1=no
```

We want to deal with smoothed functions to avoid unnecessary noise. Answer 0 again. The program will proceed and will print a py1mdcanl.pri output in a few seconds. It contains both c.o.m. and $\mathrm{NH}^{\cdots \mathrm{O}}$ intermolecular RDF's. Call Distrib to average them:

./run.distrib py1mdc

and transfer the average distributions in the tabular py1mdcdistr.pri output to EXCEL for plotting (graphics in the next page). The atom-atom RDF mirrors the set up of a strong $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with a very high and sharp peak around $2.0 \AA$. together with the c.o.m. RDF, we can conclude that packing of pyridone is dominated by strong attractive interactions, likely setting up extended hydrogen-bonded networks. This is confirmed by opening the starting pyrid. cif file with the CCDC Mercury program (next page). The amide group forms very short
$\mathrm{NH} \cdots \mathrm{O}$ hydrogen bonds with itself, setting up infinite zig-zag ribbons orthogonal to the (a, b) plane.

Pyridone crystal. Left: c.o.m. RDF. Right: H12…O2 RDF.

Crystal packing of pyridone, as retrieved from CSD (file pyrid.cif) and viewed along the c axis. Molecules form zig-zag ribbons perpendicular to the (a, b) plane. Hydrogen bonds are highlighted in green. The experimental $\mathrm{NH} \cdots \mathrm{O}$ distance is $1.84 \AA$, a bit shorter than the MD estimate.

Structural information should be complemented with energetic data whenever is possible. The Redene module (manual, Section 8.5) plots energies and box dimensions as a function of simulation time, and calculates the averages and root mean square deviation (rmsd) of the corresponding values over the selected time window.

CAUTION: Ensure that nwre parameter is active in the .mdi command file when you run your dynamics (see manual, Section 7.6.2); otherwise, no .ene output file will be written for the subsequent analysis with Redene.

The program must read a .ene file produced by Monte Carlo or Molecular Dynamics modules. See manual, Section 8.5.1 for an exhaustive explanation of all entries in the .ene file.

The command is:
using the py1md.ene output file. Output is in py1mdene.pri. Answer the dialog mode, which asks for:

```
give multiples of cell dimens. (1,1,1 or 0,0,0 ok)
```

These are necessary to normalize total energies to crystallographic unit cell. For liquids, repetitions are 111 ; for crystals, these are the factors you used to generate the simulation box with Boxcry (see manual, Section 5.1 and Tutorials T8 and T10). You can recall them directly from the trajectory .dat file, as they are the last entry in the third line of the eading of each frame. Otherwise, they are also printed both at the beginning (line header "unit cell parameters") and at the end (line header "final box edges, multiplicities") of the MD .output file. As for the present case, they are 25 5:

```
255
    give MD timestep (=1 if MC)
```

Timestep is 0.002 ps. In Monte Carlo, this entry should have been 1, as suggested, as time is not a dynamical parameter.
0.002
nmol, natom, solute-solvent $200 \quad 12 \quad 0 \quad 0 \quad$ mol. weights
no. of energy and box data, last move
give min and max move/time for averages, zero to skip
giver

The user can choose to discard the first part of the simulation when the system is not yet in a steady state, by typing in the desired time window; in this case 10 . to 20 . ps should be adequate.

