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MiCMoS is a set of Fortran computer programs for the simulation of the condensed states of non-

polymeric organic materials, using empirical potential energy schemes, ab initio-derived semiempirical 

energy calculation schemes; in a static approach, analyzing only one point in phase space, or in an 

evolutionary approach for phase-space sampling using Monte Carlo (MC) and classical Molecular 

Dynamics (MD) techniques. The platform includes modules for the appropriation of crystallographic 

information with standardization of hydrogen-atom positions, for molecular model building, for the 

calculation of lattice energies and the analysis of crystal packing, as well as for the equilibrium or 

dynamic simulation of bulk or cluster-like liquids, crystals and solutions with trajectory analysis. 

MiCMoS evolves out of previously presented platforms, CLP-Pixel and CLPDyn, and like its 

predecessors is user-oriented with opportunity or necessity for human intervention in the proceedings.  

 

The original CLP-Pixel and CLPDyn cores, later evolved in MiCMoS, come from the forty-year 

research work of prof. Angelo Gavezzotti (retired; agavezzotti@gmail.com), to whom we are indebted 

for constant support and encouragement.  

 

The platform includes subdirectories batch, with running macros, Tutorials, with documentation and 

worked examples, exe, with compilation macros and executables, and SourceA and SourceB, with source 

codes. All these directories and their documents and codes are accessible by the user for possible 

modification.  

 

All programs run from MS-Dos (Windows) or from any textual user interface environment (Unix-Linux 

machines). All input-output is numerical in text files and there are no pull-down menus or selection 

windows. There is no graphics module in the package, but interfacing to one of the many available 

graphics platforms is easy as structural results are displayed in a .dat or .xyz file format.  

 

MiCMoS is oriented toward the MD simulation of small- to medium-size organic molecules in 

condensed phases from a crystallographic viewpoint. At variance with other MD software devoted to 

the simulation of biomolecules, it focuses on intermolecular interactions, solvation and molecule-

molecule recognition.  

 

The whole MiCMoS package is available free of charge for academic and non-profit users under the 

conditions of the GNU general public license version 3.0 or later. To download the program, you should 

register on https://sites.unimi.it/xtal_chem_group. You will be required to provide your name, 

Institution and a valid e-mail address.  
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CAUTION: If use is planned in a commercial or for–profit organization, please contact 

leonardo.lopresti@unimi.it.   

 

The MiCMoS project is subject to continuing development. Comments, criticism and suggestions from 

users are most welcome, especially concerning inconsistencies or unclear procedures.  
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What’s new  
 
Release 2.3 2024, July, 30 2024 

 

• Due to the incompatibility of newer Windows versions (10 and 11) with some MiCMoS 

executables, a new procedure is suggested to run the program on Windows machines, which 

essentially relies on the installation of a Unix-compatible environment (Cygwin). 

• New post-processing routines were added. More in detail: 

o The routine vanhove.for performs the van Hove analysis of the trajectory, focusing on 

molecular center of mass.  

o The routine trajedit.for allows to edit any MC or MD trajectory, for example by 

selecting specific frames, extracting specific solute/solvent molecules, changing the 

coordinate system or the origin of the simulation box. 

o The routine renergy.for applies LJC or CLP intermolecular potentials to a previous 

trajectory. This can be useful, for example, if one wants to test another Force Field on 

a trajectory previously run, or to perform the energy analysis of any subgroup of 

molecules, after extraction with trajedit.  

o The routine denflu.for computes time-averaged local density fluctuations. 

o The routines clusters.for and conta.for analyze a trajectory to find persistent 

intermolecular clusters, which may be defined based on either purely geometric or 

energetic criteria. 

• Implemented more efficient compilation instructions to speed up the parallel MD engine up 

to 20-30 % in Linux environments. 

• Implemented more efficient algorithms for the calculation of intermolecular Lennard-Jones 

potentials and the handling of molecules within the cutoff limit to speed up the MD engine by 

a further 15-20 % (both Windows and Linux environment). 

• Fixed some bugs and errors (see below). 

 

The changes affect only the MD part of the package, and specifically the libraries mdlibs.for and 

mcmdpo.for. A minor adjustment was also made in the routine solution.for, to reduce the odds of 

unwanted steric clashes at the beginning of the simulation. The module correl.for was updated. 

 

In this manual: New Sections 8.10-8.14 were added to describe full input and output options of the new 

routines. Section 5.7 (Solution module) was updated. The Windows part of Installation Notes was 

rewritten, and the corresponding file system of the program updated.  

 

Release 2.2 2023, July, 30 2023 

 

• A routine was added for MD simulations in confined environments (nanolayer, nanotube and 

nanocavity).   

• Fixed some bugs and errors (see below). 

 

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for). Bugs were 

corrected in mdlibs.for. Minor adjustments were also done in redene.for and mclibs.for, to handle a .ene 

file with format compatible with the MD part.  

 

In this manual: A new Section 5.8 was added to describe the preparatory routine (confbox.for) for the 

definition of the simulation box for confined spaces. A new Section 7.2.5 was added to describe the 
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confinement algorithm. Section 7.6.2 (description of the MD run control file) was updated to include 

information on the new parameters in the input stream.  

 

IMPORTANT (only for the MD part). Due to these changes, a further option (inano) must be added 

now at the end of the second parameter line in the MD control file (.mdi). If missing, the molecular 

dynamics program mdmain.for will stop with an I/O error. See Section 7.2.5 for details. An example of 

input with full parameters is shown at the end of Section 7.6.2. 

 

 

Release 2.1 2022, September 30, 2022 

 

• A Linux-parallel version of the Molecular Dynamics (MD) module is now available. The 

program can be still used in serial mode.  

• Empirical anharmonic correction to bending motion was introduced in MD. 

