MiCMoS Milano Chemistry Molecular Simulation Description and User Manual

Tutorials

T2. Prepare a .*oeh* file compatible with the LJC parametrization and a charge density file for subsequent Pixel calculations

PURPOSE: In this tutorial, it is described how to prepare a .*oeh* structure file compatible with the LJC parametrization, that is, containing Electrostatic Potential (ESP) charges rather than the default Extended Hückel ones. At the same time, the production of a charge density file to be used in subsequent *Pixelc* calculations is also shown. The same test case used in Tutorial T1 is employed.

REFERENCE to main manual: Sections 2.1.2 (LJC potential); 3.1.2 (crypar.*par*) 3.2.5 (*Pixmt2*).

FILES: Click here to download the materials for this exercise: <u>https://sites.unimi.it/xtal_chem_group/images/MiCMoS_package/T2/sample.gjf</u> <u>https://sites.unimi.it/xtal_chem_group/images/MiCMoS_package/T2/sample.oeh</u> <u>https://sites.unimi.it/xtal_chem_group/images/MiCMoS_package/T2/sample.out</u> You also need the *runpixmt2* macro available in the batch directory of the package and a licence to run the Gaussian[®] quantum simulation package. File sample.*oeh* can be also obtained from Tutorial T1 and refers to ACSALA01, the *P*2₁/*c* structure of acetylsalicylic acid. Place sample.*oeh* and pertinent (Windows/Unix) macros into your working directory.

You should have obtained the structure file sample.*oeh* in Tutorial T1 by use of the *Retcif-Retcor-Retcha* sequence. It refers to the solid-state structure of the acetylsalicylic acid shown in the picture below.

A printout of the sample.*oeh* file is given in the next page. Refer to the manual (Section 1.4.3) for a detailed description of all quantities and parameters. The Extended Hückel atomic point charges are suitable for the calculation of Coulomb-London-Pauli (CLP) energies. Recall that these will usually be damped by the 0.41 CLP factor (see manual, Section 3.1.2). This *.oeh* file is yet ready to enter *Crysaa* (Tutorial T4); however, you are going to learn here how to produce an *.oeh* file compatible with the Lennard-Jones-Coulomb (LJC) parametrization (see manual, Sections 2.1.2 and 4.1).

	sampl	'e.oeh	stru	uctur	e file
--	-------	--------	------	-------	--------

#SAMPLE	xx 'P 21/c	2'			C	.000	0.0	0.	0.00	
0	0.0)								
11.4	300 6.5	910 11 . 3	3950 90.	000		95.680	90.0	00		
0.	0									
21										
1	0.15340	0.56400	0.06740	1	12	-0.053	32			
2	0.24620	0.48770	0.00950	1	12	0.575	55			
3	0.29830	0.30470	0.04160	1	12	-0.343	39			
4	0.26040	0.19610	0.13380	1	12	-0.231	L 6			
5	0.16960	0.26760	0.19310	1	12	-0.323	32			
6	0.11650	0.44960	0.15980	1	12	-0.238	38			
7	0.09030	0.75730	0.03760	1	10	1.332	26			
8	0.36590	0.73840	-0.06370	1	10	1.340)1			
9	0.39740	0.83780	-0.17280	1	13	-0.885	59			
10	0.12030	0.86030	-0.05080	1	28	-0.908	30			
11	0.01040	0.81180	0.09650	1	27	-1.210)1			
12	0.28570	0.58780	-0.08800	1	23	-0.752	25			
13	0.40360	0.78010	0.03450	1	27	-1.131	1			
14	0.36868	0.24670	-0.00548	1	2	0.296	59			
15	0.30217	0.05387	0.15979	1	2	0.284	13			
16	0.14005	0.18175	0.26531	1	2	0.287	72			
17	0.04492	0.50446	0.20628	1	2	0.285	57			
18	0.31897	0.89723	-0.22149	1	3	0.347	77			
19	0.45815	0.96037	-0.15004	1	3	0.308	39			
20	0.43805	0.72830	-0.22643	1	3	0.351	6			
21	0.07316	0.98776	-0.06274	1	6	0.667	78			
0										
4										
1.0	0.0 0.	0 0.0	1.0 0.0	0	.0	0.0 1	L.O			
0.000	000 0.000	0000 0.000	0000							
-1.0	0.0 0.	0 0.0	1.0 0.0	0	.0	0.0 -1	L.O			
0.000	000 0.500	000 0.50	0000							
-1.0	0.0 0.	0 0.0	-1.0 0.0	0	.0	0.0 -1	L.O			
0.000	000 0.000	0000 0.000	0000							
1.0	0.0 0.	0 0.0	-1.0 0.0	0	.0	0.0 1	L.O			
0.000	000 -0.500	0000 -0.500	0000							
3										
0										