```
10. 20.
    normal end of operation
    Thank you for using MiCMoS
```

The program prints the output in a py1mdene.prifile. Open it:

Redene starts giving information on energies and box, and then prints their evolution - as well as density - as a function of the step number. In the first output block, are shown the simulation time (in ps), Lennard-Jones energies, Coulomb energies, intramolecular energies for "solute" and "solvent" (zero here), and total energies. In the second one, you may find total intramolecular potentials, i.e. stretching, bending and torsion contributions. In the third block, interactions energies with the barriers are given; if you are not dealing with a confined simulation, this block is composed of a long sequence of zeroes. In the fourth block, crystal density and cell edges are reported. The output ends with statistics: min and max move, number of points, average energies and estimated standard deviations, followed by average cell edges and angles. The latter are here constrained to 90.0° by symmetry in pyridone: no Parrinello-Rahman anisotropic pressure scaling has been activated (see manual, Section 7.3.3).

Further visual inspection tools can be provided by the free VMD (Visual Molecular Dynamics) program, from the NIH Center for Macromolecular Modeling \& Bioinformatics, Theoretical and Computational Biophysics Group, University of Illinois, USA (https://www.ks.uiuc.edu/Research/vmd/). Unfortunately, it cannot interpret directly MiCMoS .dat trajectory files: they should be first converted into GROMOS-compatible .gro files by the program Datgro. The command is:

./run.datgro py1mdc

where py1mdc is supposed to be the prefix of the trajectory . dat file to be converted. The program asks for:

Give initial and final frame number to be converted in your trajectory

As the illustative trajectory of Tutorial T10 is very short, it can be converted entirely into .gro format. Be cautious, though: .gro file are bigger than .dat ones, so it is wise to select just the part of the trajectory in which you are truly interested (usually, that corresponding to the fully equilibrated system). For the moment, answer 151 to include all frames.

```
1 51
Start working with frame 1 and going on...
    Normal termination of the program
    Skipped 0; written 51 frames
    Thanks for using MiCMoS. Have a nice day
```

Datgro has now produced a file called py1mdc.gro: this is the only output to be expected. If you open this file, you can check that first step is labelled 0 and the last one 10,000, as expected. Note that the program has assigned to all "solute" molecules an arbitrary "SOLU" label; "SOLV" would be the one for the "solvent", if present. Atoms are numbered in ascending order, following the same organization of the .dat file.

Now, input the py1mdc.gro file to VMD (or to any other GROMOS-compatible graphical software) and do whatever you need. Refer to the VMD documentation to learn how to deal with the program. For example, you can follow the trajectory evolution in time:

Pyridone crystal at 298 K. Snapshots of the MD trajectory at 0, 9.2, 14.4 and 20.0 ps .

It is not always straightforward to compare the output of the whole simulation box with experimental crystallographic results. In MiCMoS, you can use the module Naverag to produce a spacetime average crystallographic cell from the frames of your trajectory. The program also estimates atomic thermal ellipsoids by putting together the molecular internal vibrations with the centre of mass oscillations. To have meaningful results, you should ensure that te system is equilibrated, and that the trajectory is long enough to sample all the relevant atomic motions.

You can execute this program on the other trajectory of the pyridone crystal at 298 K (py2mdc.dat) that goes with this Tutorial. This trajectory is a bit longer and the results are thus more accurate. Please digit:

