

User Manual v.2.3

2

MiCMoS

MiCMoS

Milano Chemistry Molecular Simulation

Description and User Manual

Release 2.3, July 30, 2024

Leonardo Lo Presti

leonardo.lopresti@unimi.it

Dipartimento di Chimica

Università degli Studi di Milano

MiCMoS is a set of Fortran computer programs for the simulation of the condensed states of non-

polymeric organic materials, using empirical potential energy schemes, ab initio-derived semiempirical

energy calculation schemes; in a static approach, analyzing only one point in phase space, or in an

evolutionary approach for phase-space sampling using Monte Carlo (MC) and classical Molecular

Dynamics (MD) techniques. The platform includes modules for the appropriation of crystallographic

information with standardization of hydrogen-atom positions, for molecular model building, for the

calculation of lattice energies and the analysis of crystal packing, as well as for the equilibrium or

dynamic simulation of bulk or cluster-like liquids, crystals and solutions with trajectory analysis.

MiCMoS evolves out of previously presented platforms, CLP-Pixel and CLPDyn, and like its

predecessors is user-oriented with opportunity or necessity for human intervention in the proceedings.

The original CLP-Pixel and CLPDyn cores, later evolved in MiCMoS, come from the forty-year

research work of prof. Angelo Gavezzotti (retired; agavezzotti@gmail.com), to whom we are indebted

for constant support and encouragement.

The platform includes subdirectories batch, with running macros, Tutorials, with documentation and

worked examples, exe, with compilation macros and executables, and SourceA and SourceB, with source

codes. All these directories and their documents and codes are accessible by the user for possible

modification.

All programs run from MS-Dos (Windows) or from any textual user interface environment (Unix-Linux

machines). All input-output is numerical in text files and there are no pull-down menus or selection

windows. There is no graphics module in the package, but interfacing to one of the many available

graphics platforms is easy as structural results are displayed in a .dat or .xyz file format.

MiCMoS is oriented toward the MD simulation of small- to medium-size organic molecules in

condensed phases from a crystallographic viewpoint. At variance with other MD software devoted to

the simulation of biomolecules, it focuses on intermolecular interactions, solvation and molecule-

molecule recognition.

The whole MiCMoS package is available free of charge for academic and non-profit users under the

conditions of the GNU general public license version 3.0 or later. To download the program, you should

register on https://sites.unimi.it/xtal_chem_group. You will be required to provide your name,

Institution and a valid e-mail address.

mailto:leonardo.lopresti@unimi.it
mailto:agavezzotti@gmail.com
https://sites.unimi.it/xtal_chem_group

3

CAUTION: If use is planned in a commercial or for–profit organization, please contact

leonardo.lopresti@unimi.it.

The MiCMoS project is subject to continuing development. Comments, criticism and suggestions from

users are most welcome, especially concerning inconsistencies or unclear procedures.

List of MiCMoS Contributors

Angelo Gavezzotti

Leonardo Lo Presti

Luca Sironi

Giovanni Macetti

Silvia Rizzato

mailto:leonardo.lopresti@unimi.it

4

What’s new

Release 2.3 2024, July, 30 2024

• Due to the incompatibility of newer Windows versions (10 and 11) with some MiCMoS

executables, a new procedure is suggested to run the program on Windows machines, which

essentially relies on the installation of a Unix-compatible environment (Cygwin).

• New post-processing routines were added. More in detail:

o The routine vanhove.for performs the van Hove analysis of the trajectory, focusing on

molecular center of mass.

o The routine trajedit.for allows to edit any MC or MD trajectory, for example by

selecting specific frames, extracting specific solute/solvent molecules, changing the

coordinate system or the origin of the simulation box.

o The routine renergy.for applies LJC or CLP intermolecular potentials to a previous

trajectory. This can be useful, for example, if one wants to test another Force Field on

a trajectory previously run, or to perform the energy analysis of any subgroup of

molecules, after extraction with trajedit.

o The routine denflu.for computes time-averaged local density fluctuations.

o The routines clusters.for and conta.for analyze a trajectory to find persistent

intermolecular clusters, which may be defined based on either purely geometric or

energetic criteria.

• Implemented more efficient compilation instructions to speed up the parallel MD engine up

to 20-30 % in Linux environments.

• Implemented more efficient algorithms for the calculation of intermolecular Lennard-Jones

potentials and the handling of molecules within the cutoff limit to speed up the MD engine by

a further 15-20 % (both Windows and Linux environment).

• Fixed some bugs and errors (see below).

The changes affect only the MD part of the package, and specifically the libraries mdlibs.for and

mcmdpo.for. A minor adjustment was also made in the routine solution.for, to reduce the odds of

unwanted steric clashes at the beginning of the simulation. The module correl.for was updated.

In this manual: New Sections 8.10-8.14 were added to describe full input and output options of the new

routines. Section 5.7 (Solution module) was updated. The Windows part of Installation Notes was

rewritten, and the corresponding file system of the program updated.

Release 2.2 2023, July, 30 2023

• A routine was added for MD simulations in confined environments (nanolayer, nanotube and

nanocavity).

• Fixed some bugs and errors (see below).

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for). Bugs were

corrected in mdlibs.for. Minor adjustments were also done in redene.for and mclibs.for, to handle a .ene

file with format compatible with the MD part.

In this manual: A new Section 5.8 was added to describe the preparatory routine (confbox.for) for the

definition of the simulation box for confined spaces. A new Section 7.2.5 was added to describe the

5

confinement algorithm. Section 7.6.2 (description of the MD run control file) was updated to include

information on the new parameters in the input stream.

IMPORTANT (only for the MD part). Due to these changes, a further option (inano) must be added

now at the end of the second parameter line in the MD control file (.mdi). If missing, the molecular

dynamics program mdmain.for will stop with an I/O error. See Section 7.2.5 for details. An example of

input with full parameters is shown at the end of Section 7.6.2.

Release 2.1 2022, September 30, 2022

• A Linux-parallel version of the Molecular Dynamics (MD) module is now available. The

program can be still used in serial mode.

• Empirical anharmonic correction to bending motion was introduced in MD.

• New features in the part A of the package (static lattice analysis):

o A new crystallographic analysis program, Statimpa, was introduced. It scans a series of

static crystal structures in .oeh format, searching for short atom-atom contacts,

including hydrogen bonds.

o Retcor now prints also the structure of the isolated asymmetric unit in Cartesian

coordinates using the standard .xyz format. This is useful for visualization purposes with

external programs.

• A new interface for structural files, Solution, is included. When used in conjunction with

boxliq.for it allows to easily produce solution (solute+solvent) boxes with the desired solute

concentration.

• Increased atom limits in naverag.for (now 35,000).

• Fixed some bugs and errors (see below).

Parallelization affects only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for). A patch

was added to retcor.for to write the new .xyz file and the run.retcor batch file were updated accordingly.

The bugs were corrected in datgro.for, mdlibs.for, mdmain.for and naverag.for.

In this manual: The Installation notes section was updated to describe the new features, especially as

concerns the new parallel-MD executables. A more user-friendly installation procedure for

Windows users is also proposed. Section 1.3 was updated with the new features of Retcor. New

Sections 1.5 (Statimpa) and 5.7 (Solution) were added. New Section 7.4.1.2 was added (anharmonic

corrections to bending). Sections 7.4.1.1 (anharmonic corrections to stretching) and 7.6.2 (MD run

control file) were edited to explain the new features. A warning on the Geomet usage was added in

Section 8.1. Section 8.2 (Analys) was also updated for a slight correction in the input stream.

Release 2.0 2021, July 31, 2021

• New crystallographic utilities were introduced:

o naverag.for, to produce a spacetime average structure from a whole trajectory;

o debye.for, to compute the total Debye scattering from a MD trajectory file;

o nanocut.for, to produce a nanoparticle of the desired shape, that is, bound by specific

crystallographic planes.

• A biased Molecular Dynamics (MD) algorithm was added to simulate aggregation

phenomena.

• Empirical anharmonic correction to stretching motion was introduced in MD.

6

• A new interface for structural files, Nanosolv, is included. When used in conjunction with

nanocut.for and boxliq.for it allows to easily produce solvated nanoclusters of the desired

dimensions and shape.

• Fixed some bugs and errors (see below).

IMPORTANT (only for the MD part). Due to these changes, two more options must be added at the

end lines #3 and #6 in the MD control file (.mdi). If missing, the molecular dynamics program

mdmain.for will stop with an I/O error. More in detail, an integer parameter ibias is now the last entry

of line #3 and controls whether a biased MD run is required or not. Another integer, ianh, must be added

at the end of line #6 to specify whether the stretching potential will be fully harmonic or not. See Sections

7.2.4, 7.4.1.1 and 7.6.2 for details. Some input examples with the complete set of parameters are shown

at the end of Section 7.6.2.

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for), while the

bugs were corrected in mclibs.for, mcmain.for, mdmain.for and geomet.for.

In this manual: New Section 5.6 was added (new structural interface Nanosolv). Sections 7.2.4, 7.4.1.1

and 7.6.2 (MD run control file) were either added or edited to include and explain the new features. New

Sections 8.7–8.9 were added (crystallographic utilities).

Release 1.2 2021, January 31, 2021

• A new integration algorithm (velocity–Verlet) is available.

• A new thermostat (Bussi–Donadio–Parrinello) is available.

• Fixed some minor bugs and errors (see below).

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for), while the

bugs were corrected in mclibs.for and boxcry.for.

In this manual: Sections 7.2 (thermostats and integration algorithms) and 7.6.2 (The MD run control

file) were edited to add information on the new options.

IMPORTANT (only for the MD part). Due to these changes, two more options (Emolim and iengt)

must be added now at the end of the first parameter line in the MD control file (.mdi). If missing, the

molecular dynamics program mdmain.for will stop with an I/O error. See Section 7.6.2 for details. An

example of input with full parameters is shown at the end of Section 7.6.2.

Release 1.1 2020, July 30, 2020

A new routine has been added to the general Parrinello–Rahman barostat to perform MD simulations

with an external, user–defined stress field (S. Rizzato, A. Gavezzotti & L. Lo Presti, Crystal Growth

Des. 2020, 20,7421–7428). The new instructions are meaningful only for periodic structures. The change

affects the MD part of the package (mdlibs.for, mdmain.for and mdviri.for).

In this manual: See new Section 7.3.4 for details. Section 7.6.2 (The MD run control file) was edited

accordingly to add information on the new options.

7

Fixed known bugs and errors

MiCMoS is an ongoing open-source project that could benefit from the feedback by the

community. Please report any bug and error you may find to leonardo.lopresti@unimi.it

Release 2.3 2024, July, 2024

(i) In release v2.2, a set of instructions was erroneously erased in the mcmdpo.for

library, which prevented the correct evaluation of solvent-solvent intermolecular

potentials. The error affected both the Monte Carlo and Molecular Dynamics

engines. Solute-only simulations were not affected. The error is specifically present

only in the v2.2 release and did not affect the previous versions of the program (up

to v2.1).

(ii) In the program distrib.for, the labels of center of mass Radial Distribution Function

between solute and solvent and that between solvent and solvent were erroneously

switched in the output. This error affected only the labels of the distributions, which

however were correctly computed.

(iii) Due to a missing instruction, in mdmain.for and pmdmain.for the number of degrees

of freedom of the solute was overestimated by +3, only in the absence of solvent.

This minor discrepancy does not affect the MD trajectories significantly, as the

number of degrees of freedom is normally much larger.

(iv) Corrected some example files in Tutorials T3, T6, T7, T8 whose format was not up

to date with respect to the current MiCMoS requirements.

Release 2.2 2023, July, 2023

(i) Due to a misplaced instruction in the subroutine roteva (mdlibs.for), the molecular

centre of mass of tethered molecules in nanodroplets was incorrectly computed,

resulting in unphysical deformations of the molecules themselves. The bug affected

only Molecular Dynamics simulations of nanodroplets.

(ii) Due to a repeated instruction in the retopo routine of mdlibs.for, the atom-atom

Coulomb contributions between solvent molecules in molecular dynamics of

solutions were overestimated. The error did not affect the solute molecules.

(iii) In this manual, description of irvel options 1 and 2 (Section 7.6.2) were

exchanged. The error was now corrected.

(iv) In equation (7.24) of this manual (virial of the forces), a ½ factor was missing. Note

that the virial was computed correctly in the main code.

Release 2.1 2022, September 30, 2022

(i) Corrected a typo in the error printing routine for ierr=8 in naverag.for.

mailto:leonardo.lopresti@unimi.it

8

(ii) Corrected a typo in mdmain.for (last printouts, total energy changes):

deuv=ecouv-ecouvzz was changed into deuv=ecouv-ecouvz. The error

affected calculations of deuv only when two molecular species were present.

(iii) Changed all sqrt() instructions in mdlibs.for into dsqrt() to uniform double

precision throughout.

(iv) An instruction was corrected in mdlibs.for (sobroutine Retopo) when the program

renormalizes charges for kJ/mol conversion. When no solvent is present, the

program printed neither molecular information, nor it echoes the topology file. The

correction influences only the output in the printfile .pri, not calculations.

(v) In mclibs.for (subroutine writen) the output cell density became infinity if no box

was present (boxvo=0). A patch was added to fix the problem; if no box is present,

now the cell density is reported as zero.

(vi) Contrary to what is said in the manual, giving 0 0 as starting and ending frame

number in the debye.inp command file for Debye (Section 8.8) did not allow for

automatic calculation on the whole trajectory (or at least on the first 1,000 frames).

A patch has been added to the source code to fix the problem.

(vii) In the utility program analys.for (Section 8.2), if no calculation of centre of mass-

based radial distribution function g(R) is required, the program has no Cpack for the

calculation of an approximate box volume, and atom-atom g(R) is not calculated.

Fixed by reading Cpack before questions on types of g(R). Section 8.2 in this manual

was updated accordingly.

Release 2.0 2021, July 31, 2021

IMPORTANT: The 2.0 version fixes a previously undetected error, that prevented MiCMoS

from correctly computing nonbonded intramolecular potential energy contributions. This

problem emerged when the parent program, CLPdyn, was evolved into the present package and

some blocks of instructions had to be updated. The error affects only systems that require

nonbonded pairs to be defined (see NLISTU/NLISTV entry in Section 7.6.4), that is, flexible

molecules prone to intramolecular steric clashes.

(i) An error was discovered in mclibs.for (subroutine eintra), which prevented the

Monte Carlo engine from correctly computing the nonbonded intramolecular

energies. More in detail, a residual “go to” statement from a previous algorithm in

the parent CLPdyn program suppressed the torsional part of the intramolecular

energy. At the same time, intramolecular Coulomb contributions were

underestimated due to an incorrect scaling factor. This error affected only the Monte

Carlo part and is now fixed.

(ii) An error was discovered in the main Molecular Dynamics engine (mdmain.for). The

damping parameter FACTIN (Sections 7.4.1, 7.6.2 and 7.6.4) for computing the

nonbonded intramolecular energy contributions was not properly defined in the

9

memory allocations. Therefore, the nonbonded contributions were always zero or

undefined. The error affected only the Molecular Dynamics part and is now fixed.

(iii) A bug was fixed in geomet.for. The program failed to handle more than 20 torsions

due to an erroneous format statement. Now geomet can handle up to 60 different

torsions.

(iv) A bug was fixed in the main Monte Carlo engine (mcmain.for): due to a couple of

misplaced instructions, the actual number of solute and solvent molecules, computed

for checking purposes, could have been undefined in certain circumstances.

(v) The memory limits of datgro.for were upgraded to a maximum of 80,000 atoms to

handle also very large simulation boxes.

(vi) The excbox.for service program was updated to be fully compatible with new

modules.

Release 1.2 2021, January 31, 2021

(i) An error was discovered in the Molecular Dynamics input instructions, Section

7.6.2, line #3, instructions idstr and Emolim) concerning the calculation of

histograms of intermolecular interaction energies (see Section 7.5.3). The Emolim

parameter (upper energy limit for histogram calculation) was not read as expected

right after idstr on the same input line. Rather, the program expected to find it in a

new line if idstr=1. The error was fixed in the code (mdmain.for). The instructions

in Section 7.6.2 are now correct.

(ii) There was a little formatting mismatch in the MC and MD writra routines, which

made slightly different the trajectory printout of the Monte Carlo module with

respect to that of the Molecular Dynamics module. This implied that, for example,

the utility datgro.for (conversion of MiCMoS trajectory .dat files to .gro format)

could not properly read Monte Carlo trajectories. The bug was fixed in mclibs.for.

Now the two formats are equivalent and datgro.for is fully compatible with both

MD and MC trajectories.

(iii) A bug was fixed in boxcry.for: when two molecular units (“solute” and “solvent”)

were present in the crystal, the program failed to correctly account for slave atoms

when the crystalline simulation box was built. The error affected only the Monte

Carlo part.

(iv) A bug was fixed in the library mclibs.for for Monte Carlo simulations (subroutine

writen): the program failed to correctly compute the cell density.

10

License
MiCMoS – Milano Chemistry Molecular Simulation

Copyright (C) 2024 Leonardo Lo Presti

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 or later.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License (version 3.0 or later) for more details.

 For more information see http://www.gnu.org/licenses/

Part A: Crystal lattice energy calculations

Part B: Monte Carlo and Molecular Dynamics simulations

Part C: Appendix: Reference Materials and Technical Details

http://www.gnu.org/licenses/

11

Index

MiCMoS ... 2

What’s new .. 4

Fixed known bugs and errors ... 7

Index ... 11

How to cite ... 16

MiCMoS applications.. 17

Tutorials ... 18

Installation notes ... 19

Part A: Crystal lattice energy calculations

1. Preparation of structural data files .. 27

1.1 The Retcif module: Data retrieval from CSD or from reduced cif files ... 27

1.2 The Retcor interface module ... 30

1.3 The Retcha module. Calculation of atomic point charge parameters for atom-atom potentials 31

1.4 The .oih and .oeh structural files ... 32

1.4.1 Filename extension .oih .. 32

1.4.2 Filename extension .oeh ... 32

Table 1.1. ... 33

1.4.3 Detailed oih and oeh formats .. 34

1.5 The Statimpa module ... 37

2. Potential energy schemes .. 41

2.1 Atom-atom potential forms: CLP and LJC .. 41

2.1.1 CLP potentials .. 41

Table 2.1 .. 42

Table 2.1b .. 43

2.1.2 LJC potentials ... 43

Table 2.2 .. 44

2.2 The PIXEL form .. 44

3. Lattice energy calculation modules .. 45

3.1 The Crysaa module ... 45

3.1.1 General description of crysaa ... 46

3.1.2 Running parameters, file crypar.par ... 46

3.1.3 Lattice energies ... 47

3.1.4 Intermolecular analysis ... 47

3.1.5 Coulomb sums in polar space groups ... 48

3.2 The Pixelc module: Calculation of intermolecular energies by the PIXEL method 50

12

3.2.1 Perspective .. 50

3.2.1.1 Full list of bibliographic references .. 50

3.2.2 PIXEL Theory .. 51

3.2.2.1 Calculation of the Coulombic Energy .. 51

3.2.2.2. Calculation of the polarization energy ... 52

3.2.2.3. Calculation of dispersion energies ... 52

3.2.2.4. Calculation of the repulsion energy ... 52

3.2.2.5. Calculation of the total interaction energy... 53

3.2.3 General layout .. 53

3.2.4 Program inputs and outputs .. 54

3.2.5 How to run a PIXEL calculation .. 54

3.2.6 Description of the pixpar.par file .. 58

3.2.7 Description of the .inp file .. 58

3.2.8 The PIXEL output files... 60

4. General flowchart of Monte Carlo and Dynamics modules... 62

4.1 Available intermolecular potentials ... 62

5. Interface between structural files and MC or MD files .. 63

5.1 The Boxcry module .. 63

5.1.1 The .bxi/.bxo format (MC only) .. 64

Table 5.1 .. 64

5.1.2 How Boxcry works: the ISYMM indicator (MC only) ... 64

Table 5.2 .. 65

5.1.3 Format of .dat files ... 65

5.2 The Boxliq module .. 67

5.3 The Boxsol module .. 68

5.4 The Pretop module .. 69

5.5 The Excbox module ... 70

5.6 The Nanosolv module .. 71

5.7 The Solution module .. 72

5.8 The Confbox module ... 73

5.8.1 Format of barrier.par file .. 76

Part B: Monte Carlo and Molecular Dynamics simulations

6. Monte Carlo (MC) simulation .. 77

6.1 Overview ... 77

6.2 Construction of molecular frameworks ... 77

6.3 Computational boxes ... 78

6.4 Force fields .. 78

13

6.4.1 Stretching, bending and torsion .. 78

6.4.2 Intramolecular non-bonded interactions ... 79

6.4.3. Intermolecular force fields ... 79

6.5 Simulation details .. 79

Table 6.1 .. 81

6.5.1 The Metropolis criterion ... 81

6.6 Running a Monte Carlo job ... 81

6.6.1 Batch runfile ... 81

6.6.2 The MC run-control file (.mci) ... 83

6.6.3 The forcefield input file (.top) .. 85

6.6.4 The slave atom parameter file (.sla) ... 86

Table 6.2 .. 88

6.6.4.1 Building slave atoms for ethanol .. 89

7. Molecular dynamics (MD) simulation ... 91

7.1 Introduction ... 91

Table 7.1 .. 91

7.2 MD layout .. 92

7.2.1 Zero-step atomic velocities ... 92

7.2.2 Integration .. 92

7.2.2.1 Leapfrog algorithm ... 92

7.2.2.2 Velocity–Verlet algorithm .. 92

7.2.3 Temperature control ... 93

7.2.3.1 Stiff coupling .. 93

7.2.3.2 Berendsen thermostat ... 93

7.2.3.3 Bussi–Donadio–Parrinello thermostat .. 94

7.2.4 Bias MD ... 95

7.2.5 Molecular dynamics in confined spaces ... 98

7.3 Periodic boundary conditions and pressure control ... 101

7.3.1 Isotropic pressure control ... 101

7.3.2 Anisotropic pressure control for oblique boxes .. 103

7.3.3 Parrinello-Rahman barostat .. 105

7.3.4 External pressure .. 107

7.4 Force fields .. 109

7.4.1 Intramolecular force field ... 109

7.4.1.1 Anharmonic correction to the stretching potential ... 110

7.4.1.2 Anharmonic correction to the bending potential .. 111

7.4.2. Intermolecular force field .. 113

7.5 Simulation of isolated clusters ... 114

14

7.5.1 Translational (T) and rotational (R) momentum ... 114

7.5.2 Evaporation control .. 114

7.5.3 The distribution-analysis option. .. 115

7.6 Running a Molecular Dynamics job .. 115

7.6.1 Batch runfile ... 115

7.6.2 The MD run control file (.mdi) ... 117

Table 7.3 .. 121

Some examples of complete .mdi input files ... 122

7.6.3 The input box file (.dat) .. 124

7.6.4 The forcefield file (.top) ... 124

8. Analysis of MC and MD results ... 126

Table 8.1 .. 126

8.1 The Geomet module .. 127

8.2 The Analys module .. 129

8.3 The Distrib module .. 132

8.4 The Correl module .. 133

8.5 The Redene module ... 136

8.5.1 Format of the .ene file... 137

8.6. The Datgro module .. 139

8.7. The Naverag module .. 140

8.8. The Debye module .. 143

8.8.1 Description of the debye.inp file .. 145

8.9. The Nanocut module .. 147

8.9.1 Description of the nano.inp file .. 149

8.10. The Trajedit module ... 151

8.10.1 Description of the edit.inp file .. 152

8.11. The Vanhove module .. 156

8.11.1 Background .. 156

8.11.2. Description of the vanhove.inp file .. 158

8.12. The Renergy module ... 161

8.12.1. Description of the renergy.inp file ... 163

8.13. The Denflu module ... 165

8.13.1 Description of the denflu.inp file .. 166

8.14. The Clusters module ... 168

8.15. The Conta module .. 174

Part C: Appendix: Reference Materials and Technical Details

A1. The Retcif procedure: atom type recognition and assignment of atom type codes 178

15

A1.1 Determination of average bond distances and average bonding radii for various atomic species. 178

Table A1.1 ... 178

Table A1.2 ... 179

Table A1.3 ... 179

A1.2 Stage 1: Reading structure .. 180

A1.3 Stage 2: Scan non-hydrogen atoms ... 180

Table A1.4 ... 181

A2. The Retcor module ... 185

Table A2.1 ... 186

A3. Algebra for the generation of crystal coordinates, orthogonalization, inertial reference frame 189

A4. Coordinate systems and transformation matrices in PIXEL ... 191

A5. Structure of the .den density file ... 192

A6. Definition of Euler angles , ,  in rotation matrix E (Boxcry module) ... 192

A7. The Pretop routine .. 193

A7.1 Stretching potentials ... 194

Table A7.1 ... 194

Table A7.2 ... 194

A7.2 Bending potentials .. 195

Table A7.3 ... 195

Table A7.4 ... 195

A7.3 Torsional potentials .. 196

Table A7.5 ... 197

A8. Procedure to determine torsion angles according to standard conventions. ... 202

Part A: Crystal lattice energy calculations

Part B: Monte Carlo and Molecular Dynamics simulations

Part C: Appendix: Reference Materials and Technical Details

16

How to cite

A general survey of the MiCMoS features: A. Gavezzotti, L. Lo Presti and S. Rizzato,

CrystEngComm, 2022,24, 922-930 (https://doi.org/10.1039/D1CE01360B)

Specific applications and features (please select those that best fit your needs):

- PIXEL module (Pixel method): A. Gavezzotti, Mol. Phys. 2008, 106, 1473–1485,

https://doi.org/10.1080/00268970802060674.

- Monte Carlo calculations: A. Gavezzotti, New J. Chem. 2011, 35, 1360-1368,

https://doi.org/10.1039/C0NJ00982B; A. Gavezzotti, New J. Chem, 2013, 37, 2110-

2119, https://doi.org/10.1039/C3NJ00181D.

- Molecular dynamics of liquids: A. Gavezzotti and L. Lo Presti, New J. Chem. 2019,

43, 2077–2084, https://doi.org/10.1039/C8NJ05825C.

- Molecular dynamics of solids: A. Gavezzotti and L. Lo Presti, J. Appl. Cryst. 2019,

52, 1253–1263, https://doi.org/10.1107/S1600576719012238; A. Gavezzotti, L. Lo

Presti and S. Rizzato, CrystEngComm 2020, 22, 7350-7360,

https://doi.org/10.1039/D0CE00334D.

- Simulations under external stress field: S. Rizzato, A. Gavezzotti and L. Lo Presti,

Crystal Growth Des. 2020, 20,7421–7428, https://doi.org/10.1021/acs.cgd.0c01098

- Kinetic bias algorithm: L. Lo Presti, S. Rizzato and A. Gavezzotti, Crystal Growth

Des. 2022, 22, 1857-1866, https://doi.org/10.1021/acs.cgd.1c01410

- Simulation in confined spaces: L. Sironi, G. Macetti and L. Lo Presti, Physical

Chemistry Chemical Physics 2023, 25, 28006-28019,

https://doi.org/10.1039/D3CP02886K

- Aggregation and clustering: L. Sironi, G. Macetti and L. Lo Presti, J. Mol. Liquids

2024, Under review.

https://doi.org/10.1039/D1CE01360B
https://doi.org/10.1080/00268970802060674
https://doi.org/10.1039/C0NJ00982B
https://doi.org/10.1039/C3NJ00181D
https://doi.org/10.1039/C8NJ05825C
https://doi.org/10.1107/S1600576719012238
https://doi.org/10.1039/D0CE00334D
https://doi.org/10.1021/acs.cgd.0c01098
https://doi.org/10.1021/acs.cgd.1c01410
https://doi.org/10.1039/D3CP02886K

17

MiCMoS applications

Recent works that profitably employed some MiCMoS (or MiCMoS-related) features

L. Sironi et al., Nanoscale Inhomogeneities in Undercooled Benzoic Acid: A Molecular Dynamics Study.

J. Mol. Liquids 2024, Under review.

L. Sironi et al., Molecular Dynamics Investigation of Benzoic Acid in Confined Spaces. Physical

Chemistry Chemical Physics 2023, 25, 28006-28019, https://doi.org/10.1039/D3CP02886K

G. Macetti et al., Classical molecular dynamics simulation of molecular crystals and materials: old

lessons and new perspectives, in “Comprehensive Computational Chemistry” Elsevier, Book series in

Theoretical and Computational Chemistry nº21, 2023; https://doi.org/10.1016/B978-0-12-821978-

2.00107-0

L. Sironi et al., Why Is α-D-Glucose Monomorphic? Insights from Accurate Experimental Charge

Density at 90 K. Cryst. Growth Des. 2022, 22, 11, 6627–6638; https://doi.org/10.1021/acs.cgd.2c00846

A. Gavezzotti, Crystallography without Crystals: A Structural Study of Fakein. Helv. Chim. Acta 2022,

105, e202200059; https://doi.org/10.1002/hlca.202200059

A. Gavezzotti, Dynamic simulation of orientational disorder in organic crystals: methyl groups,

trifluoromethyl groups and whole molecules. Acta Cryst. 2022, B78, 333-343;

https://doi.org/10.1107/S2052520621012191

R. Destro et al., Anharmonic Thermal Motion Modelling in the Experimental XRD Charge Density

Determination of 1-Methyluracil at T= 23 K. Molecules 2021, 26(11), 3075;

https://doi.org/10.3390/molecules26113075

A. Gavezzotti, Collective Variables for the Simulation of Crystallization of Organic Compounds: Some

Case Studies. Israel J. Chem. 2021, 61, 498-506. https://doi.org/10.1002/ijch.202100039

A. Gavezzotti, in “The Crystalline States of Organic Compounds”, Elsevier, Book series in Theoretical

and Computational Chemistry nº20, 2021. https://doi.org/10.1016/B978-0-12-823747-2.00004-4

https://doi.org/10.1039/D3CP02886K
https://doi.org/10.1016/B978-0-12-821978-2.00107-0
https://doi.org/10.1016/B978-0-12-821978-2.00107-0
https://doi.org/10.1021/acs.cgd.2c00846
https://doi.org/10.1002/hlca.202200059
https://doi.org/10.1107/S2052520621012191
https://doi.org/10.3390/molecules26113075
https://doi.org/10.1002/ijch.202100039
https://doi.org/10.1016/B978-0-12-823747-2.00004-4

18

Tutorials

Some tutorials to get acquainted with the main program features and the I/O procedures are freely

available online. Step-by-exercises are proposed and thoroughly explained, with pertinent reference to

this Manual. If you are a new user, it is strongly recommended that you follow at least the basic tutorials

before using extensively MiCMoS. Tutorial 1 will allow you to quickly learn how to handle the file

interface; Tutorials 2–5 are not strictly necessary if you are interested in Monte Carlo or Molecular

Dynamics. Tutorials 6–8 describe Monte Carlo in detail, while Tutorials 9 and 10 will give you the

basics of the Molecular Dynamics procedures. Have also a look to Tutorial 11 to see how to analyze

trajectories. Tutorial 12 proposes advanced exercises focused on molecular nanoparticles.

The material can be found at this link: https://sites.unimi.it/xtal_chem_group/index.php/tutorials. A list

is given below.

Tutorial Topic Purpose

1 Generation of structural data files It is described how a .cif crystallographic information file is interpreted by

the Retcif, Retcor and Retcha sequence to produce a .oeh structural file,

ready for subsequent calculations (static lattice, MC or MD).

2 LJC parametrization and charge

density file

It is described how to prepare a .oeh structure file compatible with the LJC

parametrization, that is, containing Electrostatic Potential (ESP) charges

rather than the default Extended Hückel ones. At the same time, the

production of a charge density file to be used in subsequent Pixelc

calculations is also shown.

3 Using the Retcor module as a

molecule builder

It is described how to build chemically sound molecular models for systems

whose atomic coordinates are unknown for subsequent use in Monte Carlo

and Molecular Dynamics calculations.

4 Calculation of atom-atom lattice

energies

It is described how to use module Crysaa to compute static atom-atom

interaction energies and lattice energies.

5 Lattice energy by Pixelc It is described how to use module Pixelc to compute static charge density-

based interaction energies and lattice energies

6 Monte Carlo on liquids (rigid mol) It is described how to prepare and equilibrate a liquid box of benzene with

the Monte Carlo technique.

7 Monte Carlo on liquids (flexible

mol)

It is described how to prepare and equilibrate a liquid box of n-pentane with

the Monte Carlo technique. The aim is also to get the user acquainted with

the use of slave atoms for the Monte Carlo routine of MiCMoS.

8 Monte Carlo on crystals It is described how to prepare and equilibrate a periodic crystal of acetanilide

with the Monte Carlo technique. The aim is also to get the user acquainted

with the use of slave atoms for the Monte Carlo routine of MiCMoS.

9 Molecular Dynamics of liquids It is described how to prepare and equilibrate a very simple liquid (benzene)

with the Molecular Dynamics technique.

10 Molecular Dynamics on crystals It is described how to prepare and equilibrate the P21212 RT phase of

pyridone with the Molecular Dynamics technique.

11 Analyzing MC and MD trajectories It is described how to employ service programs Geomet, Analys, Distrib,

Correl, Redene, Datgro, Naverag and Debye programs to analyze MC and

MD trajectories.

12 Molecular Dynamics of molecular

nanoparticles

It is described how to prepare isolated (non-periodic) simulation boxes that

include either free or solvated nanoparticles of small organic molecules.

https://sites.unimi.it/xtal_chem_group/index.php/tutorials

19

Installation notes

To install MiCMoS, you need a valid Fortran compiler, such as gfortran. All modules are written in

featureless, unspecific Fortran that can be compiled in Unix and Windows 32/64 bit environments. No

machine libraries are required (‘–static’ option of the compiler). MiCMoS is provided as a

compressed .zip archive. Upon un-zipping the following directories must appear:

- MiCMoS

o SourceA (interface programs and static energy calculations)

o SourceB (Monte Carlo and Molecular Dynamics machines)

▪ parallel (parallel version of libraries and molecular dynamics module)

o Inputs (templates of input files with steering parameters for specific MiCMoS

programs)
o Unix

▪ batch (macros to run MiCMoS programs in Unix/Linux syntax)

▪ compile (macros to compile MiCMoS programs in Unix/Linux syntax)

Under Windows machines, please follow the instructions detailed in the next paragraph. In a Unix/Linux

environment, copy the archive in your ~/programs directory. If need arises to store the MiCMoS

folder in any other location, remember to update the path in both installation and batch macros (see

below).

Four installation macros are available into the “compile” subdirectory:

- compileA: compiles preliminary modules for interpreting crystallographic information files

(.cif; Retcif, Retcor, Retcha), the modules for lattice energies (Crysaa, Pixmt2, Pixelc) and for

atom-atom contact analysis (Statimpa).

This macro also produces a ~/programs/MiCMoS/doc/static (Unix) empty directory,

which might be employed to store charge density files (extension .den) for Pixelc calculations.

- compileB: compiles Monte Carlo, Molecular Dynamics and their service modules;

- compileMC: compiles only the Monte Carlo module and its libraries;

- compileMD: compiles only the Molecular Dynamics module and its libraries.

Running compileA and compileB in sequence ensures complete installation.

20

Preliminary operations for Windows users only

Sadly, the modern versions of Windows (Win10 and Win11) are incompatible with several key features

of MiCMoS. Apparently, the programs are compiled, but the system stubbornly refuses to start some

executables, especially those that are dependent on static libraries. This is the case of the Monte Carlo

and Molecular Dynamics engines for example.

The procedure detailed in the previous versions of the manual (up to v2.2) worked seamlessly under

Windows up to version 7. From MiCMoS v2.3 onwards, the following procedure is recommended.

Download the Cygwin setup () from https://www.cygwin.com/. In these notes, the

64 byte utility is shown, but you could download the 32 byte version if you know it is more appropriate

for you. Execute the self-installing tool and select “Install from internet”:

Select the main directory for the Cygwin environment. The default C:\cygwin64 works fine. Then,

choose the directory you wish to use to keep installation files (C:\Cygwin for example). These files may

be cancelled after the installation; however, if you have enough disk space, you should keep them to

facilitate any future update or change of configuration of the Cygwin environment.

Next, you will be prompted to select your favourite internet connection (keep the default settings) and

choose a valid mirror to go ahead with the download of Cygwin system files. A good choice is

https://sourceware.mirror.garr.it.

https://www.cygwin.com/
https://sourceware.mirror.garr.it/

21

In the next prompt, you must select what packages you wish to install. Make sure that you visualize the

“Category” classification and use your mouse to mark the following packages with the “Install” flag:

Base, Devel, System, X11. This choice ensures full operability of MiCMoS and keeps the whole

installation as cheap as possible. Obviously, you are free to customize the Cygwin installation according

to your specific needs.

As the Cygwin project is under continuous development and you are asking to download full file systems

under each “category”, it is possible that the installer will find unwanted cross-dependencies: in the next

prompt, flag the “Accept default problem solutions” button (see next page) and go ahead. The

installation will start. The whole process may take a while, depending on the velocity of your internet

connection and of your processor.

22

Finally, you will end up with this desktop icon:

Double click on the Cygwin icon. A terminal window will open. The terminal will open into the default

user home, which is dependent on the root Cygwin directory defined above. For example:

This home directory has full path C:\cygwin64\home\User in Windows, where “User” is your specific

Win user.

Now, create a “programs” directory in /home/User.

mkdir programs

cd programs

Copy the MiCMoS compressed archive in “programs”. In a normal Windows environment, you may

simply drag the MiCMoSv2.3.zip archive from your download directory. Extract the files with any

archive extractor you have at hand (WinRaR, 7zip, WinZip…). You are finally ready to install MiCMoS.

Follow the same installation instructions For Linux/Unix Users below. To use the program, you must

keep working in the Cygwin terminal.

To check what Cygwin packages are installed, enter the following command in the terminal:

cygcheck -c -d | sed -e "1,2d" -e 's/ .*\$//' > packagelist.txt

This will create “packagelist.txt” ASCII text file with the full list of installed packages, together with

their version. If, for some reason, you want to change something, please execute again the Cygwin setup

program. Good luck!

23

For Unix/Linux users

Go to the MiCMoS folder for compilers, usually ~/programs/MiCMoS/Unix/compile. Attribute

execution permissions to your macros; for example:

chmod 755 run.compile*

Since Release 2.1, the Molecular Dynamics (MD) module is compiled in both serial and parallel mode

under Unix/Linux. This implies that two versions of the MD engine, mdmain.for, now exist. The

parallel one is called pmdmain.for.

Compilation

The compilation command is run.compileX, X being A, B, MC or MD. Both the serial and parallel

versions of the MD part are compiled.

Installation macros expect that source files are stored in ~/programs/MiCMoS/SourceA and

~/programs/MiCMoS/SourceB. The only exception is the program Pixmt2, whose source code

should be placed in ~/programs/MiCMoS/Unix. If file locations are different, you should update

the path into the macros.

As above, the following commands

./run.compileA

./run.compileB

comp

ensure full installation, with MD compiled both in parallel and serial mode.

CAUTION (WINDOWS): Sometimes, the installation macro prompts some error messages “Fatal

Error: Can't open module file 'omp_lib.mod' for reading at (1): No

such file or directory”. The error is due to a missing omp_lib.mod module in the Cygwin

environment – this likely depends on the choices made by the installer to resolve internal conflicts in

Cygwin. As under Windows the parallel execution of MiCMoS is not supported, you can safely ignore

this error and proceed with the serial version only. If the error is shown, the only effect is that the

pmdmain executable for parallel Molecular Dynamics will be missing in your MiCMoS/exe directory.

You can always perform MD simulations in serial configuration (see “Serial execution” below).

Executables will be put into a ~/programs/MiCMoS/exe folder, which will be created by the macro

itself if not already present. Executables might be loaded into the ~/bin directory if desired; however,

note that macros in the Unix/batch directory expect to find executables into

~/programs/MiCMoS/exe.

Serial execution

The batch macros are fully compatible with the previous versions of MiCMoS. To use the various

program modules, make executables all the batch macros contained in

~/programs/MiCMoS/Unix/batch with command

24

chmod 755 run.*

Then, you may copy whatever of them in your working directory. As for MD, the batch command is

always run.mdmain, which is identical to the macro of the previous releases of MiCMoS.

When you execute a batch file, note that all the necessary files, such as data and input instructions, must

be present as well in your working directory. Refer to the detailed descriptions of the programs and

modules in this Manual to use them properly.

Parallel execution

Only the Molecular Dyanamics (MD) routines were parallelized. All the other programs, including

Monte Carlo, are still serial and the usual batch commands can be executed seamlessly.

Parallelization was carried out through OpenMP libraries and is fully operational in the pmdmain.for

code. Differences with respect to the serial version (mdmain.for) concern calls to openMP-embedded

functions, like get_omp_max_threads(), which can be recognized by the compiler only when the

openMP flags are active. This is obtained through the compiler option -fopenmp, in conjunction with

-frecursive that allows indirect recursion by forcing all local arrays to be allocated on the stack.

CAUTION: Note that the parallel MD executable is named pmdmain.

The macro run.pmdmain is available to execute pmdmain.for locally (not recommended in a

distributed architecture environment: see below). The runfile differs from the usual run.mdmain one

(see Section 7.6.1) only in the first instruction:

export OMP_NUM_THREADS=<N>

Where <N> is the actual number of threads you want to employ, for example: export

OMP_NUM_THREADS=3 or export OMP_NUM_THREADS=4 will distribute the workload to 3 or 4

threads, respectively.

For usage in a distributed environment, please conform to the queuing system of your parallel

architecture. Two job scripts (job.p1-mdmain and job.p2-mdmain) are available in the

~/programs/MiCMoS/Unix/batch directory, which call pmdmain in either a SLURM or PBS

context. A couple of examples asking for a run up to 1 hour long on 4 threads are shown in the next page

for your convenience. You should edit the job script that best fits your needs according to what you want

to do (for example, change strings “yoursubstance”, “yourbox” and “youroutput” in the script with the

actual filenames you need. As usual, the two job scripts must be made executable before use through

chmod 755 job.p*

Testing was carried out on a local cluster equipped with nodes mounting 2x Intel® Xeon® CPU E5-

2650v2 @ 2.60GHz, 8 cores and 64 GB RAM. Runs on the pyridone crystal at room temperature using

the same starting box as in MiCMoS Tutorial 10 (200 molecules, 12 atoms each, 2,400 atoms, see

https://sites.unimi.it/xtal_chem_group/index.php/tutorials/28-tutorial-10) showed that a 5,000 MD

steps-long run with 10 threads allows a time gain of ~ 4 times.

https://sites.unimi.it/xtal_chem_group/index.php/tutorials/28-tutorial-10

25

SLURM workload manager (job.p1-mdmain):
#!/bin/bash --login

#==

#SBATCH -J job_name

#SBATCH --nodes=1 --ntasks=4

#SBATCH --time=01:00:00

#SBATCH --partition yourqueue

#==

cp yoursubstance.mdi mdyn.mdi

cp yoursubstance.top mdyn.top

cp yourbox.dat mdyn.bxi

cp barrier.par mdyn.par

~/programs/MiCMoS/exe/pmdmain

rm youroutputmdc.dat

mv mdyn.mdc youroutputmdc.dat

rm youroutputmdo.dat

mv mdyn.mdo youroutputmdo.dat

rm youroutputmd.pri

mv mdyn.mdp youroutputmd.pri

rm youroutputmd.ene

mv mdyn.ene youroutputmd.ene

rm youroutputbias.tab

mv bias.tab youroutputbias.tab

rm mdyn.mdi

rm mdyn.top

rm mdyn.bxi

rm mdyn.par

PBS scheduler (job.p2-mdmain):
#!/bin/bash --login
#==
#PBS -N job_name

#PBS -l nodes=1:ppn=4
#PBS -l walltime=01:00:00
#PBS -q yourqueue
#==

cp yoursubstance.mdi mdyn.mdi

cp yoursubstance.top mdyn.top

cp yourbox.dat mdyn.bxi

cp barrier.par mdyn.par

~/programs/MiCMoS/exe/pmdmain

rm youroutputmdc.dat

mv mdyn.mdc youroutputmdc.dat

rm youroutputmdo.dat

mv mdyn.mdo youroutputmdo.dat

rm youroutputmd.pri

mv mdyn.mdp youroutputmd.pri

rm youroutputmd.ene

mv mdyn.ene youroutputmd.ene

rm youroutputbias.tab

mv bias.tab youroutputbias.tab

rm mdyn.mdi

rm mdyn.top

rm mdyn.bxi

rm mdyn.par

26

Part A

Crystal lattice energy

calculations

27

1. Preparation of structural data files

Figure 1. Block diagram of the organization of preliminary modules. Items in square boxes are

programs, items in round boxes are files with italic extension names. CSD is the Cambridge Structural

Database. The final file .oeh is the key structure-data file of the whole package.

1.1 The Retcif module: Data retrieval from CSD or from reduced cif files
Module Retcif retrieves crystal structure data from files in cif (crystallographic information file) format.

Retcif is designed only for the particular cif file organization of standard Cambridge Structural Database

(CSD) entries; the flexibility of a cif file is in this case a disgrace. It is easy however to convert any user

cif file, or any user-generated list of atomic coordinates in any format, into a "minimal .cif' format"

compatible with Retcif. Technical details and full description on how the algorithm works are available

in the Appendix, Section A1.

CAUTION: On running Conquest, the main CSD structure search engine, please ensure that the

“Additional CIF data items” checkbox is flagged in the on-screen menu section “Select options”

reachable through “File/Export entries as...”. This way, Retcif will be able to interpret correctly the

parameters. If a .cif file contains multiple structures, they will be all printed sequentially in the output

.oih file.

Normally, X-ray atom positions are discarded and H atoms are replaced according to standard

geometrical rules; the output .oih file has coordinates for non-H atoms and symbolic codes for the

28

generation of standardized H-atom positions ("implicit hydrogen"). The module can operate even if no

hydrogen-atom coordinates are present in the .cif file. The assignment of atom types and of coordinates

for H-atoms is based on standard bond lengths at the molecular environment (Appendix, Section A1.1).

The number of assigned hydrogens is checked against the structural formula stored in the cif file

(Appendix, Section A1.3, Figures A1.1-A1.2). By answering the dialog mode (see below), the user can

force retrieval anyway for further check and adjustment, or to preserve hydrogen atom positions as they

are in the .cif file (e.g. for neutron-diffraction structures).

The retrieval and H-atom assignment procedures have been thoroughly tested for ordinary organic

compounds, but chemical bonding is so multiform that the procedure may fail in some particular

instances, or for low-accuracy structures where even the position of non-H atoms is questionable. The

direct preparation or alteration of .oih files by user-generated scripts or simple file editing is also possible

and relatively easy after some practice.

Running command :

run.retcif NAME (answer dialog mode)

 where NAME.cif is the input file(s), NAME.oih is the output file(s)

run.retcif module (Unix/Linux)

rm retcif.inp

cp $1.cif retcif.inp

~/programs/MiCMoS/exe/retcif

rm $1ret.pri

mv retcif.pri $1ret.pri

rm $1.oih

mv retcif.out $1.oih

rm retcif.inp

rm retcif.tmp

The output file NAMEret.pri has a printed message on how the retrieval procedure has been carried out,

with error messages for borderline cases.

The renormalization of H-atom positions and R-H distances for X-ray structures is not an option, but a

must since it is an essential part of all potential energy schemes in the platform.

CAUTION: Some CSD .cif files contain coordinates for symmetry-dependent atoms to be deleted from

the output .oih files that must contain all and only the atoms in the exact stoichiometry of the crystal.

Answer the dialog mode, which asks for:

 (1) IHOT Normalization of hydrogen atoms.

 =0 H are renormalized (normal option).

 =1 CSD H’s are left unchanged (useful for neutron data).

 (2) IPRINT Controls the amount of output.

 =0 Normal output.

29

 =1 Extended output, normally for checking purposes.

(3) INONSE Retcif controls whether structure could be wrong for some reasons. If

INONSE=0, the program stops when an error is detected. INONSE=1

forces the program to print the output .oih file. In this case, check

carefully your structure! A list of possible problems follows. For each

case, the program prints a specific warning message.

- The H count does not coincide with that expected based on the

molecular formula. Check the formula unit and verify for

undetected/missing H atoms in the .cif file; look for wrong CH or NH

group assignments.

- Unrecognized atom types. A dummy specie code (Table 1.1) of 99 is

assigned to unknown atoms. MiCMoS can handle only atoms listed in

Table 1.1.

- Unnatural number of bonds or attached hydrogens for C, N, O, S

atoms. Are chemical groups in your structure correct? Are some

covalent bonds unnaturally short or long? Is there any mistake in some

specific sites (e.g. two hydrogens attached to the same non–terminal

vinyl or aromatic carbon)? Are there any misplaced, duplicated,

disordered atoms?

- Too many fragments in the asymmetric unit. The maximum allowed

is 20.

- Too many symmetry operations. The maximum allowed is 250.

- Failure in reconstructing terminal H atoms, including methyl groups.

This could be due to problems in defining the correct torsions and could

highlight wrong symmetry operations or misplaced/disordered atoms in

the original structure.

- No H atoms available for N, O or S. Explicit coordinates of H attached

to N, O and S should be always explicitly given in the .cif file; if they

are missing, you should add them manually. The CSD program Mercury

can assist you in doing this.

- Impossible terminal O–O groups. Something is wrong with your

structure: check carefully.

30

1.2 The Retcor interface module
Module Retcor reads a NAME.oih file and prepares a NAME.oeh file with complete ("explicit

hydrogen") coordinates for all atoms. The reason for separating the procedure in two steps is that in this

gives the user a chance to modify the procedure for molecular-model building. Normally Retcif–Retcor–

Retcha are run in blind sequence. Technical details are given in the Appendix, Section A2 and Table

A2.1.

Running command :

run.retcor NAME

run.retcor module (Unix/Linux)

cp $1.oih retcor.oih

~/programs/MiCMoS/exe/retcor

rm $1.oeh

mv retcor.oeh $1.oeh

rm $1cor.pri

mv retcor.pri $1cor.pri

rm $1.dat

mv retcor.dat $1.dat

rm $1.xyz

mv retcor.xyz $1.xyz

rm $1ort.oeh

mv retcor.ort $1ort.oeh

rm retcor.oih

File NAMEcor.pri has a printed description of the procedure. Retcor also checks for subgroups in the

space group: for example if the molecule is centrosymmetric and the molecular center of symmetry

coincides with a crystallographic center of symmetry, the centrosymmetric space group operations will

be deleted in the output oeh file. Care must be taken if atoms are on crystallographic special

positions. Separate action may be needed if the crystal structure contains many units/molecules in

different crystallographic position (e.g. one molecule on a center of symmetry, one on a twofold axis).

Error messages and warnings are issued both on line and on the .pri file.

Apart the main .oeh and .pri files, normal output of Retcor are also:

o A NAME.dat file, suitable for being interpreted by the SchaKal graphics program;

o A NAME.xyz file, to be graphically displayed with Mercury, MolDraw, Vesta…

o A NAMEort.oeh file, with unitary cell and cartesian coordinates (isolated asymmetric unit),

useful to generate liquid phases and solutions (see Part B).

It is advisable to check the result using the generated .dat and .xyz files in a graphics program (Section

5.1.3). Format .dat can be read by SchaKal (E. Keller, https://ekkristufr.neocities.org/schakal.html),

while the more portable .xyz one can be interpreted bessentially by all modern graphical user interface

systems, including Mercury (C. F. Macrae et al., J. Appl. Cryst., 2020, 53, 226-235, DOI:

10.1107/S1600576719014092), Vesta (K. Momma & F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272-

1276) and GaussView (GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam,

Semichem Inc., Shawnee Mission, KS, 2016). Some crystallographic experience may be needed with

crystals with more than one chemical or crystallographic unit, and in unusual space groups. Anyway

https://ekkristufr.neocities.org/schakal.html

31

decades-long experience has shown that Retcif-Retcor can handle 90% of organic crystal structures

without human intervention.