• New features in the part A of the package (static lattice analysis): 

o A new crystallographic analysis program, Statimpa, was introduced. It scans a series of 

static crystal structures in .oeh format, searching for short atom-atom contacts, 

including hydrogen bonds.  

o Retcor now prints also the structure of the isolated asymmetric unit in Cartesian 

coordinates using the standard .xyz format. This is useful for visualization purposes with 

external programs. 

• A new interface for structural files, Solution, is included. When used in conjunction with 

boxliq.for it allows to easily produce solution (solute+solvent) boxes with the desired solute 

concentration. 

• Increased atom limits in naverag.for (now 35,000). 

• Fixed some bugs and errors (see below). 

 

Parallelization affects only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for). A patch 

was added to retcor.for to write the new .xyz file and the run.retcor batch file were updated accordingly. 

The bugs were corrected in datgro.for, mdlibs.for, mdmain.for and naverag.for.  

 

In this manual: The Installation notes section was updated to describe the new features, especially as 

concerns the new parallel-MD executables. A more user-friendly installation procedure for 

Windows users is also proposed. Section 1.3 was updated with the new features of Retcor. New 

Sections 1.5 (Statimpa) and 5.7 (Solution) were added. New Section 7.4.1.2 was added (anharmonic 

corrections to bending). Sections 7.4.1.1 (anharmonic corrections to stretching) and 7.6.2 (MD run 

control file) were edited to explain the new features. A warning on the Geomet usage was added in 

Section 8.1. Section 8.2 (Analys) was also updated for a slight correction in the input stream. 

 

Release 2.0 2021, July 31, 2021 

 

• New crystallographic utilities were introduced: 

o naverag.for, to produce a spacetime average structure from a whole trajectory; 

o debye.for, to compute the total Debye scattering from a MD trajectory file; 

o nanocut.for, to produce a nanoparticle of the desired shape, that is, bound by specific 

crystallographic planes. 

• A biased Molecular Dynamics (MD) algorithm was added to simulate aggregation 

phenomena. 

• Empirical anharmonic correction to stretching motion was introduced in MD. 
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• A new interface for structural files, Nanosolv, is included. When used in conjunction with 

nanocut.for and boxliq.for it allows to easily produce solvated nanoclusters of the desired 

dimensions and shape. 

• Fixed some bugs and errors (see below). 

 

IMPORTANT (only for the MD part). Due to these changes, two more options must be added at the 

end lines #3 and #6 in the MD control file (.mdi). If missing, the molecular dynamics program 

mdmain.for will stop with an I/O error. More in detail, an integer parameter ibias is now the last entry 

of line #3 and controls whether a biased MD run is required or not. Another integer, ianh, must be added 

at the end of line #6 to specify whether the stretching potential will be fully harmonic or not. See Sections 

7.2.4, 7.4.1.1 and 7.6.2 for details. Some input examples with the complete set of parameters are shown 

at the end of Section 7.6.2. 

 

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for), while the 

bugs were corrected in mclibs.for, mcmain.for, mdmain.for and geomet.for. 

 

In this manual: New Section 5.6 was added (new structural interface Nanosolv). Sections 7.2.4, 7.4.1.1 

and 7.6.2 (MD run control file) were either added or edited to include and explain the new features. New 

Sections 8.7–8.9 were added (crystallographic utilities). 

 

 

Release 1.2 2021, January 31, 2021 

 

• A new integration algorithm (velocity–Verlet) is available. 

• A new thermostat (Bussi–Donadio–Parrinello) is available.  

• Fixed some minor bugs and errors (see below). 

 

The changes affect only the MD part of the package (mdlibs.for, mdmain.for and mdviri.for), while the 

bugs were corrected in mclibs.for and boxcry.for. 

 

In this manual: Sections 7.2 (thermostats and integration algorithms) and 7.6.2 (The MD run control 

file) were edited to add information on the new options. 

 

IMPORTANT (only for the MD part). Due to these changes, two more options (Emolim and iengt) 

must be added now at the end of the first parameter line in the MD control file (.mdi). If missing, the 

molecular dynamics program mdmain.for will stop with an I/O error. See Section 7.6.2 for details. An 

example of input with full parameters is shown at the end of Section 7.6.2. 

 

Release 1.1 2020, July 30, 2020 

 

A new routine has been added to the general Parrinello–Rahman barostat to perform MD simulations 

with an external, user–defined stress field (S. Rizzato, A. Gavezzotti & L. Lo Presti, Crystal Growth 

Des. 2020, 20,7421–7428). The new instructions are meaningful only for periodic structures. The change 

affects the MD part of the package (mdlibs.for, mdmain.for and mdviri.for).  

 

In this manual: See new Section 7.3.4 for details. Section 7.6.2 (The MD run control file) was edited 

accordingly to add information on the new options.   
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Fixed known bugs and errors 
 

MiCMoS is an ongoing open-source project that could benefit from the feedback by the 

community. Please report any bug and error you may find to leonardo.lopresti@unimi.it  

 

Release 2.3 2024, July, 2024 

 

(i) In release v2.2, a set of instructions was erroneously erased in the mcmdpo.for 

library, which prevented the correct evaluation of solvent-solvent intermolecular 

potentials. The error affected both the Monte Carlo and Molecular Dynamics 

engines. Solute-only simulations were not affected. The error is specifically present 

only in the v2.2 release and did not affect the previous versions of the program (up 

to v2.1). 

(ii) In the program distrib.for, the labels of center of mass Radial Distribution Function 

between solute and solvent and that between solvent and solvent were erroneously 

switched in the output. This error affected only the labels of the distributions, which 

however were correctly computed. 

(iii) Due to a missing instruction, in mdmain.for and pmdmain.for the number of degrees 

of freedom of the solute was overestimated by +3, only in the absence of solvent. 

