MiCMoS
 Milano Chemistry Molecular Simulation Description and User Manual

Tutorials

T5. Lattice energy by Pixelc

PURPOSE: In this tutorial, it is described how to use module Pixelc to compute static charge density-based interaction energies and lattice energies of the test case used in Tutorials T1, T2 and T4.

REFERENCE to main manual: Sections 3.2 (Pixe/C); 3.2 .4 (input/output); 3.2.5 (how to run); 3.2.6 (pixpar.par); 3.2.7 (input file format); 3.2.8 (output).

FILES: You can find all the files you need to run this tutorial here:
https://sites.unimi.it/xtal chem group/images/MiCMoS package/T5/SAMPLExxa.den
https://sites.unimi.it/xtal chem group/images/MiCMoS package/T5/pixpar.par https://sites.unimi.it/xtal chem group/images/MiCMoS package/T5/sample.inp https://sites.unimi.it/xtal chem group/images/MiCMoS package/T5/sample.oeh
For PIXEL calculations, a molecular charge density file computed at the MP2/6-31G** level of theory (extension .den) and the corresponding input (extension .inp) are required; you should have obtained both while working on Tutorial T2 for acetylsalicylic acid. A valid structure .oeh file is also needed; it has been built in Tutorial T1. Place .oeh, .den and .inpfiles, plus pertinent (Windows/Unix) macros, into your working directory.

The Pixmt2 module (manual, Section 3.2.5) can produce the input for the Pixelc calculation, sample.inp, through the procedure shown in Tutorial T2. See manual, Section 3.2.7 for detailed explanations on the various entries in this file.

The sample.inp file used in this exercise is printed on the next page.
Note that atomic polarizabilities are all zero because defaults are taken, so that the atom list is just an indicator of atom types. Then follow the cutoff and the two matrix/vector pairs $\mathbf{M}_{1} / \mathbf{t}_{1}$ and $\mathbf{M}_{2} / \mathbf{t}_{2}$ (see also Appendix, Section A4), which relate the coordinates of every electron density pixel in the Gaussian standard orientation to those in the crystallographic reference system. Information on space group symmetry closes the input, in the usual format.

CAUTION: If the nosym keyword was used in the Gaussian calculation of the cube . den file (manual, Section 3.2.5), the local inertial molecular reference frame corresponds to standard orientation: \mathbf{M}_{1} is the unit matrix and $\mathbf{t}_{1}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Pixmt2 takes care of computing the correct matrices and there is usually no need to modify them.

To proceed, open a new pixpar.par file:

vi pixpar.par

and type in the parameters for the PIXEL run according with manual (Section 3.2.6), as detailed also in the box below.

```
0.00 3.000 150.0 4800.0 1200.0 0
    500.000000 0.0
    500.000000 0.0
    3.0 0
```

The first line contains general limits and damping parameters. Second and third lines specify electron density trimmers for molecule A and B (if the crystal contains only a chemical specie, the third line is ineffective). The last line gives the threshold for printing molecule-molecule energies in the output and a flag (0) to have intermolecular distance referring to their centres of mass. Default quantities should be chosen in most cases; among these parameters, the
contraction level 5 in second and third lines is the only to be really crucial, as it governs to what extent adjacent pixels of charge density are averaged to produce the final operational grid (see manual, Section 3.2.2). Larger values mean cheaper but less accurate calculations. We here recommend a value of 5 for speed up the calculation, although for crystals a value of 4 is preferred; all other parameters are the default values of the Pixel theory.