The Retcor module can be used as a molecule model builder. Given the Cartesian coordinates for at

least 3 atoms, the module can build all others by a number of different procedures (trigonal, methylene-

like, pyramidal, or distance-angle torsion). This is thoroughly illustrated in Tutorials and Appendix,

Section A2.

1.3 The Retcha module. Calculation of atomic point charge parameters for atom-atom

potentials
Module Retcha reads a NAME.oeh file without charges and calculates atomic charge parameters from

a Mulliken population analysis on a modified Extended Hückel molecular orbital calculation for closed

shell, neutral molecules (e.g. for zwitterions but not for ions). Original data are saved in NAMEnoq.oeh

and atomic point charges are re-written on NAME.oeh. The EHT Hamiltonian only includes the Valence

Orbital Ionization Potential so the result is just a consequence of relative electronegativities: it is a cheap

and convenient way of assigning a set of neutral point charges. These charges are needed for all

applications using the CLP intermolecular potential energy scheme; they are rescaled by appropriate

factors derived from optimization of the force field. Using other point charges along with the rest of the

CLP formulation is not advisable. The module recognizes only C, H, N, O, F, Cl, Br, I, S, P atoms.

Running command:

run.retcha NAME

Where NAME.oeh is the input .oeh file and the output .oeh file with charges

run.retcha module (Unix/Linux)

rm $1noq.oeh

cp $1.oeh $1noq.oeh

~/programs/MiCMoS/exe/retcha < $1.oeh

rm $1cha.pri

mv retcha.pri $1cha.pri

rm $1.oeh

mv retcha.out $1.oeh

CAUTION: for crystals, if there is more than one fragment in the asymmetric unit (ASU) the Retcha

module renumbers atoms (each unit numbered sequentially). An error message is issued if the

calculation was unsuccessful (unrecognized atoms, open shells, etc.; see file NAMEcha.pri).

32

1.4 The .oih and .oeh structural files
The following is a detailed description, but the prospective user should be aware that in routine

applications the Retcif-Retcor-Retcha sequence is wholly automatic and proceeds in fractions of a

second.

1.4.1 Filename extension .oih

The file .oih contains atomic coordinates and crystal symmetry data (if any), with “implicit” atomic

positions. See Section 1.4.3 for a detailed description of the .oih format. The positions of some atomic

nuclei (not less than three) are given as x,y,z coordinates, while the positions of other nuclei are given

as a series of indicators which allow the calculation of explicit x,y,z coordinates. For molecular structures

derived from X-ray diffraction determinations, this concerns primarily hydrogen atoms. Given the

importance of H-atom positions in crystal energy calculations, this renormalization is integral part of

the parameterization, and therefore mandatory. All force fields have been calibrated using such

renormalized positions.

1.4.2 Filename extension .oeh

Atomic coordinates and crystal symmetry data (if any), explicit x,y,z coordinates for all nuclei including

hydrogens.

CAUTION: For lattice energy calculations, a .oeh file must contain coordinates for a full molecule, so

for crystals in which the asymmetric unit (ASU) is a fraction of the molecule the entire molecule must

be reconstructed (this is the case in CSD .cif files) and the appropriate space subgroup must be used (this

is provided by Retcor).

On the other hand, the reference molecular unit can consist of more than one chemical unit, as for

example in crystals with more than one molecule in the asymmetric unit (ASU), or a dimer made of a

host and guest compound, or a salt with two or more ions (with ionic species, user-supplied point charges

must be used). When the ASU consists of one independent molecule and half a molecule on a center of

symmetry, one must repeat the entire molecule and complete the half molecule (the final file must

contain three molecules).

Each atom type is identified/ in a .oeh file by a code number (Table 1.1, next page). The force field

formulations may distinguish several types of atoms of the same chemical species in different bonding

environments.

33

Table 1.1.
Atomic species code numbers. In Molecular Dynamics, for species 1-9, if the atom code is <0 in the

topology file the atom is assigned the weight of deuterium, 2.0141. Corresponding atomic properties are

listed in Block Data Alldat.for (double precision) or Alldas.for (single precision). van der

Waals radii in Å. See Table A1.3 (Section A1.1) in the Appendix for a list of covalent radii.

 code n. code n.

hydrogen van der Waals radius 1.10 oxygen van der Waals radius 1.58

acetylene CH 1 -O- 23

=(C)H2, aromatic (C)H 2 H2O (water) 24

aliphatic CH, CH2, CH3 3 C=O, COO- 27

R-OH, R-SH alcohol, thiol 5 (C=O)-OH 28

COO-H acid 6 R-OH 29

CO(N)-H amide 7 N=O 30

R2NH, RNH2, (R3N+)H 8 S=O 31

H2O (water) 9 P=O 32

carbon van der Waals radius 1.77 sulfur van der Waals radius 1.81

carbonyl C=(O) 10 -S- 34

≡C- 11 (C)=S 35

sp2 or allene C 12 (O)=S 36

sp3 C 13 R-S(H) 37

aromatic core C 14

nitrogen van der Waals radius 1.64 heteroatoms van der Waals radius

(RnH4-n)N+ 16 P 1.9 38

(RnH3-n)N 17 F 1.46 41

Aromatic N, R=N(H) 18 Cl 1.76 42

-C≡N,-N=N 19 Br 1.87 43

nitro N 20 I 2.03 44

amide N (CONH,CONH2) 21

34

1.4.3 Detailed oih and oeh formats

Section 1, common to oih and oeh:

line 1) formatted field: 1x,10a4,f8.3,f8.1,3x,f5.0,1x,f6.1

• a title line (40 characters);

• crystal exptl. density (if known/needed);

• temperature (in K);

• year of the X–ray determination (if known/needed);

• R-factor (if known/needed). The last four items are supplied by the Retcif module.

From now on, all data in free format.

CAUTION: Recall that in free format a blank is not equivalent to a zero.

line 2) IOPT Dummy entry. Set it to 0. It is here maintained for consistency with previous versions.

line 3) Cell parameters a, b, c,    (if the file refers to a crystal) or metric parameters (if the file refers

to an isolated molecule); in this last case, they may be 1.0 1.0 1.0; 90. 90. 90. and coordinates may

be given in angstrom units.

line 4) sublimation enthalpy of the crystal (if known)

line 5) NATOM, number of atoms with explicit x, y, z coordinates

lines 6) NATOM lines, each with: NUME X, Y, Z MLC ISPEN QRG, where

NUME: atom sequence number: in oih files, atoms need not be input in sequential order;

in .oeh files NUME is a dummy and atoms are numbered sequentially on input;

X, Y, Z: fractional oblique (crystal) or angstrom orthogonal (single molecule) coordinates;

MLC: number of fragment the atom belongs to (e.g. =1 or =2 for a crystal

with two molecules in the ASU or for solute and solvent)

ISPEN: atomic species code number (see Table 1.1);

QRG: atomic point-charge parameter.

line 7) NHYD number of replacement code lines (a .oeh file must have NHYD=0 by

definition)

35

Section 2: only for oih files

Atom placement codes for use in Retcor

In operation from a standard .cif file, all this is automatically provided for hydrogen atoms by the Retcif

module.

lines 8) NHYD code lines, each with:

n1, n2, n3, n4, n5, n6, MLC, ISPEN, QRG, R, TORS, ALPH, where

n1, n2, n3, n4, n5, n6: six identification codes (Figure 1.2 and Table A2.1 in the Appendix).

MLC: number of molecular unit, or fragment, to which atom n1 or n1–n2

belong;

ISPEN: atomic species indicator (Table 1.1);

QRG: atomic point charge parameter (zero if calculation by Retcha is

required);

R: bond distance;

TORS: torsion angle;

ALPH: bond angle as necessary (refer to Figure 1.2).

Section 3, common to oih and oeh:

Space group block

line 9) NPE number of pairs of symmetry lines for a crystal space group

lines 10) NPE pairs of lines:

 equivalent position matrix (identity must be the first).

 equivalent position vector (zero must be the first).

For fractional molecular units in the asymmetric unit, NPE is the

number of equivalent positions in the subgroup; e.g. NPE = 2 for P21/c,

Z=2.

For an isolated molecule NPE=1 and the matrix/vector pair are identity and zero. In normal operation

from a standard cif file, all this is automatically provided by the Retcif module.

Last line(s)

line 11) IL1 Molecular reference system indicator (only for the Pixmt2 or Pretop

modules, see Sections 3.2.5 and 5.4). If IL1=0, coordinates will be

transferred as such in subsequent Pixelc or MC/MD modules (useful to

deal with liquids). If IL1=3, the reference system is changed into the

internal inertial one (normal use for Pixelc).

line 12) NEXTRA Number of non-library 6-12 parameters when the Lennard–Jones–

Coulomb potential is used (IPOTS=1, Section 3.1.2), if needed. Leave

0 if no extra parameters are needed. IPOTS=0 and NEXTRA  0 are

incompatible.

36

If NEXTRA  0, add NEXTRA lines with i, j, A6(i,j),A12(i,j) each. i,j are atom id numbers (same order

in the .oih/.oeh file), A6 and A12 are the coefficients employed in equation (2.6), Section 2.1.2.

Figure 1.2. Geometry of the model building routines in Retcor driven by the codes supplied by the user

or automatically by Retcif. The angles  and  corresponds to parameters ALPH and TORS to be given

in lines 8ff (see above). If n2, n3, n5 and n6 are all zero, atom n1 is re-positioned by changing the n1–n4

distance to the value given in the following parameter R. Shaded atoms are those that are generated from

the automatic building procedure. See Appendix, Section A2 and Table A2.1 for technical description

of how the various cases are handled by the program.

37

1.5 The Statimpa module
Retcif, Retcor and Retcha modules can read a .cif file containing multiple structures, obtaining

eventually a .oeh file with sequentially ordered crystal data (unit cell, atom coordinates and symmetry

operations). If one of the starting modules fails to correctly read or handle a structure (see Section 1.1),

this is skipped but the others are printed regularly. Note that, if you are not interested in specific

structures and you want to collect large databank information, missing a few .cif files is not a serious

problem. Rather, the Retcif–Retcor–Retcha procedure might help you to recognize problematic or wrong

cases.

Dealing with multiple-structure .oeh files is very useful to retrieve massive data on close intermolecular

contacts, particularly hydrogen bonds (see L. Lo Presti, CrystEngComm, 2018, 20, 5976-5989,

https://doi.org/10.1039/C8CE00674A). This can be done using the statimpa.for routine, which applies

periodic boundary conditions to each static crystal structure in the .oeh input file and detects relevant

intermolecular atom-atom contacts, based on purely geometrical criteria. A “contact” is defined for

every atom pair i,j belonging to different molecules, whenever it is satisfied either

(i) 𝑅𝑖𝑗 < 𝑃 ∙ (𝑅𝑖 + 𝑅𝑗)

or

(ii) 𝑅𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗) < 𝑃

Here Rij is the distance between atoms i and j, Ri and Rj are the corresponding standard atomic radii

(SAR, see below), and P is a user defined tolerance parameter. The user is also free to decide which

criterion ((i) or (ii)) will be employed to define “contacts”.

Three libraries of SAR can be selected by the user, namely those by Rowland & Taylor (J. Phys. Chem.,

1996, 100, 7384–7391),1 Alvarez (Dalton Trans., 2013, 42, 8617–8636) or Bondi (J. Phys. Chem., 1964,

68, 441–451). User-defined atomic radii can be also used seamlessly. However, only atoms recognized

by MiCMoS can be analyzed (see Table 1.1).

statimpa.for requires that two service files, radii.par and impa.inp, be present in the working directory.

These are available in a subdir of the Source A directory of the source code

(~/programs/MiCMoS/SourceA/util) and are automatically copied in the working directory by the

run.statimpa command. The user can edit them both, before the program is launched.

The file radii.par looks like

 Rowta Alvar Bondi Usdef

H 1.10 1.20 1.20 0.00

C 1.77 1.77 1.70 0.00

N 1.64 1.66 1.55 0.00

O 1.58 1.50 1.52 0.00

P 1.84 1.90 1.80 0.00

F 1.46 1.46 1.47 0.00

S 1.81 1.89 1.80 0.00

CL 1.76 1.82 1.75 0.00

Br 1.87 1.86 1.85 0.00

I 2.03 2.04 1.98 0.00

1 The SAR of phosphorus was taken from M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer & D. G. Truhlar,

J. Phys. Chem. A 2009, 113, 5806–5812.

https://doi.org/10.1039/C8CE00674A

38

Each column contains the SAR (in Å) for the various chemical species according to Rowland & Taylor

(Rowta), Alvarez (Alvar), Bondi (Bondi). If you want to employ radii from other sources, incuding

your own ones, you must add them in the “Usdef” column. It is wise to edit the master radii.par file

stored in the SourceA/util directory, as this is the file called by the macro when you execute the

program.

The impa.inp file contains specific steering instructions to run the program:

Rowta

0.95 1 2 2 2 0

First row: a5 format, keyword to select the SAR you intend to use. Admitted choices are Rowta,

Alvar, Bondi or Usdef, with the same meaning as above. The program will read the

file radii.par and will store the corresponding set of atomic radii.

Second row: free format, numerical parameters, one floating and 5 integers (atol, iverb, ipack1,

ipack2, ipack3, igave).

atol: the P tolerance parameter in equations (i) and (ii) above.

iverb: verbosity flag to control the amount of output. Zero corresponds to the minimum

printout. If 1, two more output files are written (see below), with explicit interaction

tables for atom-atom contacts and full list of atom types (see Table 1.1) for statistical

purposes. If greater than 1, the full printout is displayed, including atom coordinates,

metric tensors and orthogonalization matrices. iverb=1 is the normal choice.

ipack1, ipack2, ipack3: three packing factors defining integer translations along the unit

cell edges (a, b and c). Atom-atom contacts will be searched around the asymmetric unit

in the supercell defined by ipack1 x a, ipack2 x b, ipack3 x c. In most cases, 2 2 2 works

fine.

igave: Controls whether the equation (i) or (ii) will be employed to define a “contact”.

If =0, the condition is 𝑑𝑖𝑗 < 𝑃 ∙ (𝑅𝑖 + 𝑅𝑗); if =1, the condition is 𝑑𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗) < 𝑃.

Note that the atol parameter P has different meanings depending on the value of igave.

A warning is printed in the ASCII output specifying the scheme that is selected.

The running command is:

run.statimpa NAME

Where NAME is the input NAME.oeh file

The program will copy the necessary files radii.par and impa.inp from the SourceA/util repository

and will automatically try to open them with your associated ASCII text editor. Make sure that .par and

.inp extensions are associated to an appropriate text editor, according with your working environment

(e.g. Wordpad in Windows). In Unix/Linux, the editor vi is used instead.

39

run.statimpa module (Unix/Linux)

rm $1HB.pri

rm $1impa.pri

rm $1tabe.pri

rm $1Bs.pri

rm $1stat.pri

cp $1.oeh statimpa.oeh

cp ~/programs/MiCMoS/SourceA/util/radii.par radii.par

vi radii.par

cp ~/programs/MiCMoS/SourceA/util/impa.inp impa.inp

vi impa.inp

~/programs/MiCMoS/exe/statimpa > $1impa.pri

rm statimpa.oeh

mv HB.out $1HB.pri

mv tabe.out $1tabe.pri

mv Bs.out $1Bs.pri

mv stat.out $1stat.pri

The following output files are produced:

1. NAMEimpa.pri. This is the main output file. After a brief summary of the chemical structure

retrieved from the NAME.oeh databank (CSD refcode, unit cell, input parameters, chemical

formula, symmetry operations), atom-atom contacts are printed. For example, a typical output

looks like:

At. Mol At. Mol d Op Translations Bs%

N 1 H 1 2.5680 1 -1.0 1.0 0.0 1.346

N 1 H 1 1.7914 1 -1.0 1.0 0.0 31.180

O 1 N 1 2.7466 1 1.0 -1.0 0.0 10.212

Where “At” is the atomic specie, “Mol” the molecule ID number, “d” the distance in Å, “Op”

the symmetry operation ID number, “Translations” are the corresponding translations and

“Bs%” is the bond shrinking parameter defined as

𝐵𝑠 = 100 ∙
𝑅𝑖𝑗
0 − 𝑅𝑖𝑗

𝑅𝑖𝑗
0

𝐵𝑠 summarizes the total percent reduction of a specific contact distance, 𝑅𝑖𝑗, with respect to the

corresponding sum of SAR’s, 𝑅𝑖𝑗
0 (see CrystEngComm, 2018, 20, 5976-5989 and references

therein). Then, hydrogen bonds are analyzed in detail:

Number of H bonded contacts found 4

D - - - H (mol) . . . A (mol) Donor group Acceptor group d(D-H) d(H...A) d(D...A) alpha(D-H-A)

O 4 H 34 (1) N 7 (1) -COOH acid N aromatic or =N(H) 1.0000 2.5680 3.3029 130.19

O 4 H 34 (1) N 8 (1) -COOH acid N aromatic or =N(H) 1.0000 1.7914 2.7466 158.55

C 15 H 27 (1) N 7 (1) H aromatic or =CH2 N aromatic or =N(H) 1.0800 2.5498 3.4596 141.35

C 17 H 28 (1) O 3 (1) Aliphatic CH,CH2,CH3 C=O carbonyl 1.0800 2.3052 3.3517 162.66

40

 Finally, the close contact count is summarized:

Total number of close contacts within atol 0.95000 : 6

Total number of H...A contacts: 4

H ...N : 3

H ...O : 1

Total number of other contacts: 2

H ...C : 1

N ...O : 1

Number of atoms that form primary interactions satisfying the Delta limit: 12

H (HB): 4

H (NOT HB): 1

C : 1

N : 4

O : 2

Number of naked (=without acceptors) hydrogens in this structure 8

After the whole databank is scanned, a summary of total number of donor-acceptor contacts, as

well as the corresponding average contact distances Rav (with standard deviations), is printed.

“Nc” stands for number of contacts.

==

Total number of Donor...Acceptor contacts included in the databank

==

Donor Acceptor Nc Rav sigma(Rav)

H aromatic or =CH2 N aromatic or =N(H) 5 2.54149 0.02518

H aromatic or =CH2 C=O carbonyl 32 2.39803 0.01745

Averages over the acceptors are also given:

==

Averages over the whole set of acceptors

==

Acceptor Nc Rav sigma(Rav)

C=O carbonyl 82 2.11540 0.03828

(C=O)-OH Acidic hydroxy 8 2.41939 0.01771

2. NAMEHB.pri. All the hydrogen bonds retrieved from the whole databank are summarized in

this file in the usual DH···A atom sequence. For each interaction, geometrical parameters, CSD

refcode, symmetry operation for the acceptor A, chemical nature of the donor and acceptor

groups are given.

3. NAMEBs.pri. For each intermolecular close contact i-j (not only H bonds), the following

information are given: identity of atoms involved, their distance, order number of the symmetry

operation that produces the atom j, the corresponding translations, the bond shrinking parameter

𝐵𝑠 and the CSD refcode.

4. NAMEtabe.pri. This file is printed only if iverb>0 in the impa.inp input file. A contact matrix

for each structure is printed, which summarizes how many specific atom-atom contacts are set

up across the databank.

5. NAMEstat.pri. This file is printed only if iverb>0 in the impa.inp input file. For statistical

purposes, for each structure the number of atom types is printed. See Table 1.1 for the meaning

of the various atom ID’s.

41

2. Potential energy schemes

2.1 Atom-atom potential forms: CLP and LJC

CLP and LJC are theoretical approaches to the evaluation of intermolecular potential energies, in the

assumption that interaction centers are restricted to atomic nuclear positions and that all energy terms

depend only on distances between them. Energies can be subdivided into a Coulomb-polarization term,

a dispersion term (London) and a repulsion term (depending on electron density overlap, Pauli

exclusion), hence the CLP acronym. The Lennard-Jones-Coulomb LJC approach consists of a unified

polarization-dispersion term plus a repulsion term along with the usual Coulomb electrostatic term.

These potential forms are totally empirical. The evaluation of the lattice energy of a large crystal takes

less than one second, requiring only cell dimensions and atomic nuclear coordinates. Atom-atom

potentials are a useful option for preliminary screening of large databases or for quick calculations of

the order of magnitude of lattice energies of a static crystal; they are the only option for Monte Carlo

and Molecular Dynamics simulation.

2.1.1 CLP potentials

The form of the CLP atom-atom i-j energy is

𝐸(𝑖, 𝑗) = {
1

4𝜋𝜀0
𝐹𝑄𝑞(𝑖) ∙ 𝐹𝑄𝑞(𝑗)

𝑅(𝑖, 𝑗)
} −

𝐹𝑃𝑃(𝑖, 𝑗)

𝑅(𝑖, 𝑗)4
−
𝐹𝐷𝐷(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐹𝑅𝑇(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12
=

= 𝐸(𝐶𝑜𝑢𝑙) −
𝐴4

𝑅(𝑖,𝑗)4
−

𝐴6

𝑅(𝑖,𝑗)6
+

𝐴12

𝑅(𝑖,𝑗)12
 (2.1)

𝛼(𝑒𝑓𝑓) = √{
𝛼𝑖(𝑍𝑣,𝑖−𝑞𝑖)

𝑍𝑣,𝑖
∙
𝛼𝑗(𝑍𝑣,𝑗−𝑞𝑗)

𝑍𝑣,𝑗
} (2.2)

𝑃(𝑖, 𝑗) = 𝛼(𝑒𝑓𝑓) ∙ |𝑞𝑖 ∙ 𝑞𝑗| ()

𝐷(𝑖, 𝑗) = 𝛼(𝑒𝑓𝑓) ∙ 𝑛𝑖𝑛𝑗√𝐼𝑖𝐼𝑗 (2.4)

𝑇(𝑖, 𝑗) = (1 + 𝐻𝐵𝑑𝐻𝐵𝑎)(𝑍𝑣,𝑖 − 𝑞𝑖)(𝑍𝑣,𝑗 − 𝑞𝑗)√(𝐵𝑖𝐵𝑗) (2.5)

 With HBd HBa = 0 if HBd HBa > 0

with q atomic point charges, R atom-atom distances,  atomic polarizabilities, Zv number of valence

electrons, n quantum number of valence orbitals, I atomic ionization potential, B empirical diffuseness

parameters, and H empirical hydrogen-bonding propensity (see Table 2.1). FQ ,FP ,FD ,FR are general

scaling parameters (see Section 3.1.2). The B parameters are assigned using carbon = 1 and decreasing

for more electronegative atoms. The HB parameters are numbers between 0 and 1, negative for acceptors

and positive for donors, so repulsion is greatly reduced over hydrogen-bonding contacts. All data are

stored in the program and potentials are automatically supplied on the basis of the atomic species codes.

The potential 2.1 is then calculated for each pair of atoms in the molecule(s) and stored for future use.

Since 2.2 to 2.5 depend on current atomic charges, the CLP potentials are not assigned for given atomic

types, but are adjusted on the basis of local environment for each molecule. Energies are meaningless if

the .oeh file does not have charges, and warning messages are issued. Charges obtained by methods

other than the Retcha module may give unpredictable results. Standard CLP operation includes a charge

rescaling factor FQ (that can be set = 1 when user-optimized charges are applied).

42

Table 2.1

Properties of atomic species considered in the CLP intermolecular energy scheme. Data are included in

Block Data Alldat.for (double precision) or Alldas.for (single precision).

 indicator atomic

polarizability,

Å3

ionization

potential, a.u.

I° eq. 4.8

space diffusion

parameter

H-bond

propensity factor

hydrogen radius 1.10 0.39 0.500

acetylene CH 1 0.60 0.20

=CH2, arom.CH 2 0.62 0.10

aliphatic

CH, CH2, CH3

3 0.64 0.05

R-OH, R-SH alcohol, thiol 5 0.75 0.99

COO-H acid 6 0.80 0.99

CON)-H amide 7 0.80 0.90

R2NH, RNH2, (R3N+)H 8 0.80 0.99

H2O (water) 9 0.80 0.99

unnormalized hydrogen atom

from Cambridge files

99

carbon 1.77 0.414 1.00 0.00

carbonyl C=(O) 10 1.05

≡C- 11 1.35

sp2 or allene C 12 1.35

sp3 C 13 1.05

aromatic core C 14 1.90

nitrogen 1.64 0.95 0.534

(RnH4-n)N+ 16 0.63 0.00

(RnH3-n)N 17 0.63 -0.97

arom.N, R=N(H) 18 0.58 -0.99

-C≡N,-N=N 19 0.70 -0.70

nitro N 20 0.63 0.00

amide N (CONH,CONH2) 21 0.63 -0.85

oxygen 1.58 0.75 0.500

-O- 23 0.45 -0.90

H2O (water) 24 0.70 -0.99

C=O, COO- 27 0.50 -0.99

(C=O)-OH 28 0.50 -0.90

R-OH 29 0.45 -0.99

N=O 30 0.50 -0.95

S=O 31 0.75 -0.90

P=O 32 0.75 -0.90

sulfur 1.81 3.00 0.381

-S- 34 2.00 -0.5

(C)=S 35 2.00 -0.5

(O)=S 36 2.50 0.0

R-S(H) 37 2.00 -0.5

heteroatoms

P 1.9 38 1.54 0.386 3.0 0

AS 1.8 39 3.5 0.400 5.0 0

Se 1.8 40 3.5 0.400 6.0 0

F 1.46 41 0.55 0.640 0.20 0.00

Cl 1.76 42 2.50 0.477 2.40 -0.20

Br 1.87 43 3.27 0.434 1.50 0.00

I 2.03 44 5.00 0.384 5.00 0.00

43

Table 2.1b
Further atomic species.

 indicator atomic

polarizability,

Å3

ionization

potential, a.u.

space diffusion

parameter

H-bond

propensity factor

transition

metals*

Ti 51 4.18 0.25 0.80 -0.5

V 52 3.31 0.25

Cr 53 2.86 0.25

Mn 54 2.93 0.27

Fe 55 2.81 0.29

Co 56 2.62 0.29

Ni 57 2.61 0.28

Cu 58 2.81 0.285

Zn 59 3.63 0.345

positive ions**

Li+ 61 0.10 1.00 0.2 0.0

Na+ 62 0.20 0.85 0.3

K+ 63 0.30 0.70 1.5

Rb+ 64 0.40 0.50 3.0

Cs+ 65 0.30 0.45 5.0

Ca+ 66 0.70 0.70 1.5

negative ions

F- 67 0.40 0.75 0.5

Cl- 68 2.50 0.65 3.0

Br- 69 3.27 0.50 4.0

I- 70 5.00 0.40 5.0

*Optimized: A.G.P. Maloney, P. A. Wood and S. Parsons, CrystEngComm 2015, 17, 9300–9310

** Tentative values: J. D. Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357–366.

2.1.2 LJC potentials

The form of the LJC potential is:

𝐸(𝑖, 𝑗) =
1

4𝜋𝜀0

𝑞(𝑖) ∙ 𝑞(𝑗)

𝑅(𝑖, 𝑗)
−
𝐴6(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐴12(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12
= (2.6)

= 𝐸(𝐶𝑜𝑢𝑙) −
𝐴6(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐴12(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12

A library of A6 and A12 parameters for the most common atomic species are supplied (Table 2.2). They

have been optimized using high-level point charges qi from an MP2/6-31G** wavefunction (see J. D.

Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357–366,

https://doi.org/10.1021/cg401646t). Use of cheaper charges may lead to unpredictable results. User

defined parameters and charges can be accepted, allowing the use of literature potential energy schemes.

The LJC potentials were also recently implemented in the Molecular Dynamics module (see A.

Gavezzotti, L. Lo Presti, S. Rizzato, CrystEngComm 2020, 22, 7350–7360

https://doi.org/10.1039/D0CE00334D).

https://doi.org/10.1021/cg401646t
https://doi.org/10.1039/D0CE00334D

44

Table 2.2

A6 and A12 library parameters for the LJC potential scheme. Cross interactions should be derived by

the geometrical mean rule. Data are included in Block Data alldat.for (double precision) or

alldas.for (single precision) but can be updated by the user. The coefficients are consistent with

distances in Å and energies in kJ/mol.

2.2 The PIXEL form

Intermolecular energies for crystals are calculated as numerical integrals over a large number (20,000

for a typical medium-size organic molecule) of electron-density units (“pixels”, hence the name,

although it has been correctly pointed out that they should be called “voxels”). The method requires one

ab initio molecular orbital calculation (for which programs are not supplied) to prepare the molecular

electron density in the form of discrete points on a grid. The calculation of the lattice energy for the

crystal of a medium size organic molecule (25 atoms) then takes some15 minutes. Use of this scheme

in Monte Carlo or Molecular Dynamics simulation, where energies must be evaluated millions of times,

is obviously impossible.

Atomic specie A6 A12

hydrogen non h-bonding 73.8 14500.0

hydrogen H-bonding 0 0

carbon any 2280.0 4.5600d+06

nitrogen any 2200.0 2.32d+06

oxygen any 1650.0 1.22d+06

water oxygen 2470.0 2.27d+06

sulfur any 10000.0 1.3d+07

Fluorine 1080.0 7.6d+05

Chlorine 6400.0 7.65d+06

Bromine 11900.0 1.58d+07

iodine (tentative) =A6(Br)·1.2 =A12(Br)·1.2

45

3. Lattice energy calculation modules

Figure 3.1 Block diagram of the modules for crystal lattice-energy calculations. All modules use a rigid

molecular unit and there is no evaluation of intramolecular energies.

3.1 The Crysaa module
Crystal lattice energies by CLP or LJC atom-atom potentials

Running command :

run.crysaa NAME

where NAME.oeh is the input file with one or many sets of crystal structure data; output is in

NAMEcry.pri.

run.crysaa module (Unix/Linux)

~/programs/MiCMoS/exe/crysaa <$1.oeh

rm $1cry.pri

mv cryout.pri $1cry.pri

46

3.1.1 General description of crysaa

Module Crysaa reads a NAME.oeh file with crystal coordinates of one reference molecular group

(RMG). A molecular group can consist of a single molecule or of several molecules. A model of the

crystal is constructed by forming a cluster of molecules using the symmetry operations of the space

group. The program reads a parameter, Vecmax, and calculates Na = Vecmax/a +2; all integer ti cell

translation from –Na to +Na are considered, thus forming a parallelepiped of repeated cells of dimensions

2Na+1, where a is any of the three cell edges. A translation vector Tabc = ta·a + tb·b + tc·c identifies a

translated unit cell. The program loops over translation vectors Tabc and over equivalent positions within

the cell, generating a number of surrounding molecular groups (SMG). Whole SMGs are always

included in the lattice energy summations, if the distance between SMG and RMG centers of mass is

below Vmax; using cutoffs on atom-atom distances cuts off parts of molecules and leads to charge

imbalance and lack of convergence. For atom-atom calculations, a typical value of Vmax is 40-100 Å,

but it is very easy to perform calculations with Vmax = 500 or even 1000 Å. Inclusion of 50,000,000

molecules in the cluster is quite affordable, although mostly useless because convergence is reached at

much shorter ranges.

The program calculates lattice energies and separate pairwise energies between molecules in the cluster,

E(mol-mol). These can be useful in deciding which are the most cohesive interactions in the crystal.

Crysaa performs a structure check for unreasonable intermolecular distances, destabilizing energies,

wrong crystal densities (< 0.7 g·cm–3), wrong charge balance, or other patent errors. Error messages are

printed in the output file NAMEcry.pri. Note that some 10-20% of entries in the Cambridge Structural

Database contain errors in atomic coordinates, space group, etc., or unnoticed disorder, or other kinds

of inconsistencies that prevent the calculation of lattice energies.

3.1.2 Running parameters, file crypar.par

Some parameters are in a separate file, crypar.par, supplied by the user once for all the crystal structure

set when dealing with many crystal structures at a time. This file must reside in the same directory as

the oeh file; if the file is not present, defaults will be assumed. The file contains:

line 1) IPRI IPOTS

• IPRI 0 or 1 controls the level of output

• IPOTS =0 CLP potentials, =1 LJC potentials (default =0)

line 2) FQ, FP, FD, FR actual values needed only if IPOTS=0; otherwise set zero

These are the four coefficient in equation (2.1) for scaling point charges, polarization, dispersion

and repulsion terms. Universal values are suggested, but fine tuning over classes of compounds

is possible. Defaults: 0.41, 235, 650, 77000.

line 3)

• VECMAX translation search parameter, default 40 Å

• EWRONG a warning message is issued if any E(mol-mol) > EWRONG, def. +2 kJ/mol

• ELIMIT E(mol-mol) is printed if abs(E) > ELIMIT, def. 3 kJ/mol

• CONLIM atom-atom distance is printed if less than conlim times sum of atomic radii

(Table 1.1); default = 0.9

• RPLIMI E(mol-mol) is printed only if distance between centers of mass is < RPLIMI

47

3.1.3 Lattice energies

When there is only one unit in the RMG, the total intermolecular non-bonded potential energy of the

molecule in the crystal cluster is calculated as:

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = ∑ ∑ 𝐸(𝑖, 𝑗)𝑗𝑖 (3.1)

𝐸(𝑙𝑎𝑡𝑡) = −∆𝐻(𝑠𝑢𝑏𝑙) = 1 2⁄ 𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) (3.2)

where i labels any atom in the RMG and j labels any atom in any SMG. E(pot,tot) is the potential energy

of one mole of molecules in the crystal, while ½ E(pot,tot) is the gain in energy when one mole of

molecules at infinity are brought into contact in the crystal (the computational equivalent of the

sublimation energy). The Coulombic part of the sums does not converge properly only for structures

with a large cell dipole in polar space groups (see below).

If there are n molecular units in the asymmetric unit (ASU), E(pot,tot) = E+E'+E''+..., where E is the

equivalent of equation (3.1) for the packing of the whole cluster of n molecular units all together, each

interacting with all the other symmetry–dependent clusters. E', E''... are instead the energies between

units1-2, 1-3...1-n, 2-3, 2-4,...2-n, ... n-n. For example, for three molecules in the ASU:

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = 𝐸 + 𝐸(1,2) + 𝐸(1,3) + 𝐸(2,3) (3.3)

𝐸(𝑙𝑎𝑡𝑡𝑖𝑐𝑒) = 1 2⁄ 𝐸 + 𝐸(1,2) + 𝐸(1,3) + 𝐸(2,3) (3.4)

Eq. (3.4) is the lattice energy of a mole of three units; if they are all equal, the true sublimation energy

per mole is H(subl) = –E(lattice)/3. If the units are different, like for example in an A-B molecular

complex:

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = 𝐸 + 𝐸(𝐴, 𝐵) (3.5)

𝐸(𝑙𝑎𝑡𝑡𝑖𝑐𝑒) = −∆𝐻(𝑠𝑢𝑏𝑙) = 1 2⁄ 𝐸 + 𝐸(𝐴, 𝐵) (3.6)

(3.6) is the computational equivalent of the heat of sublimation for one mole of complexes bound in the

crystal to one mole of A and one mole of B separated in the gaseous state.

Crysaa always writes energies "per entire molecule in asymm. unit"; if all molecules are equal, this is

the heat of sublimation per mole; if units are different, multiply by the number of units in the ASU, n.

3.1.4 Intermolecular analysis

Crysaa provides also the following intermolecular information:

1) For each atom of the RMG:

- all short intermolecular atom-atom distances, including hydrogen bonds;

2) For each nearest neighbour molecular pair in the crystal:

- distance from center of mass of each unit in the SMG to center of mass of each unit in the RMG and

molecule-molecule interaction energy.

48

3.1.5 Coulomb sums in polar space groups

In polar space groups the calculation of Coulombic energies is critical because the lattice sums either

are non-convergent, or, more fundamentally, because the method of summing all contacts to a central

molecule becomes inadequate. Surface/termination effects become important and the Coulombic energy

may in principle depend also on the shape of the crystal (e.g, influencing comparisons between

polymorphs, crystal structure predictions, etc.) although this complication is usually neglected.

Increasing the cutoff distance in the summations will not help. The problem is significant only when the

molecule has a large dipole oriented along the polar direction. An easy but not exhaustive way of

spotting a polar direction is to examine the translation vectors in the unit cell symmetry operations: any

direction t for which there is no inversion of the t-coordinate is a polar direction (e.g. y in P21, z in Pna21,

all three directions in P1). A centrosymmetric crystal structure is obviously non polar.

The calculated Coulombic energy is underestimated, and a correction must be applied; this can be done

by Ewald-Bertaut reciprocal space methods (Williams, D.E., Acta Cryst. 1971, A27, 452–455), of

considerable mathematical complexity. An alternative real-space method has been proposed (Kroon, J.

and van Eijck, B.P., J. Phys. Chem. 1997, B101, 1096–1100), based on the assumption that the cutoff

sphere is large enough that the surface cells can be seen as dipoles, and that the molecules at the surface

of the cutoff sphere can be treated as a uniform distribution of dipoles. Integration of the dipole-dipole

energies leads to the dipole correction energy per molecule (kJ/mol):

 𝐸(𝑐𝑒𝑙𝑙, 𝑑𝑖𝑝) = −1389.355
2𝜋

𝜇2
(3𝑁𝑉𝑐𝑒𝑙𝑙) (3.7)

where Vcell is the cell volume, N is the number of molecules in the cell, and  is the module of the cell

dipole moment vector, in electron·Å units. This correction energy has been checked to correspond very

nearly to the Ewald sum result in test cases and should be summed to the Coulombic lattice energy

calculated at the current cutoff.

Crysaa calculates the molecular dipole vector as the vector joining the centroid of positive charges (d(+))

to the centroid of negative charges (d(–)):

𝒅(+) =
∑ 𝒙𝒊𝑞𝑖(+)𝑖

∑ 𝑞𝑖(+)𝑖

𝒅(−) =
∑ 𝒙𝒊𝑞𝑖(−)𝑖

∑ 𝑞𝑖(−)𝑖

} (3.8)

Σi qi(+), that should be equal to Σi qi(–), is the total dipole charge. The molecular dipole moment is then:

𝑫 = [𝒅(+) − 𝒅(−)] ∙ ∑ 𝑞𝑖(+)𝑖 (3.9)

and the total cell dipole is the vector sum over all N molecules in the cell:

𝝁 = ∑ 𝑫𝒌
𝑁
𝑘=1 (3.10)

Extensive experience on uncharged molecular species indicate that this correction seldom exceeds a few

kJ/mol, but the problem becomes acute with ionic or zwitterionic species, a typical example being the

crystals of natural L-aminoacids.

For a test, the Coulombic energies of glycine have been computed (in kJ/mol) by the two methods with

the following results:

49

Reference –glycine –glycine –glycine Method

Van Ejick-Kroon1 –234.8 –239.5 –232.3 40 Å cutoff + equation (3.7)

Other Literature2 –235.0 –239.5 –231.5 Ewald summation
1 Kroon, J. and van Eijck, B.P., J. Phys. Chem. 1997, B101, 1096–1100.
2 See Voogd, J.; Derissen, J. L.; Van Duijneveldt, F. B., J. Am. Chem. Soc. 1981, 103, 7701–7706; Jönsson, P.–G., Kvick, Å, Acta Crystallogr.

1972, B28, 1827–1833; Iitaka, Y. Acta Crystallogr. 1960, B13 35–45, Kvick, Å; Canning, W. M.; Koetzle, T. F.; Williams, G. J. B. Acta

Crystallogr. 1980, B36, 115–120.

Dipole moments are usually given in Debye units, 1 Debye = 10-18 esu cm, with 1 esu = 1 StatCoulomb.

The conversion factor is 1 C = 2.9979 109 StatCoulomb, the factor being 10 times the speed of light.

Using the charge of the electron in Coulomb, the final conversion factor is 1 electron·Å angstrom =

4.80318 Debye. The cell dipole energy is summed into the Coulombic energy calculated by ordinary

lattice sums.

50

3.2 The Pixelc module: Calculation of intermolecular energies by the PIXEL method

The PIXEL model allows the calculation of intermolecular energies by a distributed charge description.

The model requires a preliminary evaluation of the molecular charge density by some quantum chemical

method, presented in the form of a numerical grid; presently, all modules are designed to read the CUBE

output of the GAUSSIAN package but adaptation to other density outputs is relatively easy.

3.2.1 Perspective

The PIXEL calculation of intermolecular interaction energies rests upon a representation of a molecular

object with a large collection of electron density points ("pixels") instead of just a limited set of nuclear

positions as is done in the atom-atom approach. Interactions are then to be computed as discrete sums

of pixel-pixel contributions. The Coulombic integral results in interaction energies almost

undistinguishable from those obtained by analytical integration. For the calculation of polarization and

dispersion energies as pixel-pixel sums, the key approach is the estimation of distributed ionization

potentials and polarizabilities in an empirical way. Repulsion energies use numerical overlap integrals

partitioned over atomic species and a coefficient depending on the difference between

electronegativities, the concept being that atom pairs where the difference is large must show some

amount of intermolecular chemical "bonding".

3.2.1.1 Full list of bibliographic references

For more information and practical applications,

see:
• Gavezzotti, A. J. Phys. Chem. 2002, B106, 4145–4154;

• Gavezzotti, A, J. Phys. Chem. 2003, B107, 2344–2353;

• Gavezzotti, A. J. Chem. Theor. Comput. 2005, 1, 834–

840;

• Gavezzotti, A. Z. Krist. 2005, 220, 499–510;

• Gavezzotti, A. In: Newsletter nov. 2006, International

Union of Crystallography, Commission for

Crystallographic Computing (Chair: A.L.Spek), pp. 45-

58;http://www.iucr.org/resources/commissions/crystall

ographic-computing/newsletters/7

• Maschio, L. et al. J. Phys. Chem. A2011, 115, 11179-

11186;

• Dunitz, J. D. & Gavezzotti, A. Cryst. Growth Des.

2012, 12, 5873-5877;

• Dunitz J.D. et al. Cryst. Growth Des. 2014, 14, 357-

366;

• Colombo V. et al. CrystEngComm 2017, 19, 2413-

2423;

• Carlucci, L. & Gavezzotti, A. Phys. Chem. Chem. Phys.

2017, 19, 18383-18388;

• Gavezzotti, A. et al. Cryst. Growth Des. 2018, 18,

7219-7227;

• Chickos, J. S. & Gavezzotti, A. Cryst. Growth Des.

2019, 19, 6566−6576;

• Gavezzotti, A. Mol. Phys. 2008, 106, 1473–1485;

• Gavezzotti, A. Molecular aggregation, Structure

analysis and molecular simulation of crystals and

liquids, Oxford University Press, Oxford 2007, Chapter

12.;

• Dunitz, J. D. and Schweizer, W. B. Chem. Eur. J. 2006,

12, 6804–6815;

• Gavezzotti, A. and Eckhardt, C. J. J. Phys. Chem. 2007,

B111, 3430–3437;

• Schweizer, W.B. and Dunitz, J.D. J. Chem. Theor.

Comp. 2006, 2, 288–291;

• Gavezzotti, A. Acta Crystallogr. 2010, B66, 396-406.

• Gavezzotti, A. & Dunitz, J.D. J. Phys. Chem. B, 2012,

116, 6740–6750.

http://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/7
http://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/7

3.2.2 PIXEL Theory

Consider a molecule (1) with nuclei of charge Zj at points (j) = [xj yj zj]. Let k be the electron density in

an elementary volume Vk centered at point (k) = [xk yk zk]. k is usually derived from MP2/6-31G**

wavefunctions, but less demanding basis sets are acceptable for large molecules. Each e-pixel has charge

qk = k Vk. In an usual MO calculation for a medium size organic molecule, with typical steps of 0.08

Ǻ, one has some 106 pixels, too many for practical use; the distribution is then contracted into n x n x n

super-pixels, n being called the contraction level. Each pixel is assigned to a particular atom in the

molecule, as follows. Let p be the number of atoms for which the nucleus-pixel distance is smaller than

the atomic radius. If p=1, the pixel is assigned to that atom (Figure 3.1, case A, nucleus a). If p > 1, the

pixel is assigned to the atom from which the distance is the smallest fraction of the atomic radius (case

B, nucleus b). If p = 0, the pixel is assigned to the atom whose atomic surface is nearest (case C, nucleus

c).

Figure 3.1. Allotment of electron density points to atomic spheres.

3.2.2.1 Calculation of the Coulombic Energy

Consider now a second molecule, 2 with nuclei of charge Zm at points (m) = [xm ym zm], and whose e-

pixels of charge qi = i Vi are at positions (i) = [xi yi zi]. Let Rln be the distance between any two centers

of pixels or nuclear positions l and n; the electrostatic potential i generated by molecule 1 at point (i)

of the charge density of molecule 2 and that generated by molecule 1 at nucleus m of molecule 2, m ,

with the corresponding Coulombic potential energies Ei and Em, are respectively:

Φ𝑖 =
1

4𝜋𝜀0
[∑

𝑞𝑘

𝑅𝑖𝑘
+𝑘 ∑

𝑍𝑗

𝑅𝑖𝑗
𝑗] ; 𝐸𝑖 = 𝑞𝑖Φ𝑖 (3.11a)

Φ𝑚 =
1

4𝜋𝜀0
[∑

𝑞𝑘

𝑅𝑘𝑚
+𝑘 ∑

𝑍𝑗

𝑅𝑗𝑚
𝑗] ; 𝐸𝑚 = 𝑍𝑚Φ𝑚 (3.11b)

E𝐶𝑜𝑢𝑙,1−2 = ∑ 𝐸𝑖 +𝑖 ∑ 𝐸𝑚𝑚 (3.11c)

When e-pixels of two approaching molecules overlap, besides the un-physical aspect of the matter,

numerical singularities in the R-1 dependence may result for very short pixel-pixel distances; all pixel-

pixel distances shorter than half the stepsize of the pixel mesh are reset at half the stepsize (the 'collision

avoidance' procedure). For the Coulombic energy of a crystal of polar molecules in a polar space group

the van Eijck correction of eq. 3.7 is calculated using the nuclei as positive charges, and the electron

charge pixels as negative charges. Interestingly, molecular dipoles calculated by eqs. (3.8) (3.9) are

identical to the dipoles calculated by the GAUSSIAN program. E(cell dip) is added into the total PIXEL

energy.

52

3.2.2.2. Calculation of the polarization energy

Let i be the total electric field exerted by surrounding molecules at pixel i, i the polarizability at pixel

i, and i the dipole induced at pixel i by that field. The linear polarization energy is:

𝐸𝑃𝑜𝑙,𝑖 = −
1

2
𝜇𝑖𝜀𝑖 = −

1

2
𝛼𝑖𝜀𝑖

2 (3.12)

i is empirically approximated in the PIXEL scheme as i = (qi/Zatom) atom, where Zatom and atom are

the atomic charge and polarizability of the atom to whose basin the pixel belongs (Figure 3.1 and Tables

2.1 and 2.2). The sum of i 's is equal to the total volume polarizability of the molecule.

As before, when e-pixels of two molecules overlap, pixel-pixel distances are subjected to the 'collision

avoidance' scheme (see above); then, the polarization energy at pixel i is damped as:

𝐸𝑃𝑜𝑙,𝑖 = −
1

2
𝛼𝑖[𝜀𝑖𝑑𝑖]

2; 𝜀 ≤ 𝜀𝑚𝑎𝑥

𝐸𝑃𝑜𝑙,𝑖 = 0; 𝜀 > 𝜀𝑚𝑎𝑥

𝑑 𝑖 = 𝑒
−[

𝜀𝑖
(𝜀𝑚𝑎𝑥−𝜀𝑖)

]

}

 (3.13)

Where max , the limiting field, is an adjustable empirical parameter in the formulation. The total

polarization energy at a molecule is the sum of polarization energies at each of its electron density pixels,

EPol,TOT =  EPol,i .

3.2.2.3. Calculation of dispersion energies

Dispersion energies are calculated as a sum of pixel-pixel terms in a London-type expression:

𝐸𝐷𝑖𝑠𝑝,1−2 = −
3

4
∑ ∑

𝐸OS∙𝑓(𝑅)∙𝛼𝑖∙𝛼𝑗

(4𝜋𝜀0)2(𝑅𝑖𝑗)
6𝑗,2𝑖,1

𝑓(𝑅) = 𝑒𝑥𝑝 [−(
𝐷

𝑅𝑖𝑗
− 1)

2

] for 𝑅𝑖𝑗 < 𝐷
}

 (3.14)

where D is an adjustable empirical parameter with measure units of length. EOS is the 'oscillator strength'.

It is empirically approximated by considering each pixel as a separate oscillator, with a formal ionization

potential Ii, which in turn is a function of the ionization potential, I° of the atom to whose basin the pixel

belongs, and of the distance between the pixel and the atomic nucleus, Ri:

𝐸OS = √(𝐼𝑖 ∙ 𝐼𝑗)

𝐼𝑖 = 𝐼
o𝑒−𝛽∙𝑅𝑖

} (3.15)

The empirical parameter  is a function of the atom type (see Table 2.1a).

3.2.2.4. Calculation of the repulsion energy

For the repulsion energy, the total charge density overlap integral between molecules 1 and 2 is

subdivided into contributions from pairs of atomic species m and n, Smn. The expressions are:

𝑆1−2 = ∑ ∑ [𝜌𝑖(1) ∙ 𝜌𝑗(2)] ∙ 𝑉 = ∑ ∑ 𝑆𝑚𝑛𝑗,2𝑖,1𝑗,2𝑖,1

𝐸Rep,𝑚𝑛 = (𝐾1 − 𝐾2∆𝜒𝑚𝑛) ∙ 𝑆𝑚𝑛
} (3.16)

53

where mn is the corresponding difference in Pauling electronegativity. K1 and and K2 are positive

disposable parameters. For atoms with Z >30 (in this case Br and I) the presence of the d-electrons in

the valence shell produces larger overlap and hence a slight (8%) decrease in K1 is introduced. The

total repulsion energy is the sum over all m-n pairs, 𝐸Rep,tot = ∑ 𝐸Rep,𝑚𝑛𝑚,𝑛 .

The total charge density overlap integral between molecules A and B is calculated over the original

uncontracted charge densities. Therefore, the repulsion energy does not depend on the contraction level.

CAUTION: The integration is done numerically by counting all pairs of overlapping charge density

elements, for each of which the integral is (i)·(j)·dV, dV being the charge density elementary volume.

The procedure is sensitive to the stepsize and to the accuracy of symmetry transformations. Pairs of

symmetry-related molecules in crystals may have slightly different repulsion energies (0.5-1.0 kJ/mol).

3.2.2.5. Calculation of the total interaction energy

The total intermolecular Pixel interaction energy is:

𝐸Tot = 𝐸Coul + 𝐸Pol + 𝐸Disp + 𝐸Rep (3.17)

In the above formula, ECoul should be corrected by the cell dipole energy of equation (3.7).

The empirical parameters in the PIXEL formulation, that is, max, D, K1 and K2, were optimized

considering (i) the agreement between calculated lattice energies and experimental heats of sublimation

for organic crystals, (ii) interaction energies between molecular dimers in comparison with ab initio

calculations, and (iii) qualitative agreement between PIXEL partitioned energies and Intermolecular

Perturbation Theory (IMPT) partitioned energies.

CAUTION: The numbers are max = 150 1010 V m-1 in eq. (3.13), D = 3.0 Å in eq. (3.14), K1 = 4800

and K2 = 1200 in eq. (3.16) for energies in kJ mol-1 with electron densities in electrons Å–3. While these

are suggested as universal parameters, very minor adjustments can be made to fit any desired

thermochemical or structural property of the particular system under investigation, without substantial

loss of physical realism.

Coulombic, dispersion and repulsion energies are pairwise additive and hence can be subdivided into

contributions from two molecules in the asymmetric unit (ASU). Polarization energies are not pairwise

additive as they depend on the overall crystal electric field (for more detail see A. Gavezzotti,

CrystEngComm 2008, 10, 389). Polarization energies over molecular pairs do not add up exactly to total

lattice polarization energies.

3.2.3 General layout

The Pixel module calculates coulombic, polarization, dispersion and repulsion energies between

separate, rigid molecules.

54

CAUTION: No intramolecular energies are calculated. The reference coordinate frame for position of

atomic nuclei and of electron density pixels is the one used in the GAUSSIAN calculation. The

procedure applies to a crystal with one (A) or two (A and B) molecular species, one or two molecules

per asymmetric unit (ASU), and there is no way of extending it to more fragments.