This minor discrepancy does not affect the MD trajectories significantly, as the 

number of degrees of freedom is normally much larger. 

(iv) Corrected some example files in Tutorials T3, T6, T7, T8 whose format was not up 

to date with respect to the current MiCMoS requirements.  

 

Release 2.2 2023, July, 2023 

 

(i) Due to a misplaced instruction in the subroutine roteva (mdlibs.for), the molecular 

centre of mass of tethered molecules in nanodroplets was incorrectly computed, 

resulting in unphysical deformations of the molecules themselves. The bug affected 

only Molecular Dynamics simulations of nanodroplets. 

(ii) Due to a repeated instruction in the retopo routine of mdlibs.for, the atom-atom 

Coulomb contributions between solvent molecules in molecular dynamics of 

solutions were overestimated. The error did not affect the solute molecules. 

(iii) In this manual, description of irvel options 1 and 2 (Section 7.6.2) were 

exchanged. The error was now corrected.  

(iv) In equation (7.24) of this manual (virial of the forces), a ½ factor was missing. Note 

that the virial was computed correctly in the main code.  

 

Release 2.1 2022, September 30, 2022 

 

(i) Corrected a typo in the error printing routine for ierr=8 in naverag.for. 

mailto:leonardo.lopresti@unimi.it
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(ii) Corrected a typo in mdmain.for (last printouts, total energy changes): 

deuv=ecouv-ecouvzz was changed into deuv=ecouv-ecouvz. The error 

affected calculations of deuv only when two molecular species were present. 

(iii) Changed all sqrt() instructions in mdlibs.for into dsqrt() to uniform double 

precision throughout. 

(iv) An instruction was corrected in mdlibs.for (sobroutine Retopo) when the program 

renormalizes charges for kJ/mol conversion. When no solvent is present, the 

program printed neither molecular information, nor it echoes the topology file. The 

correction influences only the output in the printfile .pri, not calculations. 

(v) In mclibs.for (subroutine writen) the output cell density became infinity if no box 

was present (boxvo=0). A patch was added to fix the problem; if no box is present, 

now the cell density is reported as zero. 

(vi) Contrary to what is said in the manual, giving 0 0 as starting and ending frame 

number in the debye.inp command file for Debye (Section 8.8) did not allow for 

automatic calculation on the whole trajectory (or at least on the first 1,000 frames). 

A patch has been added to the source code to fix the problem. 

(vii) In the utility program analys.for (Section 8.2), if no calculation of centre of mass-

based radial distribution function g(R) is required, the program has no Cpack for the 

calculation of an approximate box volume, and atom-atom g(R) is not calculated. 

Fixed by reading Cpack before questions on types of g(R). Section 8.2 in this manual 

was updated accordingly. 

 

Release 2.0 2021, July 31, 2021 

 

IMPORTANT: The 2.0 version fixes a previously undetected error, that prevented MiCMoS 

from correctly computing nonbonded intramolecular potential energy contributions. This 

problem emerged when the parent program, CLPdyn, was evolved into the present package and 

some blocks of instructions had to be updated. The error affects only systems that require 

nonbonded pairs to be defined (see NLISTU/NLISTV entry in Section 7.6.4), that is, flexible 

molecules prone to intramolecular steric clashes. 

 

(i) An error was discovered in mclibs.for (subroutine eintra), which prevented the 

Monte Carlo engine from correctly computing the nonbonded intramolecular 

energies. More in detail, a residual “go to” statement from a previous algorithm in 

the parent CLPdyn program suppressed the torsional part of the intramolecular 

energy. At the same time, intramolecular Coulomb contributions were 

underestimated due to an incorrect scaling factor. This error affected only the Monte 

Carlo part and is now fixed. 

(ii) An error was discovered in the main Molecular Dynamics engine (mdmain.for). The 

damping parameter FACTIN (Sections 7.4.1, 7.6.2 and 7.6.4) for computing the 

nonbonded intramolecular energy contributions was not properly defined in the 
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memory allocations. Therefore, the nonbonded contributions were always zero or 

undefined. The error affected only the Molecular Dynamics part and is now fixed. 

(iii) A bug was fixed in geomet.for. The program failed to handle more than 20 torsions 

due to an erroneous format statement. Now geomet can handle up to 60 different 

torsions.  

(iv) A bug was fixed in the main Monte Carlo engine (mcmain.for): due to a couple of 

misplaced instructions, the actual number of solute and solvent molecules, computed 

for checking purposes, could have been undefined in certain circumstances.  

(v) The memory limits of datgro.for were upgraded to a maximum of 80,000 atoms to 

handle also very large simulation boxes. 

(vi) The excbox.for service program was updated to be fully compatible with new 

modules. 

 

Release 1.2 2021, January 31, 2021 

 

(i) An error was discovered in the Molecular Dynamics input instructions, Section 

7.6.2, line #3, instructions idstr and Emolim) concerning the calculation of 

histograms of intermolecular interaction energies (see Section 7.5.3). The Emolim 

parameter (upper energy limit for histogram calculation) was not read as expected 

right after idstr on the same input line. Rather, the program expected to find it in a 

new line if idstr=1. The error was fixed in the code (mdmain.for). The instructions 

in Section 7.6.2 are now correct. 

(ii) There was a little formatting mismatch in the MC and MD writra routines, which 

made slightly different the trajectory printout of the Monte Carlo module with 

respect to that of the Molecular Dynamics module. This implied that, for example, 

the utility datgro.for (conversion of MiCMoS trajectory .dat files to .gro format) 

could not properly read Monte Carlo trajectories. The bug was fixed in mclibs.for. 

Now the two formats are equivalent and datgro.for is fully compatible with both 

MD and MC trajectories. 

