MiCMoS
 Milano Chemistry Molecular Simulation Description and User Manual

Tutorials

T3. Using the Retcormodule as a molecule builder

PURPOSE: In this tutorial, it is described how to build chemically sound molecular models for systems whose atomic coordinates are unknown for subsequent use in Monte Carlo and Molecular Dynamics calculations.

REFERENCE to main manual: Sections 1.2 (Retcor); 1.4.3 (.oih file); Figure 1.2 (chemical group reference); Appendix, Section A2 (full Retcor algorithm and reference Table A2.1).

FILES: You can find all the files you need to run this tutorial here: https://sites.unimi.it/xtal chem group/images/MiCMoS package/T3/large.oih
The starting point is the large.oih structure file, which must be prepared by hand from known explicit coordinates of three atoms. You will also need a macro to run the module Retcor. Place the .oih file and pertinent (Windows/Unix) macros into your working directory.

Consider the following problem. You want to prepare a .oeh file with explicit Cartesian coordinates for the large molecule shown in the picture below, for example as you are interested in performing a Molecular Dynamics simulation. Unfortunately, no entries are available in the Cambridge Structural Database and you don't know explicit atomic coordinates.

You might tackle the problem with a modern molecular building software, such as Avogadro (https://avogadro.cc/) or GaussView (https://gaussian.com/gaussview6/). However, you should be aware that MiCMoS routine Retcor can be used as a molecular builder on its own. The advantage of using Retcor is that it provides a correctly formatted .oeh structure file, ready for subsequent elaboration, at a cost of minimum intervention by the user.

The first step is to prepare an input .oih file. Open an empty large. oih file.

vi large.oih

Then, following the manual (Section 1.4.3), start typing the title line.

CAUTION: The first line of the .oih file is formatted: $1 \mathrm{x}, 10 \mathrm{a} 4, \mathrm{f} 8.3, \mathrm{f} 8.1,3 \mathrm{x}, \mathrm{f5} 5.0,1 \mathrm{x}, \mathrm{f} 6.1$. All other lines are free. The first character is skipped (1x), so fill it with "\#". Then, you have 40 characters to type in the title - any symbol allowed. The next entries concern experimental crystal density, temperature, year of the corresponding Literature reference and crystallographic agreement factor, so you can safely skip them. In practice, the only relevant entry is title.

For example, a valid 25 character-long title line is:
1234567890123456789012345678901234567890
\#LARGER99 large molecule
From now on, all lines are in free format. The second one is a dummy (type 0), and the third one contains the metric system. As you have an isolated molecule, type 1.01 .01 .090 .090 .0 90.0 (the basic Cartesian frame). The fourth line should contain the experimental sublimation enthalpy of the crystal; again, type 0.0. Finally, your file should look like:

```
#LARGER99 large molecule
    O
    1.0000 1.0000 1.0000 90.00 90.00 90.00
        0.0
```

The next line is the number of atoms with explicit x, y, z coordinates. You must add coordinates of atoms 1-3, which are the minimal basis for construction of all other atomic positions. For each line, type in the sequential number of the $t^{\text {th }}$ atom, the Cartesian coordinates in \AA, fragment id ($=1$, as you have only one molecular fragment), atom specie indicator according to Table 1.1 (manual, Section 1.4.2) and atomic charge (=0.0, as charges are unknown).

The phenyl ring in the "large" compound is a good choice to start, but you could have started as well from any other point of the molecule. The coordinates above written correspond to three equispaced ($1.390 \AA$) C atoms, with C1-C2-C3 angle of 120° : they are good to define any kind of flat 6 -membered rings. The following configuration can be used for 3 equispaced ($1.525 \AA$) sp^{3} carbons with C1-C2-C3 angle of 109.470 instead:

1	0.00000	0.00000	0.00000	1	13	0.
2	0.00000	1.52500	0.00000	1	13	0.
3	1.41396	2.09628	0.00000	1	13	0.

CAUTION: Avoid using 3 atoms lying exactly on the same line.
Now you have to specify the number of atoms/groups that must be defined by Retcor. It is difficult for non-experienced users to know in advance what this number should be. Type "\#" for the moment and keep on preparing the .oih file. You must remember to update this parameter later.

From now on, you have to compile several lines specifying various structure-defining parameters. Each line will contain (i) 6 identification integer codes ("n1-n6") according to Figure 1.2 (main manual) and Figure A2.1 (Appendix); (ii) molecular fragment id (1 in this case); (iii) atomic specie indicator ("ispen") according to Table 1.1 (manual, Section 1.4.2); (iii) atom charge ("qrg", 0.0 for now); (iv)-(vi) Distance ("R"), torsion angle ("tors") and bond angle ("alph") parameters. These three latter numbers might be needed or not, depending on the sequence of 6 identification code numbers written before (see Tables 1.2 and A2.1).

