MiCMoS
 Milano Chemistry Molecular Simulation Description and User Manual

Tutorials

T7. Monte Carlo: simulation of a liquid flexible molecule (n-pentane)

PURPOSE: In this tutorial, it is described how to prepare and equilibrate a liquid box of normal-pentane with the Monte Carlo technique. The aim is to get the user acquainted with the use of slave atoms for the Monte Carlo routine of MiCMoS.

REFERENCE to main manual: Sections 5.2 (Boxliq); 5.4 (Pretop); 6.2 (construction of molecular frameworks); 6.6 .1 (mcmain); 6.6 .2 (instruction file); 6.6 .3 (topology and force field file); 6.6 .4 (slave atom file).

FILES: You can find all the files you need to run this tutorial here:
https://sites.unimi.it/xtal chem group/images/MiCMoS package/T7/pentane.mci https://sites.unimi.it/xtal chem group/images/MiCMoS package/T7/pentane.oih https://sites.unimi.it/xtal chem group/images/MiCMoS package/T7/pentane.sla https://sites.unimi.it/xtal chem group/images/MiCMoS package/T7/pentane.top
The starting point is the pentane. oih structure file, which can be prepared by using Retcor as a molecule builder, as detailed in Tutorial T3. File pentane.mci contains the MC running commands. You will also need macros to run individual modules Retcor, Retcha, Pretop, Boxliq and mcmain. Place .oih and pertinent (Windows/Unix) macros into your working directory.

A linear all trans and staggered pentane molecule is built from just the first three carbon atoms (C1-C3), then generating all others by giving bond distances, bond angles and torsion angles (file pentane.oih). Tutorial T3 describes in depth how this file can be produced by hand in a few minutes. See the next page for the result.

Pentane: the input pentane.oih file

The command sequence to generate the .oeh file with charges, from the .oih file, is as follows (see Tutorial T1 for detailed explanations).

```
./run.retcor pentane
./run.retcha pentane
```

This generates pentane.oeh, with explicit atomic coordinates and Extended Hückel charges. The resulting molecular structure is shown in the picture below:

The next step is the preparation of the slave atoms .sla file. Remember that slave connectivity and charges are defined in the topology .top file: we will take care of that in a moment. The .sla file contains the slave-defining parameters (distances, angles and torsions) and tells the MC program which of them is to be varied. Refer to Table 6.2 in the manual and Section 6.6.4.1 for another practical example (ethanol). First, you have to decide what torsions are free. The two terminal methyl groups ($\mathrm{H} 12-\mathrm{H} 14$ and $\mathrm{H} 15-\mathrm{H} 17$) should be allowed to rotate. This can be accomplished using the "RX X_{3} mode":

The floating entries specify, for each methyl, $1 \mathrm{C}-\mathrm{H}$ distance ($1.080 \AA$), $1 \mathrm{H}-\mathrm{C}-\mathrm{C}$ angle (110.5°) and $1 \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion (60°); the $3 \mathrm{H}-\mathrm{C}$ distances and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ angles are equal, whereas the other 2 torsions are set by default at $60+120^{\circ}$ and $60+240^{\circ}$. The integer code 003 specifies that $\mathrm{H}-\mathrm{C}$ and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ bond lengths and angles are fixed (00), whereas torsions are assigned to step type number 3 . This means that this parameter will be varied by (rand0.5). step, where rand is a random number, and step is the third element of the maximum stepsize array specified in the .mci file (see below and manual, instruction 8 in Section 6.6.2). The last 3 integer specify the atom id required in " $R X_{3}$ mode", according to Table 6.2.