(iii) A bug was fixed in boxcry.for: when two molecular units (“solute” and “solvent”) 

were present in the crystal, the program failed to correctly account for slave atoms 

when the crystalline simulation box was built. The error affected only the Monte 

Carlo part. 

(iv) A bug was fixed in the library mclibs.for for Monte Carlo simulations (subroutine 

writen): the program failed to correctly compute the cell density.  
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License 
MiCMoS – Milano Chemistry Molecular Simulation 

Copyright (C) 2024 Leonardo Lo Presti 

 

    This program is free software: you can redistribute it and/or modify 

    it under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 or later. 

 

    This program is distributed in the hope that it will be useful, 

    but WITHOUT ANY WARRANTY; without even the implied warranty of 

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

    GNU General Public License (version 3.0 or later) for more details. 

 

    For more information see http://www.gnu.org/licenses/  

 
Part A: Crystal lattice energy calculations  

Part B: Monte Carlo and Molecular Dynamics simulations 

Part C: Appendix: Reference Materials and Technical Details 

  

http://www.gnu.org/licenses/
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Tutorials 
 

Some tutorials to get acquainted with the main program features and the I/O procedures are freely 

available online. Step-by-exercises are proposed and thoroughly explained, with pertinent reference to 

this Manual. If you are a new user, it is strongly recommended that you follow at least the basic tutorials 

before using extensively MiCMoS. Tutorial 1 will allow you to quickly learn how to handle the file 

interface; Tutorials 2–5 are not strictly necessary if you are interested in Monte Carlo or Molecular 

Dynamics. Tutorials 6–8 describe Monte Carlo in detail, while Tutorials 9 and 10 will give you the 

basics of the Molecular Dynamics procedures. Have also a look to Tutorial 11 to see how to analyze 

trajectories. Tutorial 12 proposes advanced exercises focused on molecular nanoparticles.  

 

The material can be found at this link: https://sites.unimi.it/xtal_chem_group/index.php/tutorials. A list 

is given below. 

 
Tutorial Topic Purpose 

1 Generation of structural data files It is described how a .cif crystallographic information file is interpreted by 

the Retcif, Retcor and Retcha sequence to produce a .oeh structural file, 

ready for subsequent calculations (static lattice, MC or MD). 

2 LJC parametrization and charge 

density file 

It is described how to prepare a .oeh structure file compatible with the LJC 

parametrization, that is, containing Electrostatic Potential (ESP) charges 

rather than the default Extended Hückel ones. At the same time, the 

production of a charge density file to be used in subsequent Pixelc 

calculations is also shown. 

3 Using the Retcor module as a 

molecule builder 

It is described how to build chemically sound molecular models for systems 

whose atomic coordinates are unknown for subsequent use in Monte Carlo 

and Molecular Dynamics calculations. 

4 Calculation of atom-atom lattice 

energies 

It is described how to use module Crysaa to compute static atom-atom 

interaction energies and lattice energies. 

5 Lattice energy by Pixelc It is described how to use module Pixelc to compute static charge density-

based interaction energies and lattice energies 

6 Monte Carlo on liquids (rigid mol) It is described how to prepare and equilibrate a liquid box of benzene with 

the Monte Carlo technique. 

7 Monte Carlo on liquids (flexible 

mol) 

It is described how to prepare and equilibrate a liquid box of n-pentane with 

the Monte Carlo technique. The aim is also to get the user acquainted with 

the use of slave atoms for the Monte Carlo routine of MiCMoS. 

8 Monte Carlo on crystals It is described how to prepare and equilibrate a periodic crystal of acetanilide 

with the Monte Carlo technique. The aim is also to get the user acquainted 

with the use of slave atoms for the Monte Carlo routine of MiCMoS. 

9 Molecular Dynamics of liquids It is described how to prepare and equilibrate a very simple liquid (benzene) 

with the Molecular Dynamics technique. 

10 Molecular Dynamics on crystals It is described how to prepare and equilibrate the P21212 RT phase of 

pyridone with the Molecular Dynamics technique. 

11 Analyzing MC and MD trajectories It is described how to employ service programs Geomet, Analys, Distrib, 

Correl, Redene, Datgro, Naverag and Debye programs to analyze MC and 

MD trajectories. 

12 Molecular Dynamics of molecular 

nanoparticles 

It is described how to prepare isolated (non-periodic) simulation boxes that 

include either free or solvated nanoparticles of small organic molecules. 

 

 

  

https://sites.unimi.it/xtal_chem_group/index.php/tutorials
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Installation notes 
 
To install MiCMoS, you need a valid Fortran compiler, such as gfortran. All modules are written in 

featureless, unspecific Fortran that can be compiled in Unix and Windows 32/64 bit environments. No 

machine libraries are required (‘–static’ option of the compiler). MiCMoS is provided as a 

compressed .zip archive. Upon un-zipping the following directories must appear: 

 
- MiCMoS  

o SourceA (interface programs and static energy calculations) 

o SourceB (Monte Carlo and Molecular Dynamics machines) 

▪ parallel (parallel version of libraries and molecular dynamics module) 

o Inputs (templates of input files with steering parameters for specific MiCMoS 

programs) 
o Unix 

▪ batch (macros to run MiCMoS programs in Unix/Linux syntax) 

▪ compile (macros to compile MiCMoS programs in Unix/Linux syntax) 

 

Under Windows machines, please follow the instructions detailed in the next paragraph. In a Unix/Linux 

environment, copy the archive in your ~/programs directory. If need arises to store the MiCMoS 

folder in any other location, remember to update the path in both installation and batch macros (see 

below).   