This data is used to call *Pixmt2* to produce a tentative template for the *.gjf* file input to GAUSSIAN. The command line is:

./run.pixmt2 sample

The program will print the following note:

At the same time, a file sample.*gjf* is produced, which can be given in input to Gaussian, as well as a file sample.*inp*, which contains the *Pixelc* instructions. Have now a look at the Gaussian input:

Gaussian input file for charge density:

#MP2	/6-31G** g	uess=core	nosym	density=MP2	pop=esp	cube=cards	cube=frozencore
#07	MDIE ID	21/a1 fi	- ~ ~ ~ ~	1			
#SA	MPLEXX P	21/0 11	agili	T			
0 1							
C	-0.085716	0.4606	23	0.896945			
С	-0.373875	-0.7084	72	0.188427			
С	-0.380093	-1.9378	70	0.811842			
С	-0.071578	-2.0282	79	2.149952			
С	0.224187	-0.8962	63	2.874995			
С	0.212509	0.3360	11	2.252839			
С	-0.081170	1.8303	35	0.318972			
С	0.270627	-0.6500	06 -	2.071023			
С	-0.240159	-0.5622	03 -	3.458201			
0	-0.409675	1.9651	- 00	0.920154			
0	0.212968	2.7944	69	1.039243			
0	-0.745187	-0.6740	86 -	1.165717			
0	1.414535	-0.6959	34 -	1.743404			
Н	-0.626403	-2.8278	20	0.251645			
Н	-0.061470	-2.9936	00	2.634208			
Н	0.464143	-0.9717	50	3.925251			
Н	0.439028	1.2214	34	2.828283			
Н	-0.854914	0.3199	37 -	3.559910			
Н	0.591336	-0.5026	41 -	4.144841			
H	-0.829348	-1.4393	67 -	-3.681484			
Н	-0.365771	2.9212	19 -	1.209938			
. /	ognome (MiC	Vac /dag /at	atia/c	ANDIEURA da	~		
~/pr	-3 640	105/00C/St	.atic/:	AMPLEXXA.Ue	11		
10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000	-0.000000			
14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		80000	0.000000			
16	0 0 0 0 0		00000	0 080000			
10	0.000	0.0	00000	0.000000			

The string ~/programs/MiCMoS/doc/static/SAMPLExxa.den localizes the charge density cube file in the Unix/Linux environment default directory. You may change it at your convenience, for example to have the .*den* file written directly in your working directory. The Windows version of *Pixmt2* produces a c:\MiCMoS\doc\static\SAMPLExxa.den string instead.

CAUTION: The last blank line is mandatory for a proper Gaussian termination. If missing, the program might not print the density file!

You may edit the main commands in the first input line, for example to use modern Gaussian keywords; refer to the manual (Section 3.2.5) for step-by-step explanations.

CAUTION: It is recommended that you perform the calculation at least at the MP2/6-31G** level of theory and that you include the nosym keyword, unless you know exactly what you are doing.

At this point the Molecular Orbital MP2/6-31G** calculation must be carried out to obtain the density grid. The output of the Gaussian run, sample.*out* or sample.*log* depending on program version and settings, also carries atomic charges fitted against the molecular Electrostatic Potential (ESP charges); many of them are not too different from the CLP ones (Extended Hückel) scaled by the 0.41 fudge factor (see Sections 2.1.1 and 3.1.2), but those over the hydrogen bonding atoms are much larger:

Gaussian output file (excerpt)