Module Pixmt2 reads an .oeh file and calculates the matrix/vector operations that transform from the

molecular reference frame to coordinates in the crystal structure (see 3.2.9) and prepares an input file to

GAUSSIAN (extension .gjf) with appropriate limits for the electron density cube, and the input file to

PIXEL (extension .inp). As in the atom-atom modules (see Section 3.1 above), molecules in the cluster

that represent the crystal structure are obtained by space group symmetry operations, subject to a cutoff

distance between centers of mass of reference and surrounding molecules.

3.2.4 Program inputs and outputs

The input to PIXEL consists of:

1) an electron density file for the A molecule, and one for the B molecule if any, extension .den; these

should come from a GAUSSIAN calculation which in turn requires an input file, extension gjf. The .den

file is in the usual .cube format and can be also produced by running the formchk and cubegen ancillary

programs of the GAUSSIAN package (see Section 3.2.5 below).

2) a file with atomic parameters, extension .inp.

3) a file (pixpar.par) with the parameters of the theory.

The outputs are a printout file with the results of the calculation, extension .pri, and a file with molecule-

molecule energies, extension .mlc.

3.2.5 How to run a PIXEL calculation

1) Prepare a molecular model for the A molecule (x,y,z coordinates) and set up a oeh file. This could be

the output of Retcif-Retcor ;

2) Run module Pixmt2: the running command is

run.pixmt2 NAME (for file NAME.oeh)

run.pixmt2 module (Unix/Linux)

~/programs/MiCMoS/exe/pixmt2 <$1.oeh

rm $1.gjf

mv pixmt2.gjf $1.gjf

rm $1.inp

mv pixmt2.inp $1.inp

Pixmt2 transforms from coordinates (.oeh) to local reference systems in the .gjf file. The final entry in

the .oeh file (IL1, see also at the end of Section 1.4.3) can be zero, in which case the coordinates are left

as they are, or = 3, in which case the coordinates are transformed to the inertial reference frame (normal

55

use). PIXEL will then apply the appropriate transformations to prepare the cluster of molecules for the

actual calculation on crystals. Pixmt2 will also generate a NAME.inp file for PIXEL input, including for

the crystal case, also the matrix/vector M2/t2 pair that relate the reference system of the unit cell with the

one of the molecular inertial axes (see Section 3.2.8 and Appendix, Sections A3 and A4).

3) Run GAUSSIAN for the electron density calculation. Pixmt2 prepares a .gjf input file that can be

directly read by the program. If a different MO package is used, the input data and the output electron

density file must be converted accordingly (see Appendix, Section A5 for a description of the .den

density file format).

Typically, the main input string is written as follows:

#MP2/6-31G** guess=core nosym density=MP2 pop=esp cube=cards

cube=frozencore

The keyword cube=cards requires that specific instructions to generate the cube density file (Appendix,

Section A5) be read just after the atom coordinates block, as follows:

<blank line>

Path_to_locate_density_file

N0 X0 Y0 Z0

N1 X1 Y1 Z1

N2 X2 Y2 Z2

N3 X3 Y3 Z3

<blank line>

where N0 is a format flag that should be set equal to 0, X0, Y0 and Y0 are the coordinates of the initial

grid point in bohr, and Nn, Xn, Yn, Zn the number of points and step sizes along the three Cartesian

axes. See https://gaussian.com/cubegen/ for more information. “Path_to_locate_density_file” must be

replaced by the full path of the directory where the density file should be placed, such as, for example,

c:\users\yourname\yourjob.den for Windows users or ~/yourdirectory/yourjob.den for Linux/Unix

users.

CAUTION: The last blank line below this set of instructions is mandatory. Otherwise, the program will

end with an error message after the SCF procedure without printing the density!

Normal use requires a valence only density (cube=frozencore), which in the recent releases of the

program is the default calculation mode for post–Hartree–Fock Hamiltonians. It implies that inner–shell

electrons do not contribute to the total correlation. More information (and options) can be found in the

GAUSSIAN manual (https://gaussian.com/frozencore/). Please notice that the NoSym option must be

chosen, so the automatic symmetry recognition and consequent, further transformations operated by

GAUSSIAN are suppressed (M1 = identity matrix, t1 = 0, see Section 3.2.7 and Section A4 in the

Appendix).

CAUTION: The above-described procedure is recommended. However, the .gjf input file makes use

of some obsolete/deprecated keywords (have a look at https://gaussian.com/obsolete/), in particular

pop=esp and cube. Luckily, the current (2016) release of GAUSSIAN is still able to correctly handle

these keywords. Future program developments might make the whole procedure obsolete, though.

https://gaussian.com/cubegen/
https://gaussian.com/frozencore/
https://gaussian.com/obsolete/

56

We here provide an alternative procedure, that employs up–to–date program commands and strings.

First, pop=esp should be replaced by the equivalent pop=MK one. This implies that, if the density=MP2

keyword is also specified, atomic charges are evaluated by fitting the MP2–derived electrostatic

potential at the points of a grid defined according to Mertz & Kollman (B. H. Besler, K. M. Mertz, P.

A. Kollman, J. Comput. Chem. 1990, 11, 431–439). See https://gaussian.com/population/ for more

information. Second, you should explicitly require that the checkpoint file be written. Third, the “cube=”

instructions must be omitted, as well as the corresponding cube card strings after the atom coordinates

input block. In summary, the typical GAUSSIAN input command line should now look something like:

%Chk=yourjob.chk

#MP2/6-31G** guess=core nosym density=MP2 pop=MK

After the calculation is complete, you should call the ancillary program formchk to format the checkpoint

file according to:

formchk yourjob.chk yourjob.fchk

Finally, the density file can be produced by the cubegen routine:

cubegen n density=MP2 yourjob.fchk yourjob.den -3 h

Where n is the number of processors you choose to employ, density=MP2 calls for the Møller–Plesset

density, .fchk and .den are the input and output files, –3 is a flag corresponding to a medium–spaced grid

(6 points/bohr) and h is a flag to include the header in the density cube file. More information can be

found at https://gaussian.com/cubegen/.

The two procedures for generating the density grid file give the same cohesive energies within ~2 kJ/mol

(0.5 kcal/mol) per ASU. For example, the energies of the P212121 polymorph of naphthalene are as

follows:

Procedure ECoul EPol EDisp ERep ETot

recommended -29.6 -11.9 -94.9 53.6 -82.8

formchk+cubegen -31.1 -12.4 -95.0 54.2 -84.4

Incidentally, this dependence on grid shape is another of the many computational uncertainty factors

that may well be of the same order of magnitude as differences between crystal polymorphs.

4) Repeat steps 1-3 for the B molecule if needed.

5) Prepare the parameter file, pixpar.par (see Section 3.2.6).

6) Run PIXEL making sure that all necessary data are in the same directory.

Pixel running command (make sure file pixpar.par is present, see Section 3.2.6):

run.pixelc name1 name2 name3 name4

Where name1–name4 have the following meaning:

- name1.inp line input file

https://gaussian.com/population/
https://gaussian.com/cubegen/

57

- name2pix.pri printout with energies

- name2.mlc .mlc file with molecule-molecule energies

- name3.den A-molecule electron density file

- name4.den B-molecule electron density file

(name4=blank if there is only one molecular species in the calculation)

run.pixelc module (Unix/Linux)

rm fort.*

cp pixpar.par pixel.pmt

cp $1.inp pixel.inp

cp $3.den solu.den

cp $4.den solv.den

~/programs/MiCMoS/exe/pixelc

rm $2pix.pri

mv pixel.oxp $2pix.pri

rm $2.mlc

mv pixel.mlc $2.mlc

rm fort.*

rm solu.den

rm solv.den

rm pixel.pmt

rm pixel.inp

58

3.2.6 Description of the pixpar.par file

CAUTION: if the default version of the theory is adopted, all these inputs are zero and the default

quantities are automatically used.

All free format

1) first line:

• collis collision parameter (write 0; defaults to one half the step in electron density)

• ddamp damping distance for dispersion (defaults to 3.00)

• fiemax max field in calculation of polarization (defaults to 150) 1010 implicit

• corep1 factor K1 in calculation of overlap repulsion energy, E = K1+K2(Del)

where Del is a difference in electronegativity; default is K1=4800

• corep2 factor K2 as above; default is K2=1200

2) second line, electron density trimmers for A molecule:

• nrdu contraction level (defaults to 4)

• ivalu = 0 valence electron density (normal operation), =1 total electron density

 (e.g. in positive ions)

• romiu minimum value of charge in a density pixel (defaults to 0.000001)

• romau max value for a charge density pixel (defaults to 9999)

3) the same for B molecule (give zeros if nmsolv=0)

nrdv, ivalv, romiv, romav

4) threen threshold for printing absolute molecule-molecule energies in the output

 idibar = 0 molecule-molecule distances between centers of mass

 = 1 distances between centers of coordinates

If this input line is missing the parameters are set to 3.0 and 0.

3.2.7 Description of the .inp file

All free format.

Line 1) A title line

Line 2) molecular specifiers:

• nmsolu number of A molecules

for the crystal case, NMSOLU=1 (the n. of molecules is determined by the

program)

• nmsolv number of B molecules

for the crystal case, NMSOLV=1 for 2 molecules in ASU

• nasolu number of atoms in A molecule

• nasolv number of atoms in B molecule

Line 3a) chargu net charge for the A molecule

Line 4a) for each atom in the A molecule:

• sequence number

• atom type (Table 1.1)

59

• a dummy "atomic charge" parameter (for compatibility with old versions); = 0.0

• atomic polarizability; polarizabilities are taken from database if left = 0 (suggested)

Line 3b) if nmsolv > 0: chargv net charge, as in 3) above, for molecule B

Line 4b) if nmsolv > 0: as in 4a), for each atom in the B molecule

The Pixmt2 module usually supplies the following input lines in file .inp automatically:

Line 5) cutmi, cutma

Symmetry operations that produce repeated molecules whose distance from the central one is between

cutmi and cutma are automatically included in crystal model. When there are two molecules in the ASU,

a symmetry operation is included if at least one of the four distances (A-A', A-B', B-A' or B-B') is in the

range. A cutoff of 15 Å for non-charged compounds, and of 30 Å for zwitterions, is usually enough to

ensure convergence.

Setting cutmi=cutma=0 suppresses the neighbor search, and the calculation includes only molecules for

the supplied symmetry operations. In this case, energies are potential energies for the central molecule

in the field of the surrounding ones, and not lattice energies (i.e. they are not multiplied by 0.5 as normal

in lattice sums).

Line 6) cell parameters

Line 7) M1, t1 matrix/vector pair (matrix by rows); see Appendix, Section A4. Normally

M1=unit matrix and t1= [0 0 0] if the Nosym option is used in GAUSSIAN.

Line 8) M2, t2 matrix/vector pair (matrix by rows), from Pixmt2 module (see also the

Reference Materials in the Appendix, Section A4).

9) NPZ, number of symmetry operations in space group (or of included molecules if cutma=0)

10) npz matrix/vector pairs, one pair for each symmetry operation

60

3.2.8 The PIXEL output files

While the program is running, some output appears on screen. The pri file has a title, some echo of input

parameters, and detail on the electron density screenout and condensation procedures. Then the PIXEL

energies: Coulombic, polarization, dispersion, repulsion and total. For crystals, factors of 1/2 are

appropriately applied so that these numbers are the computational equivalent of the enthalpy of

sublimation. At the end, the output file has a list of molecule-molecule energies:

A···A i-th molecule A to j-th symmetry-transformed molecule A; distance between centers of

mass, coul, pol, disp, rep, total PIXEL energy;

A···B i-th molecule A to j-th symmetry-transformed molecule B; etc. for the B···A and B···B

lists.

These molecule-molecule energies along with the symmetry operation connecting the reference and

symmetry-related molecule, also appear in a separate file extension .mlc.

CAUTION: More than total lattice energies, this is the key feature that makes PIXEL a useful and

reliable tool: perusal of the relative entity of these energies, along with the structure of the corresponding

dimer, give solid indications on the relative importance of various kinds of interactions in crystal

packing. It is usually if not always the case that these indications are in contrast with conclusions derived

from geometric analysis of short contacts, or from fancy surmise of exotic bond types. It is usually the

case that packing factors thought important on a geometrical basis, like short atom-atom intermolecular

distances giving rise to a fanciful bonding literature, are vigorously contradicted by consideration of the

relative energies.

Scripts for the interpretation of this output have been prepared by some PIXEL users groups and may

be available in the net.

61

Part B

Monte Carlo and

Molecular

Dynamics

simulation

62

4. General flowchart of Monte Carlo and Dynamics modules

The MiCMoS platform includes modules to perform Monte Carlo (MC) or Molecular Dynamics (MD)

simulations of the condensed states of organic compounds. Figure 4.1 gives a flow diagram of the

organization of the MC and MD simulations. Auxiliary programs help with the preparation of force field

files and of structure-data files for liquids or for solids. Other modules provide trajectory analysis and

other kinds of structural analysis. Please refer to the following Sections for a full description.

Figure 4.1. Block diagram of the Monte Carlo and Molecular Dynamics manifold. Circles are files,

squares are program modules. Blue (green) boxes denote auxiliary (analysis) programs.

The Pretop module (Figure 4.1, Section 5.4) reads an .oeh file and prepares the best possible

approximation to the pertinent force field file, except for the separation between core and slave atoms

in MC (see Sectios 6.2 and 6.6.4) that must be handled by the user. The Boxcry and Boxliq routines

prepare the starting simulation boxes of pure substances, whereas Boxsolv produces two-component

simulation boxes of various kind. They are described in Sections 5.1–5.3.

4.1 Available intermolecular potentials

Monte Carlo e Molecular Dynamics calculations rely on the same AA potentials described in Section 2,

that is, AA–CLP (All Atoms–Coulomb, London and Pauli, Section 2.1.1) or AA–LJC (All Atoms–

Lennard-Jones and Coulomb, Section 2.1.2).

63

5. Interface between structural files and MC or MD files

5.1 The Boxcry module

This module prepares a computational box with molecules in a crystal structure, for space groups up to

orthorhombic and for up to 2 molecules in the asymmetric unit. The formats are .bxi for MC and .dat

for MD. Boxes of .bxi type for space groups with non-diagonal symmetries (e.g fourfold axes) cannot

be dealt with in this routine. For MD, crystal boxes of any symmetry in .dat form can be prepared by

user-defined scripts.

CAUTION: Singularities can arise for molecules in special crystallographic positions (see Appendix,

Section A6). Moreover, sometimes the box thus obtained is not very compact, with protrusions and

voids due to uncomfortable layout of the crystal fractional atomic coordinates (e.g., coordinates given

very far from the cell origin). A preliminary MC or MD run will take care of this by replacing molecules

out of box boundaries.

The Boxcry running command is:

run.boxcry NAME

where NAME is the name of a NAME.oeh file with fractional crystal coordinates, and also the name of

the NAME.sla file needed only if there are slave atoms (only for MC, see Sections 6.2 and 6.6.4). There

must be two sets of slave atom lines if there are solute and solvent (i.e. two molecular species in the

crystal).

run.boxcry module (Unix/Linux)

cp $1.oeh boxcry.oeh

cp $1.sla boxcry.sla

~/programs/MiCMoS/exe/boxcry

rm $1cry.bxi

rm $1cry.dat

rm $1box.pri

mv boxcry.dat $1cry.dat

mv boxcry.bxi $1cry.bxi

mv boxcry.pri $1box.pri

rm boxcry.oeh

rm boxcry.sla

Answer the dialog mode, which asks for:

NREPA, NREPB, NREPC Number of cells along a, b and c to build the simulation box

The output is in part printed on screen, but the program generates also the following files:

- NAMEcry.bxi This is the MC input simulation box, in a contracted format

- NAMEcry.dat: .dat file with atomic coordinates for MD input or for graphics of the

entire crystal box (format: see Section 5.1.3)

- NAMEbox.pri: detailed printout with orthogonal coordinates of all molecules in cell

64

5.1.1 The .bxi/.bxo format (MC only)

Boxcry builds the initial simulation box by replicating the crystallographic unit cell a certain number of

times along a, b and c vectors. The user specifies the number of replicas for each direction (see above).

The program uses the information contained in the .oeh file produced by the Retcif, Retcor and Retcha

modules (see Section 1). The .bxi file, which will enter the subsequent MC procedure, contains all the

information concerning the position and mutual orientation of the molecules in the simulation box in a

rigid-body six-parameter format (Table 5.1). A MC run also produces an output .bxo file in the same

format, which can be used to restart the simulation if needed.

Table 5.1

The MC-box file (input .bxi and output .bxo, all free format). It carries information on the molecular

position and orientation and on the number of slave atoms (for MC only, Section 6.6.4). They are

prepared by Boxliq and Boxcry but should not be conusfed with .dat files (Section 5.1.3) that carry

atomic coordinates.

1) NMSOLU number of solute molecules, number of the last simulation step

NMSOLU blocks, each with:

a) x, y, z of the centre of mass of each solute molecule (Å units), three Euler rotation angles

(degrees, see Appendix, Section A5), ISYMM indicator (see below), three step type number n

for variation of x, y, z (usually 1) and three step type number for variation of the three angles

(usually 2). These numbers correspond to a series of stepsizes specified in the run-control, mci

input file, Section 6.6.2: the actual step in an MC move is (rand-0.5)·step, where rand is a

random number, and step is the stepsize specified in the list. These numbers are usually 1 and

2, respectively, meaning that the first two stepsizes in the list define the rigid-body overall

molecular motion. Setting these number(s) to zero suppresses the variation of the corresponding

degree of freedom (e.g., to constrain some center-of-mass displacements and/or rotations).

Similar step type numbers are also defined for internal degrees of freedom, bond stretching,

bending and torsions, in MC moves (Section 6.6.4).

b) Only if some slave atoms are present in a MC run, the contents of the .sla file for the solute

(see Sections 6.2 and 6.6.4).

2) NMSOLV number of solvent molecules

NMSOLV blocks Same as 1a), 1b) for the solvent

3) BOXX, BOXY, BOXZ, ALF, BET, GAM, NX, NY, NZ

BOXX, BOXY, BOXZ: Computational box dimensions edges (in Å);

ALF, BET, GAM: Computational box angles (deg);

NX, NY, NZ: Number of repetitions of the unit cell along the three axes for a crystal calculation

 (1,1,1 if box is for a liquid). Needed only for periodic-box runs, otherwise may be set to zero.

5.1.2 How Boxcry works: the ISYMM indicator (MC only)

For the simulation of crystal structures, an ISYMM indicator (Table 5.2) is needed to specify which

symmetry operation must be performed on the fundamental molecule to obtain the proper orientation of

each molecule in the crystal box. This information is automatically provided by the Boxcry module.

65

CAUTION: Known bug: the automatic algorithm runs into singularities for some special positions in

some space groups. You may solve these issues by lowering the symmetry of your space group before

entering the MiCMoS system. To this end, the free Bilbao Crystallographic web Server can assist you

(https://www.cryst.ehu.es).

Table 5.2

ISYMM codes to be specified in the .bxi/.bxo files (Section 5.1.1).

Operation ISYMM Operation ISYMM Operation ISYMM Operation

Pure translation 0 x, y, z

Mirror plane or glide plane 1 –x, y, z 2 x, –y, z 3 x, y, –z

Twofold axis or twofold screw 4 –x, –y, z 5 –x, y, –z 6 x, –y, –z

Inversion center 7 –x, –y, –z

The .bxi crystal box has the number of molecules corresponding to the number of cell replications given

in the input. Figure 5.1 shows some pictorial schemes for the operation of Boxcry. The ISYMM indicator

is prepared by comparing the signs of symmetry-related atoms in different molecules, when all

molecules have been set in their inertial reference frame. This does not work when molecules are at

some special positions with zero coordinates or when there are coordinate interchanges, e.g. x = –y. All

this is unnecessary in MD that works on explicit coordinate files.

Figure 5.1. Building of a crystal simulation box

Together with Euler angles and centre of mass position, ISYMM allows to properly generate the

coordinates of all the symmetry–related molecules in the box. This procedure should work well for all

the space groups up to the Orthorhombic system.

5.1.3 Format of .dat files

These files contain explicit coordinates of all atoms in the simulation box in Å units in the Cartesian

reference frame of the simulation box (the corresponding .gro format of the GROMACS platform uses

nm units). The .dat format covers several purposes, including MC trajectories (mcc.dat and mco.dat,

Section 6.6), MD input/output coordinates (md.dat and .mdo, Section 7.1) and trajectories (.mdc, Section

7.1). In MD also the atomic velocities and forces are printed in the last trajectory frame (.mdo file) as

m·s–1 and N.

The .dat format is set for graphics by SchaKal (E. Keller) but conversion to any other graphics file

format is straightforward.

Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed.

1) “TITL” (a4), Title line (10a4), NMOVE (i10).

“TITL” is the line identifier in SchaKal and MiCMoS analysis modules (do not

change!);

https://www.cryst.ehu.es/

66

‘Title line’ is any string you want (typically, something like “trajectory at MD/MC step

number…”);

NMOVE; number of MC or MD move to which coordinates are referring to.

2) “#” (1x), NMSOLU, NMSOLV, NASOLU, NASOLV, IVEL (5i5)

“#” is the line identifier (do not change!). This means that the following information are

skipped when read by SchaKal, but they are still used by utilities programs in the

MiCMoS environment.

NMSOLU: number of solute molecules;

NMSOLV: number of solvent molecules;

NASOLU: number of atoms in each solute molecule;

NASOLV: number of atoms in each solvent molecule;

IVEL: a 0/1 =0: atomic velocities and forces are not present;

=1: atomic velocities and forces are read in MD after the “END”

keyword (see below).

3) “#” (1x); a, b, c (3f10.4); , ,  (3f10.3); NREPA, NREPB, NREPC (3i5)

This line must bear non–zero quantities whenever a periodic simulation box is employed

(see for example the MD case, Section 7.6.3).

“#” is the line identifier (do not change!).

a, b, c: edge lengths of the whole simulation box, in Å.

, , : angles of the whole simulation box, in degrees.

NREPA, NREPB, NREPC: number of repetitions of the crystallographic unit cell to

build the whole simulation box. This means that the actual crystallographic cell edges

ac, bc, cc can be found according to ac = a / NREPA bc = b /NREPB and cc = c / NREPC.

3) “CELL” (a4); X, Y, Z, ALP, BET, GAM (6f6.1)

After the line identifier, this is a dummy line, which must be 1. 1. 1. 90. 90. 90. in the

correct format, as coordinates are always Cartesian orthogonal (see above).

4) “ATOM” (a4, 2x); IAT (a2); X, Y, Z (3f10.3)

“ATOM” is the line identifier (do not change!).

IAT: symbol of atom species.

X, Y, Z: atomic coordinates, in Å.

Line (4) is replicated NASOLU·NMSOLU + NASOLV·NMSOLV times, one for each atom in the

simulation box.

5) “END” (a3)

“END”: line identifier (do not change!). It signals the end of the coordinates section.

6) Only for MD, if IVEL = 1, further NASOLU·NMSOLU + NASOLV·NMSOLV lines are attached to

the coordinates section, after the “END” keyword. Information are given as follows:

NMOL, NATOM, Vx, Vy, Vz, Fx, Fy, Fz (i5, i3, 3d14.6, 1x, 3d12.4)

67

 NMOL: molecule id number;

 NATOM: atom id number for the NMOLth molecule;

 Vx, Vy, Vz: Cartesian components of the atomic velocity (m·s–1);

 Fx, Fy, Fz: Cartesian components of the atomic force (N).

5.2 The Boxliq module

This module prepares a computational box containing molecules in an approximate liquid structure.

Molecules are at sites of a body-centered pseudo-cell.

Running command:

run.boxliq NAME

NAME refers to a NAME.oeh file with orthogonal coordinates in a local (e.g. inertial) reference (for a

molecule out of a crystal structure, this can be obtained e.g. from the Retcor module, file NAMEort.oeh:

see Section 1.1), and the name of the .sla file with slave atoms if any (only for MC simulations, Sections

6.2 and 6.6.4).

run.boxliq module (Unix/Linux)

cp $1.oeh boxliq.oeh

cp $1.sla boxliq.sla

~/programs/MiCMoS/exe/boxliq

rm $1liq.bxi

mv boxliq.bxi $1liq.bxi

rm boxliq.oeh

rm boxliq.sla

The output is file NAMEliq.bxi: input liquid box. This file has the same format detailed in Table 5.1

above, but there is no corresponding .dat file, as there was in Boxcry. Some information is printed on

screen.

Answer the dialog mode, which asks for:

- NREP The number of repetitions of a body centered pseudo-cell; the final box contains

2(NREP+1)3 molecules

- FACT Expansion factor, controls the spacing between molecules and the final box

density. Usually FACT = 1.0 to 1.5 is ok. Adjust until the final printed density

is acceptable, somewhat below the experimental value to facilitate the

subsequent optimization;

- RANDT Small random displacement from cell sites. Usually 0.5 Å is ok.

- TAUSPREAD Controls the spread of starting random torsion angles for slave atoms, from the

values given in the .sla file (see Sections 6.2 and 6.6.4). Usually 10° is ok.

- ISYMM Controls whether the liquid is a racemate or not.

= 0 All molecules have the same chirality,

= 1 Generates half molecules of each chirality for a racemic liquid by setting half

molecules as mirror images.

68

FACT, TAUSPREAD and RANDT control the expansion and randomization of the original box.

Usually many hard contacts arise, but running a preliminary MC run (even with a fully rigid molecule

without slave atoms etc., if the aim is MD) will get rid of these contacts and prepare a reasonable starting

geometry. Figure 5.2 shows some pictorial schemes for the operation of Boxliq. A preliminary MC run

is anyway always needed to run MD in order to have a starting .dat file (mco.dat).

Figure 5.2. Generation of next–neighbors pair in a simulation box of the liquid phase. Two molecules

are shown in a “body centered” cubic lattice, with a = 31/2·d/2; each molecule has a random orientation

and is displaced at random from perfect lattice nodes. The starting box is repeated n = NREP times in x,

y, z, generating a total of 2(n+1)3 molecules. If a racemic liquid is desired, every second molecule is set

with ISYMM = 7 in the .bxi file (Table 5.1).

5.3 The Boxsol module

This module merges two MC computational boxes (extension .bxi or .bxo) into a single box. The

program reads a “solute” box, a “solvent” box, and deletes as many solvent molecules as necessary to

make approximate space for the solutes. Each box may come from Boxliq, Boxcry, or manual

preparation. The procedure is very approximate and relies on an estimate of the diameters of the two

molecules. Quite often very hard contacts result, and extensive MC energy minimization cycles may be

needed to reach a satisfactory configuration.

Running command:

run.boxsol name1 name2 name3

where name1 is the solute box, name2 is the solvent box, and name3 is the resulting solution file.

run.boxsol module (Unix/Linux)

cp $1 mcboxu.sol

cp $2 mcboxv.sol

~/programs/MiCMoS/exe/boxsol

rm $3

mv mcboxs.out $3

rm mcboxu.sol

rm mcboxv.sol

69

You should answer the dialog mode, which asks for:

- n. of slave atom lines (Sections 6.2 and 6.6.4) in the name1 and name2 boxes;

- X, Y, Z shifts for origin in name1 box (usually all zero);

- X, Y, Z shifts for name2 box (usually zero);

- approximate molecular diameters for solute and solvent, and a 'tolerance factor'; solvents are

deleted when the distance to a solute is less than the sum of molecular radii times the tolerance.

In practice, go by trial and error until the desired solute/solvent ratio is reached.

5.4 The Pretop module

Reads a .oeh file and generates a template topology file with all possible stretch and bend potential sites.

Depending on the value of the penultimate .oeh entry, The force constants are estimated by a balanced

choice between ab initio results on test systems and comparison with force constants in the Gromacs

environment. Tentative torsion functions are generated for each atom quartet. The program asks for 3

scaling factors that modulate the estimated force constants of stretching (ks), bending (kb) and torsions

(ktors), to be given as input from keyboard. The automatic force constants are slightly underestimated for

flexible molecules; fudge factors of about 1.5 should favor molecular stiffness reducing excess

distortions. A detailed description of the procedure is given in the Appendix, Section A7.

The coordinate reference frame is also changed according to the following procedure. First,

crystallographic coordinates are translated into the crystallophysical Cartesian reference frame. Then,

atomic coordinates are back-translated so that the origin coincides with the centre of mass and eventually

refereed to the inertial reference frame by multiplication of the matrix of inertial eigenvectors.

Running command:

run.pretop NAME

where NAME is the name of the NAME.oeh file (Section 1.4.3) and possibly of the NAME.sla file (only

for MC simulations, see Sections 6.2 and 6.6.4). The program prints an output NAMEpre.pri file with

various comments and a NAMEtry.top file, with the computed topology.

run.pretop module (Unix/Linux)

cp $1.oeh pretop.oeh

cp $1.sla pretop.sla

~/programs/MiCMoS/exe/pretop

rm $1try.top

mv pretop.top $1try.top

rm $1pre.pri

mv pretop.pri $1pre.pri

rm pretop.oeh

rm pretop.sla

Answer the dialog mode, which will ask for:

ks,kb,kt Three fudge factors that multiply stretch, bend and torsion force

constants given in the output .top file. With this tool, the user can tune

the force constants; give 1.0 to keep standards, or some factor > 1 or <

1 to increase or decrease the respective force constants.

70

CAUTION: Pretop is a tentative procedure and the resulting force constants and interaction sites should

be carefully checked. No force field is really universal; in classical simulations of organic crystals,

torsional potentials are crucial. A library of such profiles from quantum chemistry has been published

in Gavezzotti & Lo Presti, J. Appl. Cryst. 2019, 52, 1253–1263 and is available in Section A7.3 of the

Appendix (Table A7.5). A databank of .top files of simple organic molecules for MC and MD runs of

MiCMoS, is also available on https://sites.unimi.it/xtal_chem_group.

5.5 The Excbox module

Excbox trims a mc.bxi and mc.dat files by deleting all molecules whose centre of mass is farther than a

preset limit from the cluster center. This module allows editing the computational box, shaping a cluster

of molecules with a roughly spherical radius. This can be useful, for example, to simulate a liquid

droplet. Note that you need both a .bxi and a .dat file to run Excbox, but only the latter must be used,

for example, in MD simulations (see Section 7).

Running command:

run.excbox name1 name2

Here name1 is the name of the .bxi (see Section 5.1.1) and .dat (see Section 5.1.3) files, while name2 is

the corresponding output flag. The program will create name2.bxi and name2.dat files, which contain

only the information on the molecules that survived this trimming procedure.

run.excbox module (Unix/Linux)

cp $1.bxi excbin.bxi

cp $1.dat excbin.dat

~/programs/MiCMoS/exe/excbox

rm $2.bxi

mv excbout.bxi $2.bxi

rm $2.dat

mv excbout.dat $2.dat

rm excbin.*

Answer the dialog mode, which asks for:

dimu,dimv Cutoff distance for solute and solvent molecules. Molecules more

distant by dimu or dimv from the system centre of mass (in Å) will not

be included in the final cluster.

nslavu,nslavv Number of slave atom cards (see Sections 6.6.3 and 6.6.4) for solute

and solvent, if any. Input 0 if no slave atoms are present.

The program checks for consistency of the number of solute and solvent molecules present in .bxi and

.dat files. If the counts do not correspond to each other, Excbox stops with an error message.

CAUTION: The program does not update the number of molecules in the output .dat and .bxi files. The

user must edit such files and correct the header.

https://sites.unimi.it/xtal_chem_group

71

5.6 The Nanosolv module

Nanosolv merges two .dat frame files, one containing a nanoparticle produced by the routine Nanocut

(Section 8.9), and the other a liquid, possibly equilibrated, produced by either the Boxliq+MC or MD

procedures. The program makes the centre of mass of the nanoparticle coincident with that of the liquid

and erases all the solvent molecules that lie at contact distance with any of the atoms in the nanoparticle.

The resulting .dat file should be a reasonable starting point for any subsequent MD simulation.

Running command:

run.nanosolv name1 name2

Where “name1” is the name of the .dat frame of the nanoparticle, and “name2” that of the liquid.

run.nanosolv module (Unix/Linux)

rm $1solv.dat

cp $1.dat nanoparticle.dat

cp $2.dat liquid.dat

~/programs/MiCMoS/exe/nanosolv

mv nanosolv.dat $1solv.dat

rm nanoparticle.dat

rm liquid.dat

The user is prompted to give from keybord the following quantity:

atol Tolerance parameter (in Å) to define the allowed contact distance

between solute (nanoparticle) atoms and solvent ones. A solvent

molecule is erased if and only if any of its atoms i lies closer than

rvdW(i) + rvdW(j) + atol to any solute (nanoparticle) atom j. rvdW(i)

and rvdW(j) are the corresponding van der Waals radii of the two atoms,

taken from J.D. Dunitz, A. Gavezzotti, Attractions and Repulsions in

Molecular Crystals, Acc. Chem. Res., 1999, 32, 677.

The program produces a third .dat frame, called name1solv.dat, with the solvated nanoparticle. Some

useful information (number of erased molecules, atom count…) is printed on screen.

If the number of molecules in the liquid phase is reduced by more than 50 % during merging, the user

is prompted to choose to either stop the calculation or to continue anyway. Note that too few molecules

in the liquid box might be insufficient to produce a fully solvated nanoparticle, especially if the latter is

relatively large.

CAUTION: Note that Nanosolv cannot deal with slave atoms.

72

5.7 The Solution module

The program solution.for merges two .dat frame files, both containing (possibly) equilibrated liquids.

The idea is to prepare a solution with the desired concentration, ready to enter the Molecular Dynamics

module without the need of pre-equilibration with Monte Carlo. The solute box is put at the centre of

the solvent box. A certain number of solute molecules is conserved, depending on the desired

concentration. Then, all the solvent molecules that lie too close to any of the surviving solute molecules

are erased. It is applied a proximity criterion: any solvent molecule with any atom closer than

[RvdW]+atol to any solute atom will be erased. RvdW is the van der Waals radius (see taken from J. D.

Dunitz, A. Gavezzotti, Acc. Chem. Res., 1999, 32, 677) and atol is a user-defined tolerance parameter,

expressed in Å, that is given from keyboard when the program is executed.

Current program limits are 10,000 atoms and 8,000 molecules in the two boxes. The running command

is:

run.solution name1 name2

where name1 is the box containing the solute molecules, and name2 that containing the solvent

molecules. The output is a third .dat box file named name1solv.dat, which contains the desired number

of solute units embedded in solvent molecules.

run.solution module (Unix/Linux)

rm $1solv.dat

cp $1.dat solute.dat

cp $2.dat solvent.dat

~/programs/MiCMoS/exe/solution

mv solution.dat $1solv.dat

rm solute.dat

rm solvent.dat

The user is prompted to give from keybord the following quantities:

conc, atol,enlarge conc is the desired concentration, in mol·L–1. A number of solute

molecules compliant with conc will be selected randomly from the

solute box name1.dat.

 atol is the contact tolerance parameter, in Å. The two starting boxes will

be superimposed, and the minimum allowed contact distance for solute-

solvent atom pairs i,j will be RvdW(i)+RvdW(j)+atol. Any solvent

molecule with one or more contacts closer than this limit with surviving

solutes will be erased. Larger atol’s mean that more solvent molecules

will be eliminated.

 enlarge is the cell enlargement factor. It has been introduced since

MiCMoS v2.3 to avoid clashes on the borders of the merged simulation

box. These could arise if one or more solute molecule falls close to the

box boundaries. This parameter must be 1.0 or greater; cell edges of the

73

final box are multiplied by enlarge. Thus, for example, 1.2 means that

the cell boxes are enlarged by 20 % in the initial frame.

CAUTION: Note that Solution cannot deal with slave atoms.

CAUTION: Obviously, the resulting merged box is not equilbrated, as it may contain voids due to the

elimination of solvent units. Moreover, some residual solute-solvent steric clashes could survive,

especially if atol is low or zero. If this is the case, re-run Solution by increasing atol. Probably, you

should play a bit with concentration and atol to produce a satisfactory starting box.

Re-equilibration of the solution through Molecular Dynamics might cause the volume of the box to

change. This in turn implies that the actual concentration could be slightly different from the one set up

in your keyboard input. It is always wise to check the actual concentration c (in mol·L–1) at equilibrium

according with:

𝑐 =
𝑛𝑠𝑜𝑙𝑢
𝑁𝐴

∙
1027

𝑉𝑏𝑜𝑥

Where nsolu is the number of solutes, Vbox is the volume of the simulation box in Å3, NA is the Avogadro

constant (6.02214076·1023 mol–1) and 1027 is the conversion factor from Å–3 to L–1.

5.8 The Confbox module

The program confbox.for allows to shape a previously equilibrated liquid box with extension .dat into a

simulation box suitable for molecular dynamics run in confined space. Please refer to Section 7.2.5 for

a complete explanation of the confinement algorithm.

The routine confbox.for fulfills two tasks:

(i) prepares the parameter file barrier.par, which specifies the geometrical details of the

confined space and the force field parameters of the barrier;

(ii) prepares a new simulation box named nameconfined.dat, where “name” is usually the name

of the substance you are dealing with, which is ready for the confined simulation.

Essentially, confbox.for deletes all the molecules which bear an atom in close contact (less

than the sum of the van der Waals radii) with the barriers that set the limits of the confined

space.

The running command is:

run.confbox NAME

where NAME correspond to the NAME.dat box of any previously equilibrated liquid. The program

produces a file barrier.par (the parameter file of the barrier) and a new file NAMEconfined.dat (the new

simulation box). At the same time, the original NAME.dat box file is renamed into

NAMEunconfined.dat to avoid that it erroneously enters the dynamics when the mdmain job is executed

(see Section 7.6.1).

74

run.confbox module (Unix/Linux)

rm input.dat

rm intest.dat

rm barrier.par

cp $1.dat input.dat

~/programs/MiCMoS/exe/confbox

cat confined.dat >> intest.dat

mv intest.dat $1confined.dat

mv $1.dat $1unconfined.dat

echo ' '

echo '##'

echo '# ORIGINAL .DAT FILE SAVED INTO UNCONFINED.DAT #'

echo '##'

echo ' '

rm input.dat

rm confined.dat

The following parameters are requested from keyboard:

inano type of confinement. Type either 0 for none (full periodic system) or 1

for the nanolayer, 2 for the nanotube and 3 for the nanocavity.

iplane active confining planes (type either XY, XZ or YZ), not required if

inano=3. This instructions sets how the barriers are oriented with

respect to the main crystallophysical reference system.

thickness starting distances between opposite pairs of barriers (in Å). Type 0 to

set the thickness of the confined space equal to the corresponding whole

box edge.

rvdw, ispbar, offset Each barrier is built as a plane made by an uniform grid of dummy

atoms (pixels); see Section 7.2.5 for a complete description of the

algorithm.

rvdw is the van der Waals radius of each pixel.

ispbar is the corresponding atomic species code number, according

with the entries in Table 1.1 (Section 1.4.2). Thus, ispbar sets the A6,

A12 Lennard-Jones parameters of the barrier pixels and determines the

functional employed to compute all the molcule-barrier interactions.

offset is the offset distance (in Å) between the barrier and the starting

simulation box boundary. A value greater than zero is useful to avoid

the deletion of a large number of molecules (see Section 7.2.5 for more

details).

iattr determines whether to use or not the attractive part of the potential for

the description of the barriers. 0 means that only the repulsive part is

employed, that is, the A6 coefficient is set to 0; iattr = 1 implies that the

full Lennard-Jones potential is used, that is, both A6 and A12

coefficients are nonzero.

dampk(XY), dampk(XZ), 3 scaling factors applied to the force constants along Z, Y, and X

dampk(YZ) direction, used to tune the stiffness of the barrier. See Section 7.2.5 for

full information.

75

zacsize, nmolzacu, nmolzacv zacsize is the target equilibrium distance between the barriers of the

nanolayer or the nanotube. During the simulation, the barostat will take

care of modifying the distance between opposite pairs of barriers to

reach the desired thickness, if physically possible. For cubic

nanocavities, zacsize is automatically set to 0 as the equilibrium barrier-

barrier distances corresponds to the edge lengths of the cavity, which

are set by the program according to the target packing efficiency (see

below).

nmolzacu is the number of molecules to consider for the determination

of the equilibrium volume of the simulation box. By default (nmolzacu

= 0), the program uses the number of molecules in the original box to

set the volume that corresponds to a packing efficiency, Cpack, of 0.66,

which is the theoretical limit for close packing of random spheres (see

Zaccone, Phys. Rev. Lett., 2022, 128, 028002).

For the nanocavity, no periodic directions exist, and the edge length of

the cubic space is computed as:

𝑙 = √𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙
3

For the nanolayer, the lengths of the periodic edges of the simulation

box are computed taking into account the desired zacsize:

𝑙 = √
𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙

𝑧𝑎𝑐𝑠𝑖𝑧𝑒

2

When dealing with the nanotube, the formula becomes:

𝑙 =
𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙

𝑧𝑎𝑐𝑠𝑖𝑧𝑒2

Thus, the nmolzacu parameter may be increased to achieve lower

packing efficiencies, as it increases the dimensions of the simulation

box. This is exploited along the periodic directions in the nanolayer and

in the nanotube. If one tries to use nmolzacu values lower than those in

the original fully periodic simulation box, the program stops and issues

a warning. Note that no molecules are erased in any case.

nmolzacv has the same meaning as nmolzacu but refers to solvent

molecules.

CAUTION: The confinement procedure was not tested for solutions, that is, in the presence of

simulation boxes containing both solute and solvent. Please report any issue you may experience to

leonardo.lopresti@unimi.it.

mailto:leonardo.lopresti@unimi.it

76

5.8.1 Format of barrier.par file

This file is created by confbox.for (see Section 5.8) and contains all the geometric and force field

information necessary to build the barrier(s) of confined space MD simulations. The parameters are

mostly the same described in Section 5.8 and are automatically written by confbox.for according to the

user’s choices. The reading format is free; in the following table, all the parameters that begin with “i”

or “n” are integers; the others are floating. It is also possible to edit this file manually if desired (e.g., to

simulate non-neutral barriers).

1) #comment line

2) iplane(XY), iplane(XZ), iplane(YZ), iattr

iplane() 3 values that set the confining planes to use (plane XY, XZ, YZ)

 =0 inactive

 =1 active

iattr Determines whether to use the attractive part of the potential for the

description of the barriers

 =0 repulsive-only potential

 =1 full van der Waals potential

3) #comment line

4) ispbar, rvdw, qqbar, offset

ispbar atom type to describe the C6 and C12 Lennard Jones parameters of the

pixels that make up the barrier

rvdw radius of the pixels

qqbar charge of the pixels. It is defined here for future program improvements

and is set to 0 by confbox.

offset offset distance (in Å) between the barrier and the starting simulation

box to avoid the deletion of a large number of protruding molecules

5) #comment line

6) dampk(XY), dampk(XZ), dampk(YZ)

dampk() 3 scaling factors applied to the force constants along Z, Y, and X

direction, used to tune the stiffness of the barrier.

7) #comment line

8) zacsize, nmolzacu, nmolzacv

zacsize equilibrium distance between opposite barriers; it is set to 0 for the

nanocavity. See Section 5.8 for a full explanation.

nmolzacu number of molecules to consider for the determination of the

equilibrium volume of the simulation box. See Section 5.8 for more

explanations.

nmolzacv the same of nmolzacu, for the solvent molecules.

77

6. Monte Carlo (MC) simulation

6.1 Overview

MC requires a central computational box with a sample of the system under consideration, typically

300-2000 molecules. Periodic boundary conditions can be applied in one, two or three dimensions.

Temperature and pressure control are included when applicable. The main module uses a force field

(topology) file (extension .top, Section 6.6.3), a run control file with all the pertinent commands

(extension .mci, Section 6.6.2), and a starting computational box file (extension .bxi, Section 5.1.1). The

output consists of energies (.ene, Section 8.5.1) and trajectories (in format .dat, Section 5.1.3). A

snapshot of the simulation box corresponding to the final trajectory frame is also printed (format .dat),

as well as an extended printout summarizing the general program outcomes at user–specified time

intervals (again in format .dat).

The final frame (.mco), the energy file (.ene) or the whole trajectory (.mcc) are analyzed using the

Analys, Correl, Geomet and Redene modules (Section 8). Some information at running time is also

printed on screen.

6.2 Construction of molecular frameworks

In a MC run molecules are assigned first six rigid-body degrees of freedom (d.o.f.). To allow for

molecular flexibility, i.e., to explicitly deal with internal degrees of freedom, the present MC code

partitions each molecular object into a number of "core" atoms ( 3) and a number of "slave" atoms (

0). The coordinates of the core atoms are given numerically, and define an invariant rigid part of the

molecule, that can be a group whose instantaneous distortions are irrelevant, such as a phenyl ring.

While the relative positions of core atoms never change, slave atoms rely on an implicit definition, that

is, only their distance and relative orientation with respect to neighboring atoms are specified. For

example, the three hydrogen atoms in a rotatable methyl group may be defined by setting a single C–H

parameter for the C–H distances, a single parameter for the H–C–C bond angles and a torsion that

describes the overall orientation of the –CH3 group. In this way the internal molecular d.o.f.'s (bond

distances, bond angles and torsions) can be changed by random moves as well; for each MC step, the

explicit coordinates of slave atoms are recomputed while the internal d.o.f.'s vary. In practice however,

for the simulation of condensed states of organic small molecules only torsional variables are relevant

in most cases, and distance/angle ones can be safely left unchanged. A list of available slave group

definitions is given in Table 6.2 at the end of Section 6. See also Section 6.6.4 for a detailed description

of slave atom parameters.

One or two molecular species are allowed in the computational box, formally called solute and solvent.

For each molecule, solute or solvent, Cartesian coordinates are calculated for slave atoms using current

values for all parameters, mostly torsional, thus defining the current conformation, in a local reference

frame whose origin is determined by the specification of core atom positions. The molecular object in

its current conformation is then "inserted" into the computational box by applying a rigid-body

translation vector and a rigid-body rotation by three Euler angles, plus one indicator that specifies the

chirality (if needed). The total degrees of freedom are then the conformational ones plus 3+3 rigid-body

ones. The approach provides the full range of choices between one completely rigid molecular species

and two completely flexible (minus 3 atoms) molecular objects.

One advantage of this way of proceeding over the traditional, all-coordinate approach is that no

computing time is wasted in probing irrelevant degrees of freedom (stretching, bending) or in

computationally heavy algorithms (e.g. SHAKE) to preserve rigid conformations.

78

6.3 Computational boxes

A computational box is an ensemble on N(u) solute molecules and N(v) solvent molecules, enclosed in

a parallelepiped box with dimensions boxx, boxy, boxz and angles ,  and . The Boxliq module

(Section 5.2) reads a file with orthogonal coordinates of a molecular model (.oeh format, see Section 1)

and prepares a cubic box containing a number of molecules, a rough start for the simulation of an

isotropic liquid. The Boxcry module (Section 5.1) reads a .oeh file with crystallographic information

and prepares an oblique box with multiples of the crystal unit cell in three dimensions. Any pair of boxes

coming from Boxliq or Boxcry modules can be merged using module Boxsol (Section 5.3). This module

produces a solvation box by deleting solvent molecules in close contact with solute molecules.

Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed.

6.4 Force fields

The total MC configurational energy is a sum of intramolecular stretch, bend, torsion and non-bonded

terms, and intermolecular terms:

𝐸(𝑡𝑜𝑡) = [∑ 𝐸𝑖(𝑠𝑡𝑟𝑒𝑐𝑡ℎ, 𝑏𝑒𝑛𝑑) +
𝑖

∑𝜑𝑖(𝜏) +
𝑖

∑𝑢𝑖(𝑅, 𝑖𝑛𝑡𝑟𝑎)
𝑖

] +∑ 𝑢𝑖(𝑅, 𝑖𝑛𝑡𝑒𝑟) =
𝑖

= 𝐸(𝑖𝑛𝑡𝑟𝑎) + 𝐸(𝑖𝑛𝑡𝑒𝑟) (6.1)

where each summation runs over the appropriate number of degrees of freedom. The first term accounts

for stretching and bending potential (Section 6.4.1);  represent the torsion potential (Section 6.4.1),

u(R, intra) the intramolecular potential due to non–bonded interactions at distance R (Section 6.4.2), and

u(R, inter) the intermolecular potential (Section 6.4.3).

6.4.1 Stretching, bending and torsion

Bond stretching and bond angle bending potentials are provided in the quadratic forms:

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠(𝑅 − 𝑅

0)2 (6.2)

𝐸(𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =
1

2
𝑘𝑏(cos 𝜗 − cos𝜗

0)2 (6.3)

As already mentioned, these are seldom applied in the Monte Carlo simulation of condensed phases of

organic molecules. The torsional intramolecular part () is a trigonometric function in  (0 <   ):

𝜑(𝜏) = 𝐾{1 + 𝑓 ∙ cos[𝑛𝜏]} (6.4)

where n is a frequency term that can be set equal to 1, 2 or 3 and f a phase factor, which can be either

+1 or –1. n and f are specified by the user in the .top file.

CAUTION: Torsional potentials are indispensable in molecules with rotatable bonds. For example,

biphenyl is usually modeled as an object formed by two rigid moieties joined by a disposable, torsional

degree of freedom.

The procedure to determine torsion angles according to standard conventions is summarized in the

Appendix, Section A8.

79

6.4.2 Intramolecular non-bonded interactions

Intramolecular nonbonded interaction energies are described by the same potentials that are used for

intermolecular interactions, that is, CLP or LJC, damped by a factor FACTIN set in the run control file

.mci. Values of 0.5-0.7 usually apply successfully. The intramolecular contacts to be considered are

specified in an input pair list, chosen among sensitive 1–n distances with n ≥ 4 (obviously) not within

rigid core atom groups.

CAUTION: This procedure is somewhat improper because the summation of Coulombic energies runs

on a sporadic number of terms and not on a neutral ensemble. These "energies" have anyway little

physical significance and should only act as a mean of preventing hard contacts in extreme molecular

conformations (e.g. cis–n–butane) or as a way of taking into account stabilizing intramolecular hydrogen

bonding in a tentative way. To summarize, this should be taken as a better-than-nothing procedure.

However, it is computationally very cheap and significantly improves the quality of the simulation

results.

6.4.3. Intermolecular force fields

These are the CLP or LJC schemes described in detail in Sections 2 and 4. Following a well established

convention, intermolecular energies are subdivided in Coulombic and non-Coulombic terms, the latter

sometimes going under the name (a misnomer) of "van der Waals" terms:

𝐸(𝑡𝑜𝑡, 𝑖𝑛𝑡𝑒𝑟) = ∑ ∑ [𝐸𝑖𝑗] = 𝐸(𝑑𝑖𝑠𝑝) + 𝐸(𝐶𝑜𝑢𝑙)𝑗,𝛽𝑖,𝛼 (6.5)

where  and  denote different molecules, Eij is the total potential energy between atoms i and j, and

E(disp) and E(Coul) are the total non–Coulombic and Coulombic terms for molecule–molecule

interactions.

CAUTION: Summations (6.5) are truncated by applying a centre–of–mass distance cutoff that is

specified in the input .mci file (Section 6.6.2). This cutoff applies to centres of coordinates rather than

to single atom-atom distances. In this way, the sums always span entire molecules (neutral charge units)

thus substantially reducing truncation effects even if no convergence correction is applied. For polar

crystals, the van Eijck–Kroon energy correction for polar boxes (Section 3.1.5) to Coulombic energies

can be applied.

6.5 Simulation details

The degrees of freedom (dof) are three center-of-mass coordinates and three orientation angles for each

molecule in the box, plus the slave-atom parameters (Section 6.6.4). A tag in the input .mci file specifies

whether each parameter is to be altered or kept fixed during the run. The maximum stepsizes for each

kind of MC move, molecular translation, rotation, or change in internal dof's, are also specified.

When box periodicity is imposed, each molecule in the original box has translated counterparts for a ±1

addition of three periodicity vectors. As soon as the center of a molecule moves outside the box

boundary, the molecule re-enters the box at the opposite end.