 

Four installation macros are available into the “compile” subdirectory: 

 

- compileA: compiles preliminary modules for interpreting crystallographic information files 

(.cif; Retcif, Retcor, Retcha), the modules for lattice energies (Crysaa, Pixmt2, Pixelc) and for 

atom-atom contact analysis (Statimpa).  

This macro also produces a ~/programs/MiCMoS/doc/static (Unix) empty directory, 

which might be employed to store charge density files (extension .den) for Pixelc calculations. 

- compileB: compiles Monte Carlo, Molecular Dynamics and their service modules; 

- compileMC: compiles only the Monte Carlo module and its libraries; 

- compileMD: compiles only the Molecular Dynamics module and its libraries. 

 

Running compileA and compileB in sequence ensures complete installation.  
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Preliminary operations for Windows users only 
 

Sadly, the modern versions of Windows (Win10 and Win11) are incompatible with several key features 

of MiCMoS. Apparently, the programs are compiled, but the system stubbornly refuses to start some 

executables, especially those that are dependent on static libraries. This is the case of the Monte Carlo 

and Molecular Dynamics engines for example.  

 

The procedure detailed in the previous versions of the manual (up to v2.2) worked seamlessly under 

Windows up to version 7. From MiCMoS v2.3 onwards, the following procedure is recommended.  

Download the Cygwin setup ( ) from https://www.cygwin.com/. In these notes, the 

64 byte utility is shown, but you could download the 32 byte version if you know it is more appropriate 

for you. Execute the self-installing tool and select “Install from internet”: 

 

 
 

Select the main directory for the Cygwin environment. The default C:\cygwin64 works fine. Then, 

choose the directory you wish to use to keep installation files (C:\Cygwin for example). These files may 

be cancelled after the installation; however, if you have enough disk space, you should keep them to 

facilitate any future update or change of configuration of the Cygwin environment. 

 

 
 

Next, you will be prompted to select your favourite internet connection (keep the default settings) and 

choose a valid mirror to go ahead with the download of Cygwin system files. A good choice is 

https://sourceware.mirror.garr.it. 

https://www.cygwin.com/
https://sourceware.mirror.garr.it/
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In the next prompt, you must select what packages you wish to install. Make sure that you visualize the 

“Category” classification and use your mouse to mark the following packages with the “Install” flag: 

Base, Devel, System, X11. This choice ensures full operability of MiCMoS and keeps the whole 

installation as cheap as possible. Obviously, you are free to customize the Cygwin installation according 

to your specific needs. 

 

 
 

As the Cygwin project is under continuous development and you are asking to download full file systems 

under each “category”, it is possible that the installer will find unwanted cross-dependencies: in the next 

prompt, flag the “Accept default problem solutions” button (see next page) and go ahead. The 

installation will start. The whole process may take a while, depending on the velocity of your internet 

connection and of your processor.  
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Finally, you will end up with this desktop icon:  

 

 
 

Double click on the Cygwin icon. A terminal window will open. The terminal will open into the default 

user home, which is dependent on the root Cygwin directory defined above. For example: 

 

 
 

This home directory has full path C:\cygwin64\home\User in Windows, where “User” is your specific 

Win user.  

 

Now, create a “programs” directory in /home/User.  

 
mkdir programs 

cd programs 

 

Copy the MiCMoS compressed archive in “programs”. In a normal Windows environment, you may 

simply drag the MiCMoSv2.3.zip archive from your download directory. Extract the files with any 

archive extractor you have at hand (WinRaR, 7zip, WinZip…). You are finally ready to install MiCMoS. 

Follow the same installation instructions For Linux/Unix Users below. To use the program, you must 

keep working in the Cygwin terminal.  

 

To check what Cygwin packages are installed, enter the following command in the terminal: 

 
cygcheck -c -d | sed -e "1,2d" -e 's/ .*\$//' > packagelist.txt 

 

This will create “packagelist.txt” ASCII text file with the full list of installed packages, together with 

their version. If, for some reason, you want to change something, please execute again the Cygwin setup 

program. Good luck!  
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For Unix/Linux users 
 

Go to the MiCMoS folder for compilers, usually ~/programs/MiCMoS/Unix/compile. Attribute 

execution permissions to your macros; for example: 

 

chmod 755 run.compile* 

 

Since Release 2.1, the Molecular Dynamics (MD) module is compiled in both serial and parallel mode 

under Unix/Linux. This implies that two versions of the MD engine, mdmain.for, now exist. The 

parallel one is called pmdmain.for.  

 

Compilation  

 

The compilation command is run.compileX, X being A, B, MC or MD. Both the serial and parallel 

versions of the MD part are compiled.   

Installation macros expect that source files are stored in ~/programs/MiCMoS/SourceA and 

~/programs/MiCMoS/SourceB. The only exception is the program Pixmt2, whose source code 

should be placed in ~/programs/MiCMoS/Unix. If file locations are different, you should update 

the path into the macros.  

 

As above, the following commands 

 

./run.compileA 

./run.compileB 

comp 

ensure full installation, with MD compiled both in parallel and serial mode.  

 

CAUTION (WINDOWS): Sometimes, the installation macro prompts some error messages “Fatal 

Error: Can't open module file 'omp_lib.mod' for reading at (1): No 

such file or directory”. The error is due to a missing omp_lib.mod module in the Cygwin 

environment – this likely depends on the choices made by the installer to resolve internal conflicts in 

Cygwin. As under Windows the parallel execution of MiCMoS is not supported, you can safely ignore 

this error and proceed with the serial version only. If the error is shown, the only effect is that the 

pmdmain executable for parallel Molecular Dynamics will be missing in your MiCMoS/exe directory. 

You can always perform MD simulations in serial configuration (see “Serial execution” below). 