Charg	es :	fro	m ESP fit,	RMS=	0.00107	RRMS=	0.06707:
ESP c	har	ges	:				
			1				
	1 (С	-0.138519				
	2 (С	0.399191				
	3 (С	-0.243598				
	4 (С	-0.081407				
	5 (С	-0.139335				
	6 (С	-0.127001				
	7 (С	0.668790				
	8 (С	0.808153				
	9 (С	-0.530410				
1	0 (0	-0.542022				
1	1 (0	-0.524557				
1	2 (0	-0.481345				
1	3 (0	-0.513135				
1	4 1	Н	0.159469				
1	5 I	Н	0.121766				
1	6 I	Н	0.132037				
1	7 I	Н	0.148517				
1	8 1	Н	0.161244				
1	9 1	Н	0.140612				
2	0 1	Н	0.155416				
2	1 I	Н	0.426136				
Sum o	f ES	SP	charges =	0.000	00		

Together with the Gaussian output, a charge density file in the "cube" format (SAMPLExxa.den; see manual, Section A5 in the Appendix) should now be available in the directory you have indicated in the last input block of *.gjf* file.

Now, make a copy of your sample.*oeh* file:

cp sample.oeh samplesp.oeh

The ESP charges must be somehow substituted for the CLP charges in the samplesp.*oeh* file. You can do this by hand, or using any smart text editor, as you prefer.

Note that the order of atoms in the Gaussian input .*gjf* file produced by *Pixmt2* strictly follows that in the .*oeh* file. This means that you do not have to concern with chemical identities of the various atoms. You should only replace the last column of the block of atom coordinates/identities in the .*oeh* file with the one sketched in the excerpt of the Gaussian output above.

In the end, the new structure file should look like the printout in the next page. This file is ready to enter the *Crysaa* routine for the evaluation of lattice energies with atomic charges compatible with LJC potentials (Tutorial T4).

samp	lesp.oe	h file,	with	updated	ESP	charges

#SAMPLEx	x 'P 21/c	' esp cha	rges				
0							
11.4	30 6.5	591 11.	395 9	90.0	00	95.68	8 90.00
0	.0						
21							
1	0.1534	0.5640	0.0674	1	12	-0.1385	
2	0.2462	0.4877	0.0095	1	12	0.3992	
3	0.2983	0.3047	0.0416	1	12	-0.2436	
4	0.2604	0.1961	0.1338	1	12	-0.0814	
5	0.1696	0.2676	0.1931	1	12	-0.1393	
6	0.1165	0.4496	0.1598	1	12	-0.1270	
7	0.0903	0.7573	0.0376	1	10	0.6688	
8	0.3659	0.7384	-0.0637	1	10	0.8082	
9	0.3974	0.8378	-0.1728	1	13	-0.5304	
10	0.1203	0.8603	-0.0508	1	28	-0.5420	
11	0.0104	0.8118	0.0965	1	27	-0.5246	
12	0.2857	0.5878	-0.0880	1	23	-0.4813	
13	0.4036	0.7801	0.0345	1	27	-0.5131	
14	0.3687	0.2467	-0.0055	1	2	0.1595	
15	0.3022	0.0539	0.1598	1	2	0.1218	
16	0.1400	0.1817	0.2653	1	2	0.1320	
17	0.0449	0.5045	0.2063	1	2	0.1485	
18	0.3190	0.8972	-0.2215	1	3	0.1612	
19	0.4581	0.9604	-0.1500	1	3	0.1406	
20	0.4381	0.7283	-0.2264	1	3	0.1554	
21	0.0732	0.9878	-0.0627	1	6	0.4261	
0							
4	0.0	0 0 0	1 0 0 0		0 5	<u> </u>	1.0
1.0	0.0 0.0	U 0.0	1.0 0.0)	υ.Ο	0.0	1.0
0.0000	0.000	0.000	000			0 0	
-1.0	0.0 0.0	0.0	1.0 0.0	J	υ.Ο	0.0	-1.0
0.0000	0.5000	000 0.500			0 5	<u> </u>	1.0
-1.0	U.U U.(U U.U -	·1.0 0.0	J	υ.Ο	0.0	-1.0
0.0000	0.000	000 0.000		`	0 0	<u> </u>	1 0
1.0			·I.U U.(J	υ.Ο	0.0	I.U
0.0000	-0.5000	000 -0.500	000				
3							
U							