A MC move or action can be any of the following:

a) Variation of molecular dof's. A random number 0 < r1 < 1 is generated and the number n of the

parameter P to be varied is determined as n = int(r1 •Ntot) + 1 where Ntot is the total number of variable

80

parameters and "int" denotes the integer part of the number. Positive or negative steps are taken by using

P' = P°+(r2 - 0.5)*step with r2 another random number. Step magnitudes for each dof are specified in

the .mci input file (Section 6.6.2, instruction 8).

b) Suppression of center-of mass drift. The overall motion of the center of mass of the whole box can

be stopped at selected intervals during the simulation, by resetting all molecular position vectors to the

origin in the current center of mass.

c) Box dimensions change. The box dimensions can be changed at selected intervals according to the

nboxc input parameter (see Table 6.1 and Section 6.6.2), with or without pressure control. Isotropic

variation with cubic boxes (liquids), or anisotropic variation with oblique boxes (crystals, Figure 6.1)

are possible. The computational box is identified by three box edges, a, b, c, and three box angles,

  . Whenever one of these box dimension is changed by a MC step, the positions of all molecules

undergoes a rigid-body change by the following procedure:

(i) calculate fractional coordinates for the molecular centres of coordinate (com) in the old box metrics;

(ii) calculate new orthogonal coordinates of the centres in the new box metrics;

(iii) calculate the components of the displacement of each molecular centre, dx, dy, dz, and apply the

same displacement vector to all atoms in the molecule. The process is repeated until all the atoms in teh

computational box are translated. This procedure avoids the molecular structure distortion that would

accompany a change of metrics on atomic coordinates.

Figure 6.1. A scheme showing how the displacements after a change in box

dimensions are calculated. B is the centre of mass of the old cell (blue) with

"old" metrics. The "new" box metrics is in red. The green vector is the

displacement vector of the centres of mass from coordinates in the old and

new metrics, that is applied to all atomic coordinates.

d) Pressure control. There is no temperature rescaling in MC, as temperature is a preset invariable

parameter. When box periodicity is present and box dimension are allowed to vary pressure control is

possible by the standard isothermal-isobaric ensemble (IIE) method. The advantage is that the

procedure samples directly from the proper probability density of the NPT ensemble, and is therefore

rigorous from the statistical thermodynamics point of view. Its application is straightforward for

isotropic and anisotropic cases, and is also relatively fast, as it does not involve a calculation of forces.

However, pressure is set at a constant value P, thus pressure fluctuations are not allowed.

When cell dimensions are varied the new total box energy U’ and the new volume V’ are calculated,

along with the quantity H:

 𝛿𝐻 = 𝑈′ − 𝑈0 + 𝑃(𝑉′ − 𝑉0) − 𝑁𝑘𝑇 ln (
𝑉′

𝑉0
) (6.6)

For more information, see Allen, M.P. and Tildesley, D.J. (1989) Computer simulation of liquids,

Oxford University Press, 1989, pp. 41 and 124). The usual Metropolis algorithm (see Section 6.5.1) is

implemented on H instead of U. The second term is interpretable as expansion work, while the third

term has no immediate interpretation. N is the number of "particles" in the system, that comes originally

from simulations of simple monoatomic species and is somewhat ill-defined in a simulation involving

large flexible molecules. In the default option it is taken as the number of molecules but could as well

81

be the number of flexible sub-molecules or even the number of atoms, depending on the structure and

setup of the molecular object (options are provided at running time). By appropriate combinations of

input control indices, the program allows runs without box periodicity (isolated clusters, no P control);

with box periodicity; no box change (NVT simulation); box change without P control (sometimes useful

is intermediate steps); box change with isotropic or anisotropic IIE P control. A full list of options is

provided in Table 6.1.

Table 6.1

Pressure and box control options. Sequence of parameters to be used in the input .mci file depending on

your purpose. Refer to Section 6.6.2 for detailed explanation of the meaning of individual parameters.

An integer n means that changes in box dimensions (nboxc) or pressure checks of the isothermal–

isobaric ensemble (npres) are carried out every n simulation steps.

Options nboxc npres ianis

(1) no box change, no P control, NVT run 0 0 0

(2) isotropic box change every n steps, no P control n 0 3

(3) anisotropic box change every n steps, no P control n 0 4

(4) as (3), with van Eijck-Kroon box dipole energy correction n 0 5

(5) isotropic IIE Pressure control, liquids 0 n 3

(6) anisotropic IIE Pressure control, crystals 0 n 4

(7) as (6), with van Eijck-Kroon box dipole energy correction 0 n 5

6.5.1 The Metropolis criterion

Each MC move (either a parameter change or a box periodicity variation without pressure control) is

accepted according to the usual Metropolis criterion: calling E the energy change, each move is

accepted if E < 0 or, when E > 0, it is accepted only if exp(-E/RT) > r, where r is a random number

between 0 and 1. T is the formal, constant temperature parameter of the MC run. Setting T very small

(say 10 K) is then equivalent to forced energy decrease and sets MC into an excellent energy-

optimization tool.

6.6 Running a Monte Carlo job

Templates and standard values for all the data input files are available in the manual. Tutorials are also

avialable to provide working examples.

6.6.1 Batch runfile

The files needed to run a Monte Carlo calculation for a compound NAME are:

- NAME.top, coordinate and force field input;

- NAME.mci, the run control file;

- name2.bxi, a file with the box description in a special MC-box format prepared by Boxcry or

Boxliq.

A typical MC run provides the following output:

- name3mc.pri, output, printfile

- name3mcc.dat, output, trajectory file in dat format (Section 5.1.3)

- name3mco.dat, output, final frame position file in dat format (Section 5.1.3)

- name3.bxo, output, final box file for restart, MC-box format (Section 5.1.1)

82

- name3.ene, output, energy trajectory file (Section 8.5.1)

-

Monte Carlo running command

run.mcmain NAME name2 name3

where NAME must correspond to the NAME.mci control file and NAME.top topology file; name2 is

the full name of the input box file name2.bxi, and name3 is the prefix of all output files.

run.mcmain module (Unix/Linux)

cp $1.mci mc.mci MC control file

cp $1.top mc.top forcefield file

cp $2 mc.bxi input box file, MC-box format

~/programs/MiCMoS/exe/mcmain run execution module

mv mc.mcp $3mc.pri output, printfile

mv mc.mcc $3mcc.dat output, trajectory file in dat format

mv mc.mco $3mco.dat output, final frame position file in dat format

mv mc.bxo $3.bxo output, final box file for restart, MC-box format

mv mc.ene $3.ene output energy trajectory file

Detailed explanations on the meaning of the control parameters and file format follow below.

83

6.6.2 The MC run-control file (.mci)

CAUTION: #lines are comment lines at fixed places: do not change their position or introduce new #

lines! These #lines usually show the identity of the various parameters but may contain user's own

comments.

Extension . mci; all free format.

1) A title line

2) #line --------------------------------

3) iprint, ivarib, iwrh, ipots, FACTIN

iprint Controls the amount of information printed in the .pri output file.

=0 minimum printout,

=1, =2 detailed printout

ivarib How to treat N in eq. (6.6)

=0, N = n.of molecules (normal use, recommended);

=1 N = n.of molecules times torsional degrees of freedom

iwrh Printout for H coordinates

=0 write (CH) H-atom coordinates on output trajectory file

=1 write H-solute not solvent,

=2 H-solvent not solute,

=3 no H written

ipots Controls the energy functional of the Force Field.

=0 use AA-CLP

=1 use AA-LJC

FACTIN Damping factor for intramolecular nonbonded interactions (see Section 6.4.2).

4) #line ---------------------------------

5) cutoff, boxx, boxy, boxz, alf, bet, gam, variation indices (3 for lengths, 3 for angles), irbox

cutoff max distance between centres of coordinates in intermolecular energy

calculation

boxx, boxy, boxz three box edges in Å (only if irbox =0 – see below; otherwise, set =0.0)

alf, bet, gam three box angles in deg (only if irbox =0 – see below; otherwise, set

=0.0)

IBX,IBY,IBZ control whether a change in box length parameters is allowed or not.

The absolute values of IBX, IBY and IBZ determine the maximum step

as |IBX|·0.01 Å along a, |IBY|·0.01 Å along b and |IBZ|·0.01 Å along

c.

=0 do not vary the corresponding box length

≠0 vary the corresponding box length; if < 0, couple those cell lengths

for which the indices are negative: e.g. –5 –5 5 means a=b

IAL, IBE, IGA same as IBX,IBY,IBZ above, now for cell angles. Coupling is no

allowed for angles. The maximum step is computed depending on to

the absolute values of these indices, according to: |IAL|·0.1° for ,

|IBE|·0.1° for  and |IGA|·0.1° for .

=0 do not vary the corresponding parameter;

≠0 do vary.

 irbox Determines where the lattice parameters are to be read in.

 = 0 use box dimensions given in the .mci file, as detailed above.

≠ 0 read box dimensions from the input box file (.bxi).

6) # line ---------------------------------

84

7) temp, n.moves, ncom reset, nbox reset, nwri, nwre, npri/steps

temp set temperature (in K).

nmoves total number of MC moves.

ncom stop the drift of the overall centre of mass every ncom steps (see Section 6.5).

nboxc change box every nboxc steps; for box variation control, see Table 6.1 above.

More information in Section 6.5.

nwrite write trajectory coordinate file every nwrite moves (output file NAMEmcc.dat)

nwre write the energy data in the output file .ene (Section 8.5.1) every nwre moves;

npri print accepted energies every npri moves (on screen and printfile, .pri)

CAUTION: All the outputs specified on line (7) can be suppressed by setting the corresponding index

to zero (except npri). If nmoves =0 the program stops after computing starting energies.

8) 10 steps 10 floating numbers that control the maximum-stepsizes.

Each of them is associated with a d.o.f. type as indicated by its sequence number

in .bxi or .sla files. Therefore, the actual meaning of the various entries may

change according with the user’s needs. In any case, the actual stepsize that is

applied is always (rand–0.5)·step, where rand is a random number, and step is

any of the specified stepsizes. Molecular and internal dof’s are associated to

entries in the maximum stepsize array through the step type numbers n indicated

either in the .sla file (Section 6.6.4, NCARDU/NCARDV instructions – internal

dof’s) or in the .bxi /.bxo files (Section 5.1.1, Table 5.1, NMSOLU/NMSOLV

blocks, molecular translations and rotations). Advisable values are 0.3 Å for

centre of mass motion, 20° for Euler angle variation (rotational dof’s of the

whole molecule), 5° for torsion angle variations. Larger stepsizes may help in

the preliminary energy minimizations of approximate box construction.

An explanatory example on how all this works is provided in Section 6.6.4.1.

9) # line ------------------------------------

10) Pressure, npres, ianis

P Set overall pressure, in bar.

npres Determines the number of steps after which the box dimensions are

changed. The Metropolis algorithm is then applied to see whether the

change is accepted, depending on H (equation 6.7). For box variation

control, see Table 6.1 above. More information in Section 6.5.

ianis Controls how the cell shape is changed. For box variation control, see

Table 6.1 above. More information in Section 6.5.

 =0 No changes (box fixed).

 =3 Only isotropic changes are allowed.

 =4 Anisotropic changes are applied.

=5 As ianis=4, and the Eijck-Kroon box dipole energy correction is also

applied. This is meaningful only if your space group is polar. See also

Section 3.1.5.

85

6.6.3 The forcefield input file (.top)

The Pretop module (Figure 4.1, Section 5.4) reads an .oeh file and prepares the best possible

approximation to the pertinent force field file, except for the separation between core and slave atoms

that must be handled by the user (Section 6.6.4). Otherwise, use of templates available in the Tutorials

(deposited on https://sites.unimi.it/xtal_chem_group) will make things easy. In the .top file, as follows,

all data except the title line is free format.

Extension .top; all free format.

1) A title line format 1x,10a4

2) NCOREU number of core atoms, solute

NCOREU lines core atom id number, x, y, z, flag for atom species (see Table 1.1), raw

charge

3) NSLAVU number of slave atom lines, solute (see Section 6.6.4).

NSLAVU lines n1, n2, n3, n4, n5, n6 integer codes (see Table 6.2 for meaning), flag for

atom species (see Table 2.1), raw charge. See also Section 6.6.4 for

correspondence of n1, n2, n3 numbers in the .sla file.

4) NCOREV number of core atoms, solute

NCOREV lines core atom id number, x, y, z, flag for atom species (see Table 2.1), raw

charge

5) NSLAVV number of slave atom lines, solvent (see Section 6.6.4).

NSLAVV lines as with NSLAVU lines.

6) VOLUU, VOLUV approximate molecular volumes for solute and solvent. They are

estimated on the basis of the van der Waals atomic radii and can be

useful only for an estimate of cluster volumes; they are both supplied

by Pretop (Section 5.4).

7) NSTRU number of bond stretching functions

NSTRU lines 4 entries, as follows: two atom id numbers of the atoms involved in the

bond, kS and R° for E(stretching)=1/2·kS·(R - R°)2, equation (6.2). See

Section A7.1 in the Appendix for suggestions on meaningful ks

parameters if needed: in most cases stretching degrees of freedom are

irrelevant in MC simulations and are not sampled.

8) NSTRV as NSTRU (bond stretching), for the solvent

NSTRV lines as NSTRU lines (bond stretching parameters), for the solvent

9) NBENDU number of bending function, solute

NBENDU lines 5 entries, as follows: three atom id numbers of the atoms involved in

the bending interaction, kb and ° for equation (6.3),

E(bending)=1/2·kb·(cos - cos°)2. See Section A7.2 in the Appendix

for suggestions on meaningful kb parameters if needed: in most cases

bending degrees of freedom are irrelevant in MC simulations and are

not sampled.

10) NBENDV as NBENDU (bond bending), for the solvent

NBENDV lines as NBENDU lines (bond bending parameters), for the solvent

https://sites.unimi.it/xtal_chem_group

86

11) NTORSU number of torsion functions, solute

NTORSU lines 7 entries, as follows: four atom id numbers, identifying the atoms

involved in the torsion; K, f and m parameters in E(tors) = K{1 + cos f

[m]}, equation (6.4). The program Pretop assigns just standard values

for K (50), f (–1) and m (+1). These must be reset with actual values,

which can be found for example in Table A7.5 (Appendix, Section

A7.3). Pretop also automatically assigns improper dihedrals to keep

planar groups with sp2 hybridization as K = 100, f = –1 and m = +1. You

may want to check them, but in most cases no external intervention is

required.

12) NTORSV as NTORSU, for the solvent

NTORSV lines as NTORSU lines (torsion parameters), for the solvent

13) NLISTU number of intramolecular contacts, solute

NLISTU pairs of atom id numbers, solute, for a total of NLISTUx2 entries (see Section 6.4.2).

These flag the intramolecular contacts, for which a FACTIN dampening factor is applied to

scale down the potential (see Section 6.4.2). FACTIN must be given in the .mci instruction file

(Section 6.6.2).

14) NLISTV number of intramolecular contacts, solvent

NLISTV pairs of atom id numbers, solvent, for a total of NLISTVx2 entries. See NLISTU above

for explanation.

15) FQ, FP, FD, FR force field scaling parameters in eq. (2.1) (standards: 0.41, 235, 650,

77000); zero if the LJC force field is used.

Add the following instructions only if Lennard-Jones potentials are used (IPO=1 in the .mci or .mdi file,

Sections 6.6.2 and 7.6.2):

16) NEXTRA number of extra L-J parameters. Non-zero only if non-library 6-12

parameters are used.

17) NEXTRA lines I, J, A6, A12 in equation (2.6). A6 and A12 are the 6-12 coefficients for

the atom-atom contact between atom species i and j.

6.6.4 The slave atom parameter file (.sla)

The NCARDU and NCARDV lines in the preceding section 6.6.3 (instructions (3) and (5)) specify the

slave atom construction codes. To use the Boxcry or Boxliq modules to prepare the starting

computational boxes, the actual values for the parameters of the slave atoms must be supplied in a

separate file, extension .sla. If there are no slave atoms, in a fully rigid molecule, no .sla file need be

prepared and these modules will ignore them.

The advantages of using a semi-rigid approach will counterbalance the apparent complexity of preparing

the .sla files. With a little practice and use of worked examples the procedure will become routine.

Extension: .sla; all free format.

The .sla files contain:

1) NCARDU number of slave atom groups, solute

87

NCARDU lines bond distance; bond angle; torsion angle; step type number (distance);

step type number (angle); step type number (torsion); 3 integer id atom

numbers. Bond distance, bond angle and torsion angle must be added

according to the conventions specified in Table 6.2 below. Set 0.0 for

parameters that are not required; Section 6.6.4.1 describes a worked

example. The last 3 integers are the id numbers to be assigned to the

slave atoms when their coordinates are computed at each MC step

(Section 6.6.4.1 gives a practical example). They will label atoms

highlighted in grey in Table 6.2.

2) NCARDV number of slave atom groups, solvent

NCARDV lines as above for NCARDU

Note that Boxcry and Boxliq also automatically load the same instructions in the .sla file into the

.bxi/.bxo files that specify the content of the simulation box (see Section 5.1.1).

CAUTION: Care must be taken to number atoms so that the N core atoms are numbered from 1 to N,

i.e., they must come first. Successive slave atoms can be built only if core atoms, necessary for the

construction, have been already built.

Summarizing: The NSLAVU and NSLAVV lines in the .top file specify the atom numbers and the

procedure to be followed to build the slaves among those in Table 6.2; the lines in the .sla file specify

the actual values of the distance, torsion angle and bond angle to be used as starting values in .bxi files.

The .bxo files will contain the MC-modified values of distances, angles and torsions. Of course any .bxo

file can be used as input for a continuation MC run. The reason for using two separate files for the

specification of molecular geometry is that slave atom parameters are variable for each molecule and

cannot be set from the topology file in continuation runs.

All this looks more complex than it actually is and becomes much simpler after the first use; see the

following worked example (Section 6.6.4.1).

88

Table 6.2

Atom positioning options in the Monte Carlo .top and .sla files. Dark grey atoms in the “group”

column are the slaves, generated by the automatic construction procedure for a given

NCARDU/NCARDV line in the .top file (Section 6.6.3).

* Sequence of atom id numbers to be specified at the end of each NCARDU/NCARDV string in the

description of the .sla file. See Section 6.6.4.1 for a practical example.

Group Type
Integer codes in .top file

Parameters in the .sla file
 0 = 0

Trigonal n1, n4, n5, n6 n2, n3
n1–n4 distance.

Last 3 integers*: n1 0 0

Methylene n1, n2, n4, n5, n6 n3

n1,2–n4 distance and n1–n4–n2 angle .

Distances n1–n4 and n2–n4 are set

equal.

Last 3 integers*: n1 n2 0

Methine n1, n3, n4, n5, n6 n2
n1–n3 distance.

Last 3 integers*: n1 0 0

Z–matrix
n1, n4, n5, n6

n2 = –1
n3

n1–n4 distance, n1–n4–n5 angle and n1–

n4–n5–n6 torsion angle.

Last 3 integers*: n1 0 0

RX3 group

n1, n2, n3, n4, n5,

n6

None

One n1,2,3–n4 distance, one n1,2,3–n4–n5

angle and one n1,2,3–n4–n5–n6 torsion .

All distances and angles are set equal;

torsions are automatically computed

from  as +120 and +140.

Last 3 integers*: n1 n2 n3

89

6.6.4.1 Building slave atoms for ethanol

An example of a valid topology .top file (Section 6.6.3) for ethanol (CH3–CH2–OH, inset) is given

below.

 ethanol
 3 ncoreu

 1 -1.53000 0.0000 0.0000 13 -0.9000

 2 0.00000 0.0000 0.0000 13 0.1100

 3 0.44190 -1.3600 0.0000 29 -1.4500

 3 nslav-u

 4 5 6 1 2 3 3 0.3000

 7 8 0 2 1 3 3 0.2700

 9 -1 0 3 2 1 5 0.8000

 0 ncorev

 0 nslav-v

 52.0 0.0 volu-u,volu-v

 0 nstretch -u

 0 -v

 0 nbend-u

 0 -v

 2 ntors-u

 4 1 2 3 3. 1.0 3

 9 3 2 1 2. -1.0 2

 0 ntorsv

 0 nlistu

 0 nlistv

0.41 235.0 650.0 70000.0

 0 nextra

The three atoms of the C1–C2–O3 chain are the core atoms. Methyl hydrogens (id numbers 4–6, atom

type 3 according to Table 1.1 and raw charge 0.3) are built attached to atom C1 as a RX3 group (Table

6.2). Methylene atoms 7 and 8 (atom type 3, raw charge 0.27) are built as a “Methylene group” type,

i.e. they are attached to atom C2 on the bisector of the C1–C2–O3 angle. The alcohol hydrogen (id 9,

atom type 5 and raw charge 0.8) is built attached to the O atom by “Z-matrix” (Table 6.2). There are no

stretch or bend potentials, but there are two torsional potentials for rotation around the C1–C2 and C2–

O3 bonds. Instructions after ntors–u define the corresponding force field parameters (see instruction

11 in Section 6.6.3).

Actual MC stepsizes are governed by a .mci run–control file (Section 6.6.2). A typical input is:

 Ethanol, liquid

iprint ivarib iwrh ipots factin

 0 0 0 0 0.7

cutoff boxx boxy boxz alf bet gam var.indices irbox

 16.0 0.0000 0.0000 0.0000 0.0 0.0 0.0 1 1 1 0 0 0 1

temp n.moves ncom nboxc nwri nwre npri/steps

 293. 50000 0 0 1000 1000 1000

 0.30 20.0 3.0 5.0 10.0 0. 0. 0. 0. 0.

P, npres ianis

 1.0 1000 3

The floating number sequence “0.30 20.0 3.0 5.0 10.0 0. 0. 0. 0. 0.” corresponds to the maximum

stepsize array specified in Section 6.6.2, line 8. The actual step in a MC move is (rand-0.5)·step, where

90

rand is a random number and step the nth element of this array. Numbers “n” unequivocally associate a

certain variable to a definite step parameter and are both specified in the .sla file (internal molecular

dof’s) and in the .bxi file (Table 5.1, molecular translational and rotational dof’s). Note that random

changes of the simulation box edges and angles are controlled by IBX, IBY, IBZ and IAL, IBE, IGA

parameters described in the instruction (5) of the .mci file, Section 6.6.2. Centre of mass translations and

rotations of the whole molecule are activated in the .bxi file.

The corresponding .sla file of ethanol looks like:

 3
 1.0800 109.47 180.00 0 0 3 4 5 6

 1.0800 110.00 0.00 0 0 0 7 8 0

 1.0000 109.00 180.00 0 0 4 9 0 0

There are 3 chemically different groups to be defined, namely a methyl (hydrogens 4–6), a methylene

(hydrogens 7 and 8) and a hydroxy (hydrogen 9). Thus, the .sla file also contains 3 lines plus the heading.

The first row specifies the methyl: the C1–H distance, bond angle and torsion are 1.08 Å, 109.47° and

180° respectively. The next three numbers (0 0 3) specify that no stretch or bend degrees of freedom are

allowed, while the methyl group torsion is allowed by stepsize nº3 in the maximum stepsize array of the

.mci file (3.0 deg in this example). The last three numbers define the sequence id numbers of atoms that

are built by the procedure: for methyl, hydrogens 4, 5 and 6. They correspond to the atoms coloured in

grey in the first column of Table 6.2.

The same applies also to other groups, as detailed below.

CAUTION: The order of the lines in the .sla file must be the same as of instructions in the topology

.top file.

In methylene, the C2–H distance is also 1.08 Å, the H–C2–H angle is 110° and there is no need for a

torsion angle (Table 6.2). As for the MC step, methylene has no degrees of freedom (0 0 0) and the two

hydrogens have id numbers 7 and 8. The O3–H distance is 1.00 Å, the C2–O3–H angle is 109° and the

torsion angle is 180° as the O–H bond staggers the methylene group. The alcohol hydrogen has a

torsional motion, governed by maximum stepsize nº4 (5.0 deg) in the list specified in the .mci file.

91

7. Molecular dynamics (MD) simulation

7.1 Introduction

The Mdmain module of the MiCMoS package is designed for the simulation of the dynamics of

aggregates of molecular substances, allowing for one or two chemical species, formally a solute and a

solvent. It can be used without periodic box conditions for isolated clusters, providing original

algorithms for the quenching of translational and rotational global motion, or with periodic box

conditions, with (NPT) or without (NVT) isotropic or anisotropic pressure control.

The Mdmain module (see also Figure 4.1) reads input starting coordinates from a .dat file (Section

5.1.3), for liquids typically resulting from a preliminary MC simulation to provide an initial energy

optimization (Section 6), or directly from the Boxcry module for crystals (Section 5.1). Atomic and

force field information is in the .top file (same format as in MC modules, Section 6.6.3). Input

instructions are read from a .mdi run-control file. The main module integrates a leap-frog algorithm and

produces .mdo (final frame, with atomic coordinates and velocities in m·s–1), .mdc (structural trajectory),

.ene (energy trajectory, Section 8.5.1) files of the same format as their MC counterparts, and .pri (line

print). In MD there is no use of core and slave atoms and all atomic coordinates are dealt with explicitly.

All input and output structural files carry atomic coordinates in Å units and are in .dat format.

The final frame (.mdo), or a final frame averaged over some last steps, the energy file (.ene) or the whole

trajectory (.mdc) are analyzed using the Analys, Correl, Geomet and Redene modules (Section 8). Some

information at running time is also printed on screen.

CAUTION: When a large energy jump is detected due to potential or dynamic malfunctions (a crash),

the program stops printing the crash energies and the crashed frame.

Table 7.1

Units of physical properties in eq.s (7.5)–(7.14). Vector quantities are in boldface. Input-output atomic

coordinates and box dimensions are in Å, atomic masses in amu, atomic charges in electrons. The MD

programs then convert to and use SI units. Output configurational and molecular energies are in kJ·mol-

1.

Symbol Physical property SI unit

P Pressure Pascal (Pa)

V Volume of the computational box Cubic meters (m3)

Mi Molecular mass Kilograms (kg)

Vi Velocity of the ith center of mass Meters per second (m·s–1)

vk Velocity of the kth atom Meters per second (m·s–1)

Ekin Total kinetic energy of the centers of mass Joule (J)

W Center-of-mass virial Joule (J)

Fij Force between centers of mass of i-j molecules Newton (N)

Rij Distance between centers of mass of i-j molecules Meters (m)

fkl Force between atoms k and l in different molecules Newton (N)

0 Isothermal compressibility Reciprocal Pascal (Pa–1)

qk Atomic charge Coulomb (C)

x, a position coordinates or box dimensions Meters (m)

92

Atomic coordinates for input are in Å, atomic masses in amu, atomic charges in electrons. The programs

then use time in seconds (s), mass in kg, lengths in meters (m) and velocities in m·s–1. All energies are

in joule or in kJ/mol (Table 7.1). These units are embedded in the code at several places and cannot be

changed by the user.

7.2 MD layout

The main modules read starting atomic coordinates for a computational box in dat format (Section

5.1.3). Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed.

7.2.1 Zero-step atomic velocities

If not present in the input file, starting velocities V can be assigned (in module) by an approximate

Maxwellian distribution according to:

 𝑉 = [
𝑘𝑏𝑇

𝑀
]
1/2

[∑ (𝑟𝑖)
12
𝑖=1 − 6] (7.1)

where kb is the Boltzmann constant, T is the set temperature, M is the atomic mass, and ri is a random

number between 0 and 1. For a better randomization of velocities, to reduce translational or rotational

biases, the components of any velocity vector V are determined as follows:

𝐕 = 𝑎𝐕𝐱 + 𝑏𝐕𝐲 + 𝑐𝐕𝐳

𝑏2 + 𝑐2 = 1 − 𝑎2

𝑏2 = 𝑎′(1 − 𝑎2)

𝑐2 = (1 − 𝑎′)(1 − 𝑎2)}

 (7.2)

Where a’ is a random number between 0 and 1. Moreover, each component Vx, Vy and Vz is assigned a

plus or minus sign according to a random number being grater or smaller than 0.5.

7.2.2 Integration

MiCMoS is equipped with two second order symplectic integrators: the leapfrog and the velocity–Verlet

algorithms. They are reasonably simple and are time reversible. Moreover, they both conserve the

Hamiltonian of the system. These strengths make them very appealing in MD simulations and well

suited to all the applications for which MiCMoS is designed.

7.2.2.1 Leapfrog algorithm

After calculation of potentials and forces the trajectory is integrated by:

𝐕(𝑡 +
1

2
∆𝑡) = 𝐕 (𝑡 −

1

2
∆𝑡) +

∆𝑡

𝑀
𝐅(𝑡) (7.3a)

𝐫(𝑡 + ∆𝑡) = 𝐫(𝑡) + ∆𝑡 ∙ 𝐕 (𝑡 +
1

2
∆𝑡) (7.3b)

where the symbols have obvious meaning of time (t), velocity (V), position (r), mass (M) and force (F).

r, V and F are three–component vectors and apply to each atom in the simulation box.

7.2.2.2 Velocity–Verlet algorithm

The velocity–Verlet (VV) algorithm can be considered as a variant of leapfrog, which determines r and

V at the same time. The VV equations read as:

𝐕(𝑡 +
1

2
∆𝑡) = 𝐕(𝑡) +

1

2

∆𝑡

𝑀
𝐅(𝑡) (7.4a)

93

𝐫(𝑡 + ∆𝑡) = 𝐫(𝑡) + 𝐕 (𝑡 +
1

2
∆𝑡)∆𝑡 (7.4b)

This means that velocities at the previous half step are no longer required. Now the forces are updated

according to the new positions 𝐫(𝑡 + ∆𝑡), and used to update velocities at t + t:

𝐅(𝑡 + ∆𝑡) = 𝐅[𝐫(𝑡 + ∆𝑡)] (7.4c)

𝐕(𝑡 + ∆𝑡) = 𝐕(𝑡) +
1

2

∆𝑡

𝑀
𝐅(𝑡 + ∆𝑡) (7.4d)

This algorithm is equivalent to leapfrog, in the sense that it generates identical trajectories if

corresponding starting points are employed (i.e., if velocities at 𝑡0 = 𝑡 −
1

2
∆𝑡, and not at 𝑡0 = 0, are

used as VV starting velocities). Otherwise, the two trajectories will be generally different, as leapfrog

interprets starting velocities as 𝐕(𝑡0 −
1

2
∆𝑡) rather than as 𝐕(𝑡0). The VV algorithm is slightly more

expensive, as it requires to compute forces at t to update positions, and at t + t to update velocities.

MiCMoS saves as much time as possible by storing the vector 𝐅(𝑡 + ∆𝑡) to use it in the (t + t) step,

but this can be done only if the coordinates are not further changed after the main integration procedure.

In MiCMoS, the routines for stopping the drift and the rotation of the whole cluster (Section 7.5.1),

suppressing the evaporation (Section 7.5.2) and applying the barostat (Section 7.3) could all modify the

coordinate vector computed by the integrator. Consequently, whenever one of these corrections is

applied, the forces must be computed again to account for the updated atomic positions. This implies

that the computational cost of the VV algorithm is slightly higher than that of leapfrog and increases

with the call frequency of the above-mentioned correction routines.

7.2.3 Temperature control

The temperature of the simulation can be kept at Tset in three ways.

7.2.3.1 Stiff coupling

A stiff coupling can be used, which means that all velocities are rescaled by a factor (Tset/T)1/2.

7.2.3.2 Berendsen thermostat

A weak coupling procedure can be applied by using the Berendsen thermostat, which implies that a

velocity rescaling factor is computed as:

𝜆(𝑡) = √[1 +
𝑑𝑡

𝜏
∙ (
𝑇𝑠𝑒𝑡

𝑇
− 1)] (7.5)

where dt is the MD timestep and  is the temperature relaxation time (in practice the dt/ ratio is

approximated by an empirical coefficient, 0.5-0.6).

This very simple rescaling procedure is computationally inexpensive but is known to produce artifacts

in the trajectories. The reason is that the Berendsen thermostat suppresses the fluctuations of the kinetic

energy, preventing a proper microcanonical NVT ensemble from being generated. Unsatisfied detailed

balance leads to the unphysical redistribution of energy from high frequency into low frequency modes,

resulting in the well–known “flying ice cube” artefact (see for example E. Braun, S. M. Moosavi, B.

Smit, J. Chem. Theory Comput. 2018, 14, 5262−5272, https://doi.org/10.1021/acs.jctc.8b00446 for

more information). This is actually a serious problem in systems where the accurate description of low

frequency modes is mandatory to catch the correct physics, such as isolated clusters and flexible

networks. These include, among others, diffusion of small molecules through molecular sieves and

metal–organic frameworks. However, when totally rigid or semi–rigid systems are considered, such as

perfect crystals at temperatures far from the melting point, the error that is introduced can be safely

neglected in most cases. As for the dynamics of isolated clusters (Section 7.5), where sampling of low–

https://doi.org/10.1021/acs.jctc.8b00446

94

frequency modes is much more important, we tackled the incorrect energy partition by providing

MiCMoS with routines that artificially suppress the translation and rotation of the cluster, thus

alleviating the overweighting of low–energy translational and rotational modes (see Section 7.5.1 and

Gavezzotti & Lo Presti, New J. Chem., 2019, 43, 2077–2084, https://doi.org/10.1039/C8NJ05825C).

If a more accurate temperature control is required, i.e., whenever fluctuations of kinetic energy are

important to determine the observables that are looked for, the CSVR thermostat should be preferred

(see Section 7.2.3.3).

7.2.3.3 Bussi–Donadio–Parrinello thermostat

The Canonical Sampling through Velocity Rescaling (CSVR) thermostat is implemented in

MiCMoS following G. Bussi, D. Donadio & M. Parrinello, J. Chem. Phys. 126, 014101, 2007,

https://doi.org/10.1063/1.2408420. The idea is to improve simpler rescaling algorithms based on kinetic

energies or temperatures with a stochastic term, which allows a correct sampling of the kinetic energies

of the canonical ensemble. A time–dependent velocity–rescaling factor  is applied, which reads

𝛼 = √
𝐾𝑡

𝐾
 (7.6)

Where Kt is the target value for the kinetic energy, as extracted from the canonical equilibrium

distribution:

𝑃̅(𝐾𝑡)𝑑𝐾𝑡 ∝ 𝐾𝑡

𝑁𝑑𝑜𝑓

2
−1
𝑒−𝛽𝐾𝑡𝑑𝐾𝑡 (7.7)

Ndof being the number of degrees of freedom and  = 1/kbT the usual Boltzmann’s factor. In practice,

whenever the thermostat is called, the kinetic energy K is evaluated. Then, an auxiliary continuous

stochastic dynamic is used to compute the target Kt, which is expected if the system samples the correct

canonical distribution. According to Bussi, Donadio and Parrinello, the stochastic correction to the

kinetic energy is

𝑑𝐾 = (𝐾𝑡 −𝐾)
𝑑𝑡

𝜏
+ 2√

𝐾𝑡𝐾

𝑁𝑑𝑜𝑓

𝑑𝑊

√𝜏
 (7.8)

In (7.8), dt is the simulation timestep and  the time constant of the thermostat. dW is a Wiener noise,

that is, a gaussian–distributed random perturbation. Whenever  → 0 (in practice, when  < 0.1), the

algorithm ignores the last term of the summation. This implies that the Wiener contribution is

instantaneously thermalized, and the algorithm reduces to a stochastic velocity rescaling.

Following Bussi, Donadio and Parrinello, an effective energy 𝐻̃ is defined as the total energy (kinetic +

potential) minus the cumulative sum of all the drifts dK to the kinetic energy due to the CSVR thermostat

(Figure 7.1). The quantity 𝐻̃ should be conserved along the trajectory; the program prints the effective

energy whenever the CSVR thermostat is called. It should remain constant when the system is

equilibrated. A systematic drift of 𝐻̃ throughout the trajectory is likely a warning of numerical

discretization errors, meaning that shorter timesteps and/or more frequent calls to the thermostat are

required. Fundamentally, the dt/ ratio is crucial in this respect.

CAUTION: Experience shows that very short time steps dt, like 0.00025 ps or lower, might be

necessary in most cases to avoid discretization errors when the CSVR thermostat is employed.

https://doi.org/10.1039/C8NJ05825C
https://doi.org/10.1063/1.2408420

95

Testing was carried out for crystalline paracetamol (phase I, P21/n) at p = 1 bar and T = 100 K, from a

previously Monte Carlo thermalization at room temperature, with the LJC Force Field. Trajectories were

all 100 ps long; results averaged over the last 50 ps of the simulation are shown in the table below. For

comparison, the experimental cell at 100 K (CSD label HXACAN) is a= 7.0915(3) Å, b= 9.2149(4)Å,

c= 11.6015(5) (1) Å,  = 97.865(1) deg, density: 1.337 g/cm3.

Thermostat

→ Integrator



Weak coupling / Å, deg, g/cm3, kJ/mol

dt = 0.002 ps

CSVR / Å, deg, g/cm3, kJ/mol

dt = 0.0001 ps

Leapfrog a = 6.884(2), b = 9.669(3), c = 11.090(4),

 = 89.93(3),  = 95.91(4), =89.99(2),

Density: 1.367(1), Ecoh = –109.8(2)

a = 6.870(3), b = 9.689(1), c = 11.113(11),

 = 89.65(1),  = 95.66(4), =89.64(2),

Density: 1.364(1), Ecoh = –109.7(3)

Velocity–

Verlet

a = 6.884(3), b = 9.685(5), c = 11.100(4),

 = 89.93(4),  = 95.91(4), =89.99(2),

Density: 1.364(1), Ecoh = –106.6(2)

a = 6.869(3), b = 9.688(1), c = 11.113(10),

 = 89.65(1),  = 95.65(4), =89.64(2),

Density: 1.364(1), Ecoh = –109.7(3)

Figure 7.1. Effective energy (𝐻̃, red) and total energy (kinetic + potential, black) for 100 ps long MD

simulation of monoclinic paracetamol at T = 100 K and p = 1 bar using a Parrinello–Rahman barostat

(see Section 7.3.3) without external stress field and a thermostat time constant  = 0.6 ps. The thermostat

and barostat algorithms were applied every 100 and 50 MD steps, respectively. (a) Leapfrog; (b)

velocity–Verlet.

CAUTION: For isolated small clusters, an accurate description of temperature is impossible; in a

cautionary attitude, simulation temperature can be regarded as just a measure of dynamic freedom

without much connection with the corresponding thermodynamic quantity.

7.2.4 Bias MD

From v2.0 onwards, MiCMoS is equipped with the modivel routine, which artificially redistributes the

molecular kinetic energies to drive the simulation softly toward the “spontaneous” formation of stable

clusters and nucleation events. The routine modivel is called as the last step of the mdmain engine, just

before printing the trajectory: this means that it does not affect directly the forces. Rather, it rescales the

velocities just before the next integration step.

The idea is to advantage stable molecular pairs and small clusters within a disordered system, like a bulk

liquid phase. Such pairs and clusters are always present, mostly as transient entities. They might act as

supramolecular synthons during nucleation, especially if their formation is kinetically favoured and they

survive the thermal agitation for sufficiently long times. Our biased MD algorithm should be considered

as a tool to speed up the process of driving the molecules toward the most effective recognition modes.

96

Upon self-recognition, molecules form pairs and clusters that are more stable than the individual

components. The potential energy in excess is redistributed to the surrounding molecules as heat. We

thus expect that molecules outside the cluster will gain kinetic energy, while those inside will get stuck

in a local minimum of potential energy that reduces their accessible phase space. To simulate this

process, the modivel algorithm selects attractive pairs in a user-defined energy range, that is, those whose

intermolecular energy Eij lies in between a user-defined interval Ebias(lower threshold)–Ebias(upper

threshold). It is thus possible to advantage specific recognition modes, even at intermediate energies, to

try driving the system towards ordered patterns. The advantage of this procedure is that no constraints

are imposed on intermolecular geometric parameters (e.g. centre of mass distances, reciprocal molecular

orientations) based on structural properties that need to be known a priori. The user can also choose to

bias only very attractive pairs, i.e. all those with Eij < Ebias(upper limit).

modivel needs information on the actual distribution of molecule–molecule interaction energies. These

are computed only if the idistr flag in the third line of the MD control file (.mdi) is active (idistr = 1) and

an upper threshold Emolim for the distribution is defined (see Section 7.6.2 for the full description of

the available commands and options). For the same reason, Ebias parameters must be strictly lower (more

negative) than Emolim, the maximum energy threshold for computing the distribution. MiCMoS checks

the internal consistency of input parameters; if errors are found, the program stops with a warning

message.

In practice, a bias scaling factor g  1 is computed:

𝑔 = 1 −
|𝐸𝑖𝑗 − 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟)|

|𝐸𝑖𝑗|
 if 𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟) (7.9𝑎)

𝑔 = 1 if 𝐸𝑖𝑗 ≥ 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟) or 𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟) (7.9𝑏)

Figure 7.2. (a) Bias scaling function vs. molecule-molecule interaction energies Eij for 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟) <
𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟), with 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟) = −40 𝑘𝐽/𝑚𝑜𝑙. (b) Same as (a), without a lower limit. In both

panels, 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟) = −15 𝑘𝐽/𝑚𝑜𝑙.

The functional g(Eij) has the form shown in Figure 7.2: the larger the |𝐸𝑖𝑗 − 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟)| difference,

the smaller is g; when Eij << Ebias(upper), g → 0, while g → 1 when Eij approaches Ebias(upper). Both

97

the molecules i and j involved in the attractive pair will have their kinetic energies, Ti and Tj, scaled

according to:

𝑇𝑖
𝑛𝑒𝑤 = 𝑔 ∙ 𝑇𝑖 (7.10𝑎)
𝑇𝑗
𝑛𝑒𝑤 = 𝑔 ∙ 𝑇𝑗 (7.10𝑏)

To the sake of simplicity, we will refer just to the ith single molecule hereinafter. In the algorithm, the

same operations are obviously repeated also for the jth molecule of each pair.

The ith molecule undergoes a kinetic energy change of

∆𝑇𝑖 = 𝑇𝑖
𝑛𝑒𝑤 − 𝑇𝑖 = 𝑔 ∙ 𝑇𝑖 − 𝑇𝑖 = 𝑇𝑖 ∙ (𝑔 − 1) (7.11)

∆𝑇𝑖 is negative, as g < 1 and Ti must be positive. When g → 0, it turns out that the whole molecular

kinetic energy is suppressed (∆𝑇𝑖 = −𝑇𝑖). On the contrary, no changes are made (∆𝑇𝑖 = 0) in unbiased

steps (g = 1). The reduction of the molecular kinetic energy is equally distributed across the Ni atoms in

the molecule i. Thus, each atom loses an amount of kinetic energy ∆𝑇𝑖,𝑎:

∆𝑇𝑖,𝑎 =
∆𝑇𝑖
𝑁𝑖

= 𝑇𝑖,𝑎
𝑛𝑒𝑤 − 𝑇𝑖,𝑎 < 0 (7.12)

where 𝑇𝑖,𝑎 is the contribution to the molecular kinetic energy due to the atom 𝑎 ∈ 𝑖 with velocity module

𝑣𝑖,𝑎:

𝑇𝑖,𝑎 =
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2 (7.13𝑎)

𝑇𝑖 =∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2

𝑁𝑖

𝑎

=∑𝑇𝑖,𝑎

𝑁𝑖

𝑎

 (7.13𝑏)

A correspondent equality holds true for the biased kinetic energy of the molecule i:

𝑇𝑖
𝑛𝑒𝑤 =∑

1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎,𝑛𝑒𝑤

2

𝑁𝑖

𝑎

=∑𝑇𝑖,𝑎
𝑛𝑒𝑤

𝑁𝑖

𝑎

= 𝑔 ∙ 𝑇𝑖 (7.14)

Substituting (7.13b) into (7.14) one gets the equality (7.15):

∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎,𝑛𝑒𝑤

2

𝑁𝑖

𝑎

= 𝑔 ∙∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2

𝑁𝑖

𝑎

=∑
1

2
𝑚𝑖,𝑎𝑔(𝑣𝑖,𝑎

2)

𝑁𝑖

𝑎

 (7.15)

which is certainly true if

𝑣𝑖,𝑎,𝑛𝑒𝑤
2 = 𝑔(𝑣𝑖,𝑎

2) (7.16)

In other words, the bias scaling function g rescales the square modules of atomic velocities, whose

individual components can be obtained by taking the corresponding square roots:

98

{

±𝑣𝑖,𝑎,𝑥
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑥

 ±𝑣𝑖,𝑎,𝑦
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑦

±𝑣𝑖,𝑎,𝑧
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑧

 (7.17)

To conserve the total kinetic energy of the ensemble, the reduction of kinetic energy ∆𝑇𝑖 must be

compensated by a corresponding gain from all the molecules whose kinetic energies are not going to be

reduced, that is, those Nk molecules that have Ekl > Ebias. The change ∆𝑇𝑖 is equally distributed across

these Nk molecules as ∆𝑇𝑘 = −∆𝑇𝑖 𝑁𝑘⁄ > 0. By expressing this energy change as a kinetic energy

rescaling of each kth molecule, one gets:

𝑇𝑘
𝑛𝑒𝑤 = 𝛼 ∙ 𝑇𝑘 = 𝑇𝑘 + ∆𝑇𝑘 (7.18)

The factor  for the kth non-frozen molecule can be computed from (7.18):

𝛼 = 1 +
∆𝑇𝑘
𝑇𝑘
 (7.19)

As it should be, 𝛼 > 1. From 𝑇𝑘
𝑛𝑒𝑤 = 𝛼 ∙ 𝑇𝑘 (7.18) we can proceed analogously to (7.14)–(7.16) to find

the scaling factor for the atomic velocities:

{

±𝑣𝑘,𝑎,𝑥
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑥

 ±𝑣𝑘,𝑎,𝑦
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑦

±𝑣𝑘,𝑎,𝑧
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑧

 (7.20)

The rescaling procedure is applied again and again to the same molecule, one time for each

intermolecular interaction that fulfills the biasing criterion. This means that molecules involved at the

same time in more than one stable pair, that is, forming a cluster, are frozen more rapidly, increasing the

probability of obtaining stable aggregates. Eqs. (7.17) and (7.20) provide a very simple recipe to rescale

all the velocities in the simulation box in such a way that the total kinetic energy is conserved upon the

application of (7.10) and (7.19). In practice, discretization errors and numerical approximations could

make the total kinetic energy not fully conserved. The algorithm checks the kinetic energy before and

after the application of the bias and stops with a warning message if an error larger than 1 % is detected.

This is just a precaution, as the thermostat should take care of restoring periodically the correct kinetic

energy of the ensemble.

In summary, the user can select the thresholds of the bias (parameters Ebias(upper) and Ebias(lower), see

Section 7.6.2) and the frequency of its application (parameter Nbias, see Section 7.6.2). The algorithm

selects the best scaling factor g depending on the strength of interaction between the involved molecules

(Figure 7.2). It is possible to keep the bias active for the whole trajectory, or to repeatedly switch it

on/off for specific user–defined time periods (parameters tinon and tinof, see Section 7.6.2).

7.2.5 Molecular dynamics in confined spaces

The model for confined space relies on neutral, rigid and stretchable barriers that are added on the

boundaries of the simulation box.

To perform a confined molecular dynamics simulation, MiCMoS needs (i) a pre-equilibrated simulation

box and (ii) a topology file as input. These can be obtained with standard procedures, which include for

99

example routines like boxliq.for (Section 5.2) and pretop.for (Section 5.4), followed by a fast 1-2 Msteps

long run of Monte Carlo (Section 6) to dispose of hard contacts and adjust the starting density.

The unconfined liquid is given in input to a new module, confbox.for (Section 5.8). This program

prepares the parameter file barrier.par (Section 5.8.1), which specifies the geometrical details of the

confined space and the force field parameters of the barrier. At the same time, confbox.for converts the

standard simulation box into a new one, ready for the confined simulation, by deleting all the molecules

which bear an atom in close contact (less than the sum of the van der Waals radii) with the barrier pixels.

The barriers consist of regular square/rectangular grids of massless pixels, neutral by deafult. The user

is free to set the pixel diameter and the Force Field parameters that determine molecule-pixel interactions

during the dynamics. In practice, at the user’s convenience, the same atom id code is attached to all

pixels according with Table 1.1 (Section1.4), which selects the corresponding A6, A12 Lennard–Jones

parameters of the LJC parametrization (Section 2.1.2). It is wise to set pixel dimensions similar to the

van der Waals diameter of the selected atom type, but smaller or larger pixels can be employed as well

if desired, for example to set up simulations in a coarse-grained fashion.

Upon addition of the barriers, at least one direction out of X, Y or Z becomes non periodical. The user

sets the desired equilibrium distance between pairs of opposite barriers, wihich may or not be different

from the starting one. The program confbox.for takes care of tuning the length of the simulation edges

to have the desired target packing efficiency. In other words, the volume of the confined box is variable

and depends on the number of molecules and the desired packing efficiency (Cpack). By default, the

program sets the box volume to have the theoretical maximum efficiency for the random packing of

spheres, 0.66 (see Zaccone, Phys. Rev. Lett., 2022, 128, 028002). If desired, the user can start with less

dense liquids by acting on the parameters nmolzacu and nmolzacv specified in the barrier.par file

(Sections 5.8 and 5.8.1). By increasing these parameters, a larger box will be produced, and Cpack will

be consistently lowered. When dealing with nanotubes and nanolayers, the user sets the barrier-to-barrier

distances they desire, and confbox.for tunes the length of the simulation box along the periodic

directions. For nanocavities, no periodic directions exist, and the target equilibrium edge length are

automatically computed according to the target Cpack. This procedure ensures that no steric clashes

should be produced, as the program prevents the user from setting box dimensions that are too small

with respect to the number of the molecules in the liquid.

From a geometrical viewpoint, confbox.for places the barriers onto the surfaces that bound the original

simulation box. This implies that the barriers are always parallel in pairs, and only squared sections are

available for nanotubes and nanocavities. An offset parameter can be controlled at the confbox.for stage,

to tune the distance between the barriers and the box boundaries. The offset parameter allows to perform

fine adjustments of the barrier positions with respect to the simulation box surface. Confbox.for deletes

those molecules that have at least one atom below the van der Waals distance with at least one pixel of

the barrier (see above). This step is mandatory to prevent steric clashes at the beginning of the

simulation. Thus, the offset parameter is useful to avoid the deletion of many molecules.

The number of pixels that define the barriers is calculated by rounding down the ratio between the

equilibrium length of the box edges, as computed by the program according with the desired Cpack, and

the user-defined pixel diameter.

The confinement partitions the available space into a “bulk” region, where molecules are distant from

the barrier and no significant pixel-molecule interactions are set up, and a “barrier” region, where on the

contrary pixel-molecule interactions are not negligible (Figure 7.3). A reasonable empirical cutoff of

10–3 kJ·mol–1 is usually employed to discriminate between such regions, but the user is free to make

their own choice to establish the corresponding boundaries.

100

Figure 7.3. Structure of the confined space for a nanolayer. The barriers (in grey) can be stretched or

compressed along direction parallel to their surface. At the same time, they are allowed to vibrate along

the perpendicular direction. The amplitudes of these motions are controlled by a force constant (see

text). Molecule-barrier interactions are nonzero (EB > 0.001 kJ·mol–1) in the barrier region (dark blue),

while they are negligible in the bulk region (light blue).

The barriers are stretchable: every time the barostat varies the dimensions of the simulation box, the

pixel positions are modified accordingly, but their number remains constant. If the pressure of the system

is high and positive (negative) along a specific direction parallel to the barrier, the box dimension in that

direction would increase (decrease). To avoid unphysical stretching, the following solution is employed.