 

Executables will be put into a ~/programs/MiCMoS/exe folder, which will be created by the macro 

itself if not already present. Executables might be loaded into the ~/bin directory if desired; however, 

note that macros in the Unix/batch directory expect to find executables into 

~/programs/MiCMoS/exe. 

 

Serial execution 

 

The batch macros are fully compatible with the previous versions of MiCMoS. To use the various 

program modules, make executables all the batch macros contained in 

~/programs/MiCMoS/Unix/batch with command 
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chmod 755 run.* 

 

Then, you may copy whatever of them in your working directory. As for MD, the batch command is 

always run.mdmain, which is identical to the macro of the previous releases of MiCMoS.  

 

When you execute a batch file, note that all the necessary files, such as data and input instructions, must 

be present as well in your working directory. Refer to the detailed descriptions of the programs and 

modules in this Manual to use them properly.  

 

Parallel execution  

 

Only the Molecular Dyanamics (MD) routines were parallelized. All the other programs, including 

Monte Carlo, are still serial and the usual batch commands can be executed seamlessly.  

 

Parallelization was carried out through OpenMP libraries and is fully operational in the pmdmain.for 

code. Differences with respect to the serial version (mdmain.for) concern calls to openMP-embedded 

functions, like get_omp_max_threads(), which can be recognized by the compiler only when the 

openMP flags are active. This is obtained through the compiler option -fopenmp, in conjunction with 

-frecursive that allows indirect recursion by forcing all local arrays to be allocated on the stack.  

 

CAUTION: Note that the parallel MD executable is named pmdmain.  

 

The macro run.pmdmain is available to execute pmdmain.for locally (not recommended in a 

distributed architecture environment: see below). The runfile differs from the usual run.mdmain one 

(see Section 7.6.1) only in the first instruction:  

 
export OMP_NUM_THREADS=<N> 

 

Where <N> is the actual number of threads you want to employ, for example: export 

OMP_NUM_THREADS=3 or export OMP_NUM_THREADS=4 will distribute the workload to 3 or 4 

threads, respectively.   

 

For usage in a distributed environment, please conform to the queuing system of your parallel 

architecture. Two job scripts (job.p1-mdmain and job.p2-mdmain) are available in the 

~/programs/MiCMoS/Unix/batch directory, which call pmdmain in either a SLURM or PBS 

context. A couple of examples asking for a run up to 1 hour long on 4 threads are shown in the next page 

for your convenience. You should edit the job script that best fits your needs according to what you want 

to do (for example, change strings “yoursubstance”, “yourbox” and “youroutput” in the script with the 

actual filenames you need. As usual, the two job scripts must be made executable before use through 

 

chmod 755 job.p* 

 

Testing was carried out on a local cluster equipped with nodes mounting 2x Intel® Xeon® CPU E5-

2650v2 @ 2.60GHz, 8 cores and 64 GB RAM. Runs on the pyridone crystal at room temperature using 

the same starting box as in MiCMoS Tutorial 10 (200 molecules, 12 atoms each, 2,400 atoms, see 

https://sites.unimi.it/xtal_chem_group/index.php/tutorials/28-tutorial-10) showed that a 5,000 MD 

steps-long run with 10 threads allows a time gain of ~ 4 times.   

https://sites.unimi.it/xtal_chem_group/index.php/tutorials/28-tutorial-10
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SLURM workload manager (job.p1-mdmain): 
#!/bin/bash --login 

#====================================================================== 

#SBATCH -J job_name 

#SBATCH --nodes=1 --ntasks=4 

#SBATCH --time=01:00:00 

#SBATCH --partition yourqueue 

#====================================================================== 

# 

cp yoursubstance.mdi mdyn.mdi 

cp yoursubstance.top mdyn.top 

cp yourbox.dat mdyn.bxi 

cp barrier.par mdyn.par 

~/programs/MiCMoS/exe/pmdmain 

rm youroutputmdc.dat 

mv mdyn.mdc youroutputmdc.dat 

rm youroutputmdo.dat 

mv mdyn.mdo youroutputmdo.dat 

rm youroutputmd.pri 

mv mdyn.mdp youroutputmd.pri 

rm youroutputmd.ene 

mv mdyn.ene youroutputmd.ene 

rm youroutputbias.tab 

mv bias.tab youroutputbias.tab 

rm mdyn.mdi 

rm mdyn.top 

rm mdyn.bxi 

rm mdyn.par 

 

PBS scheduler (job.p2-mdmain): 
#!/bin/bash --login 
#====================================================================== 
#PBS -N job_name 

#PBS -l nodes=1:ppn=4 
#PBS -l walltime=01:00:00 
#PBS -q yourqueue 
#====================================================================== 
#  

cp yoursubstance.mdi mdyn.mdi 

cp yoursubstance.top mdyn.top 

cp yourbox.dat mdyn.bxi 

cp barrier.par mdyn.par 

~/programs/MiCMoS/exe/pmdmain 

rm youroutputmdc.dat 

mv mdyn.mdc youroutputmdc.dat 

rm youroutputmdo.dat 

mv mdyn.mdo youroutputmdo.dat 

rm youroutputmd.pri 

mv mdyn.mdp youroutputmd.pri 

rm youroutputmd.ene 

mv mdyn.ene youroutputmd.ene 

rm youroutputbias.tab 

mv bias.tab youroutputbias.tab 

rm mdyn.mdi 

rm mdyn.top 

rm mdyn.bxi 

rm mdyn.par 
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1. Preparation of structural data files  
 

 
Figure 1. Block diagram of the organization of  preliminary modules. Items in square boxes are 

programs, items in round boxes are files with italic extension names. CSD is the Cambridge Structural 

Database. The final file .oeh is the key structure-data file of the whole package.  

 

 

1.1 The Retcif module: Data retrieval from CSD or from reduced cif files 
Module Retcif retrieves crystal structure data from files in cif (crystallographic information file) format.  