Then, you have three methylene groups ($\mathrm{H} 6-\mathrm{H} 7, \mathrm{H} 8-\mathrm{H} 9$ and $\mathrm{H} 10-\mathrm{H} 11$), which may be specified in "methylene mode" rows:

1.080	108.0	0.0	0	0	0	6	7	0
1.080	108.0	0.0	0	0	0	8	9	0
1.080	108.0	0.0	0	0	0	10	11	0

This instruction defines $3 \mathrm{CH}_{2}$ groups, each bearing two identical $\mathrm{H}-\mathrm{C}$ distances ($1.080 \AA$), and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles $\left(108.0^{\circ}\right)$. According to manual (Table 6.2), no torsions are to be defined. During Monte Carlo, we want to change neither the H-C distance nor the H-C-H angle, as we are concerned just with torsions. Therefore, the step type numbers are all 0 (000). Finally, for each methylene you must specify atom id's of the two defining hydrogens (see manual, Table 6.2).
The last two rotatable bonds are C1-C2 and C1-C4. These shall be specified in "Z-matrix mode"; to do so, atoms C4 and C5 must be generated according to:

```
1.525 112.0 180.0 0}0
```

$\begin{array}{lllllllll}1.525 & 112.0 & 180.0 & 0 & 0 & 3 & 5 & 0 & 0\end{array}$

As the reference hydrocarbon chain is antiperiplanar, all torsions equal 180° and will be changed using the same step type number 3 as described above. As usual, neither C-C bond distances ($1.525 \AA$) nor C-C-C bond angles will change and their corresponding step type numbers are 0 . According to Table 6.2 in the manual, the last three integer must specify only the pivot atom id (C4 or C5).

Putting together these instructions, you end with 7 slave atom lines. Open a new pentane.s/a file (manual, Section 6.4.4) and type in the instructions. Remember to write atom id numbers in the correct ascending order.

vi pentane.sla

pentane.sla file

```
1.525 112.0 180.0 0 0 3 4 0 0 one C4 atom variable torsion from 180
    1.525 112.0 180.0 0 0 3 5 0 0 same as for C5
    1.080 108.0 0.0 0 0 0 6 7 0 methylene groups, fixed
    1.080 108.0 0.0 0
    1.080 108.0}00.0 0 0 0 0 10 11 0
    1.080 110.5 60.0 0 0 3 12 13 14 methyl groups variable torsion from 60,180,300员
    1.080 110.5 60.0 0 0 3 15 16 17
```

Now invoke Pretop and answer the dialog mode as detailed in Tutorial T6:

```
./run.pretop pentane
give factors for ks,kb,kt force consts.
1 1 1
normal end of operation
    Thank you for using MiCMoS
```

This produces a tentative pentanetry.top file that looks like the printout in the following page. As detailed in Tutorial T6, stretching and bending functions highlighted in red are useless and must be deleted. As Pretop has found a not empty .sla file, it has printed also the lines highlighted in green, which serve as a template to define the slave atoms. For this reason, explicit coordinates of atoms $4-17$ are redundant and must be deleted. The torsional parameters (highlighted in green) are tentative too, and must be changed by hand based on potentials listed in the manual Appendix, Section A7.3 and Table A7.5. First, save a copy of the try. top file:

```
cp pentanetry.top pentane.top
```

Open pentane.top and get rid of unwanted lines (the red ones in the printout, next page). Mind to update the instructions nstr-u and nbend-u, setting them to 0 .

pentane.top, after erasing unwanted potentials and coordinates. Green: lines to be edited

Slave atom connectivities are now to be defined. Always refer to main manual, Table 6.2. Note that they can be easily guessed from the corresponding .oih file above. The atomic charges can be found in the pentane.oeh file produced by Retcha.
pentane.sla slave atom file

nslav-u							
4	-1	0	1	2	3	13	-0.5522
5	-1	0	4	1	2	13	-0.8988
6	7	0	1	2	4	3	0.2818
8	9	0	2	1	3	3	0.2824
10	11	0	4	1	5	3	0.2824
12	13	14	3	2	1	3	0.29513
15	16	17	5	4	1	3	0.29513

CAUTION: For each line, the first 6 entries are very similar to that specified for implicit atoms in the starting pentane.oih file. The $7^{\text {th }}$ entry is the atomic specie code number (manual, Table 1.1), which is also equal to that specified in the pentane.oih file.