A fictitious pressure is added in each laboratory direction X, Y, and Z. This counterpressure is

proportional to the difference between the actual box size and the equilibrium box size, divided by the

area of the face orthogonal to that direction. By default, the force constant k corresponds to the stretching

of an aromatic Csp2-Csp2 bond (3400 kJ·mol-1·Å-2). Damping scale factors can be also applied by the

user at the confbox.for stage, which are also specified in the barrier.par parameter file. Thus, the user

may control the stiffness of the system, along both the parallel and perpendicular directions with respect

to the barrier(s). To this end, three damping factors are available (dampk(XY) along Z, dampk(XZ) along

Y and dampk(YZ) along X, see also Section 5.8), to change the relative strength of the force constant

along the X, Y and Z directions (Figure 7.3). Contradictory statements (for example, different parallel

and perpendicular force constants in a nanocavity) are recognized by the program, which in that case

stops before entering the simulation.

To start the dynamics, a new parameter, inano, must be specified in the input .mdi file (see Section 7.6.2

below). inano = 0 means unconfined simulations and implies that the confbox procedure described

above is not needed, while inano = 1, 2, 3 may be set for nanolayer, nanotube, and nanocavity

simulations respectively; in other words, the confinement is applied on the starting simulation box by

reducing the corresponding number of periodic directions.

Then, the dynamics proceeds as usual; the only difference with respect to standard (unconfined)

simulations is that atom-pixel interactions are evaluated at every steps. Every atom interacts with all the

pixels lying within the usual cutoff distance. In particular, the solute-solute cutoff (see Section 7.6.2) is

applied also for atom-pixel distances that involve the solute, while the same solvent-solvent cutoff is

applied for atom-pixel distances that involve the solvent.

As the barrier has not a true chemical structure, it is only affected by stretching deformations, as

prompted by the barostat. Accordingly, the atom-pixel energy terms are not explicitly considered to

compute the total virial of the forces of the system, which still refers to the usual solute-solute, solute-

solvent and solvent-solvent terms. As a consequence, the forces exerted onto the barriers by the liquid

are totally ignored. This prevents the barrier from changing its shape, for example from being bent. On

the contrary, the molecules fully feel the force exerted by the barriers, as their dynamics (in terms of

translation, rotation and velocity) is influenced by the interactions with the pixels. In other words, the

presence of the barriers has an indirect effect on the total virial and henceforth on the (an)isotropic

pressure.

101

At the very beginning of the simulation, in particular if a large offset is set between the faces of the

simulation box and the barriers, a high negative pressure could be developed in the direction

perpendicular to the barriers, which might rapidly compress the system and produce clashes. To avoid

such problems, when the confinement is active (inano > 0), a further damping is automatically applied

to the barostat algorithm (Section 7.3). In particular, the barostat is prevented from applying

(an)isotropic scaling factors lower than 0.95 to the box edge lengths. Equivalently, changes not greater

than 5 % are allowed for the box edge lengths in a single MD step.

Finally, the user can employ either full Lennard-Jones barriers or repulsive-only ones. This options is

controlled by the parameter iattr, which is given as input during the confbox.for procedure and is

consequently set in the barrier.par file. If iattr is 0, the attractive A6 coefficient (Section 2.1.2) is

switched off (A6 = 0) and the only possible atom-barrier interactions are the short-range repulsive ones,

as governed by the A12 coefficient. This also implies that the “barrier” part of the simulation box (Figure

7.3) becomes thinner, while the “bulk” one enlarges. If the A6, A12 coefficients of Carbon are used, for

example, the thickness of the “barrier” layer is ~11.6 Å for a full Lennard-Jones potential and shrinks

to ~6.4 Å for a repulsive-only one.

7.3 Periodic boundary conditions and pressure control
Periodic boundary conditions can be imposed in three dimensions. To this end, the program

automatically loads 27 replicas of the main box along the three directions. At preset intervals and/or

after box changes, the center of mass motion is stopped (subroutine comres) and out of box molecules

re-enter the box from the opposite side.

The pressure of the simulation can be controlled with two algorithms. When simulating a liquid with a

cubic simulation box, pressure rescaling should be isotropic (Section 7.3.1), the box being constrained

to stay cubic. In principle, isotropic rescaling could apply also to orthogonal crystal boxes as in

orthorhombic or higher-symmetry systems, although this is not advisable. In general, for the simulation

of a crystal, pressure rescaling should be anisotropic (Section 7.3.3), allowing full relaxation of different

box dimensions and angles. This can be achieved by a “minimal barostat” option (Section 7.3.2), or

by the Parrinello–Rahman algorithm (Section 7.3.3).

7.3.1 Isotropic pressure control

The isotropic pressure control on orthogonal computational boxes is achieved by use of the virial

theorem. The algebra is from GROMOS96 manual: see Van Gunsteren, W. F., Billeter, S. R., Eising,

A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P. & Tironi, I. G., Biomolecular

simulation: The GROMOS96 manual and user guide, BIOMOS B.V. Zurich, Groningen, vdf

Hochschulverlag A.G. and der ETH Zurich (1996).

Consider an ensemble of molecules each with total mass Mi , made of atoms of mass mk and velocity vk.

Let Vi, be the centre of mass velocity:

𝐕𝑖 = ∑
𝑚𝑘𝐯𝑘
𝑀𝑖

𝑎𝑡𝑜𝑚𝑠 ∈ 𝑖

𝑘=1

 (7.21)

Thus, the molecular kinetic energy is ½MiVi
2, and the total kinetic energy of the ensemble is:

𝐸𝑘𝑖𝑛 = ∑
1

2
𝑀𝑖𝑉𝑖

2

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑖=1

 (7.22)

102

The kth atom of the ith molecule interacts with all the l atoms in each of the surrounding molecules, j.

The corresponding forces can be computed with the established force field (Section 7.4). Atom–atom

force contribution fkl will sum up to give the total force acting on the centre of mass of the ith reference

molecule due to the presence of the jth one:

𝐅𝑖𝑗 = ∑ 𝐟𝑘𝑙

𝑎𝑡𝑜𝑚𝑠 ∈ 𝑖,𝑗

𝑘,𝑙

 (7.23)

If we now define as Rij the i–j centre of mass vector distance, the centre of mass virial W can be computed

as:

𝑊 = −
1

2
∑ 𝐅𝑖𝑗 ∙ 𝐑𝑖𝑗

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑖<𝑗

 (7.24)

Eventually, the pressure experienced by the whole molecular ensemble can be estimated from the

classical virial theorem, V being the volume of the computational box:

𝑃 =
2

3𝑉
(𝐸𝑘𝑖𝑛 −𝑊) (7.25)

Table 7.1 above shows the measure units that are employed throughout. At preset time intervals, virial

(W) and kinetic energy (Ekin) are calculated and current pressure P is obtained by (7.25); then,

compliance towards the set pressure, Pset (usually 1 atm = 101300 Pa) is achieved using the relationships

(7.14)–(7.18).

First, an adimensional shift factor  is computed from the corresponding compressibility coefficient, 0,

which is given in the run control file .mdi (see Section 7.6.2 below; this being an empirical factor whose

values is usually 0.3 or 0.4):

𝜇 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃)]
3

 (7.26)

Then, the new box dimensions are computed and centre–of–mass vector (rcom) components accordingly

updated:

𝑎′ = 𝜇𝑎 (7.27)

𝐫com
′ (𝑖) =

𝑎′

𝑎
𝐫com(𝑖) (7.28)

For each molecule, the centre–of–mass displacement is applied to all the atomic coordinates xk of the ith

molecule:

∆𝐱 = 𝐫com
′ (𝑖) − 𝐫com(𝑖) (7.29)

𝐱𝑘
′ = 𝐱𝑘 + ∆𝐱 (7.30)

103

7.3.2 Anisotropic pressure control for oblique boxes

For monoclinic or triclinic crystals, in the minimal barostat option the anisotropic pressure control

proceeds with the 3-dimensional equivalent of the algorithm detailed in equations (7.9)–(7.14): the

separate x, y, z components of virial, kinetic energy and forces are computed to obtain three separate

box update parameters, x y and z, which rescale each of the three components of box vectors.

Moreover, the whole vector algebra in an oblique system must go through an orthogonalization and

deorthogonalization procedure as detailed below.

CAUTION: With this procedure, no explicit equations of motions are solved for the simulation box.

Thus, if the starting cell has angles equal to 90º, its shape will remain fixed, as no off–diagonal elements

are present in the transformation matrix, which could mix edge vectors and affect angles.

Let a, b, c,    be the unit cell parameters, repeated by Na, Nb, Nc times along the three dimension to

form a computational box with cell parameters A, B, C and    , where A = a·Na, B = b·Nb and C =

c·Nc. Let cos, cos, cos sin, sin sin be the cosines and sines of the three box angles. From these

values, an orthogonalization matrix O can be computed according to:

𝐎 =

(

𝐴 𝐵 cos𝛾 𝐶 cos𝛽

0 𝐵 sin𝛾 𝐶 [
cos 𝛼 − cos𝛽 cos 𝛾

sin 𝛾
]

0 0 𝐶 [
𝑓𝑉
sin 𝛾

]
)

 (7.31)

Where the scalar fV is

𝑓𝑉 = (1 − cos
2𝛼 − cos2𝛽 − cos2𝛾 + 2 cos𝛼 cos𝛽 cos 𝛾)1/2 (7.32)

Any column vector of fractional coordinates xf, yf, zf can thus be orthogonalized to give the

corresponding xo, yo, zo coordinates in a Cartesian reference frame following the transformation xo = O

xf:

𝑥0 = 𝐴𝑥𝑓 + 𝐵 cos 𝛾 ∙ 𝑦𝑓 + 𝐶 cos𝛽 ∙ 𝑧𝑓

 𝑦0 = 𝐵 sin 𝛾 ∙ 𝑦𝑓 + 𝐶 [
cos𝛼 − cos𝛽 cos 𝛾

sin 𝛾
] ∙ 𝑧𝑓

 𝑧0 = 𝐶 [
𝑓𝑉
sin 𝛾

] ∙ 𝑧𝑓 }

 (7.33)

Where fV is defined in (7.32) and the volume of the simulation box is

𝑉𝑏𝑜𝑥 = (𝐴𝐵𝐶)𝑓𝑉 (7.34)

For crystals, starting orthogonalized atomic coordinates in files boxcry.dat are generated by program

Boxcry (Section 5.1) using (7.31)–(7.34) from crystallographic data. In liquid boxes, A = B = C with

three angles 90° and all coordinates are directly generated orthogonal by the Boxliq module (Section

5.2).

The edge vectors of the computational Bx, By, Bz are also computed in the new orthogonal reference

frame by applying the same transformation O to the fractional unit translations corresponding to the

104

crystallographic computational box: (1 0 0), (0 1 0), (0 0 1). This leads to the following expressions for

the components of Bx, By, Bz:

𝐁𝐱 = (
𝐴
0
0
); 𝐁𝐲 = (

𝐵 cos𝛾
𝐵 sin𝛾
0

); 𝐁𝐳 =

(

𝐶 cos𝛽

𝐵 [
cos𝛼−cos𝛽 cos𝛾

sin𝛾
]

𝐶 [
𝑓𝑉

sin𝛾
]

)

 (7.35)

To implement box periodicity, 27 vectors n of components n1, n2, n3 = -1, 0 or +1 in all combinations

are generated and then the actual translation vectors T are:

𝐓(1) = 𝑛1𝐁𝐱(1) + 𝑛2𝐁𝒚(1) + 𝑛3𝐁𝐳(1)

𝐓(2) = 𝑛1𝐁𝐱(2) + 𝑛2𝐁𝒚(2) + 𝑛3𝐁𝐳(2)

𝐓(3) = 𝑛1𝐁𝐱(3) + 𝑛2𝐁𝒚(3) + 𝑛3𝐁𝐳(3)

} (7.36)

All coordinates in the computational box are periodically repeated by summing the possible vectors T,

in all their 27 combinations. The intermolecular energy is computed between all molecules in the

computational box, and all translated molecules within a cutoff distance between centers of mass

(usually, 15-18 Å). In this way, summations are always carried out between full molecules (neutral

units), thus reducing if not disposing of truncation and edge effects. Vectors T are established at the

beginning of the calculation in subroutine rebox, and are updated as soon as vectors Bx, By and Bz are

updated during pressure control.

In the "minimal barostat" option, the new pressure components P(i) (former (7.25)) and the

corresponding shift factors (i) (former (7.26)) are:

𝑃𝑥 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑥 −𝑊𝑥𝑥); 𝜇𝑥 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑥)]

3

𝑃𝑦 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑦 −𝑊𝑦𝑦); 𝜇𝑦 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑦)]

3

𝑃𝑧 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑧 −𝑊𝑧𝑧); 𝜇𝑧 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑧)]

3

}

 (7.37)

Where 0 is the compressibility coupling parameter detailed in Section 7.3.1. Translation vectors are

updated accordingly:

[

𝐁𝐱
′ (1) = 𝜇𝑥𝐁𝐱(1)

𝐁𝐱
′ (2) = 𝜇𝑦𝐁𝐱(2)

𝐁𝐱
′ (3) = 𝜇𝑧𝐁𝐱(3)

] ; [

𝐁𝐲
′ (1) = 𝜇𝑥𝐁𝐲(1)

𝐁𝐲
′ (2) = 𝜇𝑦𝐁𝐲(2)

𝐁𝐲
′ (3) = 𝜇𝑧𝐁𝐲(3)

] ; [

𝐁𝐳
′(1) = 𝜇𝑥𝐁𝐳(1)

𝐁𝐳
′(2) = 𝜇𝑦𝐁𝐳(2)

𝐁𝐳
′(3) = 𝜇𝑧𝐁𝐳(3)

] (7.38)

after which also the translation vectors T are updated (eq. (7.36)). Once the new vector components are

available, the box parameters in the new crystallographic reference frame are recalculated as:

105

𝐴𝑛𝑒𝑤 = √𝐁𝐱
′ (1)2 + 𝐁𝐱

′ (2)2 + 𝐁𝐱
′ (3)2

𝐵𝑛𝑒𝑤 = √𝐁𝐲
′ (1)2 + 𝐁𝐲

′ (2)2 + 𝐁𝐲
′ (3)2

𝐶𝑛𝑒𝑤 = √𝐁𝐳
′(1)2 + 𝐁𝐳

′(2)2 + 𝐁𝒛
′ (3)2}

 (7.39)

And accordingly, the new angles are given by:

𝛼𝑛𝑒𝑤 = cos
−1 [

𝐁𝐲
′ ∙ 𝐁𝒛

′

𝐵𝑛𝑒𝑤𝐶𝑛𝑒𝑤
]

𝛽𝑛𝑒𝑤 = cos
−1 [

𝐁𝐱
′ ∙ 𝐁𝒛

′

𝐴𝑛𝑒𝑤𝐶𝑛𝑒𝑤
]

𝛾𝑛𝑒𝑤 = cos
−1 [

𝐁𝐲
′ ∙ 𝐁𝒙

′

𝐵𝑛𝑒𝑤𝐴𝑛𝑒𝑤
]
}

 (7.40)

All orthogonal center of mass coordinates xo, yo, zo are updated as follows (subroutine boxexp). First,

old coordinates are de-orthogonalized with the old metrics Aold, Bold, Cold and old old old old with the

inverse matrix O–1 (inverse of (7.31), see Appendix Section A3): new c.o.m. coordinates are then

generated by re-orthogonalizing with the new metrics:

𝐫(old, fract) = 𝐎old
−1 ∙ 𝐫(old, orthog)

𝐫(new, orthog) = 𝐎new ∙ 𝐫(old, fract)
} (7.41)

New c.o.m. coordinates are then generated by re-orthogonalizing [rx, ry, rz] with the new metrics (matrix

O, eq. (7.31)), such that 𝐫com
′ = 𝐎 ∙ 𝐫com. Finally, the displacements are calculated as ∆𝐱 = 𝐫com

′ − 𝐫com

(as in eq. (7.29)) and the coordinates of all atoms are displaced by x (as in eq. (7.30)). This procedure

preserves rigid molecular conformations, as it shifts molecules as rigid bodies. Velocities are left

unchanged after box update (an acceptable approximation).

7.3.3 Parrinello-Rahman barostat

The original procedure is described in Parrinello, M. & Rahman, J. Appl. Phys. 1981, 52, 7182–7190;

Phys. Rev. Letters 1980, 45,1196-1199. The code for the P-R barostat is embodied in in the mdviri

library of the MD setup. All quantities are expressed in S.I. units, with energy in kJ/mol, velocity in m/s,

distance in meters and forces in Newton.

1) An array vl(4000,3) is defined, where the velocities of the centers of mass (c.o.m.) of solute

(from 1 to NMSOLU, see Table 5.1) and solvent (from NMSOLU+1 to NMSOLV, see Table

5.1) are progressively stored. At the same time, the halved negative virial tensor components

due to solute-solute, solvent-solvent and solute-solvent interactions are computed according to:

𝐖 = −1 2⁄ 𝐟𝑖𝑗 ⊗𝐑𝑖𝑗 (7.42)

Eventually, the tensor contributions coming from each molecular pair are summed up, and the

total virial tensor is obtained. fij is the force between molecules i and j and Rij is the

corresponding c.o.m. distance (see also Table 7.1). The symbol ⊗ denotes the tensor product

between the two vector (1st–rank tensor) quantities.

106

CAUTION: For the moment, a maximum number of 4000 molecules can be dealt with, including solute

and solvent. If your box contains more molecules, the array dimensions must be incremented directly in

the source code, and the program recompiled.

2) The total (3x3) kinetic energy tensor is computed according to:

𝐄 =∑
1

2
𝑚𝑖 (𝐯𝑖⊗𝐯𝑖)

𝑖

 (7.43)

vi being the i-th vector stored in the vl(4000,3) array. The summation goes up to the total number

of molecules, NMSOLU+NMSOLV.

3) Eventually, the individual components of kinetic energy and virial are summed each other, and

the pressure tensor is computed as

𝐏 =
2

𝑉
(𝐄 +𝐖) (7.44)

where V is the volume of the simulation box and takes care of converting energy units into

pressure units. Overall, this procedure implements the definition of the pressure tensor proposed

by Parrinello & Rahman:

𝐏 =
2

𝑉
{∑[

1

2
𝑚𝑖 (𝐯𝑖⊗𝐯𝑖)] −

1

2
∑[𝐟𝑖𝑗 ⊗𝐑𝑖𝑗]

𝑖<𝑗𝑖

} (7.45)

4) The scalar hydrostatic pressure, p, is defined, as usual, as one third of the trace of the P tensor:

𝑝 =
1

3
∑ 𝑃𝑖𝑖

3

𝑖=1
 (7.46)

5) Subroutines metric and boxconv take care of computing H, that is, the matrix of the box edges

arranged as column vectors in a crystallophysical cartesian reference frame. Orthogonalization

is carried out with the same procedure detailed in Section 7.3.2.

6) The box edges experience their own equation of motion, which can be written as:

𝐅 = 𝑤
𝑑2𝐇

𝑑𝑡2
= [𝐏 − 𝑝𝐈]𝛔 (7.47)

Here, F is the force acting on the simulation box, H the matrix of the box edges in cartesian

coordinates, P the pressure tensor, p the scalar hydrostatic pressure, I the identity matrix and 

the volume-scaled reciprocal cell matrix. The coupling parameter w determines the strength of

the pressure coupling and must be given in input within the .mdi parameter file (see Section

7.6.2). It has dimensions of a mass (kg) and determines the inertial response of the lattice to the

pressure unbalance.

107

CAUTION: Strictly speaking, w should be chosen so that the relaxation time be of the same order of

magnitude as L/c, L being the length of the simulation box and c the velocity of sound in the bulk. In

fact, w determines the relaxation time for recovery from an imbalance between external pressure and

internal stress. In practice, equilibrium properties are independent on the fictitious mass and w can be

arbitrarily chosen to have a convenient relaxation time. Something like w=1.0-3.0 is normally

appropriate.

7) The standard leap–frog algorithm is exploited. First, the velocity matrix associated to cell edge

displacements (VH) is computed according to:

𝐕𝐇 =
1

2
(
𝑛 · Δ𝑡

𝑤
)𝐅 (7.48)

where n is the number of MD steps between two subsequent pressure controls, t the simulation

time step (as defined in the input .mdi file, Section 7.6.2) and w the coupling parameter above

discussed. As usual in the leap–frog procedure, velocities are evaluated at n·t/2 seconds. Then,

the H matrix of cell edges is finally updated from the velocity tensor at t/2:

𝐇(𝑡 + Δ𝑡) = 𝐇(𝑡) + (𝑛 · Δ𝑡)𝐕𝐇 (7.49)

Note that the velocity verlet algorithnm cannot be applied to the dynamics of the cell edges.

8) The c.o.m. positions of all the molecules in the simulation, including the 26 translationally–

dependent images of the simulation box, are updated according to the change in the cell edge

vectors, analogously to what detailed in Section 7.3.2.

7.3.4 External pressure

NpT MD simulations can be also carried out under arbitrary external stress. The original algebra was

developed by Parrinello & Rahman (J. Appl. Phys. 1981, 52, 7182–7190) and relies on Lagrangian

dynamics applied to the 3x3 cell edge tensor, H, that is, the array of three column vectors expressing

cell edges Cartesian coordinates in the crystallophysical reference frame {𝒆̂1,2,3} (𝒆̂𝑖 ∙ 𝒆̂𝑗 = 𝛿𝑖𝑗; |𝒆̂𝑖,𝑗,𝑘| =

1). We associate the ordinary X, Y and Z labels to the directions expressed by the 𝒆̂1, 𝒆̂2, and 𝒆̂3 versors.

The external stress field can be applied along any combination of the X, Y, Z directions. We adopt a

standard transform, pivoting on the crystallographic a cell axis, to define the laboratory Cartesian

reference system, according to the orthogonalization procedure reported in Section A3 of this Manual.

In this frame, X, Y and Z are exactly oriented as the cell edges a, b and c if the crystallographic system

has angles =  =  = 90º. If this is not the case, Y and Z may be not perfectly parallel to the

crystallographic vectors b and c. For the moment, different choices of the laboratory axes are not

allowed; we plan to include a routine to allow the user to rotate the laboratory reference frame as he/she

wish in a forthcoming release of the package

According to classical elasticity theory of solids (Landau & Lifshitz, Theory of Elasticity, Pergamon,

Oxford, 1959), when an external stress field is applied, an excess elastic energy is transferred to the

lattice. To compute this term, a reference structure must be defined. Following Parrinello & Rahman,

the cell corresponding to the first simulation frame (t = 0, H0) is chosen as the least biased and most

practical choice to this purpose. If the simulation under stress starts from a previously equilibrated

structure, and ends with a fully equilibrated structure as well, the elastic energy (Vela) has the usual

thermodynamic connotation and corresponds to a meaningful correction – within the limits of the Force

108

Field – to the steric energy. Eventually, the generalized enthalpy of a (Hstress, N) ensemble with cohesive

energy E and compliant with the Lagrangian under stress is:

𝐻𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐸 + 𝑉𝑒𝑙𝑎 (7.50)

The Vela component can be computed from the volume of the reference (starting) cell, V0, as:

𝑉𝑒𝑙𝑎 = 𝑝(𝑉 − 𝑉0) + 𝑉0 ∙ Tr[(𝐒 − 𝑝𝐈) ∙ 𝛆] (7.51)

Where S is a generalized 2nd–order symmetric tensor that is given in input by the user in units of GPa,

“Tr” means “trace” and  is the symmetrical strain tensor. The latter is evaluated by comparing actual

and reference (t = 0) cell parameters in Cartesian coordinates, as given by orthogonalized matrices H

and H0:

ε𝑖𝑖 =
[H𝑖𝑖(𝑡) − H𝑖𝑖(0)]

H𝑖𝑖(0)
 (752𝑎)

ε𝑖𝑗 =
1

2
[
H𝑖𝑗(𝑡)

H𝑗𝑗(0)
+
H𝑗𝑖(𝑡)

H𝑖𝑖(0)
] (7.52b)

The symmetry properties of the S matrix mirror the symmetry of the external stress field in the reference

crystallophysical frame. For example, an external hydrostatic isotropic compression corresponds to

S11=S22=S33 and Sij = 0  i,j with magnitude equal to the trace of S (Tr[S]), while any difference among

the diagonal elements reflects into an anisotropic tensile stress along some laboratory direction(s) X, Y

or Z. Nonzero off-diagonal elements (Sij  0) correspond to applied shear stresses. According to the

Cauchy notation, the index i identifies the shear plane, taken as the one normal to the corresponding i-

th axis, while j specifies the laboratory axis along which the stress is applied.

A symmetric tensor 𝚺 is defined, which converts the applied stress, S, into a surface energy density

(force/m or energy/m2) by accounting for the shape of the unit cell.

𝚺 = [𝐇𝟎
−𝟏(𝐒 − 𝑝𝐈)𝐇̃𝟎

−𝟏] ∙ 𝑉0 (7.53)

H0 here represent the starting (undistorted) simulation box tensor and the “–1” and “~” symbols have

the usual meaning of “inverse” and “transpose” matrix operations. Once the actual metric tensor (G) is

known,  modifies the Lagrangian according to:

ℒ𝑠𝑡𝑟𝑒𝑠𝑠 = ℒ −
1

2
Tr[𝚺 ∙ 𝐆] (7.54)

Starting from equation 7.35, showed that this Lagrangian corresponds to the following equation of

motion, which applies to the cell edge vectors and, indirectly, to all atom coordinates:

𝐅 = 𝑤
𝑑2𝐇

𝑑𝑡2
= [𝐏 − 𝑝𝐈]𝛔 − 𝐇 ∙ 𝚺 (7.55)

In practice, Equation (7.55) is made compliant with standard leap–frog integrator used in MiCMoS

through Equations (7.48) and (7.49). Accordingly, all the molecules in the simulation box are them

rigidly translated to account for the cell edges displacement, ∆𝐇 = 𝐇(𝑡 + Δ𝑡) − 𝐇(𝑡).

109

In this framework, perfect hydrostatic conditions are simulated by setting S11 = S22 = S33 and S12 = S13 =

S23 = 0.0. Any unbalance in the stress components can be can be defined accordingly; for example, S11

= S22 = 1.0133·10–4 GPa (=1 atm) and S33 = 1.0 GPa means an excess stress field, 1 GPa large, along the

Z laboratory axis (see above).

CAUTION. Following Parrinello & Rahman (J. Appl. Phys. 1981, 52, 7182–7190), the target pressure

used by normal anisotropic scaling without external stress field (entry Pset in Section 7.6.2, line #9)

should be set to 0 when S  0. At the same time, larger values of the coupling parameter w are advised

to avoid too large displacements, especially in the first steps of the simulation, when the system may be

very far from equilibrium. Experience showed that w = 8–10 kg could be a reasonable choice.

7.4 Force fields

7.4.1 Intramolecular force field

The intramolecular force field includes bond stretching, bond bending, torsional and non-bonded terms:

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅 − 𝑅

0)2 (7.56)

𝐸(𝑏𝑒𝑛𝑑) =
1

2
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)2 (7.57)

𝐸(𝑡𝑜𝑟𝑠) = 𝑘𝑡𝑜𝑟𝑠[1 + 𝑓 cos𝑚𝜑] (7.58)

where R is a bond distance,  is a bond angle,  is a torsion angle, and the k's are parametric force

constants. In Equation (7.58) f is a phase factor equal to ±1, and m is an integer equal to 1, 2 or 3 (see

Appendix, Figure A7.1 in Section A7.3). If required by the user, specific atom–atom nonbonded terms

can be also added, typically to avoid clashes when rotatable groups become very close to each other, or

to other groups attached to the main molecular backbone. The calculation of these intramolecular

nonbonding energies proceeds as in the MC setup, i.e. by the same potentials used in intermolecular

interaction, damped by a factor FACTIN (see Section 6.4.2) that must be given in the .mdi run control

file (Section 7.6.2). See Section 7.6.4 (instructions NLISTU and NLISTV) to see how to define

nonbonded contacts I practice.

In MC stretching and bending potentials are seldom applied; in MD they are instead vital for the

conservation of molecular shape, because MD acts on separate atomic coordinates rather than on global

fragments. However, the precise values of the force constants, once a reasonable order of magnitude is

supplied, are not crucial. Usually, one stretching potential is applied to each chemical bond in the

molecule, one bending potential to each bond triad, and one torsion potential along each chemical bond.

Equation (7.58) is also used with a very large force constant for improper dihedrals to keep sp2 centers

planar (Appendix, Section A7.3). The formulation and the algebra for the calculation of forces over

potentials in Equations (7.56-58) can be found in the GROMOS96 manual cited at the beginning of

Section 7.3.1. Sections A7 and A8 in the Appendix describe (i) how tentative torsional parameters are

assigned by Pretop (Section 5.4); (ii) how torsion angles are actually computed, and (iii) provide values

afir ktors, f and m that are best suited to model specific functional groups (Table A7.5 in the Appendix,

Section A7.3).

110

7.4.1.1 Anharmonic correction to the stretching potential

Since the program version 2.0, it is possible to explicitly introduce an anharmonic correction to the

stretching motion (see Section 7.6.2 for input instructions).

CAUTION. The anharmonic correction is applied to all the covalent bonds in the solute molecule,

including the X–H ones; in other words, solvent is not affected, and different bond types cannot be

differentiated based on their harmonic or anharmonic behavior. The reason is to avoid possible

unbalance effects in the force components acting on atoms. This option was introduced to work with

pure substances, especially one-component crystalline solids. Thus, pay attention if you switch on the

anharmonicity of the solute in a two-component system (e.g. a solution).

If required by the user (see the description of parameter ianh in Section 7.6.2), MiCMoS modifies the

harmonic function (7.56) with a cubic term that makes the potential no more symmetric around the

equilibrium bond distance R0 (Figure 7.4). Specifically, the potential is made steeper at short distances

and softer at longer ones, mimicking the Morse potential for small deviations from R0.

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅 − 𝑅

0)2 − 𝛼𝑘𝑠𝑡𝑟(𝑅 − 𝑅
0)3 (7.59)

 is a multiplier scaling factor set in the program source code (see below). At higher deformations, the

cubic correction implies that the potential has an unphysical maximum at

𝑅𝑀𝐴𝑋 =
1

2
[(2𝑅0 +

1

3𝛼
) + √(2𝑅0 +

1

3𝛼
)
2

− 4((𝑅0)2 +
𝑅0

3𝛼
)] (7.60𝑎)

𝐸𝑀𝐴𝑋(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅

𝑀𝐴𝑋 − 𝑅0)2 − 𝛼𝑘𝑠𝑡𝑟(𝑅
𝑀𝐴𝑋 − 𝑅0)3 (7.60𝑏)

To avoid singularities, MiCMoS sets E(stretch) = EMAX(stretch) whenever R > RMAX, that is, it makes

the potential constant for very large deformations. This corresponds to the bond dissociation plateau,

where the contribution to the stretching force is exactly 0 for both the atoms involved. Overall, the cubic

correction is intermediate between the pure harmonic potential and the more accurate Morse form

(Figure 7.4).

CAUTION. This very simple model cannot catch the correct physics when a bond is close to its

dissociation limit; thus, any prediction that would imply very large deformations of covalent bonds

should be interpreted with care.

The anharmonic constant is estimated empirically by multiplying kstr by an adimensional scaling

constant , which is now set at 0.48 in the source code. This empirical value was chosen as it guarantees

that the bond dissociation energies in organic compounds are reasonably close to the experimental ones

(see Table 4.11 in Dean, J. A. Lange’s Handbook of Chemistry, 15th Ed. McGraw Hill (1999), ISBN 0-

07-016384-7).

The force resulting from this correction has the following form:

111

𝐹𝑥(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑥1 − 𝑥2
|𝐫𝟏 − 𝐫𝟐|

 (7.61𝑎)

𝐹𝑦(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑦1 − 𝑦2
|𝐫𝟏 − 𝐫𝟐|

 (7.61𝑏)

𝐹𝑧(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑧1 − 𝑧2
|𝐫𝟏 − 𝐫𝟐|

 (7.61𝑐)

Where r1 and r2 are the vector positions of bonded atoms 1 and 2 in the crystallophysical reference frame

and x, y and z the corrisponding coordinates.

Figure 7.4. Comparison of the harmonic stretching potential (equation (7.56), blue line), the

anharmonic–corrected cubic form (equation (7.59), full red line) and the Morse potential (dashed green

line) for a covalent bond with R0 = 1.373 Å, kstr = 5100 kJ·mol–1·Å–2 and dissociation energy of 410

kJ/mol. The dotted black line shows the point–by–point difference for a positive stretching between the

anharmonic–corrected form and the Morse one. The error is very small for small displacements from R0

but increases rapidly at large displacements and is maximum at RMAX.

CAUTION. It is advisable to work with smaller time steps when the anharmonicity is introduced in the

model.

7.4.1.2 Anharmonic correction to the bending potential

Expression (7.57) shows the cosine potential that is employed to model bending deformations in

MiCMoS. Note that it is not purely harmonic already, even though it closely resembles the parabolic

potential for small deformations, especially when the angle closes (Figure 7.5).

Since the release v2.1, MiCMoS can handle a further anharmonic correction to bond angle bending. The

philosophy is the same illustrated for the anhramonic correction to the stretching potential (Section

7.4.1.1). In the following, the bending interaction is defined by an atom triple i-j-k, j being covalently

bonded to both i and j, and  being the angle ijk (Figure 7.5).

112

CAUTION. The anharmonic correction to bending is applied to all the covalent angles in the solute

molecule, that is, those defined by atom triples i-j-k; in other words, solvent is not affected, and different

angle types cannot be differentiated based on their harmonic or anharmonic behavior. The reason is to

avoid possible unbalance effects in the force components acting on atoms.

Starting from (7.57), we expand the bending potential in power series up to the 4th order:

𝐸(𝑏𝑒𝑛𝑑) =
1

2
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)2 +
1

3!
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)3 +
1

4!
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)4 (7.62)

The advantage of this very simple model is that the correction to force components due to the 3rd and 4th

terms are additive. The factorial coefficients serve just as damping factors for high-order contributions;

no explicit definitions of the anharmonic bending constants are thus required. A bit of algebra shows

that the 3rd-order correction to force component x on atom i in the crystallophysical reference frame read

𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −
1

2
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)2 [
𝑥𝑘 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃] (7.63)

Where 𝑟𝑖𝑗 and 𝑟𝑗𝑘 are the corresponding distances between i-j and j-k. Analogue expressions can be

written for 𝐹𝑖,𝑦 and 𝐹𝑖,𝑧 by substituting the x coordinate with either y or z.

The 3rd-order correction to the force acting on atom k is:

𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −
1

2
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)2 [
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑘 − 𝑥𝑗

𝑟𝑗𝑘
2 𝑐𝑜𝑠𝜃] (7.64)

And that acting on j is given by the sum of these contributions, so that the total sum of bending forces

on the atom triple i-j-k is zero. This is a necessary requirement, as bending concerns the relative motion

of atoms in the triple and must cause neither a dispacement nor a rotation of the whole i-j-k system.

𝐹𝑗,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) − 𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) (7.65)

The 4th-order term also produces the following expressions for forces:

𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −
1

6
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)3 [
𝑥𝑘 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃] (7.66𝑎)

𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −
1

6
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)3 [
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑘 − 𝑥𝑗

𝑟𝑗𝑘
2 𝑐𝑜𝑠𝜃] (7.66𝑏)

𝐹𝑗,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) − 𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) (7.66𝑐)

Finally, 3rd and 4th-order corrections are summed to the 2nd-order contribution, −𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 −

𝑐𝑜𝑠𝜃𝑜) [
𝑥𝑘−𝑥𝑗

𝑟𝑖𝑗∙𝑟𝑗𝑘
−

𝑥𝑖−𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃], to give the total force on each atom in the triple.

 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑) = 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼) + 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) + 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) (7.67)

The anharmonic corrections make the potential softer toward the angle opening and stiffer against the

opposite deformation (Figure 7.5).

113

Figure 7.5. Comparison of the of the cosine bending potential (7.57) (dashed green line) with a truly

harmonic potential of the form ½kbend(–º)2 (black dashed/dotted line, not available in MiCMoS) and

that resulting from the application of the anharmonic correction up to the 4th-order (Equation 7.62). The

curves were plotted for an ideal system with º = 109º and kbend =450 kJ·mol–1.

CAUTION. It is advisable to work with smaller time steps when high order anharmonic terms are used.

Moreover, pay attention to atom triple definitions in the topology file. Make sure that they are defined

consistently with the desired greater or smaller ease of bending deformation, especially when 4th-order

anharmonicity correction is included in the model.

7.4.2. Intermolecular force field

Also in the MD module, a choice can be made between the atom–atom Coulomb–London–Pauli (AA–

CLP) and the Lennard–Jones–Coulomb (LJC) force fields (see also Sections 2.1.1 and 2.1.2). The

intermolecular force field between two atoms i and j at a distance Rij and bearing point charges qi and qj

is:

(1) in the AA-CLP form:

𝐸(inter, 𝑖, 𝑗, CLP) =
𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
−
𝐴

𝑅𝑖𝑗
4 −

𝐵

𝑅𝑖𝑗
6 +

𝐶

𝑅𝑖𝑗
12 (7.68)

The corresponding force experienced by the atom i due to the presence of j (and vice–versa) as a function

of distance is:

𝐹(𝑅𝑖𝑗) = −
𝑑𝐸

𝑑𝑅
= −

𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
2 +

4𝐴

𝑅𝑖𝑗
5 +

6𝐵

𝑅𝑖𝑗
7 −

12𝐶

𝑅𝑖𝑗
13 (7.69)

Coefficients A, B, C are computed as described Section 2.1.1.

114

(2) in the LJC form, as described in 2.1.2:

𝐸(inter, 𝑖, 𝑗, LJC) =
𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
−
𝐵

𝑅𝑖𝑗
6 +

𝐶

𝑅𝑖𝑗
12 (7.70𝑎)

𝐹(𝑅𝑖𝑗) = −
𝑑𝐸

𝑑𝑅
= −

𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
2 +

6𝐵

𝑅𝑖𝑗
7 −

12𝐶

𝑅𝑖𝑗
13 (7.70𝑏)

7.5 Simulation of isolated clusters

7.5.1 Translational (T) and rotational (R) momentum

In simulations of isolated clusters, net translational and rotational momenta may develop, affecting the

evaluation of correlation functions with spurious faster decrease of the rotational correlation coefficient,

C(u, t) (see Section 8.4), and faster increase of the translational diffusion coefficient, D(t) (see Section

8.4). Several possible analytical constraints could be proposed to take care of this problem, most of

which implying very complex algebra and time consumption. We have devised a simpler procedure, as

follows. First, the array of centers of mass in the starting configuration (step zero for crystal clusters) is

taken as a reference.

To dispose of T-drift, a) one atom is assigned zero velocity and zero forces, thus keeping its position

constant throughout the simulation, and b) every Nr moves (typically 500-1000) the whole cluster is

reset to its current center of mass.

For R-momentum, a rotation matrix is prepared as the product of three rotation matrices, one around the

x, y, and z axis, and an array of possible back-rotations of the whole cluster is explored by varying the

three rotation angles from -15 to +15° in steps of 3°. The back-rotation actually performed every Nr

moves is the one (out of 11 x 11 x 11) for which the sum of the distances between current centers of

mass and the reference configuration is minimum. This is an empirical equivalent of the analytical back-

mapping of actual coordinates onto reference ones, with the advantage that only N points have to be

considered for an N-molecule system.

As these corrections tackle the problem with a very simple strategy, they avoid complex algebra.

Moreover, they affect the whole set of atomic coordinates in a rigid manner without discontinuities in

the trajectories. Their efficiency has been checked by tests on correlation functions and distributions of

centers of mass with and without the corrections.

7.5.2 Evaporation control

In simulations of small clusters without periodic boundary conditions, some loosely bound surface

molecules may drift away in the simulation analog of evaporation. To deal with this problem, every time

the translational motion is stopped by resetting the center of coordinates (see Section 7.5.1), all

molecules are also checked for evaporation. Two strategies can be selected, namely a “tethering

algorithm” and a “deletion algorithm”.

(I) Tethering algorithm: if the center-of-mass vector of a molecule from the overall center of mass

becomes longer than an assigned threshold Rev, to be specified in input (Section 7.6.2, instruction line

(13), it is reduced by a factor 0 < Fev < 1, where Fev is another input parameter, and the whole molecule

is pulled back by a vector 1–Fev toward the centre of mass of the cluster. Using a Rev threshold

approximately equal to 1.5–2.0 times the cluster radius and Fev ~ 0.9 keeps a few molecules out of the

main cluster but still in its orbit, thus effectively preventing evaporation.

115

(II) Deletion algorithm: if the center-of-mass vector of a solvent molecule becomes longer than an

assigned threshold Rev, the molecule is deleted from the cluster i.e. coordinates and velocities are deleted

and a new box file is produced. This strategy applies to larger clusters where deletion of a few molecules

is scarcely relevant

Often the internal cohesion of the sample is such that no evaporation occurs, and no evaporation control

need be applied. For example, at room T only small nonpolar solvents like chloroform may evaporate.

7.5.3 The distribution-analysis option.

In the .mdi input file an option is present (labels idistr and Emolim, see Section 7.6.2) that allows to

store and write in the output .pri file molecule-molecule pair energies and distances below a certain

(negative) threshold, and provides a histogram of the corresponding distributions. The distribution of

center-of-mass velocities is also computed and printed in form of a histogram. This might be useful to

locate specific molecular pairs that are binded by strongly attractive potentials, with application in

molecular recognition studies.

CAUTION. The distribution-analysis option must be made active if a biased MD run is required.

An analysis module, histog.for, is available since MiCMoS v2.0 to estimate average histograms from a

.pri file (see Chapter 8).

7.6 Running a Molecular Dynamics job

Templates and standard values for all input files are available in the manual. Tutorials are also avialable

to provide working examples.

7.6.1 Batch runfile

The files needed to run a Molecular Dynamics calculation for a compound NAME are:

- NAME.mdi, the run control file (Section 7.6.2);

- simulation_box.dat, a file with the box description in .dat format (Sections 5.1.3 and 7.6.3);

- NAME.top, force field input (Section 7.6.4).

A typical MD run provides the following output:

- name3md.pri, output, printfile

- name3mdc.dat, output, trajectory file in .dat format (Section 5.1.3)

- name3mdo.dat, output, final frame position file in .dat format (Section 5.1.3)

- name3md.ene, output, energy trajectory file (Section 8.5.1)

Molecular Dynamics running command

run.mdmain NAME name2 name3

NAME must be the name of both the MD control and topology files (.mdi and .top); name2 is the full

name of the simulation box (.dat) and name3 is the flag for naming output files.

116

run.mdmain module (Unix/Linux)

cp $1.mdi mdyn.mdi !MD control file

cp $1.top mdyn.top !forcefield file

cp $2 mdyn.bxi !input box file, .dat format

cp barrier.par mdyn.par !barrier parameter file

~/programs/MiCMoS/exe/mdmain !run execution module
rm $3mdc.dat

mv mdyn.mdc $3mdc.dat !output, trajectory file in .dat format
rm $3mdo.dat

mv mdyn.mdo $3mdo.dat !output, final frame position file in .dat format
rm $3md.pri

mv mdyn.mdp $3md.pri !output, printfile
rm $3md.ene

mv mdyn.ene $3md.ene !output energy trajectory file

rm mdyn.mdi !Deleting service files
rm mdyn.top

rm mdyn.bxi

rm mdyn.par

Detailed explanations on the meaning of the control parameters and file format follow.

117

7.6.2 The MD run control file (.mdi)

CAUTION: #lines are comment lines at fixed places: do not change their position or introduce new

#lines! These #lines usually show the identity of the various parameters but may contain user's own

comments.

Extension: .mdi; all free format.

1) A title line

2) #line --------------------------------

3) n.steps, IRVEL, ipri, ibox, idistr, timestep, Emolim, iengt, ibias

n.steps Number of MD steps

IRVEL Describes how velocities should be treated. For the format of the .dat file, see

Section 5.1.3. Velocities and forces are always written in the last frame of the

trajectory (file .mdo) after the final atomic coordinates.

=0 Assign but do not write velocities in the output .dat file (this is the

normal option if you are entering the MD program from a preliminary

MC run).

=1 Assign starting velocities, and write them on the output .dat file.

=2 Read velocities from the input .dat file, but do not write in the output

one.

=3 Read velocities from the input .dat file, and write them in output.

ipri Controls the amount of information printed in the .pri output file.

=0 Minimum printout.

=1 Detailed printout (force field echo, stress tensor for Parrinello–Rahman,

etc.).

ibox Determines whether the simulation uses or not periodic boundary conditions.

=0 No periodicity (isolated cluster). If this option is chosen, the

instructions on line (15) below will control the rotation–evaporation

issues as detailed in Sections 7.5.1 and 7.5.2. Note that ibox = 0 is

incompatible with confined simulations (inano > 0, see below). The

program recognizes the incompatible instructions and stops with a

warning message.

 =1 Periodic box (in three dimensions).

idistr Controls whether the energy/velocity distribution analysis must be carried out

(see Section 7.5.3).

 =0 No distribution analysis is done.

=1 The distribution analysis of molecule–molecule pair energies (< Emolim)

and their centre–of–mass velocities is carried out and written in the .pri

file. This option is mandatory if one wants to perform a biased MD run

(see parameter ibias below).

timestep Simulation time step, expressed in ps. A value is 0.002 (2 fs) is recommended

for best compromise between speed and accuracy of results.

Emolim If idistr=1, this is the energy limit (<0) to store molecule–molecule energies in

the distribution (see Section 7.5.3). A value roughly equal to the 20% of lattice

energy is normally acceptable. In a biased MD run, Emolim must be defined

118

and less negative than the upper limit for bias energy Ebiau (see line #4 below).

If idistr=0, this is a dummy entry (leave 0.0).

iengt Switch parameter to decide the integration algorithm (Section 7.2).

 =0 The leapfrog integrator is used.

 =1 The velocity–Verlet integrator is used.

ibias Controls whether the distribution of kinetic energy of the MD run is biased

(Section 7.2.4).

 =0 Unbiased run.

=1 The kinetic energy distribution is biased. It is mandatory that idistr=1

 (see above) if ibias =1. An extra bias.tab output file is also produced if

ibias=1 (see below). Change its name if you don’t want that it will be

overwritten by further MiCMoS biased MD runs.

4) Biasing parameters (Ebial, Ebiau, Nbias, tinon, tinof).

Add this line only if ibias = 1 in the last instruction of line #3. Otherwise, skip and

continue with line #5.

Ebial and Ebiau are the biasing threshold energies in kJ/mol (lower and upper limit). As

the bias algorithm is intended to be applied to negative intermolecular Eij’s to select and

favour stabe pairs, MiCMoS expects that Ebial is more negative that Ebiau. If this is not

the case, the program stops with an error message. Ebial=0.0 is a special flag to get rid

of a lower bias threshold and to bias all pairs with Eij < Ebiau. In any case, MiCMoS

must compute the distribution of intermolecular energies to recognize what molecules

fulfil the bias conditions. For this reason, it is mandatory that idistr=1 and Ebiau <

Emolim when ibias = 1, or the program stops with a warning message.

Nbias determines the bias frequency, in units of MD step numbers.

The last two entries (tinon and tinof) specify the time intervals (in ps) for which the

biasing algorithm is active (tinon) or inactive (tinof). For example, tinon = 5.0 and tinof

= 2.0 mean that the bias will be kept active for 5 ps, then it will be switched off for 2

ps, then it will be active again for the next 5 ps, and so on. The whole on/off procedure

is repeated until the last MD move is done. Note, however, that the program can handle

a maximum of 5,000 on/off intervals; you should avoid splitting the simulation time

into too many short periods. If you want to keep the bias active for the whole trajectory,

you can either set tinon=n.steps·timestep and tinof=0.0, or directly tinon=0.0. This is a

dummy entry to flag that the user wants to keep the bias active for the whole trajectory.

For example, “–20.0 –10.0 10 2.0 3.0” means that the bias algorithm will be applied

every 10 MD moves for pairs whose Eij fulfil –20  Eij  –10 kJ·mol–1. The bias will be

repeatedly switched on for 2.0 ps and then switched off for 3.0 ps, until the end of the

dynamics. Another example: the string “0.0 –15.0 10 0.0 3.0” implies that the bias is

active every 10 MD steps whenever Eij < –15 kJ·mol–1 and it will never be switched off,

as tinon=0.0. In this case, tinof is ignored and its value is irrelevant.

During each MD move in which the bias is active, the program prints an extra bias.tab

ASCII text file, which summarizes the time (in ps), the number of interactions that fulfil

the Ebial  Eij  –Ebiau condition, and the complete list of the corresponding molecular

pairs.

5) #line --------------------------------

119

6) cutoffu, cutoffv, cutoffuv, FACTIN, ipots, ianh, inano

Energy cutoff parameters are specified in this instruction line. Refer to Section 7.3.2 for more

details. All cutoffs are expressed in Å.

CAUTION: values of 16.0–18.0 are acceptable in most cases for neutral molecules, but in the

presence of ions the convergence of Coulombic summations should be checked. Please note

however that the standard force fields have not been calibrated for ions.

cutoffu Distance cutoff in intermolecular sums (solute–solute).

cutoffv Distance cutoff in intermolecular sums (solvent–solvent).

cutoffuv Distance cutoff in intermolecular sums (solute–solvent).

CAUTION: Cutoff values must not exceed 0.55 times any of the three box lengths.

FACTIN Damping factor for intramolecular nonbonded interactions (see Sections 6.4.2,

7.4.1 and 7.6.4).

ipots Controls the energy functional of the Force Field.

=0 use AA–CLP

 =1 use AA–LJC

ianh Controls the function used to simulate the intramolecular stretching and bending

potentials of the solute (see Sections 7.4.1.1 and 7.4.1.2). Solvent is never

affected.

 =0 the stretching potential is fully harmonic, as in Equations (7.56) and (7.57).

 =1 the MiCMoS third order anharmonic correction is included to the stretching

potential of the solute, as in Equation (7.59).

 =2 the MiCMoS 4th-order anharmonic correction is applied to the bending

potential of the solute, according to Equation (7.62). The stretching is treated as

fully harmonic.

 =3 same as options 1 and 2. Both the anharmonic corrections to stretching and

bending potentials are activated at the same time.

CAUTION: It is usually a good idea to reduce the timestep of the simulation to 0.001 ps or

lower when dealing with anharmonic motion.

inano Controls whether the simulation is fully periodic in all directions, or some

confinement is applied in some directions. See Section 7.2.5 for a full

description of the confinement algorithm. Note that inano > 0 requires a valid

barrier.par file (Section 5.8.1) in your working directory. This can be produced

automatically by the confbox.for utility (Section 5.8).

 = 0 the simulation is fully periodic in all directions (normal MiCMoS usage).

Please set inano = 0 if you deal with nonperiodic simulations like nanoclusters,

nanodroplets and nanocrystals.

 = 1 one direction is non-periodic (nanolayer, confined in one direction and

periodic along the other two).

 = 2 two directions are non-periodic (squared nanotube, confined in two

mutually orthogonal directions and periodic along the third one).

 = 3 three directions are non-periodic (cubic nanocavity).

120

CAUTION: inano > 0 is incompatible with ibox = 0 (see above). If this parameter cobination

is entered in the .mdi input file, the program stops with a warning message.

7) #line --------------------------------

8) N(T), Tset, Tstart, relax, itrel

This instruction controls the thermostat (Section 7.2).

N(T) The temperature of the ensemble is updated every N(T) steps. Its value depends

on the nature of the ensemble and on the run type (preliminary, production). For

neutral organic molecules, N(T)~1000.

Tset Target temperature (K).

Tstart Starting temperature (K) (usually = Tset)

Trelax Temperature relaxation time () in equations (7.5) and (7.8). A value of 0.5–0.6

is recommended. This entry is relevant only for the weak coupling algorithm

(itrel=0) or the CSVR algorithm (itrel=2).

itrel Switch parameter to decide the T control algorithm (Section 7.2.3).

 =0 Weak coupling algorithm is selected.

 =1 Stiff coupling algorithm is selected (not recommended)

 =2 CSVR (Bussi–Donadio–Parrinello) thermostat is selected

9) #line --------------------------------

10) N(P), Pset, comprs, ianis, ipr, ww, iexstr

This instruction controls the barostat (Section 7.3). P control can be applied only in the presence

of a periodic box, i.e., ibox must be =1 in the instruction (3).

N(P) Step frequency. The pressure of the ensemble is updated every N(P) steps.