CAUTION: The user must make sure that all atoms n3-n6 that are listed in the identification code have been generated before asking for the generation of atom n1, irrespective of sequential number.

The benzene ring atoms 4-6 are built in chain from explicit atoms 1-3 using the "Z-matrix" mode. This means that $\mathrm{n} 2=-1$ and $\mathrm{n} 3=0 ; \mathrm{n} 4, \mathrm{n} 5$ and n 6 correspond to the sequence that allows to define torsion and bond angles. We want that all C-C bonds have the same length $\left(R=1.39 \AA\right.$) and angles ($n 1-n 4-n 5=120^{\circ}$), being part of a flat ring ($n 1-n 4-n 5-n 6$ torsion $=0^{\circ}$).

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph		
${ }^{\#}$											
4	0	1	1	12	0.0000	1.390	0.00	120.0			
5	-1	0	4	3	2	1	12	0.0000	1.390	0.00	120.0
6	-1	0	5	4	3	1	12	0.0000	1.390	0.00	120.0

Fluorine 7 and nitrogen 8 are built on the bisector of the CCC benzene angle, F7 attached to C 2 and N8 to C3. In this case, torsion and alpha angles are dummies ("bisector" mode, $\mathrm{n} 2=\mathrm{n} 3=0$):

| n 1 | n 2 | n 3 | n 4 | n 5 | n 6 | id | ispen | qrg | R | tors | alph |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0 | 0 | 2 | 1 | 3 | 1 | 41 | 0. | 1.300 | 0.0 | 0.0 |
| 8 | 0 | 0 | 3 | 2 | 4 | 1 | 19 | 0. | 1.400 | 0.0 | 0.0 |

Nitro oxygens 9 and 10 are built attached to N8, at a distance of $1.22 \AA$, one with torsion 0° and one with 180°, and trigonal 120° alpha angles (Z-matrix mode):

n1	n2	n3	n4	n5	n6	id ispen	qrg	R	tors	alph	
9	-1	0	8	3	2	1	30	0.0000	1.220	180.00	120.000
10	-1	0	8	3	2	1	30	0.0000	1.220	0.00	120.000

The acetylenic C11 is built on the bisector of the C3-C4-C5 angle (bisector mode). The second acetylenic carbon, C12, at a distance of $1.20 \AA$ from C11, along the C11-C4 direction ("extension" mode, $\mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 6=0$), and the acetylenic hydrogen H 13 in the same way, along the C12-C11 direction; tors and alpha are dummies:

n1	n2	n3	n4	n5	n6	mlc	ispen qrg	R	tors	alph	
11	0	0	4	3	5	1	11	0.0000	1.300	0.00	0.000
12	0	0	11	4	0	1	11	0.0000	1.200	0.00	0.000
13	0	0	12	11	0	1	1	0.0000	1.080	0.00	0.000

Let's apply once again the bisector mode preparation for $\mathrm{H} 14, \mathrm{H} 15$ and C 16 :

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph	
14	0	0	5	4	6	1	2	0.0000	1.080	0.00
15	0	0	6	5	1	1	2	0.0000	1.080	0.000
16	0	0	1	2	6	1	13	0.0000	1.450	0.00

Atom C19 (Z-matrix) is coplanar to the ring, and must be generated before H 17 and H 18 with the Z-matrix mode:

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph	
19	-1	0	16	1	2	1	13	0.0000	1.500	180.00

Note that $\mathrm{n} 2=0$ or -1 up to now. Thus, each implicit group contains one atom only. With the next instruction, we exploit the "methylene" mode ($\mathrm{n} 3=0$), to define at once the two hydrogens H 17 and H 18 of the CH_{2} group.

n 1	n 2	n 3	n 4	n 5	n 6	id	ispen qrg	R	tors	alph
17	18	0	16	1	19	1	3	0.0000	1.080	0.00

Note that hydrogens are bonded to $\mathrm{C} 16 . \mathrm{C} 1$ and C 19 serve to define connectivity, as H 17 and H 18 are in the plane bisecting the $\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 19$ angle. The torsion angle is a dummy, and alph is the HCH angle.