```
./run.naverag py2
```

The program will prompt to give the integration limits:

Answer, for example, 50 100. The program will inform you on which frame it is working:

The job will be completed in a few seconds:

Naverag produces three output files. py2service.out contains information on the individual atoms in the time average simulation box and specifies on what molecules the final space average is done. Most important are the other two outputs, py2ave.dat and py2ave.res. py2ave. dat, which is a time average frame in standard MiCMoS . dat frame format. This can be visualized by VMD after converting it into a .gro file with Datgro (see above), and may be employed as a suitable input for any other calculation. For example, it can serve as a starting point for futher MD steps, or it can be analyzed with Geomet, Analys, Correl and Distrib to extract information on the time average structure. Finally, pyZave.res is a standard shelx file with the spacetime average crystallographic structure. From that, it is possible to visualize MD-derived average thermal ellipsoids. This pseudo-crystallographic cell in the .res file is always treated as P1, as no symmetry constraintes can be applied during the MD or MC simulations. It comes from the space average of the whole simulation box, which is shrunk by a NREPA \times NREPB \times NREPC factor ($=50$ in this case; see main Manual, Section 5.1).

MD-predicted average crystallographic strructure of pyridone at $T=298 \mathrm{~K}$, with predicted Debye-Waller ellipsoids shown.

There are several ways to check quantitatively the quality of the prediction. A possibility is to compare the equivalent U's of your simulated atoms with the experimental ones (for pyridone see Ohms et al., Zeitschrift für Kristallographie 169, 185-200 (1984)). The MD estimates are
roughly 2 times higher than the corresponding X-ray quantities: you must bring them on the same scale. You can do this by computing the average ($U_{\text {eq }}$)experimental $\left(U_{\text {eq }}\right)$ md ratio for non-H atoms, which is 0.439 in the present case. Then, you can multiply ($\left.\mathrm{U}_{\text {eq }}\right)_{\mathrm{mD}}$ values by this factor and compare the two datasets graphically, as shown below.

MD-predicted $U_{\text {eq }}\left(\AA^{2}\right)$ vs. experimental ones for non-H atoms in crystalline pyridone at room temperature. A 0.439 scaling factor was applied to computed values to bring them on the same scale as the X-ray experiment. The linear regression is also shown, with least-squares standard deviations of parameters in parentheses.

The Debye module can simulate the total scattering output from your simulation box by exploiting the Debye scattering equation (main Manual, Section 8.8). To save time, in this tutorial you will use just the last frame of the longer trajectory of pyridone (py2mdc. dat). Note that you could obtain the same results by reading the mdo.dat file produced by the MD program, mdmain.
First, you should set up the input file, specifying the steering parameters that will tell Datgro what to do. Open an empty file called pyrid.inp and write the following instructions. You may cut-and-paste the example in the Manual (Section 8.8.1) and then edit it according to your needs.

```
# nstart nend (first and last frame number, 0 0 to analyze all)
        1 0 1 1 0 1
# lambda, theta min, theta max, step
    1.54 2.0 30.0 0.25
# ilp (=0 apply, =1 not apply LP correction), thm(theta monochrom.)
        1
                                    13.3
# ibox (0=aperiodic, 1=periodic), cutoff
    0 0.0
# ihyd (0=include,1=exclude H)
# iprint (0=normal, 1=extended printout)
    0
```

This prepares an aperiodic calculation (fast, only the simulation box will be considered), without the Lp correction (the thm parameter is irrelevant) but including all the hydrogen atoms.

Now call the program:

```
./run.debye pyrid pyrid py2mdc
```

The first "pyrid" string refers to the input (pyrid.inp) you just prepared; the second one calls the pyrid. oeh structural file, which is used only to read atom identities. Finally, py2mdc.dat is the trajectory file.

The program prints some control strings on screen:

```
****************************************************
    MiCMoS v2.2
    July, 31th 23
    This is the Debye module
*********************************************************
    title of oeh file is #PYRIDO11 'P
frames analyzed: from n 101 to n 101 total 1
only l frame will be analyzed - no average will be done
skipped frame 1
skipped frame 2
```

As you want to read just the last frame, the first 100 ones will be skipped; then, atoms type codes (see main Manual, Table 1.1) are recovered from pyrid. oeh and compared with those in the frame .dat file:

If all works properly, in a few seconds the program will print:

Open the file py2mdcdeb.pri: after a summary of the input parameters, you will find a table with $2 \theta, Q=4 \pi \sin \theta / \lambda$ and the corresponding scattering intensity:

```
title of oeh file is #PYRIDO11 'P
frames analyzed: from n 101 to n 101 total 1
only 1 frame will be analyzed - no average will be done
lambda (A),theta min and max,step(deg) 1.5400 2.00 30.00 0.25
no LP correction applied
Calculation on an isolated (non-periodic) frame
hydrogens included in the calculation
normal printout
title of coordinate file is trajectory at MD st
box with molecules, atoms, total 200 12 2400
average output from Debye scattering equation
    2th/deg Q /A-1 Intensity
        4.000 0.285 3440.7
        4.500 0.320 3776.6
        5.000 0.356 2356.8
        5.500 0.392 903.3
        6.000 0.427 292.2
        6.500 0.463 315.4
        7.000 0.498 463.0
    7.500 0.534 463.1
    59.000 4.018 34.4
    59.500 4.049 32.6
    60.000 4.080 31.4
Normal end of program
Thank you for using MiCMoS
```

Note that the other output file, py2mdcprof.pri, contains exactly the same information, as no average was performed in this calculation. If more than 1 frame is included in the calculation, the prof.prifile contains the individual $\mathrm{I}(2 \theta)$ scattering curves of all the frames analyzed, while the deb.pri one prints the average $\mathrm{I}(2 \theta)$ one. Now rename the py 2 mdcdeb .pri file into py2mdcdeb_1.pri to save the output. Open again the pyrid.inp file and change it according to the instructions highlighted in green:

```
# nstart nend (first and last frame number, 0 0 to analyze all)
    1 0 1 1 0 1
# lambda, theta min, theta max, step
    1.54 2.0 30.0 0.25
# ilp (=0 apply, =1 not apply LP correction), thm(theta monochrom.)
    1 13.3
# ibox (0=aperiodic, 1=periodic), cutoff
                                    25.0
ihyd (O=include,1=exclude H)
    0
iprint (0=normal, 1=extended printout)

The only difference is that the structural model is now periodic, with cutoff \(25 \AA\). This means that twenty-seven replicas of the original simulation box will be built around it, to dispose of truncation effects. The Debye scattering equation will be applied to such an approximate bulk structure, including molecules up to \(25 \AA\) apart from the centre of coordinates of the starting simulation frame.

Save the .inp file and call again Debye:

\section*{. /run. debye pyrid pyrid py2mdc}

If still present in your work directory, previous output files will be overwritten. Note that this time you have to wait a bit longer. Eventually, an output analogue to that commented before is produced. Save it, for example by renaming py2mdcdeb.priinto py2mdcdeb_2.pri, and open once more the input file. This time, raise the cutoff parameter to \(30.0 \AA\). Leave the rest of the file unchanged:
\# ibox (0=aperiodic, 1=periodic), cutoff
30.0

Repeat the calculation, which will be a bit slower (but should be completed in a few minutes, depending on the velocity of your processors). Save the py2mdcdeb.pri file (for example, call it py2mdcdeb_3.pri) and raise cutoff again (to \(35 \AA\) ) in the input file:
\# ibox (0=aperiodic, 1=periodic), cutoff
\(1 \quad 35.0\)
Repeat the calculation for the last time. It should last 5-10 minutes on a fast machine. Finally, put together the output of your three simulation by plotting them, for example, with Windows \({ }^{\circledR}\) EXCEL. The result is shown on the next page. The total scattering output is compared with the X-ray powder diffractogram predicted by Mercury \({ }^{\circledR}\) from the deposited PYRIDO11.ciffile.

The resolution is obviously still rather low, but the main placement of the peaks and the intensity ratios are essentially correct, although the profile is not corrected for Lorentzpolarization. The peak width decreases, and peak height increases with increasing number of atoms in the sample. Ignoring periodic boundary conditions mainly implies that Fouriertruncation features appear at low angle (below 10 deg, not show). Increasing the cutoff distance makes more and more evident the details of the diffraction output.

Above: total scattering output, as predicted by the Debye scattering equation, for the MD model of the pyridone crystal simulated for 100 ps at RT. Only the last frame of the trajectory was considered (dimensions: ~ \(28 \times 31 \times 30\) A). The black curve comes from an isolated simulation box; the other ones were obtained by exploiting peridicity, at increasing cutoff diatances from the centre of coordinates (green: 25, blue: 30; red: 35 A).
Below: predicted X-ray diffraction output from the fully symmetric crystallographic structure of pyridone (CSD refcode: PYRIDO11).

```