Pset Target pressure, in atm. This value is converted into Pa in the program. If you

want to apply an external stress field, set it to 0.

comprs Compressibility (0) in equation (7.14). This parameter is relevant only if the

minimal barostat algorithm is used (ipr=0). A value of 0.3–0.4 is usually

appropriate but trial and error on each kind of ensemble is recommended. A

larger value makes convergence faster but too large a value may also lead to

sudden crashes.

ipr Controls the barostat algorithm.

 =0 Minimal barostat option (Section 7.3.2).

 =1 Parrinello–Rahman barostat (Section 7.3.3).

ianis Flag for isotropic or anisotropic pressure control.

 =0 Isotropic box (Section 7.3.1).

 =1 Anisotropic box (Sections 7.3.2 and 7.3.3).

ww Coupling parameter w for the Parrinello–Rahman procedure (equation 7.43).

Values of 1.0 or 2.0 kg are normally appropriate for simulations without

external stress field, while larger couplings (w = 10 kg) are advised in the

presence of an external stress. This parameter is active only if ipr=1, otherwise

it can be safely set to 0.0.

121

CAUTION: Experience shows that fine tuning of ww, N(P) and N(T) parameters is crucial to avoid

divergence in the Parrinello–Rahman algorithm. The reason is that Lagrangian dynamics on cell edges

translates into a slight excess of molecular kinetic energy, which must be frequently dissipated through

the thermostat to avoid overheating. Strategies to cope with possible instabilities that may occur in the

first thousands steps of the simulation include (i) making controls over T and P more frequent (try

lowering both at 200 or below); (ii) making P control slightly more frequent than over T (N(P)< N(T));

(iii) increasing the ww parameter up to 2.5–3.0. You should try different setups and choose the one that

best fits your needs.

iexstr Controls the external stress options.

 =0 No external stress. Skip to instruction line #12 below.

=1 External stress field (Section 7.3.4). Meaningful only for anisotropic

pressure control with the Parrinello–Rahman barostat (Table 7.3) and

periodic structures (no isolated clusters). If iexstr = 1, the following

instruction line #10 must be added.

11) Components of the external stress field

Add this line only if iexstr = 1 in the last instruction of line #10. Otherwise, skip and

continue with line #12. If iexstr = 1, these are the independent components of the 2nd–

rank symmetric stress tensor S (see Section 7.3.4). They must be given exactly in the

following order: S11, S22, S33, S12, S13, S23 with units of GPa.

Table 7.3

Summary of pressure control parameters in MD simulations.

Option ipr ianis comprs ww

Isotropic pressure control 0 0 needed 0.0

Anisotropic pressure control, minimal barostat 0 1 needed 0.0

Anisotropic pressure control, Parrinello–Rahman barostat 1 1 0.0 needed

12) #line --------------------------------

13) N(com), nwbox, nwre, npri

N(com) Reset frequency of the centre–of–mass of the ensemble. The translational drift

is suppressed every N(com) steps, according with the procedure detailed in

Section 7.5.1.

nwbox Write frequency of the trajectory. The atomic coordinates of the whole

ensemble are stored in the trajectory output .dat file (Section 5.1.3) every nwbox

steps.

nwre Same as nwbox, for printing the energies in the .ene output file (Section 8.5.1).

npri On–screen write frequency.

14) #line --------------------------------

15) N(rot-ev), romin, maxs, stepr, Rev, fact, icut

This instruction specifies the rotation–evaporation control for simulation of isolated clusters

(Sections 7.5.1 and 7.5.2). These parameters are needed only if ibox=0 in instruction (3) (no

periodicity).

122

N(rot-ev) Reset frequency of the rotational momentum, which is suppressed every N(rot-

ev) steps, according with the procedure detailed in Section 7.5.1.

romin Minimum value of the back–rotation range to be exlpored, in degrees.

maxs Number of rotation steps to scan the rotation space.

stepr Step size, in degrees.

CAUTION: Recommended values for the three last parameters are: romin –15, maxs 11, stepr 3.

Rev Evaporation distance, in Å. A molecule is considered as “evaporated” if its

distance from the centre of mass of the whole cluster is > Rev (see Section

7.5.2). Rev should be at least ~ 1.5 times the average radius of the cluster.

factor Tethering scaling parameter, Fev (Section 7.5.2; only if icut=2). This number

should be chosen so that the molecule is kept in the orbit of the cluster but does

not crash back into the cluster. A value of 0.9 is prudential.

icut Decide which strategy is employed to deal with evaporation.

 =0 No evaporation check or control is carreid out.

 =1 The deletion strategy is applied (Section 7.5.2).

 =2 The thetering strategy is applied (Section 7.5.2).

CAUTION: The program checks for incompatible options and in case stops with a warning message.

For example, N(P) in instruction (9) and N(rot-ev) in instruction (13) cannot be both nonzero; P control

can be applied only when ibox=1 in instruction (3); combinations such as ipr=1 (Parrinello–Rahman

barostat) and ianis=0 (isotropic pressure scaling) are contradictory; etc.

Some examples of complete .mdi input files

See also Tutorials 9–11. The first input calls an unbiased (ibias=0) and unconfined (inano=0) LJC MD

run (ipots=1) with a fully harmonic stretching potential (ianh=0) and full periodic boundary conditions

(ibox=1), with the leapfrog integrator (0/1LF/VV =0) and the CSVR thermostat

(0/1/2weak/stiff/CSVR=2). The pressure is set to 1 atm (Pset=1) with the anisotropic Parrinello–Rahman

algorithm (ianis=1, ipr=1) but without external stress (iextstr=0). The last input line (#Nrot-ev…) is

dummy because ibox=1.

Example LJC PR no stress LF CSVR

n.steps irvel ipri ibox idstr timestep Emolim iengt ibias +Ebias Nbias tinon tinof

 200000 0 0 1 0 0.002 0.0 0 0

cutoffu cutoffv cutoffuv factin ipots ianh inano

 12.0 0.0 0.0 0.7 1 0 0

N(T) Tset Tstart Trelax 0/1/2weak/stiff/CSVR

 100 298 298 0.6 2

N(P) Pset comprs 0/1ianis ipr ww iextstr + stra11 22, 33, 12 13 23, GPa

 50 1.0 0.0 1 1 3.0 0

N(com) nwbox nwre npri

 50 1000 1000 1000

Nrot-ev romin maxs stepr Rev fact icut

 200 -15 11 3.0 30.0 0.9 2

The following input calls a biased (ibias=1) CLP MD run (ipots=0) with an anharmonic stretching

potential (ianh=1). The bias is applied for 10 ps every 15 MD steps (i.e. 0.015 ps), and then switched

off for the next 5 ps. Only molecules with interaction energy more negative than -20 kJ/mol will be

biased. The leapfrog integrator (0/1LF/VV =0) is used, in conjuction to the Berendsen rescaling of

temperature. The pressure is controlled by the anisotropic Parrinello–Rahman algorithm (ianis=1, ipr=1)

123

under an external (iextstr=1) isotropic stress of 1 GPa. The last input line (#Nrot-ev…) is dummy

because ibox=1. Note that ibias=1 implies that idistr must be 1 as well, with Ebias < Emolim.

Example CLP PR stress 1GPa LF Berendsen biased

n.steps irvel ipri ibox idstr timestep Emolim iengt ibias +Ebias Nbias tinon tinof

 200000 0 0 1 1 0.001 -5.0 0 1

 -20 15 10.0 5.0

cutoffu cutoffv cutoffuv factin ipots ianh inano

 12.0 0.0 0.0 0.7 0 1 0

N(T) Tset Tstart Trelax 0/1/2weak/stiff/CSVR

 100 298 298 0.6 0

N(P) Pset comprs 0/1ianis ipr ww iextstr + stra11 22, 33, 12 13 23, GPa

 50 0.0 0.0 1 1 8.0 1

 1.0 1.0 1.0 0.0 0.0 0.0

N(com) nwbox nwre npri

 50 1000 1000 1000

Nrot-ev romin maxs stepr Rev fact icut

 200 -15 11 3.0 30.0 0.9 2

The next input calls for the unbiased (ibias=0) simulation of a liquid phase into a nanotube (ibox=1,

inano=2) in LJC fashion (ipots=1) at 350 K with anisotropic minimal barostat (ianis=1). Note that to run

this simulation, it is necessary to have a valid barrier.par file in your working directory, or the program

will stop issuing an I/O error. See Sections 5.8 and 5.8.1 for more information.

Example of simulation LJC 350 K unbiased nanotube

n.steps irvel ipri ibox idstr timestep Emolim iengt ibias + Ebias Nbias

 500000 0 0 1 1 0.001 -5.0 0 0

cutoffu cutoffv cutoffuv factin ipots ianh inano

 16.0 0.0 0.0 0.7 1 0 2

N(T) Tset Tstart Trelax 0/1 weak/stiff

 100 350 350 0.6 0

N(P) Pset comprs 0/1ianis ipr ww iextstr+stra11 22,33,12,13,23,GPa

 50 1.0 0.4 1 0 0.0 0

N(com) nwbox nwre npri

 100 500 500 500

The last input is an example of MD run without periodic boundary conditions (ibox = 0). The box

contains both solute and solvent molecules, as it can be appreciated by the fact that cutoffv and cutoffuv

parameters are now defined. Moreover, the only possible specification for inano is 0 as well. No pressure

scaling is applied (N(P)=0), as ibox in the first instruction line is 0 (the system is isolated). Accordingly,

the last instruction line (# Nrot-ev…) is mandatory and specifies that suppression of rotational

momentum occurs every 200 steps, while the thetering algorithm (icut=2) is selected to cope with

solvent evaporation. The thethering radius (Rev) is here 30 Å with respect to the centre of mass of the

simulation box. See Section 7.5 for more information.

Example solute+solvent clp 300 K aperiodic

n.steps irvel ipri ibox idstr timestep Emolim iengt ibias + Ebias Nbias tinon tinof

 2000 0 0 0 1 0.001 -5.0 0 0

cutoffu cutoffv cutoffuv factin ipots ianh inano

 20.0 20.0 20.0 0.7 0 0 0

N(T) Tset Tstart Trelax 0/1 weak/stiff

 10 300 300 0.6 0

N(P) Pset comprs 0/1ianis ipr ww iextstr + stra11 22, 33, 12 13 23, GPa

 0 0.0 0.0 0 0 0.0 0

N(com) nwbox nwre npri

 50 100 100 100

Nrot-ev romin maxs stepr Rev fact icut

 200 -15 11 3.0 30.0 0.9 2

124

7.6.3 The input box file (.dat)

Extension .dat

This can be any .dat file in the format described in Section 5.1.3. If resulting from a previous MD run,

the file has also atomic velocities and forces, as determined by the IRVEL control indicator in instruction

(3) of the .mdi file (Section 7.6.2). This file should carry box dimension information if a periodic box is

required.

7.6.4 The forcefield file (.top)

This has the same format as described for MC in Section 6.6.3, except that NCARDU and NCARDV

must be zero, and all atom coordinates and charges must be given explicitly (no slave atoms can be

defined in MD). The Pretop module (Figure 4.1, Section 5.4 and Section A7 in the Appendix) reads an

.oeh file and prepares the best possible approximation to the pertinent force field file. Use of templates

available in the Tutorials (deposited on https://sites.unimi.it/xtal_chem_group) will make things easy.

In the .top file, as follows, all data except the title line is free format. See Section A7.1 in the Appendix

for suggestions on meaningful force constants and other relevant force field parameters.

Extension .top.

1) A title line format 1x,10a4

2) NCOREU number of core atoms, solute

NCOREU lines core atom id number, x, y, z, flag for atom species (see Table 2.1), raw

charge. In the MD algorithm these coordinates are immaterial; the list

is used only as a reminder of the pristine molecular model (Geomet

module, Section 8.1) and for atom type indicators and atomic point

charges.

3) NCARDU Number of slave atom cards, solute. This entry must be equal to 0 in a

 MD simulation.

4) NCOREV number of core atoms, solute

NCOREV lines core atom id number, x, y, z, flag for atom species (see Table 2.1), raw

charge

5) NCARDV Number of slave atom cards, solvent. This entry must be equal to 0 in a

 MD simulation.

6) VOLUU, VOLUV approximate molecular volumes for solute and solvent. They are

supplied by Pretop (Section 5.4).

7) NSTRU number of bond stretching functions

NSTRU lines 4 entries, as follows: two atom id numbers of the atoms involved in the

bond, kS and R° for E(stretching)=1/2·kS·(R - R°)2, equation (7.56). The

same parameters are also used to automatically estimate anharmonic

corrections if required (see Section 7.4.4.1).

8) NSTRV as NSTRU (bond stretching), for the solvent

NSTRV lines NSTRV lines (bond stretching parameters), for the solvent

9) NBENDU number of bending function, solute

NBENDU lines 5 entries, as follows: three atom id numbers of the atoms involved in

the bending interaction, kb and ° for equation (7.57,

E(bending)=1/2·kb·(cos - cos°)2. The same parameters are also used

https://sites.unimi.it/xtal_chem_group

125

to automatically estimate further anharmonic corrections if required

(see Section 7.4.4.2).

10) NBENDV as NBENDU (bond bending), for the solvent

NBENDV lines NBENDV lines (bond bending parameters), for the solvent

11) NTORSU number of torsion functions, solute

NTORSU lines 14 entries, as follows: four atom id numbers, identifying the atoms

involved in the torsion; K, f and m parameters in E(tors) = K{1 + cos f

[m]}, equation (7.58). The program Pretop assigns just standard values

for K (50.0), f (–1) and m (+1). These must be reset with actual values,

which can be found in most cases in Table A7.5 (Appendix, Section

A7.3). Pretop also automatically assigns improper dihedrals to keep

planar groups with sp2 hybridization as K = 100.0, f = –1 and m = +1.

Have a look at them to verify that all is ok, but usually no external

intervention on improper dihedrals is required (if this is not the case, it

is wise to carefully check your structure!).

12) NTORSV as NTORSU, for the solvent

NTORSV lines NTORSV lines (torsion parameters), for the solvent

13) NLISTU number of intramolecular contacts, solute

NLISTU pairs of atom id numbers, solute, for a total of NLISTUx2 entries. These flag the

intramolecular contacts, for which a FACTIN dampening factor is applied to scale down the

potential (see Sections 6.4.2 and 7.4.1). FACTIN must be given in the .mdi instruction file

(Section 7.6.2).

14) NLISTV number of intramolecular contacts, solvent

NLISTV pairs of atom id numbers, solvent, for a total of NLISTVx2 entries. See NLISTU above

for explanation.

15) FQ, FP, FD, FR force field scaling parameters in eq. (2.1) (standards: 0.41, 235, 650,

77000); set them to zero if the LJC force field is used.

Add the following instructions only if Lennard-Jones potentials are used (IPO=1 in the .mci or .mdi file,

Sections 6.6.2 and 7.6.2):

16) NEXTRA number of extra L-J parameters. Non-zero only if non-library 6-12

parameters are used.

NEXTRA lines I, J, A6, A12: equation (2.6), A6 and A12 are the 6-12 coefficients for

the atom-atom contact between atom species i and j.

CAUTION: In MD stretching and bending potentials are indispensable to prevent molecular distortions.

Improper torsions are also mandatory to preserve planarity of trigonal groups. Most of the MD .top files

is directly provided by module Pretop (Section 5.4).

126

8. Analysis of MC and MD results

Trajectory analysis modules read atomic data from MC or MD runs in .dat files (Section 5.1.3). Several

checks and analyses are carried out on final frames of a MC or MD simulation.

The following Table summarizes the I/O requirements of the modules illustrated in Section 8. The user

must replace the strings “name1”, “name2” and “name3” with the actual name(s) of the file(s) he/she is

using.

Table 8.1

Modules to analyze MiCMoS trajectories (.dat format, see Section 5.1.3), with specified the files

requested in input and the main ones produced as output. If a keyboard input is required from the user,

a flag “Y” is indicated in the “Dialog mode” column.

Program Section Input 1 Input 2 Input 3 Dialog

mode

Main output

Geomet 8.1 name1.top name2.oeh name3.dat Y name3geo.pri

Analys 8.2 name1.top name2.dat – Y name2anl.pri

Distrib 8.3 – name2anl.pri – N name2distr.pri

Correl 8.4 name1.dat – – Y name1cor.pri

Redene 8.5,8.5.1 name1ene.pri – – Y name1ene.pri

Datgro 8.6 name1.dat – – Y name1.gro

Naverag 8.7 name1.dat – – Y name1ave.res

name1ave.dat

Debye 8.8,

8.8.1

name1.inp name2.oeh name3.dat N name3deb.pri

name3prof.pri

Nanocut 8.9,

8.9.1

name1.inp name2.oeh – N name2cut.dat

Trajedit 8.10,

8.10.1

name1.inp name2.dat – N name2edit.dat

Vanhove 8.11,

8.11.1

name1.inp name2.dat – N name2van.pri

Renergy 8.12,

8.12.1

name.1.inp name2.top name3.dat N name3rene.pri

name3rene.ene

Denflu 8.13 name.1.inp name2.dat – N name2denflu.pri

Clusters 8.14 name1.top name2.dat name3 Y name3_xxx.pri

name3_histene.pri

name3_xxx_breaking.pri

Conta 8.15 – – name3_xxx.pri N name3_timespan.pri

name3_dimension.pri

name3_ordered.pri

127

8.1 The Geomet module

This module serves for studying the molecular conformations after a MC or MD run. It is also wise to

employ it for checking purposes, i.e., to verify that the simulation ended with an ensemble of reasonable

structures. It reads a .dat file containing either a unique frame or a whole trajectory, a topology .top file

and a molecular .oeh file. It performs the following tasks (all optional):

1) Check solute and solvent connectivity and bond distances (useful to find errors in the

construction of the molecular geometry); check for very short intramolecular distances

(impossible conformations from wrong force fields or erratic runs);

2) Produce a histogram for the distribution of torsion angles in the force field. The distribution

ranges from –180º to +180°, with the usual convention for the angle signs (looking from atom

1 down the 2-3 bond, angle positive if atom 4 turn to the right). See also Section A8 in the

Appendix – Reference Materials and Technical Details.

3) Calculate the root mean square deviation (rmsd) of bond stretch and bond bend in the force field

according to:

rmsd(𝑅) = √∑
(𝑅 − 𝑅0)2

𝑁𝑅
 (8.1)

rmsd(𝜃) = √∑
(𝜃 − 𝜃0)2

𝑁𝜃
 (8.2)

In eq. (8.1) and (8.2), reference values R0 and 0 refer to the pristine molecular model, that is,

that loaded into and topology .top file (Section 6.6.3 or 7.6.4). The summations run on all bond

distances and bond angles in all molecules in the sample. These indices and the spread of torsion

angles are monitored to make sure that they stay within reasonable energy-equipartition limits

without spurious molecular distortions.

CAUTION: This module had been written for solutes only with a project of extending it to solvents.

The project was never carried out, however. The current status is such that the program stops without

notice if a solvent is present. No wrong data are produced but the program does not work for solvents.

Running command:

run.geomet name1 name2 name3

Where the labels have the following meaning:

name1 name1.top file, with all bond stretch bends and torsions to be analyzed

name2 name2.oeh file (Section 1.4);

name3 name3.dat file (Section 5.1.3). If the .dat file contains several frames, the geometrical

study is performed for each frame.

Printed output is on name3geo.pri.

The run.geomet instructions (Linux/Unix) are arranged as follows:

128

cp $1.top geomet.top

cp $2.oeh geomet.oeh

cp $3.dat geomet.dat

~/programs/MiCMoS/exe/geomet

rm $3geo.pri

mv geomet.pri $3geo.pri

rm geomet.top

rm geomet.oeh

rm geomet.dat

Answer the dialog mode, which asks for:

- TMIN, TMAX, NTBIN Minimum torsion angle in the distribution, maximum torsion

angle in the distribution (normally –180.0 and 180.0), number

of bins in the distribution. NTBIN must be lower or equal 300.

The step will be (TMAX–TMIN)/NTBIN.

- RLIM, TELIM R and  : limit values of distance and angle deviations, in Å

and deg, from the reference geometry from atomic coordinates

in the .top file. Bond lengths and angles that exceed the limits

are printed. Recommended: 0.05 Å and 10°.

- NSTPF when checking a trajectory .mdc file, the analysis is performed

every NSTPF steps. This number is =1 if checking a .mdo or

.mco single frame.

129

8.2 The Analys module

The Analys module computes the radial distribution function distributions for both molecular centre of

mass and atom–atom intermolecular contacts. It reads a .dat file containing either a single frame or a

whole trajectory, plus a topology .top file, and writes a .pri output file. It performs the following tasks

(all optional):

1) Produce a list of short intermolecular distances below a fraction of the sum of intermolecular

radii;

2) Calculation of the center-of-mass radial distribution function (RDF, equation (8.3)) for solute-

solute, solvent-solvent and solute-solvent;

3) Calculation of the radial distribution function (RDF, equation (8.3)) for either selected or all

pairs of atomic species, solute-solute, solvent-solvent and solute-solvent. This is useful to

investigate the coordination sphere of specific atom species. In the output, these RDF data are

labelled by the corresponding atomic species code numbers detailed in Table 1.1, without spaces

between them. For example, 305 means that the RDF pair is formed by atom types 3 and 5, that

is, by aliphatic H’s and hydroxyl H’s; 323 by aliphatic H’s (3) and –O– (23) atoms; and 1010

means the RDF of carbonyl oxygens (10) with themselves.

For the evaluation of RDF's, consider a pair of atomic species (atom–atom RDF), or pairs of molecular

centers (center of mass RDF). Ni is the number of distances in a spherical distance bin of radius dR

(usually 0.1–0.2 Å) and volume Vi, N is the total number of distance points and V is the total volume of

the system sphere; the radial density function g(Ri) for each distance Ri of the ith bin is:

𝑔(𝑅𝑖) = (
𝑁𝑖
𝑉𝑖
) ∙ (

𝑁

𝑉
)
−1

=
𝑁(𝑅𝑖)

4𝜋𝑅𝑖
2𝑑𝑅

∙ (
𝑁

𝑉
)
−1

 (8.3)

In equation (8.3), N/V is the total number density of distances, corresponding to uniform and random

distribution; g(R) is thus normalized and g(Ri) > 1 indicates a significantly high frequency of distances

at Ri. For this reason, RDF is the main tool for structural analysis in liquids.

CAUTION: While a quick impression can be gathered from analysis on the last frame, averaging over

.mcc or .mdc frames after steady state is highly recommended, and is indispensable for crystal

simulations. If the system is at equilibrium, the last 100-500 frames of the production stage are usually

enough for averaging. Module Distrib (Section 8.2) can do this using an anl.pri output file produced by

Analys, which contains the analysis of more than 1 frame.

CAUTION: For periodic-box simulations, 'total volume' means the volume of the computational box.

The volume of an isolated cluster can be estimated as the sum of the molecular volumes of the

constituting molecules divided by an approximate packing coefficient of 0.5 for a liquid or 0.7 for a

crystal (see parameter cpack below). For very small clusters, the RDF gradually loses physical

significance.

CAUTION: The RDFs are meaningful only for homogeneous systems, not for example for clusters with

solute nucleus surrounded by solvent.

130

Running command:

run.analys name1 name2

Where the labels have the following meaning:

name1 name1.top, forcefield file;

name2 name2.dat, coordinate (trajectory) file to be analyzed;

run.analys module (Unix/Linux)

cp $1.top analys.top

cp $2.dat analys.dat

~/programs/MiCMoS/exe/analys

rm $2anl.pri

mv analys.pri $2anl.pri

rm analys.top

rm analys.dat

The output is written on a name2anl.pri file.

 Answer the dialog mode, which asks for:

(1) nfrmi,nfrma Start and final frame numbers. The requested analysis (see

below) will be repeated for each frame between nfrmi and

nfrma. Give “1 1” if your .dat file contains only 1 frame.

(2) PERINT Prints all intermolecular contacts shorter than PERINT percent

of the sum of intermolecular radii. 90 could be a good choice.

= 0.0 to skip.

In the .pri file, short contacts are reported as a list of entries labelled as “short inter, at-mol-

types”. For each entry: number of the atom in the first molecule (same order as in the .top file), number

of the first molecule (same order as in the .dat file), atomic species code number (as in Table 1.1),

number of the atom in the second molecule (same order as in the .top file), number of the second

molecule (same order as in the .dat file), atomic species code number (as in Table 1.1), actual distance

(Å), van der Waals contact distance (Å).

(3) IGR Switches on / off the evaluation of radial distribution functions.

 = 0: g(R)’s are computed; proceed with instruction (3).

 = 1; g(R)’s are not computed, end of job.

(4) cpack If IGR = 0, an approximate packing coefficient must be given

(see above). Acceptable values are 0.5 for liquids or amorphous

solids and 0.7 for crystalline solids. This paremeter is important

only if the simulation is not periodic (e.g. isolated clusters, no

box), otherwise it can be safely set equal to 0.0.

(5) rminc,stepc,nbinc Parameters to compute the centre–of–mass radial distribution

function. Give zeros to skip this RDF calculation.

131

 rminc: minimun distance (Rmin) value for starting the

distribution.

 stepc: bin widths. Usually 0.1-0.2 Å.

nbinc: number of bins (maximum 300). The maximum R of the

distribution will be Rmin + nbinc·stepc.

 (6) rmin,step,nbin As above, for the individual radial functions of specific atom

types. Give zeros to skip all atom–atom RDF calculations. If

nbin  0, rmin is the minimum distance (Rmin) value for starting

the distribution; step is the bin width; nbin the number of bins

(max 300).

(7) ncpu Number of specie pairs for the solute. Individual RDF will be

computed for each of the ncpu pairs of atomic species.

 = –1: Calculate RDF’s for all pairs of atomic species (solute).

= 0: skip (proceed to instruction (8)).

 > 0: Will ask for ncpu pairs (instruction (7).

(8) ncpu ISP indicators If ncpu is greater than zero, the program will ask for ncpu pairs

of ISP specie indicators. These are the solute atom-atom species

for which g(R) is to be computed, according to the codes given

in Table 1.1.

(9) ncpv Number of atom species pairs for the solvent.

= –1: Calculate RDF’s for all pairs of atomic species (solvent).

= 0: skip (proceed to instruction (10)).

 > 0: Will ask for ncpv pairs (instruction (9).

(10) ncpv ISP indicators ncpv pairs of solvent atom-atom species, for the solvent. Refer

to Table 1.1 for the meaning of ISP indicators.

(11) ncpuv number of atom species pairs for solute-solvent.

= –1: Calculate RDF’s for all pairs of atomic species (only

solute–solvent pairs).

= 0: skip (proceed to instruction (12)).

 > 0: Will ask for ncpuv pairs (instruction (11).

(12) ncpuv ISP indicators ncpuv pairs of solute-solvent atom-atom species. Refer to Table

1.1 for the meaning of ISP indicators

(13) ISMO Activates radial function smoothing.

 = 0: g(R)’s are smoothed (usually recommended)

 = 1: g(R)’s are not smoothed (e.g. for systems with sharply

peaked g(R)'s, like perfect crystals)

CAUTION: Computing the RDFs for all the atom–atom pair types is very time–consuming, especially

when large or complex molecules are studied. It is advisable to focus just on the centre of mass, and/or

possibly on 1 or 2 key interactions. The centre of mass RDF is often enough to characterize the average

molecular environment.

132

8.3 The Distrib module

The analysis of the MD/MC output should be made on an average of the last frames of the MD/MC run

that can be obtained using module Distrib. This program averages up to 5000 distributions present in a

NAMEanl.pri output from Analys (Section 8.2), “NAME” being any valid compound id. Preliminary

information on short intermolecular atom–atom contacts is always skipped, if present in the

NAMEanl.pri file. If the system is in equilibrium, averaging over 40–200 ps of MD is usually enough

to produce meaningful distributions. This corresponds to some hundreds of frames, typically 100–500,

depending on parameters timestep and nwbox in MD input file .mdi, Section 7.6.2.

According to (8.4), each ith step of the nth distribution P, Pi(n), is averaged:

〈𝑃𝑖〉 =
∑ 𝑃𝑖(𝑛)𝑛

𝑁
 (8.4)

where the summation runs over a total of N frames for which P has been computed, and Pi(n) is the

value of the ith bin in the nth frame. In Molecular Dynamics, this operation provides time–averaged

distributions over the N frames included into the Analys analysis (Section 8.2). For each 〈𝑃𝑖〉 step of the

average distribution, the corresponding estimated standard deviation (ESD) of the mean is computed

according to (8.5):

𝜎〈𝑃𝑖〉 =
1

√𝑁
√
∑ (𝑃𝑖(𝑛) − 〈𝑃𝑖〉)

2
𝑛

𝑁 − 1
 (8.5)

Averaging is mandatory in crystals to avoid conducting the analysis over a one-sided displacement along

lattice vibrations. This danger is less prominent for liquids where each frame is much more

homogeneous, but averaging is always a better choice. Moreover, averaged distributions are

considerably smoother than non–averaged ones, and thus less prone to show instantaneous fluctuations

due to background noise.

Running command:

run.distrib NAME

The program reads a NAMEanl.pri file produced by Analys (Section 8.2) and prints a NAMEdistr.pri

output that contains only the averaged distributions in X, Y format. No input instructions are required.

If the NAMEanl.pri output refers just to a single frame, i.e. it contains only one distribution per type,

Distrib stops with a warning message, as obviously no averages can be performed in this case.

run.distrib module (Unix/Linux)

rm $1distr.pri

cp $1anl.pri distrib.inp

~/programs/MiCMoS/exe/distrib

mv distrib.pri $1distr.pri

rm distrib.inp

133

8.4 The Correl module

This module reads a trajectory mdc.dat or mcc.dat file and calculates rotational correlation functions

(equation (8.6)) and root-mean-square displacements (equation (8.7)) for self-diffusion coefficients.

This applies to MD output files rather than MC output trajectories.

The rotational correlation function (t) and the diffusion coefficient D(t) and at any specific time t are

estimated by the standard formulas:

𝜏(𝑡) =
∑ 𝐮𝑘(𝑡)
𝑁𝑚𝑜𝑙
𝑘=1 ∙ 𝐮𝑘(0)

𝑁𝑚𝑜𝑙
 = 〈𝐮𝑘(𝑡) ∙ 𝐮𝑘(0)〉 (8.6)

𝐷(𝑡) =
1

6𝑡
∙
∑ |𝐫(𝑡) − 𝐫(0)|2
𝑁𝑚𝑜𝑙
𝑘=1

𝑁𝑚𝑜𝑙
=
1

6𝑡
∙ 〈|𝐫(𝑡) − 𝐫(0)|2〉 (8.7)

where u(t) is an orientation unit vector within the molecule defined as in Figure 8.1 below, and r(t) is

the position of the center of mass at "time" t. The average runs over all the molecules in the simulation

box. u(0) and r(0) are the same quantities at t = 0, that is, for a chosen reference, that can be any frame

along the trajectory. The  functions are dimensionless numbers between 1 (complete correlation) and

0 (no correlation), or for more clarity, between 100 and 0. The rotational correlation time is estimated

as the time for  (u, t) to decay from 100 to about 20, and should be of the order of 5–20 ps for organic

liquids.

The D functions are averaged over molecules within a radius of usually 30–40 Å from the overall center

of the box. The quantity 〈|𝐫(𝑡) − 𝐫(0)|2〉 is the mean square displacement, msd; thus, from eq. (8.7), it

is clear that the slope of a plot of msd vs. time, divided by 6, with distances in Å units and time in ps,

gives the translational diffusion coefficient. For organic liquids, D should be of the order of 10-8 m2 s-1

(or Å2 ps-1).

CAUTION (known bug): in periodic–box runs, the value of D can be affected by periodic

displacements of the molecule. For vary small clusters, say Nmol < 100, care should be taken in attaching

a physical meaning to the results, especially when rmsd2 exceeds the cluster radius.

Running command:

run.correl name1

where name1 means the full trajectory file name1.dat. The output is found on a file called name1cor.pri.

run.correl module (Unix/Linux)

cp $1.dat correl.dat

~/programs/MiCMoS/exe/correl

rm $1cor.pri

mv correl.pri $1cor.pri

rm correl.top

rm correl.dat

134

Answer the dialog mode, which asks for:

(1) NREF, NTOT, TSTEP number of the reference frame, total number of frames in .dat

trajectory file, time step (in ps). All frames up to NREF-1 will

be skipped.

(2) n1, n2, n3, n4, n5 Atom sequence numbers to define the reference molecular

vector for rotational correlation. See Figure 8.1 below for some

illustrative examples.

a) n1, 0, n3, 0, 0 vector is atom n1 to atom n3

b) n1, n2, n3, 0, 0 vector is midpoint of n1-n2 to n3

c) n1, 0, n3, n4, 0 vector is n1 to midpoint of n3-n4

d) n1, n2, n3, n4, 0 vector is midpoint of n1-n2 to

midpoint of n3-n4

e) n1, n2, n3, n4, 1 vector is perpendicular to vector of

case d) (useful for example for 6-fold

axis in benzene)

Figure 8.1. Examples for the meaning of the five designators for the definition of the intramolecular

vector (green) for the intermolecular rotational correlation. Red lines represent ancillary vectors,

necessary to define the green ones that are then used in equation (8.6) (see point (2) above). In the case

(e), the vector is the vector product of the first two.

(3) NDIFSU, DIMAXU NDIFSU is an atom sequence number (refer to the atom list in

the .dat/.top file) for squared rms displacement in equation

135

(8.5); if not zero, calculate rmsd2 of that atom, if zero calculate

rmsd2 of center of mass.

 DIMAXU is a threshold distance between com's for rmsd2

calculation; should be as large as to include all cluster or box

molecules (e.g. the max dimension of the computational box)

but not for example evaporated molecules.

136

8.5 The Redene module

This module reads an .ene file produced by a MC or MD run and interpret the energy results, providing

an energy evolution profile and averages (with estimated standard deviations) over defined simulation

periods.

Running command:

run.redene name1

“name1” is the name of the name1.ene file coming from a MC or MD run.

run.redene module (Unix/Linux)

cp $1.ene redene.inp

~/programs/MiCMoS/exe/redene

rm $1ene.pri

mv redene.pri $1ene.pri

rm redene.inp

Answer the dialog mode, which asks for:

(1) FREPA, FREPB, FREPC Multiples of crystal cell dimension along a, b and c.

These are the number of cells along each direction that

define the supercell of the simulation box (see Sections

5.1 and 5.2) and are also reported in the MC and MD

output printfiles. Set 1 for liquids.

(2) TIMST Time step (ps) for MD runs, or equal to 1 for counting

steps in a MC run.

(3) MOVE LIMITS Min and max move. You have to specify the starting

and ending moves (MC) or times (MD) to be included

in the analysis. A “move” here corresponds to any

frame actually written on the trajectory. Thus, for

example, if you have a trajectory 100 ps long and you

want to average over the last 50 ps, you should input

“50 100” here. Ensure however that both t = 50 ps and

t = 100 ps are included in your frames. In general, the

n frames corresponding to the last t ps can be obtained

n=t/(nwbox·dt), where dt is the timestep (Section

7.6.2, line 3) and nwbox the writing frequency on the

trajectory (Section 7.6.2, line 12).

The output consists of 4 main tables, summarizing various energy contributions. Entries are given in

kJ/mol per molecule units, and have the following meaning:

(1) Rounded time (ps), E(Lennard–Jones + Polarization), E(Coulomb), E(intramolecular, solute),

E(intramolecular, solvent), E(total), E(total electrostatic+LJ, solute-solute), E(total

137

electrostatic+LJ, solute-solvent), E(total electrostatic+LJ, solvent-solvent). If only “solute” is

present, entries corresponding to “solvent” will be identically 0.

(2) Focus on electrostatic and dispersion contributions. For solute–solute, solute–solvent and

solvent–solvent, E(Lennard–Jones + Polarization) and E(Coulomb) are given, for a total of 6

columns.

(3) Intramolecular stretching, bending, torsion and nonbonded interactions from solute (columns

1–4) and solvent (columns 5–8).

(4) Interaction energies of solute and solvent with barriers, if present: Lennard-Jones and Coulomb

solute-barrier; Lennard-Jones and Coulomb solvent-barrier; total Lennard-Jones; total

Coulomb; total interaction energy (solute + solvent) with barrier. Note that if no confinement is

applied, such as for example in MC calculations, these values will be identically zero.

(5) Time–evolution of crystal density, plus a, b, c, , ,  cell edges and angles.

8.5.1 Format of the .ene file

For each simulation step that is printed in the .ene output, according to what is specified in the .mci or

.mdi command file (see the nwre parameter described in Sections 6.6.2 and 7.6.2), the following

quantities are present:

LINE 1: nmsolu, nasolu, nmsolv, nasolv, wemolu, wemolv

Number of molecules (solute); number of atoms in each molecule (solute); number of

molecules (solvent); number of atoms in each molecule (solvent); molecular weight

(solute, au); molecular weight (solvent, au)

LINE 2: nstep

 Number of the simulation step

LINE 3: a, b, c, alf, bet, gam, Vbox

Overall dimensions of the simulation box (Å, deg, Å3). Box edge lengths, angles, and

volume.

LINE 4: ELP(uu), EQ(uu), ELP(vv), EQ(vv), ELP(uv), EQ(uv), ELP(ubar), EQ(ubar), ELP(vbar),

EQ(vbar)

 Intermolecular potentials, all in kJ/mol.

ELP(uu): Total solute–solute Lennard–Jones + Polarization energy (if present);

 EQ(uu): Total solute–solute Coulomb energy;

 ELP(vv): Same as ELP(uu), for solvent–solvent interactions;

 EQ(vv): Same as EQ(uu), for solvent–solvent interactions;

 ELP(uv): Same as ELP(uu), for solute–solvent interactions;

 EQ(uv): Same as EQ(uu), for solute–solvent interactions;

 ELP(ubar): Solute-barrier Lennard-Jones + Polarization energy (if a barrier is present);

 EQ(ubar): Solute-barrier Coulomb energy (if a barrier is present);

 ELP(vbar): Same as ELP(ubar), for solvent-barrier interactions;

 EQ(vbar): Same as EQ(vbar), for solvent-barrier interactions;

LINE 5: [Estr, Ebend, Etors]u, [Estr, Ebend, Etors]v

Intramolecular potentials, all in kJ/mol. These quantities are defined only from MD

calculations; files from MC have a -1 marker instead.

[Estr, Ebend, Etors]u: Total stretching, bending and torsional energies for the solute

molecules, in this order.

138

[Estr, Ebend, Etors]v: Same as above, for the solvent molecules.

LINE 6: ELP,tot EQ,tot, Eintram,u, Eintram,v, Etot

 Total energies, all in kJ/mol.

 ELP,tot: Total intermolecular Lennard–Jones + Polarization energy (if present).

 EQ,tot: Total intermolecular Coulomb energy.

 Eintram,u: Total intramolecular energy, solute.

 Eintram,v: Total intramolecular energy, solvent.

Etot: Total energy of the whole simulation box, computed as ELP,tot + EQ,tot +

Eintram,u + Eintram,v

139

8.6. The Datgro module

This module reads a trajectory .dat file containing any number of frames, and converts it into a

corresponding trajectory file in Gromacs–compatible .gro format (see http://www.gromacs.org/ and

http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html#gro). Visual analysis of

the .gro trajectory can be carried out by available graphic software. Free VMD (Visual Molecular

Dynamics) from the NIH Center for Macromolecular Modeling & Bioinformatics, Theoretical and

Computational Biophysics Group, University of Illinois, USA is very good to this purpose (see

https://www.ks.uiuc.edu/Research/vmd/).

Running command:

run.datgro name1

Here “name1” is any valid file with extension .dat, coming from either dynamics or Monte Carlo

simulations. Velocities, if present in the .dat file, are always skipped to save disk space. The program

produces a name1.gro output compatible with specs detailed in the Gromacs user manual.

run.datgro module (Unix/Linux)

rm $1.gro

cp $1.dat trajectory.dat

~/programs/MiCMoS/exe/datgro

mv trajectory.gro $1.gro

rm trajectory.dat

Answer the dialog mode, which asks for:

ni, nf Initial and final frame numbers for the conversion. The program converts only

those frames whose sequence numbers lie between ni and nf.

Major differences of the .gro file with respect to the .dat one (Section 5.1.3) include: (i) .gro coordinates

and cell edges must be expressed in nm; (ii) each .gro frame ends with cell vectors expressed as Cartesian

components in a specific global reference system (see the Appendix, Section A4); (iii) molecular id

numbers and residue label must be always specified in .gro format. Datgro numbers atoms in each

molecule in ascending order, following the same sequence as in .oeh and .top files. Labels SOLU and

SOLV are assigned by default to “solute” and “solvent” molecules.

CAUTION: To use the file produced by Datgro as a suitable input in Gromacs, care should be paid in

making atom and molecule numbering, order and labels fully compatible with those in Gromacs

topology file and Force Field libraries. It is impossible to do this automatically.

http://www.gromacs.org/
http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html#gro
https://www.ks.uiuc.edu/Research/vmd/

140

8.7. The Naverag module

This module reads multiple frames in a MD/MC trajectory (MiCMoS .dat format) to produce average

structures, referred to either the crystallographic cell or the simulation box. It also estimates average

anisotropic thermal parameters of all the atoms in the crystallographic unit cell; obviously, this makes

sense only for MD runs.

Naverag can be useful to evaluate the average crystal structure that emerges from a MD/MC run at

equilibrium, while it is pretty useless if applied to non-equilibrium structures (i.e. changing in time) or

disordered systems, like glasses, liquids and solutions. The reason is that not all the possible averages

correspond to meaningful observable states. For example, consider a dynamic system in which some

tens of identical jugglers are rapidly passing a ball from their right hand to the left one and vice-versa.

The spacetime average of this system will produce a unique (average) juggler, whose average ball will

be likely frozen in midair between his/her hands. Obviously, this does not correspond to an equilibrium

configuration and hardly bears physical meaning – is it a transition state? Or does it flag an intrinsic

disorder, either static or dynamic? It is always recommended to pay attention in attributing physical

relevance to average structures.

The Naverag module can handle a maximum of 1,000 frames and 2,500 molecules, each composed by

100 atoms at most, for a total of max 10,000 atoms in the simulation box. It recognizes “solute” and

“solvent” molecules. Admitted atoms are H, B, C, N, O, F, P, S, Cl, Br and I; if other species are present,

the program stops with a warning message. In agreement with the purpose of MiCMoS, the program is

not designed to work with polymeric structures - only molecular crystals are allowed.

Naverag performs two tasks. First, it reads the whole trajectory and does a time average of all the frames.

This produces a time-averaged frame in .dat format. Second, it shrinks the average frame back to the

original crystallographic cell, performing a space average of all the molecules in the simulation box.

This produces a shelx .res file with a spacetime average crystallographic structure. As no

crystallographic symmetry is explicitly considered in MD, the final structure is always treated as P1,

with the number of independent molecules coincident with the number of molecules in the cell. Each

atom is also provided with an estimate of its thermal parameters (in the Uij form).

Running command:

run.naverag name1

“name1” is the name of the name1mdc.dat or name1mcc.dat file coming from a MC or MD run.

run.naverag module (Unix/Linux)

cp $1mdc.dat trajectory.dat

~/programs/MiCMoS/exe/naverag

rm $1ave.res

rm $1ave.dat

rm $1service.out

mv average.dat $1ave.dat

mv service.out $1service.out

mv saverage.out $1ave.res

rm trajectory.dat

141

Answer the dialog mode, which asks for:

(1) NI, NF Initial and final frames of the trajectory to be included, expressed as

frame numbers (not MD moves). Type 0 0 if you want to include all the

frames in your trajectory. If more than 1000 frames are present, the

program will work just with the first 1000 ones.

The output consists of the following files:

(i) name1ave.dat. This is the time-averaged frame, with coordinates in Å.

(ii) name1ave.res. Space-time averaged crystallographic structure in the basic reference cell

(P1 symmetry assumed), in shelx format. Average cell edges and angles, as well as their

standard deviations, come from the average of the corresponding parameters listed in the

trajectory file; thus, they are generally slightly different from those provided by Redene

(Section 8.5). For each atom, the corresponding thermal parameters are also listed in the

form of Uij’s.

(iii) name1service.out. This is a service file that contains information for checking purposes. It

includes a table of time-averaged Cartesian coordinates of all atoms in the simulation box,

with estimated standard deviations (ESD’s) plus anisotropic displacement parameters

(ADPs) in the form of Uij (Å2). The latter are partitioned into contributions from internal

degrees of freedom and translations of the molecular centre of mass. Then, molecules that

are space-averaged are listed. Those that were discarded from the mean due to

conformational rearrangements or significant rotational motion are indicated with negative

sequence numbers (see below).

The philosophy of Naverag is briefly summarized below.

The algorithm starts by setting each molecule in its local inertial system, with molecular centre of mass

as the origin. Taking the first frame read as a suitable reference, each molecule in the next frames is

rotated so that its inertial axes coincide with those of the corresponding molecule in the first frame.

Then, atomic coordinates are time–averaged throughout the whole trajectory. At the same time, time–

average variance–covariance matrix elements of atomic coordinates are computed. This gives the

contribution of internal degrees of freedom to ADP’s. An approximate estimate of the rigid body

contribution is given by computing the variance–covariance components of the molecular centre of

mass. These two are summed together with equal weights to give full atomic ADP’s (in Cartesian form,

Å2: high–frequency internal motion plus low–frequency molecular rigid displacements). Cell edges and

angles of the simulation box are averaged as well. Then, average molecules are back–rotated to their

original orientations, and a time-average .dat frame (output (i)) is produced.

The next step defines the space-time averaged crystallographic cell (output (ii)). First, the origin of the

reference system of the simulation box is translated so that all the molecular centres of mass become

positive. This means that the final, averaged crystallographic cell might have a different origin with

respect to that specified in the original .cif file. The enlargement factors NREPA, NREPB and NREPC

specified at the beginning of each .dat frame (see Sections 5.1 and 5.1.3) are used to scale down the box

edges and estimate the crystallographic shrunk cell. Atomic coordinates in the average simulation box

are also shrunk, so that molecular centres of mass lie all within the crystallographic boundaries; then,

very close (dCM < 3 Å) centres of mass flag molecules that are going to be averaged. The total atomic

thermal motion parameters are obtained by averaging the total variance-covariance matrix elements

computed above throughout the simulation box.

142

CAUTION: In doing averages, Naverag traces individual atoms, not individual coordinates. This means

that rapidly varying conformations in flexible portions of the molecule might result in odd geometries.

The typical case is a rapidly rotating methyl group, where individual hydrogens exchange their positions

several times during the trajectory. This usually produces a correct average backbone structure, but the

terminal C–H bonds of the rotating methyl are unnaturally short. For any subsequent meaningful

discussion of the crystallographic results, it is a good idea to get rid of wrong hydrogens and to rebuild

them from scratch using the correct geometry – for example, with Mercury (C. F. Macrae et al., J. Appl.

Cryst., 53, 226-235, 2020) or the MiCMoS Retcor module. Obviously, thermal ellipsoids computed for

disordered groups should be considered with care.

To alleviate this problem, Naverag scans molecular pairs that are going to be averaged to see whether

all the corresponding atoms are reasonably close to each other. If it is found that any pair of chemically

identical atoms lie farther than 0.8 Å apart, it is assumed that one translation-dependent molecule has

undergone a significant conformational or rotational rearrangement, and it is therefore skipped when the

averaged structure is computed. The program takes note of what molecules are used for averaging and

flags those that are skipped in the name1service.out file by assigning negative sequence numbers to

them. If too few molecules survive to perform reliable averages, the module ask for user’s intervention:

either the calculation is stopped before producing the .res file, or the scan algorithm is switched off (at

your own risk!). In any case, the time average .dat file is always printed.

CAUTION: Remember that accurate experimental Uij come from the information collected on much

larger time and length scales. If you want to compare simulated thermal ellipsoids with experiment,

ensure that (i) your structure is fully equilibrated; (ii) the trajectory is long enough to sample all the

relevant conformers; (iii) the writing frequency of the .dat file is high enough to avoid missing

dynamical information. In any case, ad hoc scaling factors should be usually applied to predicted Uij

components to bring them on the same scale as the experiment. A good strategy is to evaluate such

factors as the average ratios between (Ueq)experimental / (Ueq)predicted for different atom chemical classes (e.g.

aromatic carbons, aromatic hydrogens, aliphatic carbons, methyl hydrogens…).

Molecular translational and rotational motion might significantly alter the position of the molecular

centre of mass and/or the backbone orientation, especially at high T or if the system is not fully

equilibrated. This might result in odd thermal ellipsoids in some of the average molecules in the .res

file. However, if some molecules in your average unit cell have correct thermal ellipsoids, that is,

comparable with the experimental ones, you could probably ignore the ones that are clearly biased by

translational or orientational disorder issues.

143

8.8. The Debye module

The Debye module reads a MiCMoS computational box in .dat format (see Section 5.1.3), with explicit

coordinates of all atoms. A simulated diffraction pattern is evaluated by the Debye scattering equation:

𝐼(𝜗) = 〈𝐹(𝜗)2〉 = ∑𝑓𝑘
2

𝑁

𝑘=1

+
1

𝑁
∙ ∑ 𝑓𝑘𝑓𝑛

𝑠𝑖𝑛(𝑄𝑟𝑘𝑛)

𝑄𝑟𝑘𝑛

𝑚

𝑘,𝑛=1

 (8.8)

where Q = 4 sin/ is the wavevector transfer modulus and fk, fn are the atomic scattering factors of

atoms k and n, which lie rkn Å apart from each other. The first summation considers overlapping terms

due to self-pairing, which cannot be included in the second one as rkk=0. The second summation runs on

all conceivable m atom pairs in the sample of N molecules contained in the MiCMoS simulation box.

Note that atoms k and n do not need to be chemically bonded.

The Debye scattering equation (its author's name, Petrus J. W. Debije, was originally pronounced “deb-

ee-a” but became Peter Debye, deb-ah-ee, in the US) is of paramount importance in modern

nanotechnologies: the interested reader may find many good reviews and books on this subject in the

scientific Literature (for example, see P. Scardi et al., Acta Cryst. (2016). A72, 589–590 and references

therein). In brief, it can be used to calculate the diffraction pattern from any specimen, either gaseous or

liquid, if molecules are randomly oriented. It accounts for the total scattering output, which includes

disorder and thermal effects (if properly modelled). It can be used also to estimate the diffraction pattern

of a crystalline specimen in the form of a finely ground powder, where small crystallites are oriented at

random with respect to the incoming radiation. Thus, the resulting 𝐼(𝜗)/𝐼(2𝜗)/𝐼(𝑄) profile can be used

to evaluate the degree of ordering in a liquid, or to simulate the powder pattern for a crystal. If scattering

at very small Q is considered, a Small Angle X-ray Scattering (SAXS) signal can be predicted and

possibly compared with experiment.

CAUTION. If applied to a perfect crystal, the Debye scattering equation should in principle reproduce

the experimental X-ray powder diffraction output but the resolution of the pattern from the Debye

formula will be much lower. Equation (8.8) is a brute force summation, which in principle requires an

infinite number of terms up to very high interatomic distances. When the pattern is simulated using

calculated structure factors, the periodical lattice interference condition is incorporated in the expression

for the structure factors, and thus the infinite lattice periodicity is implicitly considered. The added value

of (8.8) is that a perfect periodicity is not needed at all, as the total scattering signal is simulated.

The atomic scattering factor of the kth atom is computed as a function of the scattering vector module

using analytical fitting exponential functions:

𝑓(𝑘, 𝑥) = 𝑓𝑒(1) ∙ 𝑒
−𝑓𝑒(2)∙𝑥

2
+ 𝑓𝑒(3) ∙ 𝑒

−𝑓𝑒(4)∙𝑥
2
+

+𝑓𝑒(5) ∙ 𝑒
−𝑓𝑒(6)∙𝑥

2
+ 𝑓𝑒(7) ∙ 𝑒

−𝑓𝑒(8)∙𝑥
2
+ 𝑓𝑒(9) (8.9)

Where x = sin/ and the fe(i) are fitting coefficients taken from Table 6.1.1.4. of International Tables

for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, Third Edition, Editor E.