The running command to use sample.inp, the SAMPLExxa. den density file and to have samplep as output prefix is:

./run.pixelc sample samplep SAMPLExxa

The program prints on screen the following information:
Pixelc, printout on screen

```
    +++++++++ MiCMoS 1.0 jan 2020 ++++++++++
        This is the Pixelc module
    SAMPLExx 'P 21/c'
First molecule ( A ), total charge 0.00
    Condensation level 5
    Density steps,original 100 140 160 and condensed 20 28 32
steps and pixel vol(A) 0.4000 0.4000 0.4000 0.06400
original electron number 68.00129 remaining-pixels 68.00055 8084
accept q min and max 0.1000E-05 9999.00
screening: electrons out low and high 0.7466E-03 0.0000E+00
renormalized total charges 68.000000 -68.000000
===== Start energy calculations =====
    collision parameter 0.200
    center of mass distance limits 0.00 16.00
cells along a,b,c for lattice search 7 9 7
        76 symm operations included
    A...A energies
    i,j,d,edisp,erep
    1 2 8.273 -9.19 7.07
```

It is essentially a short summary of relevant computational parameters and molecule-molecule energies. In the end, Pixelc produces as output files sampleppix.pri (regular printout) and samplep.m/c (list of molecule-molecule energies). The file sampleppix.pri stores all the information displayed on screen, and other parameters detailed in the description below.

After the obvious echo of input atomic data, the relevant part of is as follows:
Pixelc output, regular printout (excerpt)

Condensation level	5						
Density steps, original	100	140	160	and condensed	20	28	32
steps and pixel vol(A)	0.4000	0.4000	0.4000	0.06400			
original electron number	68.00117	remaining-pixels	68.00045	8084			

Note that the calculation runs with 8084 condensed pixels, each occupying $0.064 \AA^{3}$ of space. This is less accurate than for contraction 4, but good enough: note that the electron count is very close to that estimated from the original, uncondensed pixel array, and both are also very
close to the expected integer electron count printed below (68). Also note that the number of condensed density steps equals the original ones, divided by the condensation level.

Other working parameters are then summarized for checking:

Pixelc output, regular printout (excerpt)

```
accept q min and max 0.1000E-05 9999.00
screening: electrons out low and high 0.7201E-03 0.0000E+00
nuclear charge,n.of electrons,input charge 68.0000 68.0012 0.0000
polarizability,raw, tot, renorm 0.17844E+02 0.17370E+02 0.17370E+02
renormalized total charges 68.000000 -68.000000
```

Then, the number of charge points (pixels) per atom is displayed. You can appreciate that each atom is described with 300-500 point charges.

Pixelc output, regular printout (excerpt)
no. of charge points per atom

1	232	2	204	3	460	4	512	5	532	6	440	7	308	8	241
9	659	10	414	11	649	12	314	13	596	14	324	15	348	16	332
17	257	18	278	19	327	20	331	21	326						

In the subsequent output block, the parameters related to the energy calculation are printed. First, cutoffs and cell parameters and the symmetry operations are reported.

Pixelc output, regular printout (excerpt)

```
===== Start energy calculations =====
    collision parameter 0.200
        center of mass distance limits 0.00 16.00
    cell parameters 11.430 6.591 11.395 90.00 95.68 90.00
Space group matrices
        1.0 0.0 0.0 0.0 1.0 0.0
        -1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -1.0 
        -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 
        1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 1.0 0.0000-0.500 -0.500
    cells along a,b,c for lattice search 7 9 7
                7 6 \text { symm operations included}
```

The last two lines inform you that the calculation will be performed on a cluster spanning $7 \times 9 \times 7$ unit cells, resulting in 76 surrounding molecules in the cluster when the $16 \AA$ center of mass distance cutoff is applied.