Atom C26 must be generated before C21 with the Z-matrix mode:

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph	
26	-1	0	19	16	1	1	13	0.0000	1.500	180.00
109.470										

As C26 is now defined, the atom C21 can be generated as the fourth member of a pyramidal group, in which the three angles at the atom at the top of the pyramid are equal ("pyramidal" mode, $\mathrm{n} 2=-2, \mathrm{n} 3=0$); tors and alph are dummies:

$n 1$	n2	n3	n4	n5	n6	id ispen qrg	R	tors	alph	
21	-2	0	19	16	26	1	13	0.0000	1.500	0.00

Atom Br 20 is generated from atom C 19 , so that the three angles $\mathrm{C} 16-\mathrm{C} 19-\mathrm{Br} 20, \mathrm{C} 21-\mathrm{C} 19-\mathrm{Br} 20$ and $\mathrm{C} 26-\mathrm{C} 19-\mathrm{Br} 20$ are equal ("methyne" mode, $\mathrm{n} 2=0$); tors and alph are dummies. In practice, the group is tetrahedral:

n1	n2	n3	n4	n5	n6	id ispen qrg	R	tors	alph	
20	0	19	16	21	26	1	43	0.000	1.700	0.00

The hydroxy oxygen 024 can be generated using one Z-matrix instruction:

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph		
24	-1	0	21	19	16	1	29	0.0000	1.400	80.00	109.470

While H 22 and H 23 bonded to C 21 can be defined at once through the methylene mode:

n 1	n 2	n 3	n 4	n 5	n 6	id ispen qrg	R	tors	alph	
22	23	0	21	19	24	1	3	0.0000	1.080	0.00

Atoms H25 and C29 are generated (Z-matrix mode) before hydrogens 27 and 28 (methylene mode):

n1	n2	n3	n4	n5	n6	id	ispen qrg	R	tors	alph	
25	-1	0	24	21	19	1	5	0.0	0.800	180.00	106.000
29	-1	0	26	19	16	1	13	0.0	1.500	180.00	109.470
27	28	0	26	19	29	1	3	0.0	1.080	0.0	0.0

Eventually, the methyl group is prepared using three Z-matrix commands, with torsion angles 60,180 and -60° (300° is also valid), implying a staggered group:

n1	n2	n3	n4	n5	n6	id ispen	qrg	R	tors	alph	
30	-1	0	29	26	19	1	3	0.0	1.080	60.00	109.47
31	-1	0	29	26	19	1	3	0.0	1.080	180.00	109.47
32	-1	0	29	26	19	1	3	0.0	1.080	-60.00	109.47

All atoms have been defined by now. Before closing the file, let's try another definition. If you look carefully, you may note that we placed the -OH hydrogen H 25 a bit too close to oxygen $24(0.8 \AA)$. We can edit this distance by adding a last instruction in the so-called "reset" mode: only $\mathrm{n} 4 \neq 0$, alph and tors are dummies. This way, atom H 25 is replaced so that the O H distance is now $1.000 \AA$:

n 1	n 2	n 3	n 4	n 5	n6 id ispen qrg	R	tors	alph		
25	0	0	24	0	0	1	5	0.0000	1.000	0.00

Obviously, you could also have omitted this last line and changed manually 0.8 into 1.0 in the instruction defining this particular proton. However, we want here to stress that "reset" mode is very useful to renormalize all kind of bond distances, even when atom coordinates are explicitly given.

Now, count all the lines for implicit instructions: there is a total of 27 lines. As noted above, go back to the first implicit atoms 4, 5 and 6 and update the "\#" entry at the beginning of the block:

27											
4	-1	0	3	2	1	1	12	0.0000	1.390	0.00	120.0
5	-1	0	4	3	2	1	12	0.0000	1.390	0.00	120.0
6	-1	0	5	4	3	1	12	0.0000	1.390	0.00	120.0
\ldots											

It is time to close the .oih file with the space group block instructions. As the molecule is isolated, neither point nor translation symmetries are present. In the next line after the implicit atom input block type " 1 ": this is the number of symmetry operations (the identity alone). In the next line, type in the identity matrix by row (1.0 0.00 .00 .01 .00 .00 .00 .01 .0). Add in the next line the 0.0000 .0000 .000 translation vector. Then, add another line and type " 0 ": there is no need to change the reference system for the isolated molecule. To conclude, add another line and type " 0 " again, as you have not non-library 6-12 parameters.

```
1
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
0.0000 0.0000 0.0000
0
0
```

The final .oih file should look like as follows:

Finally, you have to execute Retcor.

It produces the large.oeh and large. dat files. These files have no cell parameters as this is an isolated molecule. Atom coordinates are in \AA. You may plot this .dat file with Schakal by E. Keller, or convert it into a .xyzone by hand to plot the molecule with any other graphic software of your choice. The result is the molecule shown below and corresponds to the following explicit coordinate list.

File large.dat (Schakal-readable format)