Prince, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004. They come from the fitting of

the form factors as predicted by quantum simulations on isolated atoms.

Application of the Debye scattering equation can be very time consuming in serial codes like MiCMoS,

as the summation must be carried out across all the atom pairs. This means that for a system with N

144

atoms, the cost scales as N2. To speed up the calculation is possible to exclude hydrogen atoms, whose

scattering power is small, especially when they are a minor part of the molecule. Another time-saving

strategy is to ignore periodicity of the simulation box and to apply equation (8.8) just to one isolated

simulation box.

Running command:

run.debye name1 name2 name3

“name1” is the name of the input parameter file (name1.inp), which must have .inp extension and

collects all the steering commands needed for the calculation (see Section 8.8.1 below). “name2” is the

name of the name2.oeh file. This file (see Section 1.4) is used only for the assignment of atomic species

indicators, which are not present elsewhere. Eventually, “name3” indicates the MiCMoS simulation

frame name3.dat on which the calculation is to be performed. The user must specify in the input stream

(see Section 8.8.1) on what frame interval the calculation will be done (a maximum of 1,000 frames are

allowed). It is thus possible to follow the time evolution of the Debye scattering curve, or to merge

different curves into a time-average signal.

run.debye module (Unix/Linux)

cp $1.inp debye.inp

cp $2.oeh debye.oeh

cp $3.dat debye.dat

rm $3deb.pri

rm $3prof.pri

~/programs/MiCMoS/exe/debye

mv debye.pri $3deb.pri

mv profiles.pri $3prof.pri

rm debye.inp

rm debye.oeh

rm debye.dat

The program produces two output files in tabular form; name3prof.pri contains the intensity vs. 2 (or

Q) profiles for each frame analyzed, while name3deb.pri summarizes the average intensity vs. 2 (or

Q) profile. These data can be easily adapted to be plotted with any graphic utility.

CAUTION (current program limitation). The input box can have both solutes and solvents; in a run

without periodic boundary conditions (PBC) the solvents are ignored, in a run with PBC the solvents

are not allowed.

145

8.8.1 Description of the debye.inp file

An example of the input stream (debye.inp file) for Debye is given below. The format is free.

nstart nend (first and last frame number, 0 0 to analyze all)

 1 5

lambda, theta min, theta max, step

 1.54 2.0 30.0 0.25

ilp (=0 apply, =1 not apply LP correction), thm(theta monochrom.)

 0 13.3

ibox (0=aperiodic, 1=periodic), cutoff

 0 0.0

ihyd (0=include,1=exclude H)

 0

iprint (0=normal, 1=extended printout)

 0

Note that the steering parameters are interspersed by comment lines, each starting with a hashtag symbol

“#”, which can be used to summarize the meaning of the various quantities. The program ignores the

comment lines.

nstart, nend (line 2) Starting and ending frames in the trajectory. The Debye

scattering equation will be applied only to frames in the .dat file

that are included in this interval. If you want to analyze the

whole trajectory, write “0 0”. A maximum of 1,000 frames is

allowed; if the trajectory contains more than 1,000 frames, only

the first thousand will be processed.

lambda, thmin, thmax, step (line 4) Wavelength of the X-ray beam (Å); min and max values

required for the Bragg angle  (deg); the step of  (deg) at which

the I() curve is computed. Typical values for these parameters

might be 1.54 (Cu K radiation), 2.0, 30.0 (2 = 4-60 deg) at

steps of 0.25-0.5 deg (0.5-1 deg in 2). The total number of

steps in the intensity profile can be estimated as 1+(thmax–

thmin)/step. A maximum of 5,000 steps is allowed.

ilp, thm (line 6) ilp controls whether the Lorentz-polarization factor is applied;

in case, thm is the Bragg angle M (deg) of the monochromator

crystal.

 =0 the Lp factor is applied; a valid thm is required. If thm is

lower than 0, the program adds 360 deg to make it positive.

 =1 the Lp factor is not applied. In this case, the thm value is

irrelevant.

 If ilp=0, each intensity step I() of the total scattering profile is

multiplied by the factor Lp:

146

 Lp =
1+(cos2𝜗𝑀)

2(cos2𝜗)2

 [1+(cos2𝜗𝑀)
2] sin2𝜗

This expression assumes (i) that an ideally imperfect crystal

monochromator is used and (ii) that polychromatic,

monochromatized and diffracted beams are all coplanar, as for

example they all lie in the equatorial plane of the Ewald sphere.

Typical values for M are 13.3 deg for Cu K and 6.2 deg for

Mo K radiations, if a graphite monochromator is used. If the

correct value is unknown, or you don’t want to apply the

correction for a crystal monochromator, you should select

thm=0.0 deg. This excludes the contributions for the

monochromator but still applies the [1+cos22]/[2sin2] factor

due to the scattering from the sample. In that case, the program

prints a reminder.

ibox, cutoff (line 8) ibox specifies whether the calculation is periodic or not.

 =0 non periodic calculation;

 =1 periodic calculation.

 When ibox=1 (periodic), cutoff selects the cutoff distance for

including molecules in the calculation. It should be something

below 1.5 the average box dimension. When ibox=0, cutoff is

irrelevant. Note that activating periodic boundary conditions is

often very time consuming.

ihyd (line 10) ihyd selects the treatment of hydrogen atoms.

 =0 all hydrogens are included;

 =1 all hydrogens are excluded.

iprint (line 12) Controls the amount of printout.

 =0 normal printout (normal option)

 =1 extended printout (for checking purposes)

In summary, the procedure can be carried out in four different conditions:

a) no periodic box conditions (PBC), include hydrogen atoms: in this case the summation

runs only on atoms in the original box. ibox=0, cutoff=0.0, ihyd=0.

b) as in a), but excluding hydrogen atoms. ibox=0, cutoff=0.0, ihyd=1.

c) PBC with generation of 26 identical boxes surrounding the central one, but including

only molecules whose distance from the center of coordinates of the central box is

below a given threshold. ibox=1, cutoff>0, ihyd=0.

d) as in c) but excluding hydrogen atoms. ibox=1, cutoff>0, ihyd=1.

For example, the input above requires evaluating the total scattering of the first 5 frames of the trajectory

using Cu K radiation. The diffraction profile is predicted for 2.0    30.0 deg, that is, 4.0  2  40.0

deg at steps of 0.25 deg () or 0.50 deg (2). No periodicity is exploited, but the hydrogen atoms are

included, and the Lp factor is active. The prontout is normal: the Debye module will produce a deb.out

file with a single, time averaged I vs. 2 (or Q) profile, plus a prof.out file with individual profiles from

the various frames analyzed.

147

8.9. The Nanocut module

Nanocut reads the information on atom identities, atom fractional coordinates and crystal packing from

an input .oeh file (Section 1.4). Then, it cuts the periodic structure by applying user-defined boundary

conditions in terms of surface lattice planes (hkl). The module produces a MiCMoS .dat frame file,

interpretable by both the MC and MD engines, which contains an isolated, ordered molecular

nanocluster with the desired shape. This nanocluster can be used as a starting point for subsequent MD

or MC calculations.

Running command:

run.nanocut name1 name2

“name1” is the name of the input ASCII text file that includes the steering parameters for this calculation.

This latter file must have .inp extension. Section 8.9.1 below contains a full description of the required

ASCII instructions. “name2” is the name of the name2.oeh file for a crystal structure, i.e. with specified

the crystallographic unit cell and coordinates expressed as fractional vectors. No input data are required

from keyboard.

run.nanocut module (Unix/Linux)

rm $2cut.dat

rm $2cut.xyz

rm $2cut.out

rm clustercom.xyz

cp $1.inp nanocu.inp

cp $2.oeh struct.inp

~/programs/MiCMoS/exe/nanocut > nanocut.out

mv frame.dat $2cut.dat

mv coordi.xyz $2cut.xyz

mv ccom.xyz clustercom.xyz

mv nanocut.out $2cut.pri

rm nanocu.inp

rm struct.inp

rm serv1.txt

rm serv2.txt

The main printout is given on screen (the macro redirects it automatically to name2cut.pri), while the

cartesian coordinates of molecules belonging to the computed nanoparticle are written in two files,

name1cut.xyz, and name1cut.dat. The latter is a standard MiCMoS .dat frame file (Section 7.6.3). The

program produces also another file, clustercom.xyz, where the centre of mass coordinates of all the

molecules of the original array are displayed as dummy C, S or O atoms, depending whether they are

included (C: solute, S: solvent) or not (O) within the nanoparticle boundaries. The .xyz files can be

visualized by all graphical programs able to interpret the xyz format, including Mercury (C. F. Macrae,

I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens,

M. Towler and P. A. Wood, J. Appl. Cryst., 53, 226-235, 2020). Moreover, the name1cut.dat file can

be converted into VMD-compatible format using Datgro (Section 8.6).

148

The nanoparticle produced by Nanocut can be solvated. In practice, the simulation box of the solvated

nanoparticle is produced by Nanosolv, which merges the name1cut.dat file with a second .dat file

containing an equilibrated liquid, which is used as solvent. See Section 5.6 for more details.

CAUTION. Even though is possible to create a nanoparticle from a crystal with two independent

molecules in the asymmetric unit, such as solvates and co-crystals, it is not generally possible to put

such a bi-component molecular cluster into a solvent with Nanosolv. The reason is that MiCMoS can

handle no more than two different compounds: solvating a co-crystal will result necessarily in a

simulation box with three chemical species, which is forbidden by the current program limitations. The

only exception is a solvated nanocluster where the external solvent is identical to either component in

the nanoparticle. In that case, ensure that the two identical chemical species have the same atom

sequence in both .dat files.

An example of a cluster produced by Nanocut is given in Figure 8.2 below.

Figure 8.2. Projections along the three cell edge directions of a nanocluster of 651 molecules of succinic

anhydride (7161 atoms) generated by Naverag. The cluster is bound by the following lattice planes and

distances (Å) (see Section 8.9.1 for details) and comes by cutting the polyhedron from a 11x11x11 slab

of unit cells. (0 1 1), 21.18; (0 1 -1), 21.18; (0 0 2), 21.66; (1 0 1), 25.78; (1 0 -1), 25.78; (1 1 0), 29.64;

(1 -1 0), 29.64. The transparent polyhedron shows the superposition of the corresponding BFDH

morphology with the nanoparticle, as computed by Mercury on the parent SUCANH15 structure.

149

8.9.1 Description of the nano.inp file

An example of the input stream (nano.inp file) for Nanocut is given below. The format is free.

ipack1, ipack2, ipack3 (initial cluster)

 2 2 2

iprint (=0 normal, 1=extended printout)

 0

nplanes (number of (hkl) planes for boundary conditions)

 3

h, k, l, dhkl

 1 1 1 10.0

 0 1 0 8.0

 0 0 1 11.54

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such

lines are ignored by the program and can be used to pin up comments on the meaning of the steering

parameters.

ipack1, ipack2 and ipack3 (line 2) An initial cluster will be produced from the crystallographic

unit cell, by exploiting all the elementary translations ranging

from ipackn. For example, “2 2 2” means that translations

of –2, –1, 0, +1 and +2 are used along all the a, b and c cell

unit vectors. Overall, the initial cluster will consist of 5x5x5

= 125 unit cells in this case. Note that a maximum of 8,000

unit cells can be handled by the program.

iprint (line 4) The parameter iprint controls the amount of information print

in the output file. If iprint=1, all the centre of mass coordinates

generated according to coefficients ipackn (see above) are

printed on screen, together with the corresponding acceptance

conditions. For normal use, leave iprint=0.

nplanes (line 6) Number of (hkl) planes defining the boundary conditions. This

parameter must be equal or higher than 3 to ensure that a closed

polyhedron is defined; otherwise, the program stops with a

warning message.

h, k, l, dhkl (lines 8ff) Add nplanes (see above) rows, each specifying hkl and dhkl

quantities. hkl are the reciprocal space coordinates of the

crystallographic planes employed as boundaries of the

nanoparticle. For each plane, dhkl is the corresponding distance

from the origin (in Å). The program automatically generates

also the centrosymmetric faces (–h –k –l), keeping them at the

same distance from the origin. Overall, a total of 2·nplanes

boundary conditions are used; this should ensure that the

polyhedron is always closed.

150

For example, the input specified above generates a starting ordered box of 5x5x5 unit cells. Only those

molecules whose centres of mass projections along the reciprocal space vectors (111), (010), (001) (plus

the centrosymmetric ones (-1-1-1), (0-10) and (00-1)) lie within 10, 8 and 11.54 Å apart from the origin

will be included in the nanoparticle.

CAUTION. The algorithm is developed so that the nanoparticle is always a convex closed polyhedron.

If any of the defined (hkl) planes is set too far from the origin to act as an effective boundary, the

elementary facets of the ipack1 x ipack2 x ipack3 original prism are used instead.

151

8.10. The Trajedit module

Trajedit reads a .dat trajectory file produced by either the MC and MD engines and modifies the

simulation box and/or the frame sequence according to the user’s specifications. For example, Trajedit

can get rid of velocities and forces if present, it can cut the trajectory by selecting only a subset of frames,

or it can print an edited trajectory with a lower frame frequency. Also, operations on the reference system

are allowed: the program can change the unit cell system, including the origin. Finally, it is possible to

produce an edited trajectory which contains either the solute or the solvent, or any number of user-

selected molecules.

Running command:

run.trajedit name1 name2

“name1” is the name of the input ASCII text file that includes the steering parameters for the editing.

This latter file must have .inp extension. Section 8.10.1 below contains a full description of the required

ASCII instructions. “name2” is the name of the name2.dat file, without extension, with a MD or MC

trajectory of any length. The new trajectory will be print in a name2edit.dat file, which can undergo any

further analysis. The program produces an output on screen, that by default is redirected to a trajedit.pri

output file.

run.trajedit module (unix/linux):

rm $2edit.dat

cp $1.inp trajedit.inp

cp $2.dat trajectory.dat

echo 'Working...'

~/programs/MiCMoS/exe/trajedit > trajedit.pri

echo 'Done. Output on trajedit.pri'

mv trajectory.out $2edit.dat

rm trajedit.inp

rm trajectory.dat

The operation requested are applied with the following order.

- First, the trajectory is scanned to select the desired bunch of frames.

- Then, a specific set of molecules within the desired frames is selected and conserved; the other

molecules are erased. Selection is carried out based on either the molecular specie (solute or

solvent) or a set of molecule id numbers, depending on the user’s request.

- The next step is to change the origin; this is done by applying a rigid user-specified translation

to the whole set of atomic coordinates. The translation vector must be specified in

crystallographic coordinates.

- Then, the axes of the simulation box are transformed according with a user-defined matrix. Any

transformation matrix can be used, provided it is not singular. The reason is that the transform

of the contravariant coordinates in the real space is carried out by the corresponding inverted

matrix. If the determinant of the transformation matrix is not unitary, a warning is issued: be

aware that in that case you are changing the cell volume. If the box is not periodic, no further

changes are made; if periodicity is exploited, the program fills the transformed box with the

152

appropriate number of molecules to avoid the occurrence of void regions. This is done by

expanding the original box into the usual 3x3x3 supercell, and including into the transformed

box all the molecules whose center of mass lies within the new boundaries. Two tolerance

parameters (apar1 and apar2) must be specified in the input to set the coordinate limit for center

of mass inclusion (if origin is not changed, apar1 should be ~ –0.5 and apar2 ~ +0.5). This

implies that the molecule count changes in the transformed box: the program updates the nmsolu

and nmsolv counters in the transformed trajectory accordingly. The final cell parameters that

will be written on the output are enlarged by a user-defined factor. This allows avoiding steric

clashes on the new boundary of the transformed simulation box.

- Finally, if requested, the whole molecular array can be renumbered.

- In the printout, velocities and forces (if originally present) are kept or discarded, according to

the user’s preference. Note that they are automatically discarded if a change of the reference

system is required. This ensures that, if the edited trajectory is further evolved by MD or MC,

no forces are constrained to be equal by translation in the simulation box.

8.10.1 Description of the edit.inp file

An example of the input stream (.inp file) for Trajedit is given below. The format is free.

itrim iskip icell iextr ivel icentre

 1 0 1 0 1 0

First and last frame to print (only effective if itrim = 1)

 10 50

Cell transform matrix (only effective if icell = 1) apar1 apar2 enlarge

 -0.5 0.5 0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 -0.500 0.500 1.2

label -1: take all; label n1,n2,n3..., take only n1,n2,n3... mols.

SOLU 12 5 45 100 105 6 7 10 27 107 99 500 508

SOLV -1

irenu (renumber molecules, 0:no; 1:yes) only effective if iextr/icell.ne.0

 1

coordinates shift (to change the origin, only effective if icentre = 1)

 -0.5 -0.5 -0.5

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such

lines are ignored by the program and can be used to pin up comments on the meaning of the steering

parameters.

1) #line --------------------------------

2) itrim, iskip, icell, iextr,

ivel, icentre (line 2) itrim: If active, only frames within the interval istart-iend will be

saved (see below).

 0: option inactive (all frames will be processed)

 1: option active; only frames within the limits specified below will

be passed to the new trajectory.

 iskip: Selects the number of frames that are to be skipped after any

valid read. The program keeps all frames for which the ratio frame

number / (iskip+1) gives a zero remainder.

 icell: Activates a change in the reference frame.

 0: The box coordinates frame is left unchanged.

153

 1: The coordinate frame is changed according to the transformation

matrix given below. If the simulation box contains an isolated

cluster (i.e. no periodic boundary conditions), the transform matrix

just affects the atomic coordinates. If a periodic box is present, the

reference box is rotated and filled again with those molecules whose

centre of mass falls within the box. Depending on fluctuation of cell

edges during the simulation and on the chosen tolerances apar1 and

apar2 (see below), the number of molecules may vary along the

trajectory.

 iextr: Activates the molecule selection stream. If this option is

active, only a subgroup of molecules will be selected, according with

the user’s choice. Note that the iextr task is performed before any

coordinate system adjustment (icell option); this implies that, after

the coordinate change, only the selected molecules that fall within

the new box are kept.

 0: No molecules will be extracted from the trajectory; equivalently,

all the original molecules will be kept.

 1: An user-specified group of molecules will be extracted from the

trajectory (see nextru / nextrv below).

 ivel: Flag to decide whether velocities and forces are to be kept. It is

effective only if the original trajectory contains these information

(see aldo the parameter irvel in the description of the .dat file).

 0: Velocities and forces, if present, are kept;

 1: Velocities and forces, if present, are erased.

 icentre: Specifies if a rigid translation of the origin is to be applied.

 0: No origin shift is applied;

 1: An user-defined shift vector is applied to all the crystallographic

coordinates (see below).

3) #line --------------------------------

4) istart, iend (line 4) These values are active only if itrim = 1 (see above); otherwise, they

are ineffective. For itrim = 1, istart flags the first frame to be

processed and iend the last one. All frames in the istart-iend interval

are processed; others are skipped and will not be saved into the

edited trajectory.

5) #line --------------------------------

6) 9 transform matrix components,

apar1, apar2, enlarge (line 6) These are the components of the transform matrix, to change the

reference system. They are read only if icell = 1 (see above),

otherwise they are ignored. The transform matrix is intended to

operate in the crystallographic reference system and the components

are organized in a row according to tra11, tra12, tra13, tra21, tra22,

tra23, tra31, tra32, tra33. For example, the sequence 0.707 0.707 0 -

0.707 0.707 0 0 0 1 corresponds to the matrix

 (
cos 𝛼 sin 𝛼 0
−sin 𝛼 cos 𝛼 0
0 0 1

)

154

for 𝛼 = 45 deg, i.e. it rotates the crystallographic reference system

by 45 degrees around c. Any other transform matrix is accepted,

even if the volume of the unit cell does change, provided that the

transform matrix is not singular. For example, 0.5 0.0 0.0 0.0 0.5 0.0

0.0 0.0 0.5 corresponds to

 (

1/2 0 0
0 1/2 0
0 0 1/2

)

and implies that the cell edges are halved. The number of molecules

in the simulation box is consistently reduced (note that this

transform is ineffective for isolated clusters, where periodicity is

meaningless). In general, using the correct transform matrix the user

may shape the simulation box according to their needs.

Caution. If the trajectory refers to an isolated cluster (i.e. no box is

present) and a coordinate change is required (icell = 1), the program

prompts the user to give from keyboard an estimate for the

(isotropic) dimension of the cell edge. This information is necessary

to perform the required coordinate conversion.

 apar1, apar2: These floating-point parameters set the tolerances to

consider a molecule included or not in the new simulation box. Only

molecules whose centre of mass crystallographic coordinates fall

within these limits, i.e. apar1 < xCM, yCM, zCM < apar2, will be

included in the edited trajectory. Usually, values like –0.495 and

+0.495 or similar (i.e. close to –0.5 and +0.5) provide reasonable

results. The reason is that MiCMoS sets the origin at the centre of

coordinates of the simulation box, and this interval allows to fill

correctly the transformed box. However, the user can adjust the

limits according to their needs, for example if they are dealing with

liquids or droplets.

 enlarge: This floating-point parameter defines the enlargement

factor that is applied to rescale the transformed cell edges. The

rescaling is applied just before writing the new cell in the output

frame. Experience shows that enlarge values of 1.1-1.2 are usually

enough to avoid steric clashes on the new boundaries of the

transformed box. Note that, after this operation, the transformed

liquid needs to be equilibrated again before any meaningful results

may be deduced from the dynamics. Unitary enlarge factors are

accepted, but the program stops if one tries to load enlarge < 1.0.

7) #line --------------------------------

8) nextru, molecule ids... (line 8) This option is active only if iextr = 1 (see above). The parameter

nextru quantifies how many solute molecules are to be kept. nextru

= –1 is special option that means that all solutes are kept; nextru = 0

implies that no solutes are left. If nextru > 0, then the program

155

expects to find a list of molecule id numbers, corresponding to their

sequence number in the original trajectory .dat file. These can be

given in any order; only the molecules with the specified id numbers

will be kept in the edited trajectory.

9) nextrv, molecule ids... (line 9) Same as nextru above, for solvent molecules. Note that

contradictory requirements (for example, iextr = 1 and both nextru

and nextrv = –1) are recognized by the program, which issues a

warning or stops, depending on the severity of the error.

10) #line --------------------------------

11) irenu (line 11) Flag renumber molecules. If it is not active, the same molecule id

numbers as in the original trajectory are kept. If a change of

coordinate is required, some molecule id numbers may be equal:

these molecules were originally translation-related in the original

supercell.

 0: Original molecule id numbers are retained;

 1: Molecules in the edited trajectory are renumbered in sequence.

12) #line --------------------------------

13) shift1, shift2, shift3 (line 13) Coordinates shift along the a, b, c edges of the simulation box (in

crystallographic coordinates). These shifts are applied only if icentre

=1 (see above).

You may write your comments in lines 14ff.

156

8.11. The Vanhove module

Vanhove reads a .dat trajectory file produced by either the MC and MD engines, and computes the

isotropic van Hove distribution function either for the molecular centre of mass or for any pair of atoms,

or elements, the user wants.

Running command:

run.vanhove name1 name2

“name1” is the name of the input ASCII text file that includes the steering parameters for the editing.

This latter file must have .inp extension. Section 8.12.2 below contains a full description of the required

ASCII instructions. “name2” is the name of the name2mdc.dat file with a MD or MC trajectory of any

length. The resulting van Hove distributions are printed on name2van.pri, where they are organized in

parallel columns as a function of time.

run.vanhove module (Unix/Linux)

cp $1.inp vanhove.inp

cp $2mdc.dat trajectory.dat

rm $2_isot.out

~/programs/MiCMoS/exe/vanhove

mv vanhove_isot.out $2_isot.out

rm vanhove.inp

rm trajectory.dat

8.11.1 Background

The van Hove correlation function, 𝐺(𝑟, 𝑡), allows to follow the correlated motion of particles both in

space and in time, an information that may be also obtained experimentally, for example from inelastic

neutron scattering experiments.

For a homogeneous system like a liquid or a glass, 𝐺(𝑟, 𝑡) depends only on the relative distance:

𝐺(𝑟, 𝑡) =
1

𝑁
〈∑∑𝛿(𝐫 − [𝐫𝑖(𝑡) − 𝐫𝑗(0)])

𝑁

𝑗=1

𝑁

𝑖=1

〉 (8.11.1)

Where N is the number of particles (atoms or molecules) included in the calculation, 𝛿 is the Kronecker

delta and 𝐫𝑖(𝑡), 𝐫𝑗(0) are the corresponding vector coordinates of the particles i and j at times t and 0,

respectively. The parentheses 〈… 〉 imply an ensemble average over the whole set of sampling directions

r; thus, 𝐺(𝑟, 𝑡) at time t expresses the probability to find any pair of particles at distance |𝐫| = |𝐫𝑖(𝑡) −
𝐫𝑗(0)|. In other words, 𝐺(𝑟, 𝑡) follows how the average relative distances among the particles change in

space and in time.

It is easy to see that, at t = 0,

𝐺(𝑟, 0) =
1

𝑁
〈∑∑𝛿 (𝐫 − 𝐫𝑖(0) + 𝐫𝑗(0))

𝑁

𝑗=1

𝑁

𝑖=1

〉 = 𝛿(𝑟) + 𝜌 ∙ 𝑔(𝑟) (8.11.2)

157

That is, 𝐺(𝑟, 0) is proportional to the pair distribution function 𝑔(𝑟); 𝛿(𝑟) is the Dirac delta function

and 𝜌 is the distance number density. More interestingly, 𝐺(𝑟, 𝑡) can be separated into a self- and

distinct part:

𝐺(𝑟, 𝑡) = 𝐺𝑠(𝑟, 𝑡) + 𝐺𝑑(𝑟, 𝑡) (8.11.3)

Where

𝐺𝑠(𝑟, 𝑡) =
1

𝑁
〈∑𝛿(𝐫 − [𝐫𝑖(𝑡) − 𝐫𝑖(0)])

𝑁

𝑖=1

〉 (8.11.4)

The self-part 𝐺𝑠(𝑟, 𝑡) is the probability density that a particle i has moved by r in a time t. Equivalently,

𝐺𝑠(𝑟, 𝑡) can be seen as the probability density of finding at r a particle i at time t, knowing where the

same particle was at time 0.

𝐺𝑑(𝑟, 𝑡) =
1

𝑁
〈∑∑𝛿 (𝐫 − 𝐫𝑖(𝑡) + 𝐫𝑗(0))

𝑁

𝑗≠𝑖

𝑁

𝑖=1

〉 (8.11.5)

Let’s assume that we know that at t = 0 a generic particle j was located at 𝐫𝑗(0). Then, the distinct part

of the van Hove distribution, 𝐺𝑑(𝑟, 𝑡), is related to the probability of find any other (different) particle

at distance r from that place. Moreover, by definition, 𝐺𝑑(𝑟, 0) = 𝑔(𝑟) at t = 0, excluding possible

normalization factors.

In normal usage, both functions are normalized so that ∫𝐺𝑠(𝑟, 𝑡)𝑑𝑟 = 1 and ∫𝐺𝑑(𝑟, 𝑡)𝑑𝑟 = 𝑁 − 1.

If desired, the user can select normalization conditions analogue to those employed by Analys (Section

8.2) to calculate the radial distribution function. However, note that the Vanhove does not perform

distinct calculations of the centre of mass for the solute or the solvent, as it is intended to look for long-

range correlations in both space and time, rather than to investigate the local average coordination. Thus,

the whole information (solute-solute, solute-solvent and solvent-solvent) concur to define a van Hove

distribution. It is still possible to extract information on the solute / solvent parts, though; for example,

the user may edit the trajectory with Trajedit (Section 8.11), so that only the desired information is left.

For example, if only solute-solute (solvent-solvent) contributions are looked for, solvent (solute)

molecules must be erased frame by frame. The solute-solvent cross information may be obtained by

subtracting the solute-solute and solvent-solvent contributions from the whole van Hove.

158

8.11.2. Description of the vanhove.inp file

An example of input stream for vanhove is given below. The format is free.

ifirst(first frame) ilast(last frame) iuse(skip frames) max_bin (of the van Hove distribution)

 10 14 1 250

delta_r (bin width of the van Hove) delta_t (time step, in ps)

 0.5 0.002

Type of van Hove (ivH, 0:com, 1:atom count) Normalzation(norm, 0:particle count; 1:particle density)

 1 1

Atoms to be included

SOLU 8 -1 1 15

SOLV 0 0 0 0

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such

lines are ignored by the program and can be used to pin up comments on the meaning of the steering

parameters.

1) #line --------------------------------

2) ifirst, ilast, iuse, max_bin

 ifirst First frame to consider.

 ilast Last frame to consider.

 iuse Starting from ifirst, the analysis is done every iuse frames.

max_bin Number of bins for the calculation of the discrete van Hove distributions. The

maximum r (the extension) of the distribution is governed by the product

max_bin · delta_r (explained below).

Caution: If the extension is insufficient to safely allocate all the bins, the program stops and a warning

is issued.

3) #line --------------------------------

4) delta_r, delta_t Control the bin width and the time step.

delta_r Bin width of the van Hove distributions, in Å. All distances r’s that differ less

than delta_r are placed into the same bin.

delta_t Timescale of the Molecular Dynamics simulation, in ps. It corresponds to the

timestep parameter of the mdi file (see Section 7.6.2).

5) #line --------------------------------

6) ivH, norm Controls the type of the van Hove distributions.

 ivH = 0 : the van Hove distributions is based on molecular centre of mass;

= 1 : the van Hove distributions is based on individual atom-atom distances.

Specific atoms to be used are given on lines 8 and 9 below. Only distances

relating different atoms (or atomic species) in different molecules are included

in the distribution. In other words, intramolecular distances are always skipped.

159

 norm Selects the normalization factor for the van Hove distribution.

= 0 : the particle count is used as a normalization factor. This implies that the

whole van Hove distribution is normalized over the total number of particles,

N, and at the same time ∫𝐺𝑠(𝑟, 𝑡)𝑑𝑟 = 1 and ∫𝐺𝑑(𝑟, 𝑡)𝑑𝑟 = 𝑁 − 1.

= 1 : the same normalization procedure for the calculation of the pair

distribution function g(r), as implemented in analys.for (Section 8.2), is

employed. This means that the ith bin is divided by 4𝜋𝑅𝑖
2𝑑𝑅 ∙ 𝑁/𝑉, i.e. by

4
3⁄ 𝜋[(𝑅𝑖 + delta_r)

3 − (𝑅𝑖)
3] ∙ 𝑁/𝑉. As usual, N/V is the total number

density of distances, which sets the reference for a perfect random distribution.

7) #line --------------------------------

8) labl,izu1,natu1,izu2,natu2

 These instructions are effective only if ivH = 1.

labl This is a user-defined label. It can be any alphanumeric quantity (4 characters

long). Usually, it is just a memo for solute (“SOLU”), as the following

parameters on this line refer to the solute.

izu1 Atomic number of the first solute atomic specie to be included in the evaluation

of the van Hove distribution.

natu1 Atom id number that is used to compute the distribution. natu1 correspond to

the number position of the desired atom in the solute atom list written in both

the topology and the trajectory. For example, “8 21” means that the #21 oxygen

atom on the atom list is selected. If a “-1” is given, all solute atoms with izu1

atomic number are used. A “0” implies that no izu1 atoms are employed.

izu2 Atomic number of the second solute atomic specie to be included in the

evaluation of the van Hove distribution.

natu2 Same as natu1, for the second solute atomic specie.

Caution: Only intermolecular distances are included in the calculation. Distances relating atoms within

the same molecule are skipped.

9) labl,izv1,natv1,izv2,natv2

These instructions are effective only if ivH = 1. They are the same as in line 8)

above, referring to the solvent.

labl This is an user-defined label. It can be any alphanumeric quantity (4 characters

long). Usually, it is just a memo for solvent (“SOLV”), as the following

parameters on this line refer to the solvent.

izv1 Atomic number of the first solvent atomic specie to be included in the

evaluation of the van Hove distribution.

natv1 Atom id number that is used to compute the distribution. natv1 correspond to

the number position of the desired atom in the solvent atom list written in both

the topology and the trajectory. For example, “8 21” means that the #21 oxygen

160

atom on the atom list is selected. If a “-1” is given, all solvent atoms with izv1

atomic number are used. A “0” implies that no izv1 atoms are employed.

izv2 Same as natu1, for the second solvent atomic specie.

natv2 Atom id number of the izv2 atom that is used to compute the distribution. If a

“-1” is given, all solute atoms with izv2 atomic number are used. As above, a

“0” implies that no izv2 atoms are employed.

The user may decide which specific atoms, or atom classes, are to be included in the calculation. Suitable

choice of natu1,2 and natv1,2 switches, allows to cover any case. For example,

Atoms to be included

SOLU 8 -1 1 15

SOLV 0 0 0 0

The above instructions require to compute the van Hove distribution by considering the distance between

the hydrogen atom number 15 of the solute and any of the oxygen atoms in the solute. It is implicit that

only intermolecular distances are included in the statistics.

Atoms to be included

SOLU 8 1 0 0

SOLV 7 4 0 0

Here, we want the van Hove distribution for the oxygen atom number 1 of the solute and the nitrogen

atom number 4 of the solvent. Note that “SOLV 0 0 7 4” would have been totally equivalent.

Atoms to be included

SOLU 0 0 0 0

SOLV 7 -1 7 -1

This calculation evaluates the van Hove distribution among all the intermolecular distances involving

nitrogen atoms of solvent molecules.

161

8.12. The Renergy module

Renergy reads a .dat trajectory file produced by either the MC and MD engines, and re-computes the

potential energies, both intramolecular and intermolecular, based on the atomic coordinates. If

requested, the program also produces extended files with individual relevant (i.e. most attractive)

molecule-molecule interaction energies.

Running command:

run.renergy name1 name2 name3

“name1” is the name of the input ASCII text file that includes the steering parameters. This file must

have .inp extension. Section 8.13.1 below contains a full description of the required ASCII instructions.

The label “name2” indicates the name2.top topology file, which must be read to retrieve the atom

identities, the atom charges, and the intramolecular parameters of the force field. Finally, “name3” is

the name of the name3.dat file with a MD or MC trajectory of any length; it also sets the output file

names.

Note that the program is compiled in serial mode. If you want, you can compile Renergy in parallel

mode following the instructions detailed below.

By default, the program prints two main files. The name3rene.pri output lists the total intramolecular

and intermolecular energies, as well as the corresponding decomposition into dispersive and electrostatic

contributions, plus an estimate for the cohesive energy of the system. The usual decomposition into

solute-solute, solute-solvent and solvent-solvent contributions is maintained. The name3rene.ene output

is equivalent to the .ene file that can be printed on the fly while the trajectory is computed (see the

parameter nwre in Section 7.6.2; Section 8.5.1 describes extensively of the .ene format).

If requested by the user (see Section 8.12.1 below), for each frame in the trajectory Renergy can print

detailed lists of molecule-molecule contacts, which include center of mass distance, intermolecular

dispersive and Coulomb contributions, and total intermolecular energies. Distinct files are produced for

solute-solute (name3uu.pri), solute-solvent (name3uv.pri), and solvent-solvent (name3vv.pri)

interactions. Only molecule-molecule energies lower than a user-defined threshold on the total energies

are printed.

Renergy is intended to perform one or more of the following tasks. It can be used to obtain information

on specific molecule-molecule interactions, which are not usually printed during the normal trajectory

analysis. It can be also employed to test the effect of different cutoffs, or force fields, on the estimated

cohesive energies, getting rid at the same time of redistribution effects like those due to kinetic bias

(Section 7.2.4), anisotropic pressure (Sections 7.3.2 and 7.3.3) and nanoconfinement (Section 7.2.5).

Note, however, that Renergy does not recalculate forces and velocities; in other words, it only takes note

of atom positions and gives back the corresponding intramolecular and intermolecular energies as a

function of time. Finally, Renergy can also be used in conjunction with Trajedit (Section 8.10) e.g. to

compute the potential energies of specific molecular subsets. For example, you may use Trajedit to

select a group of molecules that is of some interest (e.g. a hydrogen bonded cluster, a droplet of

solute…). Then, you can use Renergy to analyze in depth their contribution to the total energy of the

system. Note that such a partitioning is possible formally as MiCMoS relies on pairwise atom-atom

summations, which in turn sum up exactly to give molecular contributions. Clearly, ignoring multi-body

interactions and correlations is an approximation. This is the cost for an exact partitioning.

162

Caution. Being equal the force field, the factin parameter and the various cutoffs, small numerical

discrepancies, lower than 0.1 %, are to be expected in total energies when one compares the outcomes

of renergy with those obtained on the fly from the original trajectory calculation. These are likely due

to rounding of atomic coordinates in the written trajectory. We verified that cohesive energies are

essentially not affected from these small (random) errors.

run.renergy module (Unix/Linux)

rm $3rene.pri

rm $3rene.ene

rm $3uu.pri

rm $3vv.pri

rm $3uv.pri

cp $1.inp renergy.inp

cp $2.top topology.top

cp $3.dat trajectory.dat

~/programs/MiCMoS/exe/renergy

rm renergy.inp

rm topology.top

rm trajectory.dat

mv renergy.pri $3rene.pri

mv renergy.ene $3rene.ene

mv emoluu.pri $3uu.pri

mv emolvv.pri $3vv.pri

mv emoluv.pri $3uv.pri

To be compiled, the program requires to have access to MiCMoS libraries. The following macro should

be employed. Note that these instructions are already present in the standard compilation macro

run.compileB, thus you are expected to do nothing to compile Renergy. See also the installation notes

at the very beginning of this manual.

Compilation instructions for Renergy (serial mode)
gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/alldat.for

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/mdlibs.for

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/mcmdpo.for

gfortran -O2 -mcmodel=medium -static -std=legacy ~/programs/MiCMoS/SourceB/renergy.for alldat.o mdlibs.o

mcmdpo.o -o renergy

[-f "./renergy.exe"] && mv "./renergy.exe" renergy

rm *.o

mkdir -p ~/programs/MiCMoS/exe

mv renergy ~/programs/MiCMoS/exe/.

By default, the program is compiled in serial mode. However, you can also produce by yourself a parallel

version of Renergy by executing the following instructions. Please note that these will overwrite the

serial Renergy executable produced by run.compileB during the installation process. To avoid this, you

may change the name of the executable.

Compilation instructions for Renergy (parallel mode)
gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/alldat.for -fopenmp

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/parallel/mcmdpo.for -fopenmp

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/parallel/mdlibs.for -fopenmp

gfortran -O2 -mcmodel=medium -frecursive -std=legacy ~/programs/MiCMoS/SourceB/parallel/renergy.for alldat.o

mdlibs.o mcmdpo.o -o renergy -fopenmp

[-f "./renergy.exe"] && mv "./renergy.exe" renergy

rm *.o

mkdir -p ~/programs/MiCMoS/exe

mv renergy ~/programs/MiCMoS/exe/.

163

To execute the parallel version, you should add the following instruction export

OMP_NUM_THREADS=<N> to the first line of the run.renergy module file (change <N> with the proper

number of threads).

CAUTION. The parallel version of Renergy is not tested to date. You should check that it works

properly before extensive use.

8.12.1. Description of the renergy.inp file

An example of input stream for Renergy is given below. The format is free.

Example CLP energy recalc

idstr timestep euu evv euv cutoffu cutoffv cutoffuv ipots factin indiuu indivv indiuv

 1 0.001 -5.0 -15.0 -10.0 15.0 15.0 15.0 0 0.7 1 1 1

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such

lines are ignored by the program and can be used to pin up comments on the meaning of the steering

parameters.

1) Title line Use this line to sketch some information on your calculation. The format is free.

2) #line --------------------------------

3) idstr, timestep, euu,evv,euv, cutoffu, cutoffv, cutoffuv, ipots, factin, indiuu, indivv, indiuv

idstr Controls whether the energy/distance distribution analysis must be carried out

(see Sections 7.5.3 and 7.6.2).

 =0 No distribution analysis is done

=1 The distribution analysis of molecule–molecule pair energies (<

Emolim) and their centre–of–mass velocities is carried out and written

in the .pri file.

timestep Timescale of the Molecular Dynamics simulation, in ps. It corresponds to the

timestep parameter of the mdi file (see Section 7.6.2).

euu If idstr = 1, this is the energy limit (<0) to store solute–solute energies and

distances in the distribution (see Section 7.5.3). In other words, euu takes the

place of the emolim instruction in the original .mdi input file (Section 7.6.2).

This option is directly available only for the solute molecules. If interested in

the solvent, you may run this program on a suitably edited trajectory with

Trajedit (Section 8.10). If indiuu =1 (vide infra), individual solute–solute

energies are stored in the name3uu.pri output file, provided that their total

interaction energies are more negative than euu.

evv If indivv =1 (vide infra), individual solvent–solvent energies are stored in the

name3vv.pri output file, provided that their total interaction energies are more

negative than evv. As for euu, also evv < 0 is required.

euv If indiuv =1 (vide infra), individual solute–solvent energies are stored in the

name3uv.pri output file, provided that their total interaction energies are more

negative than euv. As for euu, also euv < 0 is required.

164

cutoffu Distance cutoff in intermolecular sums (solute–solute). See Section 7.3.2 for

more details. All cutoffs are expressed in Å. Note that cutoffu = 0.0 is

incompatible with indiuu = 1.

cutoffv Distance cutoff in intermolecular sums (solvent–solvent). Note that cutoffv =

0.0 is incompatible with indivv = 1.

cutoffuv Distance cutoff in intermolecular sums (solute–solvent). Note that cutoffuv =

0.0 is incompatible with indiuv = 1.

ipots Controls the energy functional of the Force Field.

=0 use AA–CLP

 =1 use AA–LJC

factin Damping factor for intramolecular nonbonded interactions (see Sections 6.4.2,

7.4.1 and 7.6.4).

indiuu Flags whether individual molecule-molecule energies in the solute should be

printed.

 =0 No explicit recording of molecule-molecule interactions.

=1 Individual solute-solute interactions are recorded in the output file

name3uu.pri.

indivv Flags whether individual molecule-molecule energies in the solvent should be

printed.

 =0 No explicit recording of molecule-molecule interactions.

=1 Individual solvent-solvent interactions are recorded in the output file

name3vv.pri.

indiuv Flags whether individual cross-interaction energies between the solute and the

slvent should be printed.

 =0 No explicit recording of molecule-molecule interactions.

=1 Individual solute-solvent interactions are recorded in the output file

name3uv.pri.

165

8.13. The Denflu module

Denflu reads a .dat trajectory file produced by either the MC and MD engines, and computes the local

density fluctuations, as opposed to the average density of the simulation box. This can be useful, for

example, to spot early aggregation phenomena or inhomogeneities in liquids and glassy states.

Running command:

run.denflu name1 name2

“name1” is the name of the input ASCII text file that includes the steering parameters. This latter file

must have .inp extension. Section 8.14.1 below contains a full description of the required ASCII

instructions. “name2” is the name of the name2mdc.dat file with a MD or MC trajectory, without

extension. A maximum of 2000 frames can be processed at once. The output is an ASCII text file named

name2denflu.pri.

run.denflu module (unix/linux)

rm $2den.pri

cp $1.inp denflu.inp

cp $2.dat trajectory.dat

/programs/MiCMoS/exe/denflu
mv denflu.out $2denflu.pri

rm trajectory.dat

rm denflu.inp

In each frame, the program partitions the total volume of the simulation box into a grid according with

the user’s instructions. The grid must contain no more than 106 volume elements. Then, each molecule

in the simulation box is associated with one and only one volume element, the one that is closest to the

corresponding center of mass. For each volume element, the number of molecules it contains is

evaluated. Thus, it is possible to compute the instantaneous density in each volume element of the grid.

This value can be compared with the total density of the simulation box, as well as with the average

density over the whole trajectory.

For each volume element, a time average value of the density is provided by averaging its point density

throughout the trajectory. The averaged squared density difference is computed locally in each volume

element 𝑖 according to

〈∆2𝜌𝑖〉 = 〈(𝜌𝑖 − 〈𝜌𝑖〉)
2〉 (8.13.1)

Where 𝜌𝑖 is the density of the 𝑖𝑡ℎ volume element, 〈𝜌𝑖〉 is the corresponding trajectory average, and

brackets 〈… 〉 denote the temporal average as well. An index can be defined, to quantify the average

fluctuations with respect to the system density. Following Moynihan & Schroeder, Journal of Non-

Crystalline Solids 160, 1993, 52-59, we define an average density fluctuation 〈∆2𝜌〉 by averaging the

individual 〈∆2𝜌𝑖〉 over all the volume elements in the grid, and then by normalizing by the squared total

density. The fluctuations can be also related to thermodynamic response coefficients according to:

〈∆2𝜌〉

〈𝜌2〉
=
𝑘𝐵𝑇 ∙ ∆𝑘

〈𝑉〉

166

Here, brackets 〈… 〉 indicate the spatial average through the grid elements, 𝜌2 is the corresponding

average squared density, and 〈𝑉〉 is the average volume element. 𝑇 is the absolute temperature and 𝑘𝐵

the Boltzmann constant (1.380649·10-23 J·K-1). Finally, ∆𝑘 is the difference between the liquid and glass

isothermal compressibilities.

The program also prints a table with the time-averaged parameters of all the grid elements. For each

point volume 𝑖, the Cartesian coordinate of the volume centroid are given, together with: (i) the average

density 〈𝜌𝑖〉 (in g·cm-3), (ii) the corresponding standard deviation of the mean (𝜎〈𝜌𝑖〉), (iii) the average

density difference from the average density (〈𝜌𝑖 − 〈𝜌𝑖〉〉), (iv) the average squared density difference

(〈(𝜌𝑖 − 〈𝜌𝑖〉)
2〉), (v) the local fluctuation for that grid element (〈∆2𝜌𝑖〉/〈𝜌𝑖〉

2) and (vi) the density

difference with respect to the macroscopic one (𝜌 − 〈𝜌𝑖〉).

CAUTION. The program is equipped with internal checks for consistency. It may happen that the center

of mass of a molecule falls exactly halfway between two volume elements and thus it is counted twice.

In this case, the program stops and issues an error of “Internal molecule count mismatch”. You may

avoid the problem by changing the grid of volume elements (i.e. ibx, iby and ibz – Section 8.13.1 below).

8.13.1 Description of the denflu.inp file

An example of the input stream (denflu.inp file) for Denflu is given below. The format is free.

bin numbers: ibx iby ibz

 10 10 10

Starting frame Ending frame iprint

 1 1000 0

Temperature in K

 350

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such

lines are ignored by the program and can be used to pin up comments on the meaning of the steering

parameters.

1) #line --------------------------------

2) ibx, iby, ibx Number of grid bins along x, y and z. The cell edges are partitioned

according to the ibx, iby and ibz factors to define the grid steps and

the corresponding volume elements. Each grid element is a

parallelepiped with edges a/ibx, b/iby and c/ibz long, where a, b and

c are the box edges. Note that a maximum of 106 volume elements

are allowed in the grid.

3) #line --------------------------------

4) istart, iend, iprint istart flags the first frame to be processed and iend the last one. For

example, if you have a total of 1000 frames in your trajectory, 500

800 means that the analysis will be carried out from the frame 500th

to the frame 800th. All frames in the istart-iend interval are

processed; others are skipped.

 iprint controls the amount of output that is printed. 0 is the normal

option; 1 implies full printout, which includes the orthogonalization

matrices and frame-by-frame information on the box parameters.

5) #line --------------------------------

167

6) atemp Temperature of the simulation to which the trajectory refers, in

Kelvin. It is used just to evaluate the final thermodynamic

properties.

168

8.14. The Clusters module

Clusters reads a topology (.top) and a trajectory (.dat) and look for stable aggregates of molecules based

on geometry or energy thresholds.

Running command:

run.cluster name1 name2 name3

where:

- name1: is the name of the top topology (without extension).

- name2: is the name of the dat trajectory to analyze (without extension).

- name3: is the name of the output files (without extension).

The program produces three different files:

- name3_xxx.pri: lists all the cluster found frame by frame with the geometric (xxx = geo) or energetic

(xxx = ene) criterion.

- name3_histene.pri: contains the distribution of the number of interacting molecules vs the energy of

interactions. This doesn’t depend on the selected interaction criterion.

- name3_xxx_breaking. pri: contains the frequency of the persistence of molecule-molecule interactions

as a function of the number of frames.

The two criteria for molecule-molecule recognition work as follows:

- Geometric mode: two molecules are considered interacting if (i) the distance between the donor and

the acceptor atoms is lower than the sum of their van der Waals radii, scaled by a user-defined factor

(dH-A ≤ k*(rvdw,H + rvdw,A)), and (ii) the D-H···A angle is below a given threshold (ɑD-H···A ≤ ϑ). The user

has the possibility to define the list of donor and acceptor atoms, together with the distance scaling

(default: k = 0.9) and the angle of the interaction (default: ϑ = 120 deg).

- Energetic mode: molecules are considered bonded if their interaction energy is lower than a given

threshold (Eij < threshold). No default value is set.

run.cluster module (unix/linux)

#!/bin/bash

if [-f "$3_geo.pri"]; then rm $3_geo.pri ; fi

if [-f "$3_ene.pri"]; then rm $3_ene.pri ; fi

rm "histene.out"

rm "breaking.out"

cp $1.top cluster.top

cp $2.dat cluster.dat

~/programs/MiCMoS/exe/cluster

if [-f "cluster_geo.out"]; then crit="geo" ; fi

if [-f "cluster_ene.out"]; then crit="ene" ; fi

mv cluster_${crit}.out $3_${crit}.pri

mv histene.out $3_${crit}_histene.pri

mv breaking.out $3_${crit}_breaking.pri

rm cluster.dat

rm cluster.top

169

The program works interactively with the following flow:

i1 modinter:

(1 = geometric, 2 = energetic)

modinter

Select which interaction criterion you want to

use:

- 1: geometric. Two molecules interact if their

donor-acceptor distance is lower than the sum

of van der Waals radii scaled by a scaling

tolerance factor, and the D-H···A angle is

lower than the given threshold.

- 2: energy threshold. Interactions occur when

two molecules have interaction energy lower

(more negative) than the given threshold

i2 Which potential?

(0 = clp, 1 = ljc)?

ipot

Select one of the two available force field for

the energy calculation in modinter = 2 and for

the name3_histene.out output. Refer to

Section 2.1 of the manual for more details

about the force fields.

- 0: CLP (Coulomb-London-Pauli force field.

- 1: LJC (Lennard-Jones-Coulomb) force

field.

i3 Initial and final frames to analyze: first_frame last_frame

- first_frame: first frame to analyze from the

dat trajectory

- last_frame: last frame to analyze.

All the frames i < first_frame & i > last_frame

are skipped.

i4 Cutoff for molecule-molecule interactions

(0 = default 15.0 Å)

cutoff

The user selects the maximum molecule-

molecule distance taken into consideration

when interactions are searched.

i5 Is there some confinement?

(1 = yes, 0 = no)

iconf

There is the possibility to read confined

simulation trajectories. This parameter

controls the periodic boundary conditions.

Expected inputs:

- 0: unconfined trajectory

- 1: confined trajectory

170

 [if confinement is active (iconf=1)]

i5.1 Insert confining planes XY, XZ, YZ

(1 = on, 0 = off (default))

iplane(1) iplane(2) iplane(3)

a triad of integers defines if a barrier is placed

along the indicated directions.

- Nanolayers: “1 0 0” or any permutation;

- Nanotubes: “1 1 0” or any permutation;

- Nanocavities: “1 1 1”

 [if geometric mode is active:]

i6 -- Donor-Acceptors atoms (D-H ... A) --

i7 How many Donor D-H couples? ndonors

number of D-H donor atom pairs the user

wants to insert

i7.1 [for i=1,ndonors]

Donors #i, D and H =

idonors(i,2) idonors(i,1)

indexes of the D-H atoms (according to the

topology list).

The program asks for the same information

ndonors time

i8 How many Acceptor A atoms? nacceptors

number of A acceptor atoms the user wants to

insert

i8.1 [for i=1,nacceptors]

Acceptor #i, A =

iacceptors(i)

indexes of the A atoms (according to the

topology).