Retcif is designed only for the particular cif file organization of standard Cambridge Structural Database 

(CSD) entries; the flexibility of a cif file is in this case a disgrace. It is easy however to convert any user 

cif file, or any user-generated list of atomic coordinates in any format, into a "minimal .cif' format" 

compatible with Retcif. Technical details and full description on how the algorithm works are available 

in the Appendix, Section A1. 

 

CAUTION: On running Conquest, the main CSD structure search engine, please ensure that the 

“Additional CIF data items” checkbox is flagged in the on-screen menu section “Select options” 

reachable through “File/Export entries as...”. This way, Retcif will be able to interpret correctly the 

parameters. If a .cif file contains multiple structures, they will be all printed sequentially in the output 

.oih file.  

  

Normally, X-ray atom positions are discarded and H atoms are replaced according to standard 

geometrical rules; the output .oih file has coordinates for non-H atoms and symbolic codes for the 
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generation of standardized H-atom positions ("implicit hydrogen"). The module can operate even if no 

hydrogen-atom coordinates are present in the .cif file. The assignment of atom types and of coordinates 

for H-atoms is based on standard bond lengths at the molecular environment (Appendix, Section A1.1). 

The number of assigned hydrogens is checked against the structural formula stored in the cif file 

(Appendix, Section A1.3, Figures A1.1-A1.2). By answering the dialog mode (see below), the user can 

force retrieval anyway for further check and adjustment, or to preserve hydrogen atom positions as they 

are in the .cif file (e.g. for neutron-diffraction structures).  

 

The retrieval and H-atom assignment procedures have been thoroughly tested for ordinary organic 

compounds, but chemical bonding is so multiform that the procedure may fail in some particular 

instances, or for low-accuracy structures where even the position of non-H atoms is questionable. The 

direct preparation or alteration of .oih files by user-generated scripts or simple file editing is also possible 

and relatively easy after some practice.  

 

Running command :   

 

run.retcif   NAME       (answer dialog mode) 

                          where  NAME.cif is the input file(s), NAME.oih is the output file(s) 

 

run.retcif module (Unix/Linux) 

 

rm retcif.inp 

cp $1.cif retcif.inp 

~/programs/MiCMoS/exe/retcif 

rm $1ret.pri 

mv retcif.pri $1ret.pri 

rm $1.oih 

mv retcif.out $1.oih 

rm retcif.inp 

rm retcif.tmp 

 

The output file NAMEret.pri has a printed message on how the retrieval procedure has been carried out, 

with error messages for borderline cases.   

 

The renormalization of H-atom positions and R-H distances for X-ray structures is not an option, but a 

must since it is an essential part of all potential energy schemes in the platform.  

 

CAUTION: Some CSD .cif files contain coordinates for symmetry-dependent atoms to be deleted from 

the output .oih files that must contain all and only the atoms in the exact stoichiometry of the crystal.  

 

Answer the dialog mode, which asks for: 

 

 (1) IHOT  Normalization of hydrogen atoms. 

    =0  H are renormalized (normal option). 

    =1 CSD H’s are left unchanged (useful for neutron data). 

 (2) IPRINT  Controls the amount of output. 

    =0 Normal output. 
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    =1 Extended output, normally for checking purposes. 

(3) INONSE  Retcif controls whether structure could be wrong for some reasons. If 

INONSE=0, the program stops when an error is detected. INONSE=1 

forces the program to print the output .oih file. In this case, check 

carefully your structure! A list of possible problems follows. For each 

case, the program prints a specific warning message. 

- The H count does not coincide with that expected based on the 

molecular formula. Check the formula unit and verify for 

undetected/missing H atoms in the .cif file; look for wrong CH or NH 

group assignments. 

- Unrecognized atom types. A dummy specie code (Table 1.1) of 99 is 

assigned to unknown atoms. MiCMoS can handle only atoms listed in 

Table 1.1. 

- Unnatural number of bonds or attached hydrogens for C, N, O, S 

atoms. Are chemical groups in your structure correct? Are some 

covalent bonds unnaturally short or long? Is there any mistake in some 

specific sites (e.g. two hydrogens attached to the same non–terminal 

vinyl or aromatic carbon)? Are there any misplaced, duplicated, 

disordered atoms? 

- Too many fragments in the asymmetric unit. The maximum allowed 

is 20.  

- Too many symmetry operations. The maximum allowed is 250. 

- Failure in reconstructing terminal H atoms, including methyl groups. 

This could be due to problems in defining the correct torsions and could 

highlight wrong symmetry operations or misplaced/disordered atoms in 

the original structure. 

- No H atoms available for N, O or S. Explicit coordinates of H attached 

to N, O and S should be always explicitly given in the .cif file; if they 

are missing, you should add them manually. The CSD program Mercury 

can assist you in doing this. 

- Impossible terminal O–O groups. Something is wrong with your 

structure: check carefully. 
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1.2 The Retcor interface module 
Module Retcor reads a NAME.oih file and prepares a NAME.oeh file with complete ("explicit 

hydrogen") coordinates for all atoms. The reason for separating the procedure in two steps is that in this 

gives the user a chance to modify the procedure for molecular-model building. Normally Retcif–Retcor–

Retcha are run in blind sequence. Technical details are given in the Appendix, Section A2 and Table 

A2.1. 