After completing the section on slave atom construction and rearranging, you need to define potentials for the 4 torsions that are expected to vary, as established in pentane.s/a file (step type numbers $\neq 0$). Pretop knows that and prepares 4 lines (highlighted in green) that need to be edited. Recall that the basic functional for the torsional potential is $E($ tors $)=k_{\text {tors }}[1+f \cos m \varphi]$ (manual, Section 6.4.1). From Table A7.5, you see that the recommended values for $k_{\text {tors, }} f$ and m of a C-C-C-C chain are 6, 1 and 3 in pentane ($\mathrm{n}^{0} 16$). As for $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsions, the most similar case is $\mathrm{n}^{0} 5$ (propylbenzene), which gives $\mathrm{K}_{\text {tors }}=$ $7.5, f=1$ and $m=3$.

ntors-u							
4	1	2	3	6.00	1.0	3.0	CCCC
2	1	4	5	6.00	1.0	3.0	CCCC
1	2	3	12	7.50	1.0	3.0	HCCC
1	4	5	15	7.50	1.0	3.0	HCCC

A few (12) intramolecular contacts between methyl groups and opposite methylene groups are protected from possible jump of the pentane chain into a gauche, or worse cis, conformation. See manual, Section 6.6.3 for more information.

```
    12 nlist-u
8 15 8 16 8 17 9 15 9 16 9
```


The final .top file looks like this:
pentane.top file. Green: instructions edited.

The input box file can now be prepared by the command (manual, Section 5.2)

on prompt, answer 41.050 .55 . 0 , producing a box (pentaneliq. $b x i$) with 250 molecules, side 40.88 , density 0.44 . Attempts with expansion factor of 1.0 and a higher density would fail to produce the necessary optimization in MC because molecules would be too much entangled (this conclusion was reached by trial and error).

You are now ready to prepare the MC run control file, pentane.mci: open it as a new file and write the following instructions. Refer to manual, Section 6.6.2 for the meaning of the various parameters.

```
pentane standard liquid run
# iprint ivarib iwrh ipots factin
            0 0.cclorm
```



```
20.0 200000 1000 0 0 0 0 0 0
0.70 50.0 10.0 0.0 0.0 0. 0. 0. 0. 0.
npres ianis
    1.0 700 3
```

Note that the maximum stepsize vector in the $8^{\text {th }}$ line (manual, Section 6.6.2) is
$0.70 \quad 50.0 \quad 10.0 \quad 0.0 \quad 0.0 \quad 0.0 .0 .0 .0$.

The first two vector elements (0.7 and 50.0) determine stepsize for molecular translations and rotations and are controlled by corresponding 1 and 2 "step type numbers" in the .bxi file. The third element, 10.0, determines the stepsize for torsional parameters ("step type number" 3 in file pentane.sla). As usual, "var.indices" of 222 in the command file pentane. mci set to $0.02 \AA$ the maximum cell change per step.

The differences with the benzene case treated in Tutorial T6 are: 1) the factin parameter is 0.7 , meaning that the 12 intramolecular nonbonded contacts (see nlist-u above) are calculated by the same intermolecular potentials but damped by a factor of 0.7; 2) the temperature is set very low (20 K) so that the MC run is in fact an energy minimizer; 3) the steps for rigid translation and rotation of molecules are larger (0.7 and 50.0) to allow more freedom; 4) the box update frequency is higher; 5) the simulation is longer (200,000 moves) in prevision of the higher difficulty of landing into a stable arrangement with a flexible molecule.

The MC run is then started by the command

./run.memain pentane pentaneliq.bxi p1

Output files are p1mc.pri, p1mco.dat, p1.bxo. Notice that during the minimization the box dimension increase up to $44 \AA$, while the system expands to disentangle too close molecular pairs. After a reasonable configuration is attained, energy minimization bring back the box dimension to a lower value. Total energies are different from cohesive energies: E (tot) = E(cohes)+((intram). The comparison with thermodynamic quantities like vaporization energies is problematic because E(intram) might be different in the liquid and in the vapor phases. Anyway, the simulation is far too short to produce really significant results. Typical production runs for thorough equilibration being in the range of millions of steps. The intramolecular nonbonded energy is negligible, revealing that the molecules stay in a nearly all-trans conformation. If desired a longer simulation can be restarted using the p1mc.bxo output box and giving more realistic temperature and pressure rescaling parameters, in conjunction with smaller maximum stepsizes.