The program asks for the same information

nacceptors time

i9 Insert damping for H-bonds distance

 (0 = default 0.90)

tolerance

the scaling parameter used to scale the sum of

the van der Waals radii when geometric

criteria are used to detect interaction.

Interactions between molecules occur when

dH-A ≤ tolerance*(rvdw,H + rvdw,A))

i10 Insert threshold for D-H---X angle

(0 = default 120 deg)

anglehb

171

the threshold for the angle criterion.

Interaction between molecules occur when ɑD-

H···A ≤ anghehb

 [if energetic mode is active]

i6 Insert interaction energy reference (in kJ/mol) eneref

read the energetic threshold. Two molecules i

and j belong to the same cluster if Eij ≤ eneref

Here are three examples for the clusters steering parameters: (1) geometry mode, LJC force field, no

confinement; (2) geometry mode, CLP force field with confinement on XZ plane; (3) energy mode, LJC

force field, with no confinement. For the geometry mode, the selected frame range is 100-200, the cutoff

is 15 Å with a single D-H pair of atoms (indexed 14 and 15) and two possible acceptors (13 and 14).

For the energy mode, the threshold value in Example 3 is set to -25 kJ/mol, while the frame range and

cutoff are the same as the previous examples.

Example 1 Example 2 Example 3

1

1

100 200

15

0

1

14 15

2

13

14

0.9

120

1

0

100 200

15

1

0 1 0

1

14 15

2

13

14

0.9

120

2

1

100 200

15

0

-25.0

The output files are organized as follows:

cluster_ene.pri or cluster_geo.pri

This is the main output file of the cluster program. It contains all the clusters found frame-by-frame,

with some valuable information about energy, shape and internal symmetry.

The output format and meaning is the following:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

frame 100

100 1 -130.336506 -96.827425 -127.363919 0.000000 4067.112110 3829.274731 282.317075 F L 0.187076 2 1 361

100 2 -107.644271 -102.728180 -126.663329 0.000000 24291.858917 19257.277544 10918.135224 F L 0.881904 6 2 13 23 371 373 382

100 3 0.000000 -122.094045 -127.839255 0.000000 510.299627 413.363036 127.929495 F X 0.000000 1 3

The columns have these meanings:

172

#1: index of the current frame. This value ranges from first_frame to last_frame, as indicated in

the input.

#2: progressive index of the cluster. Each frame has a different number of clusters, but the

ordering index always start from 1.

#3: cluster internal cohesive energy, normalized by the number of molecules belonging to the

cluster. This value is the interaction energy between the molecules belonging to the cluster.

In the first line of the example above, the third column reports the normalized interaction

energy between molecule no. 1 and 361. To note that for cluster no. 3, this energy is null. This

is because the third cluster is composed by one isolated molecule.

#4: cluster-environment cohesive energy, normalized for the number of molecules forming the

cluster. This is the interaction energy between the molecules belonging to the cluster and all

the surrounding molecules that belongs to the environment.

#5: environment cohesive energy, normalized for the number of molecules not belonging to the

cluster.

#6: kinetic energy of the cluster. Currently not active.

#7-9: eigenvalues of the inertia tensor. These values give an idea of the shape and extension of the

cluster in the three dimensions. If all the three values are similar, the cluster has a spherical-

like shape, while asymmetric values indicate oblate or prolate forms.

#10: Flag that signals whether the cluster is infinite, that is, whether it connects two opposite

boundaries of the simulation box. If True, the cluster is repeated indefinitely by periodic

boundary conditions and has as an infinite number of molecules. If False, the cluster is finite.

#11: Flag for cluster type. L: linear, C: cyclic, M: mixed linear and cyclic branches, X: not

applicable. By default, cyclic dimers are considered linear in our program. To be flagged as

“C”, cluster must be cyclic and contain more than 2 molecules.

#12: Global asymmetry index G, as proposed by Gavezzotti and Lo Presti (New J. Chem., 2019,43,

2077-2084). Please refer to this paper for numerical and physical interpretation.

#13: No. of molecules forming the cluster.

#14: List of molecule indexes forming the cluster.

histene.pri

This file contains information on the number of molecules that have intermolecular interaction equal or

below the given values. It gives valuable information on the interaction energy distribution.

The output format and meaning is the following:

#1 #2

1.0 58906

2.0 26616

3.0 9980

4.0 5284

5.0 3351

173

The first column reports the interaction energy bin value, in kJ/mol. Each energy bin takes the reported

value as the maximum, while the minimum of the range is the energy value of the previous line. As an

example, the bin 7.0 includes all those molecules that have 6.0 < Eij ≤ 7.0 kJ/mol. The second column

report the number of molecules that satisfy that requirement.

breaking.pri

This file gives information on the average lifetime of the interactions.

The output format and meaning is the following:

#1 #2

1 199

2 84

3 45

4 27

5 22

The first column indicates the molecule-molecule interaction persistence in terms of number of frames.

The second column reports the number of molecule-molecule interactions that are broken as a function

of frame persistence.

174

8.15. The Conta module

Conta reads a cluster output file produced by Clusters.f90 (see 8.14) and computes some key quantities

of the various independent clusters. All individual clusters with the desired size are organized in a table

and their lifetimes are computed.

Running command:

run.conta name1

“name1” is the name of the main Clusters output (name3_xxx.pri, xxx=geo or xxx=ene, Section 8.14),

without extension. The program produces three files: name1_timespan.pri lists all the lifetimes of the

detected independent clusters; name1_dimension.pri lists the corresponding size; and

name1_ordered.pri produces the full data, organized by independent clusters.

run.denflu module (unix/linux)

rm $1_timespan.out

rm $1_dimension.out

rm $1_ordered.out

cp $1.pri clusters.out

/programs/MiCMoS/exe/conta
mv timespan.out $1_timespan.pri

mv dimension.out $1_dimension.pri

mv ordered.out $1_ordered.pri

rm clusters.out

The program prompts the user to give the following information:

nmin, nmax nmin, nmax: minimum and maximum cluster size to analyze.

Obviously, nmax > nmin is required. nmax = nmin is allowed, though,

to analyze only a specific cluster size.

ntol This is the frame tolerance to consider a cluster as “persistent”. A

cluster persists if and only if is found without compositional changes in

frames N and N+ntol at least. The lifetime of the cluster is determined

by counting how many frames host a bound cluster, within the ntol

tolerance. Thus, if for example ntol = 2, the cluster is considered as

bound even though it is found in frame N and not in N+1, provided that

is found again in frame N+2 at least. In other words, an interruption of

1 frame in its lifetime is ignored. Similarly, ntol = 2 allows to ignore a

2 frames long interruption to define the cluster as “persistent”, and so

on. This parameter can be used to get rid of noise, especially when you

are using a very short timestep and a high sampling frequency in your

trajectory. However, unless you know exactly what you are doing, it is

safer to put ntol = 1 in most cases.

delt Gives the time span of 1 frame, in ps. You can retrieve this quantity by

checking your timestep in the MD output, and by multiplying it by your

sampling / writing frequency. For example, if you have time step of

175

0.002 ps (=1 fs) and you write a frame every 500 steps, you should

specify delt = 0.002 · 500 = 1.0 ps here.

The output files are organized as follows.

dimension.pri

 1 3000 17 2

 2 3002 17 1

 3 3003 17 1

 4 3004 17 1

Here, the first and second columns give the order number of the frame. In this example, the first frame

analyzed corresponds to the #3000 one in the original trajectory, the second one to #3002, and so on.

The third column specifies the cluster size that is being analysed (N = 17 molecules in the present case),

and the last one the number of clusters of that size that are found in the corresponding frame. In this

example, the first frame contains 2 clusters with 17 molecules, while in the subsequent frames the

number of clusters with that size reduces to 1.

timespan.pri

Frame,n(cluster),Dimension,molecules: 11 1 4 0.500 0.125 0.125 2 31 82 94

Frame,n(cluster),Dimension,molecules: 11 2 4 133.500 23.950 7.845 142 160 184 187

This output summarizes the timespan of independent clusters. The first entry is the order number of the

frame that is being analyzed; the second one is the order number of the cluster in that frame. the third

column expresses the cluster size, i.e., the number of molecules it contains. The fourth entry is the

maximum time span of that cluster (in ps). The next two numbers are the corresponding mean timespan,

with its estimated standard deviation of the mean. Finally, the order number of molecules in each cluster

are given.

In this example, the frame #11 contains 2 clusters made of 4 molecules. The first has a maximum lifetime

of 0.5 ps, and an average lifetime of 0.1(1) ps. The second one is much more persistent, with a maximum

lifetime of 133.5 ps and an average lifetime of 24(8) ps.

ordered.pri

Frame,n(cluster),Dimension,molecules: 5 3 16 2 21 62 74 85 95 96 123 146 148 158 161 208 260 263 338

 Frame N Euu Euv Evv Ekin A B C symm Ray DEexc time

 3000. 2. -54.363 -65.576 -84.776 61.881 319486.688 298706.344 49379.848 0.958 0.846 11.213 0.000

 3014. 2. -54.457 -60.168 -84.661 67.411 316168.312 300312.938 44257.133 0.990 0.883 5.710 0.000

This file is organized in blocks. Each block specifies an independent cluster (first row). The first two

numbers are the order number of the frame (5 in this case) and the order number of the cluster (3 in this

case). Thus, here we are looking at the third cluster in the fifth frame. The next entry is the cluster size

(16 molecules), followed by the molecule ID’s of its building blocks. The next line specifies the energy,

symmetry and mechanical parameter of the cluster in the first row, as they evolve in those frames where

it is present. Euu is the molecule-molecule energy within the cluster; Euv the interaction energy with the

surrounding molecules and Evv the contribution of surrounding molecules only. Ekin is the kinetic

energy of the cluster, while A, B and C the corresponding eigenvalues of the inertia tensor. Symm is the

symmetry indicator by Gavezzotti & Lo Presti (New J. Chem., 2019,43, 2077-2084), Ray is the Ray’s

asymmetry parameter for the rotational dynamics of the cluster (B. S. Ray, “Über die Eigenwerte des

asymmetrischen Kreisels,” Zeitschrift für Physik, vol. 78, no. 1-2, pp. 74–91, 1932) and ∆𝐸𝑒𝑥𝑐 is the

cohesion excess energy with respect to the surrounding liquid (Sironi, Macetti, Lo Presti, submitted).

176

Finally, time is the cumulative surviving time of the cluster, whose estimation depends also on the ntol

and delt parameters described above.

177

PART C

Appendix:

Reference Materials

and Technical Details

178

A1. The Retcif procedure: atom type recognition and assignment of atom type codes

The Retcif module extracts crystallographic data from a Crystallographic Information File (.cif file). See

Section 1.1 for operational information. This Appendix explains in detail how the algorithm works.

A1.1 Determination of average bond distances and average bonding radii for various atomic

species.

Key to Retcif operation is a recognition of atomic connectivity. Atomic species are recognized from the

symbol in the .cif file, but then different subspecies are identified. For that purpose, a survey of about

18000 crystal structures in the CSD has been made to determine average bond distances and ranges

(Table A1.1), from which atomic bonding radii could be derived. An atom pair is considered bound if

the distance is below the sum of the bonding radii allowing for some tolerance.

Table A1.1

Average bond lengths and variability ranges from about 18000 crystal structures in the CSD. These

parameters are used by Retcif to determine average bonding radii. See Table 1.1 in the main text for

atomic species code numbers. Car stands for aromatic carbon, a question mark “?” means any atom sub-

species and “–“ denotes unavailable values due to poor statistics.

Bond
Atomic species code

numbers (Table 1.1)
Min–Max / Å Average / Å

–CC– C11–C11 1.11–1.23 1.208

C–C
C11–C12 1.39–1.50 1.433

C–C
C11–C13 1.39–1.53 1.474

>C C< C12–C12 1.25–1.45 1.390

C–C
C12–C13 1.40–1.60 1.510

C–C
C13–C13 1.40–1.64 1.530

Car–Car C14–C14 1.34–1.50 1.428

C–Car
C12–C14 – 1.417

C–C C11–C11 1.35–1.39 –

C–C
C12–C12 1.45–1.54 –

C–F C?–F41 1.27–1.42 –

C–Cl C?–Cl42 1.70–1.85 –

C–Br C?–Br43 1.90–2.00 –

C–I C?–F44 2.10–2.20 –

=C–O– C12–O23 1.30–1.45 1.373

C–O–
C13–O23 1.32–1.54 1.439

–O–O– O23–O23 1.45–1.52 1.475

–C=O C13–O27 1.14–1.30 1.216

C–O(H)
C13–O29 1.34–1.48 1.424

C–O(H)
C12–O29 1.30–1.40 1.356

C–N+
C13–N16 1.45–1.55 –

C–NR4
C13–N17 1.40–1.54 –

C–N=
C12–N18 1.22–1.44 –

C–NO2
C12–N20 1.40–1.52 –

–N–O(–) N?–O30 1.18–1.28 –

–CN C11–N19 1.10–1.18 –

C–S
C13–S? 1.70–1.90 –

179

Distances involving H atoms have been retrieved from experimental neutron diffraction estimates (Table

A1.2).

Table A1.2

Average bond lengths for hydrogen atoms, as retrieved from neutron diffraction experiments.

Group Chemical specie Average / Å Nº structures

(R)–O–H Alcohols 0.970 35

(CO)–O–H Acids 1.000 7

(CO)–N–H Amides 1.014 18

>N–H Amines 1.020 11

Covalent bonding radii estimated from parameters in Table A1.1 and Table A1.2 are shown in Table

A1.3 and are loaded into the Block Data Alldat.for (double precision) and Alldas.for (single

precision).

Table A1.3

Estimated covalent bond radii for specific atomic species in Retcif.

Atom type Atomic species code

numbers (Table 1.1)

Covalent

radius / Å

H 1–9 0.30

=C– 10, 12, 14 0.70

≡C– 11 0.60
C– 13 0.77

F 41 0.65

Cl 42 1.00

Br 43 1.20

I 44 1.35

P 45 1.05

–O– 23, 24, 28 0.68

=O 27 0.55

–O(H) 29 0.68

N=O 30 0.50

P=O 32 0.40

S=O 31 0.40

S 34, 35, 36, 37 1.05

(RnH3-n)N+ 16 0.75

(RnH3-n)N 17 0.75

>N–N< 17 0.75

=N– 18 0.65

N 19 0.55

(O)2N– 20 0.72

(CO)N–

(Amide)
21 0.70

C–S
C12–S? – 1.80

180

Retcif assumes that two atoms at distance Rij with covalent radii Ri and Rj, are bonded if ∆=

|𝑅𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗)| < 0.35.

A1.2 Stage 1: Reading structure

An input .cif (Crystal Information File) file is read to retrieve the Cambridge Structural Database (CSD)

refcode (if present), space group symbol and symmetry operations, brute formula, cell parameters,

number of chemical units, atom type and coordinates for all atoms. The atomic coordinate list is

rearranged with non-hydrogens first, the connectivity matrix is computed using the covalent radii,

separate chemical units are recognized and each atom is assigned to one of them. Hydrogen atom

assignment and renormalization is performed (see below). The final atom count is then compared with

the retrieved brute formula; if the count is incorrect (some hydrogen coordinates not present) an error

flag is hoisted. Other error conditions arise from the many inconsistencies that may be present in cif

files, mostly from valence errors or missing essential information (see below).

A1.3 Stage 2: Scan non-hydrogen atoms

There are separate procedures for each atom type (see also Figures A1.1–A1.2).

Carbon atoms. Retcif work if original H-atom coordinates are present or missing. In the latter case, the

number of hydrogens attached to each C-atom is guessed from standard valence considerations. Xray

H-atom positions are anyway discarded unless the forced retrieval option is adopted.

See Figure A1.1 for the flow diagram followed by the algorithm. Hydrogen atom assignment is

considered for C≡CH acetylenic, C=CH2 terminal methylene, R-CH2-R saturated methylene, R=CH-R

unsaturated or aromatic, R3CH methine, R-CH3 methyl, R being any non-hydrogen atom compatible

with the rules of valence. No action is of course required for quaternary R4C carbons. All C–H distances

are renormalized to 1.08 Å; then: a) acetylenic H is located along the C-C bond direction; b) terminal

methylene H's are located assuming a planar configuration at the double bond, all angles 120°; c)

methylene H's are located in a plane perpendicular to the RCR plane and bisecting the RCR angle, with

a tetrahedral configuration; d) unsaturated H's are located in the RCR plane on the bisector of the RCR

angle; e) methine H's are located assuming a C-H direction from the center of coordinates of the three

basal atoms to the apical atom; f) methyl atoms are located with tetrahedral CCH angles, as close as

possible to the original set of R'-R-C-H torsion angles, if available from the cif file; otherwise, staggered

configurations are assumed.

The problem is the blindfold determination of which of the above is the case for each C atom in a

molecule. If the .cif atom count is correct, the problem is solved by using the .cif connectivity to

determine the type and number of hydrogen atoms to be assigned to the carbon atom under examination

(Figure A1.1). Otherwise the approximate valence saturation, V, is calculated on the basis of average C-

R bond distances, the number of hydrogen atoms to be assigned being then 4-V, with appropriate

roundoff. This last step is obviously not 100% safe, due to valence vagaries, especially when R is

nitrogen, and to errors or misinterpretations in the original X-ray coordinates.

Nitrogen atoms. See Figure A1.2 for a schematic description of the algorithm. Since various degrees

of pyramidalization are possible, the ab initio prediction of missing H-atom locations is impossible.

Structures are accepted only if approximate positions for the H atoms are available in the .cif files, which

is the case in recent X-ray structure determinations. The .cif connectivity is then used and an error flag

is set if the atom count does not match (as above). Quaternary nitrogen RnN+H4-n is assigned 4-n H

atoms. No action is taken for R3N groups (this causes an error if the nitrogen atom is actually quaternary

and H positions are not in the original .cif file). Nitrogen is H-bond acceptor in R-NH-R or RNH2 groups;

amide hydrogens are recognized and marked as H-bond donors. No action is taken when the R=N-R

181

connectivity is detected, as distinguished from the R-NH-R connectivity based on the presence of H-

atom coordinates in the original cif file. Sometimes a R-N-R connectivity is detected on the basis of R-

N bond distances, even in absence of H-atom coordinates; in such case, a H atom is assigned on the

bisector of the RNR angle. This identification is sometimes uncertain. In the two latter configurations,

nitrogen is considered as a H-bond acceptor and hydrogen as a H-bond donor. One hydrogen is assigned

for the R=N-H terminal connectivity. Terminal nitrogen atoms are not H-bond acceptors. N-H distances

are renormalized to 1.00 Å (1.03 Å for quaternary ammonium ions).

Oxygen atoms. The considerations made for nitrogen on the a priori predictability of H-atom positions

hold also for oxygen; in this case too, only the connectivity retrieved from the original .cif files is used

for H-atom assignment. No action is taken for the R-O-R connectivity, and oxygen is considered not to

act as H-bond acceptor (sometimes a questionable choice). Alcohol and acid functions are recognized

and marked as H-bond donor and acceptor groups. C=O, N=O, S=O and P=O oxygen is always

considered as H-bond acceptor. COO– (ester) groups are recognized and assigned no hydrogen; except

for the case of zwitterions (e.g. aminoacids and peptides) the carboxyl group is often a source of error

because in many carboxylic acid crystals, there is disorder in the H-atom positions and C-O and C=O

distances are apparently very similar. There is no possible (automatic) solution for this problem, thus

input and output file must be carefully checked to avoid mistakes. S-OH and P-OH hydrogens are taken

care of as alcohol hydrogens. All O-H distances are renormalized to 1.00 Ǻ. Oxygen atoms not bound

to any other atom are considered as water oxygens.

Table A1.4

Assignment of atomic species code numbers for O atoms, according to Table 1.1 in the main text. A

stands for “any atom”.

Specie
Atomic specie code number for

O
Notes

C=O 27
Ketones, aldehydes, acids, amides, COO–

groups (keto oxygen). RCO must be < 1.30 Å

N=O 30 Nitro or nitroso group

S=O 31 Sulfone or sulfoxide

A-O-A 23 Ether

A-O-H 29 Alcohol

H-O-H 24 Water

(O=C)–O–A 28 Acids and esters, single–bonded oxygen

Other atomic species. S-H thiol hydrogens are assigned as for O-H hydrogens preserving RSH angles

and with S-H = 1.30 Å. No provision is made for hydrogen atoms attached to atoms other than C, O, N

and SH, and an error message is generated when this happens, as well as in cases with erroneous,

improper, or just unusual bonding situations.

Stage 3: Final checks. These mainly concern large databases retrieved from the Cambridge Structural

Database, and seldom to single .cif files prepared by the user. In Stage 3, the total atom count after the

H-atom assignment procedures is matched with the brute formula retrieved from the .cif, generating

error flags when appropriate (see Section 1.1). In spite of this and all other sieves, the whole procedure

is not absolutely safe, because of many combinations of casual errors and of their accidental

cancellation. When retrieving from the CSD, a "statistical noise" of the order of 1-3% of wrong

structures passes the checks and is introduced in the retrieved samples.

182

CAUTION: Errors at this stage mainly concern items retrieved from the Cambridge Structural

Database, and seldom to single .cif files prepared by the user, in which case a good practice is to prepare

directly a .oih file with hydrogen atom codes as necessary, skipping the Retcif stages.

183

Figure A1.1. Flow diagram for the assignment of atom types: Carbon atoms. Id numbers indicated in

the Figure correspond to atomic species code numbers in Table 1.1 (main text). “C14 test” stands for

the check against aromatic C atoms not bearing hydrogens: it is passed if the C atom bears 3 bonds, has

neither H nor O attached atoms and does not belong to a nitrile group.

184

Figure A.1.2. Flow diagram for the assignment of nitrogen of atom types. Symbols have the same

meaning as in Figure A1.1.

185

The Retcif procedure produces an intermediate file, with extension .oih, generated with only the un-

flagged crystals structures, unless an explicit override command is given, in which case the structural

information is anyway written on file, ready for perusal and manual correction. A total override option

is also available (Section 1.1), in which atomic labels (e.g., hydrogen bond acceptor or not, etc.) are

issued, but the original H-atom coordinates are written on the .oih file without any attempt at hydrogen

reassignment or normalization. This option is useful for neutron crystal structures. Deuterium is treated

as hydrogen.

The .oih file contains all independent coordinates for non-hydrogen atoms, always including entire

molecules if Z'<1 (Section 1.4.3). Hydrogen atom positions are represented in the form of sets of

numerical codes that specify the connectivity and the desired bond lengths, bond angles, etc. These

codes can be changed by the user by manually editing the files. In addition, the .oih format allows the

introduction atoms other than hydrogens in desired position upon intevention by the user. A subsequent

routine (Retcor module, Section 1.2 in the main text and A2 in the Appendix) reads the .oih files and

generates the extension .oeh files in which full H-atom x, y, z coordinates are stored. oeh-type files

branch into all modules of the CLP package for crystal structure analysis, atom-atom lattice energies,

crystal structure generation, and for the PIXEL calculations modules.

A2. The Retcor module
Refer to the main text (Section 1.2) for a general description of how to operate this module. The

following diagrams show the geometrical procedures employed to generate new atoms from the

coordinates of atoms present. These procedures allow the preparation of a molecular model from a

minimum of 3 atoms whose coordinates are specified. The program generates coordinates sequentially,

so that care must be taken to build new atoms only when the coordinates of atoms from which they

depend have already been generated.

In crystal structure analysis and lattice energy calculations, these procedures are used exclusively to

generate standard coordinates for hydrogen atoms whose X-ray positions are unreliable.

In the .oih file produced by Retcif, 6 integer codes must be specified, called placement code lines (n1,

n2, n3, n4, n5, n6: see Section 1.4.3, NHYD indicator, lines id 7–8 and following). They specify how new

atoms are constructed from the available coordinates. Some integers in the sequence n1, n2, n3, n4, n5, n6

must be sequential atom id numbers, while others may be path indicators. The main options have been

already presented in Figure 1.2; the full list of available options, together with detailed a description of

the various algorithms, is shown in Table A2.1.

Some geometrical parameters must be also specified just after the placement code, that is, MLC, ISPEN,

QRG, R, TORS, ALPH (Section 1.4.3, lines id 8ff). MLC is the number of the chemical fragment to

which the new atom belongs; ISPEN the corresponding atomic species indicator (Table 1.1); QRG the

estimated atom point charge (zero if further calculation by Retcha, Section 1.3, is required); and R,

TORS and ALPH are distance and angle parameters that define the new group (Figure 1.2 and Table

A2.1). Table A2.1 specifies, for each case, what entries in the placement code are nonzero and what

geometrical parameters in the R, TORS and ALPH sequence must be specified accordingly.

186

Table A2.1

Options for molecular reconstruction in Retcor. Sets of six integers n1-n6, needed values of

conformation parameters (distance, angle, torsion).

Operation
Placement

code sequence

R, TORS,

ALPH
Construction procedure; boldface entries denote vectors

Reset distance I1 0 0 I4 0 0 R 0 0

Reset I1–I4 vector length by moving I1 according to:

𝐈𝟏 = 𝐈𝟒 +
𝑅

𝑅𝑜𝑙𝑑
|𝐈𝟏 − 𝐈𝟒|

Build

an acetylene–

like terminal

atom

I1 0 0 I4 I5 0 R 0 0

A new atom I1 is added according to:

The new coordinates are:

𝐈𝟏 = 𝐈𝟒 + (𝐈𝟒 − 𝐈𝟓)
|𝐈𝟏 − 𝐈𝟓|

|𝐈𝟒 − 𝐈𝟓|

Build

a “methine”

group

I1 0 I3 I4 I5 I6 R 0 0

A new atom I1 is created at distance R

above the I3 apex. P is the centre of

coordinates of the basal triangle I4-I5-I6.

Build

a trigonal atom
I1 0 0 I4 I5 I6 R 0 0

For simplicity, be A the point of coordinates of the atom I5,

B of I4, C of I6 and D of I1. A new atom I1 is placed at

distance R from I4 along the ABC bisector. Note that, if BA

and BC have different lengths, angles DBA and DBC are

different as well.

sin(𝛾 2⁄) = √
1 − cos 𝛾

2
;

𝑇 =
sin 𝛽

sin𝛼

The point P where the ABC

bisector cuts AC is looked for.

𝐴𝐵 =
𝐵𝑃

sin𝛽
=

𝑃𝐴

sin(𝛾 2⁄)
; 𝐵𝑃 sin(𝛾 2⁄) = 𝑃𝐴 sin𝛽

𝐵𝐶 =
𝐴𝐶 − 𝑃𝐴

sin(𝛾 2⁄)
=
𝐵𝑃

sin𝛼
; (𝐴𝐶 − 𝑃𝐴)sin𝛼 = 𝐵𝑃 sin(𝛾 2⁄)

𝑃𝐴 =
𝐶𝐴

𝑇 + 1
;𝐏𝐀 = 𝐂𝐀

𝑃𝐴

𝐶𝐴

𝐏 = 𝐀 + 𝐏𝐀

𝐃 = 𝐏 + 𝐁𝐏
𝐷𝑃

𝐵𝑃

187

Operation
Placement

code sequence

R, TORS,

ALPH
Construction procedure; boldface entries denote vectors

Build

a “methylene”

group

I1 I2 0 I4 I5 I6 R 0 ALPH

If the ALPH parameter is set to 0, a default value of 108.0

deg is used. Be A the coordinates of the atom I5, B of I4, C

of I6, D of I1 and E of I2. Two new atoms I1 and I2 are

defined at the same distance R from I4, with I1–I4–I2 angle

equal to  = ALPH deg.

𝐵𝐹 = 𝑅 cos
𝛼

2

𝐷𝐹 = 𝑅 sin
𝛼

2

A point F is defined from points A, B

and C with the same procedure used

for the trigonal case. The vector BF thus lies on the bisector

of the ABC angle. A vector Pv is computed, orthogonal to

the ABC plane:

𝐏𝐯 = (𝐁 − 𝐀)⋀(𝐁 − 𝐂) = det ‖
𝐢 𝐣 𝐤
𝑥𝐵𝐴 𝑦𝐵𝐴 𝑧𝐵𝐴
𝑥𝐵𝐶 𝑦𝐵𝐶 𝑧𝐵𝐶

‖

With module 𝑃𝑣 = √𝑃𝑣𝑥
2 + 𝑃𝑣𝑦

2 + 𝑃𝑣𝑧
2 . Pv then defines the

vector DF, which is orthogonal to the ABC plane and has the

desired length DF, according to 𝐃𝐅 =
𝐏𝐯

𝑃𝑣
𝐷𝐹. Finally

𝐃 = 𝐅 + 𝐃𝐅

𝐄 = 𝐅 − 𝐃𝐅

Build a generic

group with “Z–

matrix” specs

I1 –1 0 I4 I5 I6
R, TORS,

ALPH

Be A the coordinates of the atom I6, B of I5, C of I4 and D

of I1. A new atom I1 is generated at distance R from I4 and

configurational parameters TORS ( deg) and ALPH (

deg).

1) Origin is set at B. Being C known, the coordinates xC and

yC of its projection in the XY plane are also known. A

clockwise rotation on Z by  deg is carried out, so that yC’ =

0.

(continue in the next page)

188

Operation
Placement

code sequence

R, TORS,

ALPH
Construction procedure; boldface entries denote vectors

Build a generic

group with “Z–

matrix” specs

I1 –1 0 I4 I5 I6
R, TORS,

ALPH

(from previous page)

2) The reference system is now rotated counterclockwise by 

deg around the axis Y’, so that the direction of BC coincides

with that of the new axis X’’, as shown in the next graph. Be

now ’ the angle made by the AB vector with respect the Y’

axis.

3) A clockwise rotation by ’ deg is applied around X’’, so

that the point A is now orthogonal to the Z axis. At the end of

this transform, A, B and C lie on the same XY plane. The

fourth atom D is now added in the XY plane, at a distance R

from C and making a  = ALPH deg large BCD angle.

4) Finally, D is rotated clockwise around X’’ (i.e. around the

BC axis) by  = TORS deg.

5) Now the reference system is back–rotated to the original

one. Being R1(), R2() and R3(’) are the matrices of

rotations used to carry out the individual transforms, the

overall rotation for steps 1→ 3 can be expressed as:

𝐑𝐭𝐨𝐭 = 𝐑𝟏 ∙ 𝐑𝟐 ∙ 𝐑𝟑

And the inverse transform, 𝐑𝐭𝐨𝐭
−𝟏 , can be applied to the atomic

coordinates to restore the original axes.

6) The origin is back–translated to the original laboratory

reference frame.

189

A3. Algebra for the generation of crystal coordinates, orthogonalization, inertial reference

frame

Three main reference systems are used in MiCMoS: (i) a crystallographic reference frame; (ii) a

crystallophysical (Cartesian orthogonal) reference frame; (iii) an internal inertial reference frame.

(i) The crystallographic frame has atomic fractional coordinates (xFC). This reference system

is useful to apply symmetry transformations and lattice translations, i.e., to build the whole

simulation box but is impractical for computing distances, angles and forces

(ii) A Cartesian orthogonal reference system, with coordinates in Å units, is sometimes referred

to as a “crystallophysical” system. An orthogonalization matrix O transforms coordinates

between (i) and (ii):

𝐱OC = 𝐎 ∙ 𝐱FC

𝐱FC = 𝐎
−1 ∙ 𝐱OC

𝐎 =

[

(𝑎) (𝑏 cos 𝛾) (𝑐 cos𝛽)

0 (𝑏 sin 𝛾) (𝑐
cos𝛼 − cos𝛽 cos 𝛾

sin 𝛾
)

0 0 (
𝑐𝑓

𝑉

sin 𝛾
)

]

𝑓𝑉 = (1 − cos2𝛼 − cos2𝛽 − cos2𝛾 + 2 cos 𝛼 cos 𝛽 cos 𝛾)1/2

𝐎−1 =

[

 (
1

𝑎
) (−

cos 𝛾

𝑎 sin 𝛾
) (

cos 𝛾 (cos𝛼 − cos𝛽 cos 𝛾)

𝑎𝑓𝑉sin 𝛾
−
cos𝛽 sin 𝛾

𝑎𝑓𝑉
)

0 (
1

𝑏 sin 𝛾
) (−

cos𝛼 − cos𝛽 cos 𝛾

𝑏𝑓𝑉 sin 𝛾
)

0 0 (
sin 𝛾

𝑐𝑓𝑉
)

]

Let now Ss, ts be a matrix-vector pair representing a symmetry operation within the crystal space group.

Calling xFC,1 the vector of coordinates of the reference molecule “1”, the coordinates of any other

molecule s in the crystallographic (xFC,s) and crystallophysical (xOC,s) reference frames can be obtained

through the following transforms:

𝐱FC,𝑠 = 𝐒𝑠𝐱FC,1 + 𝐭𝑠

𝐱OC,𝑠 = 𝐎 ∙ 𝐱𝐅𝐂,𝑠 = 𝐎 ∙ [𝐒𝑠𝐱FC,1 + 𝐭𝑠] = (𝐎 ∙ 𝐒𝑠) ∙ 𝐱𝐅𝐂,𝟏 + (𝐎 ∙ 𝐭𝑠)

Cartesian coordinates 𝐱OC,𝑠 are used throughout the whole package for all calculations involving

distances between atoms k and m in molecules i and j, the modules of the corresponding difference

vectors :

𝑅𝑘,𝑚
𝑖,𝑗

= |𝐱OC,𝑖
𝑘 − 𝐱OC,𝑗

𝑚 |

190

(iii) Local (molecular) reference frames are useful for example whenever differently oriented

molecules must be compared. When the local reference frames has origin at the molecular

centre of mass, orthogonal X, Y, Z axes are rotated to lie along to the three principal moments

of inertia, that is, the eigenvectors of the inertial matrix. The local reference frame may

instead have its origin in the center of coordinates without any axis rotation.

To find the inertial xIC coordinates, the following procedure is applied.

(1) Being wk the atomic weight (in atomic units) of the kth atom in molecule i, molecular centre of mass

coordinates xB are:

𝑥𝐵 =
∑ 𝑤𝑘𝑥𝑘𝑘

∑ 𝑤𝑘𝑘

𝑦𝐵 =
∑ 𝑤𝑘𝑦𝑘𝑘

∑ 𝑤𝑘𝑘

𝑧𝐵 =
∑ 𝑤𝑘𝑧𝑘𝑘

∑ 𝑤𝑘𝑘 }

With xk, yk and zk being the crystallophysical Cartesian coordinates of atom k. The center of coordinates

is obtained by the same expression with wk's=1.

(2) Atomic coordinates of every atom k are now referred to the centre of mass:

𝐱OC,𝐵
𝑘 = 𝐱OC

𝑘 − 𝐱𝐵

(3) The symmetric inertial matrix I is computed using orthogonal coordinates with origin in xB:

𝐈 =

[

 ∑(𝑤𝑘𝑦𝑘

2 + 𝑤𝑘𝑧𝑘
2)

𝑘

−∑𝑤𝑘𝑥𝑘𝑦𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑦𝑘
𝑘

∑(𝑤𝑘𝑥𝑘
2 + 𝑤𝑘𝑧𝑘

2)

𝑘

−∑𝑤𝑘𝑦𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑦𝑘𝑧𝑘
𝑘

∑(𝑤𝑘𝑥𝑘
2 + 𝑤𝑘𝑦𝑘

2)

𝑘]

Diagonalization of I gives the main moments of inertia (eigenvalues) and three inertial eigenvectors.

These are stored as column vectors into a matrix W to rotate all the orthogonal atomic coordinates 𝐱OC,𝐵
𝑘

into the inertial frame:

𝐱IC
𝑘 = 𝐖 ∙ 𝐱OC,𝐵

𝑘

The matrix W is unitary, that is 𝐖−1 = 𝐖̃. Its eigenvalues are the same for any symmetry

transformation on the 𝐱IC
𝑘 coordinates.

191

A4. Coordinate systems and transformation matrices in PIXEL

This procedure produces the translation–related replicas of molecules in the unit cell to evaluate the

lattice energy by the PIXEL method (See also Section 3.2 in the main text). The M1, M2 matrices and

t1, t2 vectors must be specified in the PIXEL input file (Section 3.2.7) to transform coordinates from the

standard orientation of GAUSSIAN into the PIXEL reference frame. If the option Nosym is employed

in the GAUSSIAN input (recommended), the molecular coordinate system is not re–oriented and M1 =

unit matrix, t1 = [0 0 0] (otherwise, they must be found by inspection of the atomic coordinates by a

difficult manual inspection, seldom if ever necessary). M2/t2 transform the molecular reference system

into the actual PIXEL reference. M2, t2 are automatically computed by Pixmt2 (see also Section 3.2.5).

Let xLG be the collection of the atomic coordinates in the standard reference frame (GAUSSIAN), and

xLO the same in any other user-defined reference, e.g. the inertial reference frame, with origin at the

molecular center of mass. Let x°FC be the fractional coordinates of the reference molecule (unit cell

reference system), and x°OC the corresponding orthogonalized coordinates:

𝐱LO = 𝐌1𝐱LG + 𝐭1
𝐱OC
0 = 𝐌2𝐱LO + 𝐭2
𝐱OC
0 = 𝐎 ∙ 𝐱FC

0

𝐱FC
0 = 𝐎−𝟏 ∙ 𝐱OC

0
}

where O is an orthogonalization matrix (Appendix, Section A3). The M2, t2 pair are calculated by

module Pixmt2 and are automatically inserted into the PIXEL input file.

Let now Ss, ts be a matrix-vector pair representing a given symmetry operation within the crystal space

group. Then:

𝐱FC
s = 𝐒𝑠 ∙ 𝐱FC

0 + 𝐭𝑠
𝐱OC
s = 𝐎 ∙ 𝐱FC

𝑠 }

The final goal is an expression for the orthogonal coordinates for the s-th molecule in the molecular

cluster that represents the crystal, xs
OC , in terms of the coordinates in the standard molecular reference

system, xLG. This transformation can be carried out as follows:

𝐱OC
𝑠 = 𝛀𝑠 ∙ 𝐱LG +𝛚

𝑠

where a little algebra shows that the s matrix can be computed as:

𝛀𝑠 = 𝐎 ∙ 𝐒𝑠 ∙ 𝐎
−𝟏 ∙ 𝐌𝟐 ∙ 𝐌𝟏

and the s vector:

𝛚𝑠 = (𝐎 ∙ 𝐒𝑠 ∙ 𝐎
−𝟏) ∙ (𝐌𝟐 ∙ 𝐭𝟏 + 𝐭𝟐) + 𝐎 ∙ 𝐭𝑠

In practice, a number of molecules surrounding the reference one in the crystal are generated by adding

integer cell translations to the components of the ts vectors. Both atomic coordinates and coordinates of

the e-pixels are transformed accordingly. This method allows the packing of any molecular object

specified by xLG coordinates, with location and orientation in the unit cell specified by vector t2 and

192

matrix M2, respectively, into a crystal specified by cell dimensions (matrix O) and space group (Ss, ts

pairs).

As an added bonus, if matrix M2 is interpreted as a rotation matrix, the orientation angles for the

molecule in the crystal with respect to the local reference frame can be derived (see Section A6). These

could then be used as parameters in the rigid-body lattice energy minimization.

A5. Structure of the .den density file

This is the GAUSSIAN “cube” format; each entry a record.

• Title

• natom, xmin, ymin, zmin number of atoms and min values of the coordinates of the

density cube

• nx, dxx, dxy, dxz number of points along x, components of the x step vector

• ny, dyx, dyy, dyz same, for y

• nz, dzx, dzy, dzz same, for z

• For each atom: Z, q, x, y, z atomic number, number of electrons, x, y, z coordinates

All the above lines are written in format: i5,4f12

Then, nx times ny lines, each nz long: (den(k),k=1,nz) density points, format 6e13.6. Only the dxx, dyy, dzz

terms have meaning. Each pixel point in the density grid has coordinates of xmin+n·dxx, ymin+m·dyy,

zmin+p·dzz, with n, m and p integers. All quantities are in atomic units and the unit length is 1 bohr.

A6. Definition of Euler angles , ,  in rotation matrix E (Boxcry module)

Boxcry produces a .bxi file format (Section 5.1.1) that specifies, for each molecule in the simulation

box, three Euler rotation angles , ,  . The overall rotation is the product of three rotations; for clarity,

c, c, c are abbreviated forms for cos, cos, cos, and s, s, s the corresponding forms for sin,

sin, sin.

𝐄 = [
c𝜒 −s𝜒 0
s𝜒 c𝜒 0
0 0 1

] ∙ [
c𝜑 0 s𝜑
0 1 0
−s𝜑 0 c𝜑

] ∙ [
1 0 0
0 c𝜗 −s𝜗
0 s𝜗 c𝜗

] = [
c𝜒 −s𝜒 0
s𝜒 c𝜒 0
0 0 1

] ∙ [
c𝜑 s𝜗s𝜑 c𝜗s𝜑
0 c𝜗 −s𝜗
−s𝜑 s𝜗c𝜑 c𝜗c𝜑

]

 = [

c𝜑c𝜒 s𝜗s𝜑c𝜒 − c𝜗s𝜒 c𝜗s𝜑c𝜒 + s𝜗s𝜒
c𝜑s𝜒 s𝜗s𝜑s𝜒 + c𝜗c𝜒 c𝜗s𝜑s𝜒 − s𝜗c𝜒
−s𝜑 s𝜗c𝜑 c𝜗c𝜑

]

Note that these matrix products are not commutative: this means that a different sequence of rotations

produces a different E matrix.

In module Boxcry, the inertial matrix I of each symmetry–related molecule is treated as an Euler rotation

matrix that transform the global reference system into the local (inertial) one (see Appendix, Section

A3). Thus, the three Euler angles , ,  to be written in the .bxi file are :

193

𝜗 = atan2[𝐄(3,2), 𝐄(3,3)]

𝜑 = atan2 [−𝐄(3,1),√𝐄(1,1)2 + 𝐄(2,1)2]

𝜒 = atan2[𝐄(2,1), 𝐄(1,1)]

}

Where atan2 is a modified tan–1 function so that atan2(x, y) = tan–1(y/x) if x >0. If x is negative, the

function gives tan–1(y/x)+ if y is positive, or tan–1(y/x)– if y is negative. In other words, the sign of

both the arguments are used to determine the quadrant of the output. Singularities arise whenever x=0

and y=0, for which the function atan2 is undefined. This happens for molecules or atoms in special

positions. To cope with this problem, you should lower the symmetry of your space group and supply

to the MiCMoS system a corresponding .cif. To do so, the Bilbao Crystallographic Server is definitely

your friend (https://www.cryst.ehu.es/).

A7. The Pretop routine

In MC/MD calculations stretching and bending potentials are defined by harmonic functions, R and 

being distances and angles and R0/0 the corresponding reference values:

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = 𝐸𝑠 =
1

2
𝑘𝑠(𝑅 − 𝑅

0)2

𝐸(𝑏𝑒𝑛𝑑) = 𝐸𝑏 =
1

2
𝑘𝑏(cos𝜃 − cos𝜃0)2

Program Pretop reads a .oeh file and generates a template topology file with all possible stretch and

bend potential sites. Reference distances and angles are taken as they are in the geometry supplied by

the .top file coordinates, so they are not always strain-free values. Stretching (ks) and bending (kb) force

constants are estimated by a combination of data derived from high-quality ab initio stretch and bend

energy profiles on sample molecules, and of fitting against 54A7 GROMOS force field parameters (see

Gavezzotti, A. & Lo Presti, L. J. Appl. Cryst. 2019, 52, 1253–1263). To add flexibility, overall rescaling

factors are read in by the module at running time and are applied to all constants. Preliminary experience

shows that values of 1.2 to 1.5 are appropriate as the force constants seem a bit underestimated.

The above assumptions derive from the fact that in MiCMoS the purpose of stretch and bend potentials

is to keep molecules undistorted, rather than to describe precisely thermal vibrations. The whole package

is oriented to low-frequency intermolecular libration and diffusion, while high-frequency vibrations

much less if at all relevant. This minimal loss of physical reality affects only marginally the accuracy of

the simulation and is counterbalanced by the avoidance of complex algorithms to prevent molecular

distortions.

https://www.cryst.ehu.es/

194

A7.1 Stretching potentials

Table A7.1

Bond stretching force constants from ab initio MP2/6–31G** calculations, consistent with energies

expressed in kJ/mol and distances in Å.

Bond Rexpt R°calc kstr system for R° and k calculation

-C≡C- 1.183 1.223 9620 but-1-yne

>C=C< 1.346-1.360 1.353 5600 butadiene

≡C - C≡ 1.378 1.383 4540 buta-1,3-diyne

Car---Car 1.382 1.397 4640 benzene

Csp2 - Csp2 1.439 1.457-1.463 3400 butadiene

 ≡C - Csp3 1.467 1.472 3340 but-1-yne

Csp2 -Csp3 1.503 1.513-1.515 3120 toluenes

Csp3 - Csp3 1.523 1.517-1.536 2800 butane

Csp3- H 1.085 1.093 3630 ethane

Csp2 - H 1.077 1.087 3630 benzene

C≡N 1.139 1.180 11500 acetonitrile

Csp3 - N< 1.461 1.460 3540 trimethylamine

Csp2 - O 1.369 1.381 4320 methoxybenzene

Csp3 - O 1.435 1.432 3630 dimethylether

C=O 1.214 1.227 8200 acetone

Csp2 - F 1.346 1.358 4200 fluorobenzene

Csp3 - F 1.367 1.397 3950 fluoroethane

Csp2 - Cl 1.735 1.742 2580 chlorobenzene

Csp3 - Cl 1.771 1.784 2410 chloroethane

Csp2 - Br 1.892 -

Csp2 - I 2.095 -

N = O nitro 1.218 -

N-H - 1.018 5300 urea

O-H - 0.987 4250 acetic acid

For a generic molecule with generic bond distances, the actual force constants adopted in Pretop come

from a fitting of distance/force constant plots from the above data; for example, a generic carbon-carbon

bond stretching force constant comes from interpolation of the k vs. distance plot for all the C···C types

in the above Table.

Table A7.2

Other averaged or guessed k/R values used to define stretching potentials. A question mark means

uncertain or unknown entries.

Bond R° / Å ks

C-F 1.38 4000

C-Cl 1.75 2500

C-Br 1.89 ?2000

C-I 2.10 ?1500

195

For bonds not in the above list, R° distance is taken from coordinates in .oeh file and ks is set to zero.

A7.2 Bending potentials

Table A7.3

Bending force constants from ab initio MP2/6–31G** calculations, for energies expressed in kJ/mol and

angles in deg.

Angle ° kb, kJ mol-1 sample system

C-C-C 112.4 880 propane, bend of CCC and CCH angles in the CH2 group

C=C-C 124.5 1030 propene, bend of CCC and CCH angles

C-O-C 112.4 972 dimethyl ether

C-C=O 123 894 acetone simultaneous bending of two angles

(O)=C-O-H 104 475 -COOH (acid)

(O)=C-N-H 120 940 -CONH2 (amide, bend of 2 CNH)

(Ar)C-O-H 107 550 alcohol (phenol)

CCH 120 890 benzene simultaneous bending

HCH 106.5 530 propane, scissor mode at the methylene group

CCH 110 680 Methyl

CCH 110 980 Methylene

As mentioned before, ° the bond angles come from the supplied atomic coordinates. kb of CCC, XCH

(X=C, N, O, S, Cl), CNO, CxN3–x and CxO3–x, are assigned through the appropriate, if approximate,

fitting of ab initio data and 54A7 force field values. Table A8.5 has some averaged values.

Table A7.4

Averaged bending potential constants.

Bond ° / deg kb

HCH 108.0 470

COH 110.0 450

HNH 120.0 445

CNH 115.0 460

196

A7.3 Torsional potentials

In MC/MD calculations, torsional potentials are defined as (𝐸(𝑡𝑜𝑟𝑠) = 𝑘𝑡𝑜𝑟𝑠[1 + 𝑓 cos𝑚𝜑], see

Sections 6.4.1 and 7.4.1 in the main text). f is normally equal to +1 or –1, and m ranges between 1 and

3. In Pretop, starting values for the torsion angles are obtained directly from the coordinates in the

topology file with the procedure described in Appendix, Section A8, and the local geometry is exploited

to determine tentative values for f and m.

Figure A7.1. (a) Functional form of E(tors) for ktors = 10, f = +1 and m=+1 (light blue), +2 (red) and +3

(green). (b) Same as (a), for ktors = 10 and f = –1.

Proper torsions: Let Na and Nb be the numbers of bonds out of bound atoms a and b. One torsion is

assigned to any bond joining two atoms with Na, Nb > 1. The corresponding assigned parameters must

be checked and reset with actual values, many of which are given in Table A7.5, which summarizes the

complete maps of torsional potential energies from post–HF quantum chemistry calculations.

Improper torsions: The routine assigns one improper torsion to any trigonal center with ktors=100, f=–

1.0 and m=+1.

197

Table A7.5

Recommended values for parameters ktors, f and m for MC/MD torsional potentials. “System” shows the

chemical connectivity; atoms highlighted in red define the torsion. “Potential” shows the MP2/6-31G**

results for single–point calculations of the total electronic energy as a function of the torsion angle, .

“ktors, f and m”. ktors is equal to ½ of the barrier height.

System Potential ktors f m

7.5 1 3

2.5 1 3

4 –1 3

0.5 –1 3

198

System Potential ktors f m

Not available 2 –1 2

7.5 1 3

6 1 3

50 1 1

6 1 2

50 –1 2

10 –1 2

199

System Potential ktors f m

10 –1 2

10 1 4

40 1 1

10 –1 1

2 –1 2

10 1 4

200

System Potential ktors f m

60 –1 2

10 –1 2

1 –1 2

14 –1 2

6 –1 2

16 –1 2

11 –1 2

201

System Potential ktors f m

35 –1 2

2 1 3

7 –1 2

2 –1 2

50 –1 2

17 –1 2

202

A8. Procedure to determine torsion angles according to standard conventions.

This procedure is exploited by Monte Carlo and Molecular Dynamics modules to compute torsion angles

in the range –180    +180 deg, to determine the intramolecular part of the potential (see Sections 5

and 6 in the main text). Given a 1–4 sequence of i, j, k and l bonded atoms (Figure A8.1a), the algorithm

sets a local right–handed Cartesian reference frame, with origin on atom j (Figure A8.1b). Then, the

whole atom sequence is rotated so that the j–k vector is aligned to the x axis, and the first atom i has z

= 0. This way, the first three atoms now lie on the same (x,y) plane. This is always possible, as three

atoms define a unique plane. To ensure the right handedness of the reference system, z must point

upwards (Figure A8.1c).

Figure A8.1. Procedure for the determination of torsion angles In MC and MD according to

convention.  > 0 if looking from 1 down 2-3 atom 4 turns right.

Finally, A, B, C and D reference point (Figure A8.1d) are defined on the basis of the atomic coordinates

in the local reference frame according to:

A = [0, y1, 0]; B = [0, 0, 0]; C = [x3, y4, z4]; D = [x3, 0, 0]

The following difference vectors and vector modules are thus computed:

𝐀 − 𝐁 = [0, 𝑦1, 0]; |𝐀 − 𝐁| = |𝑦1|

𝐂 − 𝐃 = [0, 𝑦4, 𝑧4]; |𝐂 − 𝐃| = √(𝑦4
2 + 𝑧4

2)

The scalar product between vectors A–B and C–D provides the angle between them, :

cos 𝜏 =
(𝐀 − 𝐁) ∙ (𝐂 − 𝐃)

|𝐀 − 𝐁| ∙ |𝐂 − 𝐃|
=

𝑦1 ∙ 𝑦4

𝑦1 ∙ √(𝑦4
2 + 𝑧4

2)
=

𝑦4

√(𝑦4
2 + 𝑧4

2)

𝜏 = cos−1 (
𝑦4

√(𝑦4
2 + 𝑧4

2)
)

By the normally adopted convention looking from atom i down the j–k bond  is positive if l turns to

the right. The sign of  is the same as that of the z4 coordinate.