Then, dipole energy contributions are shown:
Pixelc output, regular printout (excerpt)
Computing cell dipole energy
cell dipole moment components and module, debye
$0.000 \quad 0.000 \quad 0.000 \quad 0.000$ energy $\quad-0.0$

As you are dealing with a centrosymmetric structure, such contributions are exactly 0 , as expected. Finally, the coulombic and dispersion/repulsion terms are printed for the whole cluster above defined:

```
    A molecule, Epol,damp,no-damp -44.3 -648.3
    A...A A...B B...B total energies
    (Coulombic part not significant for ionic species)
lrrrr
Pixel coul,pol,disp,rep,celdip,tot.,per mol.in as.un
    SAMPLExx --- -100.2 -44.3 -96.1 124.0 -0.0 -116.6
    SAMPLExx cell dip moment(D) and Eceldip./molecule 0.000 -0.0
```

CAUTION: as noted in the output, all energies are expressed per molecule in the asymmetric unit (ASU). As in this case $Z^{\prime}=1$ (one molecule per ASU), the total energy (-116.6) corresponds to the molar heat of sublimation of aspirin in $\mathrm{kJ} / \mathrm{mol}$.

Note that the total lattice energy is within a few $\mathrm{kJ} / \mathrm{mol}$ from the CLP and LJC values, but the coulombic and repulsion energies are largely different from the atom-atom values. As an added bonus, the energy contributions are partitioned among $A \cdots A, A \cdots B$ and $B \cdots B$ interactions, where B is another molecule possibly present in the asymmetric unit. As in this case the asymmetric unit contains only one molecule, $A \cdots B$ and $B \cdots B$ contributions are 0 .

More information is contained in the final part of the output with molecule-molecule energies (also detailed in the samplep. m / c file) larger than $3.0 \mathrm{~kJ} / \mathrm{mol}$:

Pixelc output, regular printout (excerpt)

molecule-molecule energy data for E> 3.0 symmetry,distance,ec,epol,edisp,erep,etot																
distances between centers of mass a...a energies																
-1	0	0	01	0	0	0	-1	0.000	0.500	0.500	8.273	-5.9	-2.9	-9.3	7.1	-11.0
1	0	0	01	0	0	0	1	0.000	-1.000	0.000	6.591	-8.2	-3.0	-16.5	7.9	-19.8
1	0	0	01	0	0	0	1	0.000	1.000	0.000	6.591	-8.2	-3.0	-16.5	7.9	-19.8
-1	0	0	01	0	0	0	-1	0.000	-0.500	0.500	8.273	-5.9	-2.9	-9.3	7.1	-11.0
-1	0	0	$0-1$	0	0	0	-1	0.000	1.000	0.000	5.287	-0.8	-3.0	-22.6	12.5	-13.9
-1	0	0	0-1	0	0	0	-1	0.000	2.000	0.000	7.322	-138.1	-68.3	-22.1	155.8	-72.7
-1	0	0	$0-1$	0	0	0	-1	1.000	1.000	0.000	6.522	-9.6	-3.4	-19.5	10.5	-21.9
-1	0	0	$0-1$	0	0	0	-1	1.000	2.000	0.000	8.257	-10.4	-2.6	-6.6	5.6	-14.0
1	0	0	$0-1$	0	0	0	1	0.000	0.500	-0.500	7.351	-2.7	-1.1	-10.3	3.4	-10.6
1	0	0	$0-1$	0	0	0	1	0.000	0.500	0.500	7.351	-2.7	-1.1	-10.3	3.4	-10.6
1	0	0	$0-1$	0	0	0	1	0.000	1.500	-0.500	6.021	-4.1	-3.8	-18.1	12.5	-13.5
1	0	0	0-1	0	0	0	1	0.000	1.500	0.500	6.021	-4.1	-3.8	-18.1	12.5	-13.5

Each row corresponds to a molecular pair; energies are always computed with respect to the reference molecule at x, y, z, and symmetry operations here displayed correspond to transforms that produce its various symmetry-related images. Energies are expressed in $\mathrm{kJ} / \mathrm{mol}$; these values compare in a proportional way with the results of the atom-atom calculations.

The samplep. m / c file lists all the 76 molecule-molecule pairs in the cluster. For each pair, first a table of symmetry operations is printed; it is followed by a full list of interaction energies, included those not shown in the regular .prioutput.