 

Running command :  

 

run.retcor NAME 

 

run.retcor module (Unix/Linux) 

 

cp $1.oih retcor.oih 

~/programs/MiCMoS/exe/retcor  

rm $1.oeh 

mv retcor.oeh $1.oeh 

rm $1cor.pri 

mv retcor.pri $1cor.pri 

rm $1.dat 

mv retcor.dat $1.dat 

rm $1.xyz 

mv retcor.xyz $1.xyz 

rm $1ort.oeh 

mv retcor.ort $1ort.oeh 

rm retcor.oih 

 

File NAMEcor.pri has a printed description of the procedure. Retcor also checks for subgroups in the 

space group: for example if the molecule is centrosymmetric and the molecular center of symmetry 

coincides with a crystallographic center of symmetry, the centrosymmetric space group operations will 

be deleted in the output oeh file. Care must be taken if atoms are on crystallographic special 

positions. Separate action may be needed if the crystal structure contains many units/molecules in 

different crystallographic position (e.g. one molecule on a center of symmetry, one on a twofold axis). 

Error messages and warnings are issued both on line and on the .pri file.  

 

Apart the main .oeh and .pri files, normal output of Retcor are also: 

o A NAME.dat file, suitable for being interpreted by the SchaKal graphics program; 

o A NAME.xyz file, to be graphically displayed with Mercury, MolDraw, Vesta… 

o A NAMEort.oeh file, with unitary cell and cartesian coordinates (isolated asymmetric unit), 

useful to generate liquid phases and solutions (see Part B).  

 

It is advisable to check the result using the generated .dat and .xyz files in a graphics program (Section 

5.1.3). Format .dat can be read by SchaKal (E. Keller, https://ekkristufr.neocities.org/schakal.html), 

while the more portable .xyz one can be interpreted bessentially by all modern graphical user interface 

systems, including Mercury (C. F. Macrae et al., J. Appl. Cryst., 2020, 53, 226-235, DOI: 

10.1107/S1600576719014092), Vesta (K. Momma & F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272-

1276) and GaussView (GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, 

Semichem Inc., Shawnee Mission, KS, 2016). Some crystallographic experience may be needed with 

crystals with more than one chemical or crystallographic unit, and in unusual space groups. Anyway 

https://ekkristufr.neocities.org/schakal.html
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decades-long experience has shown that Retcif-Retcor can handle 90% of organic crystal structures 

without human intervention.  

 

The Retcor module can be used as a molecule model builder. Given the Cartesian coordinates for at 

least 3 atoms, the module can build all others by a number of different procedures (trigonal, methylene-

like, pyramidal, or distance-angle torsion). This is thoroughly illustrated in Tutorials and Appendix, 

Section A2.  
  

1.3 The Retcha module. Calculation of atomic point charge parameters for atom-atom 

potentials 
Module Retcha reads a NAME.oeh file without charges and calculates atomic charge parameters from 

a Mulliken population analysis on a modified Extended Hückel molecular orbital calculation for closed 

shell, neutral  molecules (e.g. for zwitterions but not for ions). Original data are saved in NAMEnoq.oeh 

and atomic point charges are re-written on NAME.oeh. The EHT Hamiltonian only includes the Valence 

Orbital Ionization Potential so the result is just a consequence of relative electronegativities: it is a cheap 

and convenient way of assigning a set of neutral point charges. These charges are needed for all 

applications using the CLP intermolecular potential energy scheme; they are rescaled by appropriate 

factors derived from optimization of the force field. Using other point charges along with the rest of the 

CLP formulation is not advisable. The module recognizes only C, H, N, O, F, Cl, Br, I, S, P atoms.  

 

Running command:  

 

run.retcha NAME 

Where NAME.oeh is the input .oeh file and the output .oeh file with charges 

    

run.retcha module (Unix/Linux) 

 

rm $1noq.oeh 

cp $1.oeh $1noq.oeh 

~/programs/MiCMoS/exe/retcha < $1.oeh  

rm $1cha.pri 

mv retcha.pri $1cha.pri 

rm $1.oeh 

mv retcha.out $1.oeh 

 

CAUTION: for crystals, if there is more than one fragment in the asymmetric unit (ASU) the Retcha 

module renumbers atoms (each unit numbered sequentially). An error message is issued if the 

calculation was unsuccessful (unrecognized atoms, open shells, etc.; see file NAMEcha.pri).  
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1.4 The .oih and .oeh structural files 
The following is a detailed description, but the prospective user should be aware that in routine 

applications the Retcif-Retcor-Retcha sequence is wholly automatic and proceeds in fractions of a 

second.  

 

1.4.1 Filename extension .oih 

The file .oih contains atomic coordinates and crystal symmetry data (if any), with “implicit” atomic 

positions. See Section 1.4.3 for a detailed description of the .oih format. The positions of some atomic 

nuclei (not less than three) are given as x,y,z coordinates, while the positions of other nuclei are given 

as a series of indicators which allow the calculation of explicit x,y,z coordinates. For molecular structures 

derived from X-ray diffraction determinations, this concerns primarily hydrogen atoms. Given the 

importance of H-atom positions in crystal energy calculations, this renormalization is integral part of 

the parameterization, and therefore mandatory. All force fields have been calibrated using such 

renormalized positions.  

 

1.4.2 Filename extension .oeh 

Atomic coordinates and crystal symmetry data (if any), explicit x,y,z coordinates for  all nuclei including 

hydrogens.  

 

CAUTION: For lattice energy calculations, a .oeh file must contain coordinates for a full molecule, so 

for crystals in which the asymmetric unit (ASU) is a fraction of the molecule the entire molecule must 

be reconstructed (this is the case in CSD .cif files) and the appropriate space subgroup must be used (this 

is provided by Retcor). 

 

On the other hand, the reference molecular unit can consist of more than one chemical unit, as for 

example in crystals with more than one molecule in the asymmetric unit (ASU), or a dimer made of a 

host and guest compound, or a salt with two or more ions (with ionic species, user-supplied point charges 

must be used). When the ASU consists of one independent molecule and half a molecule on a center of 

symmetry, one must repeat the entire molecule and complete the half molecule (the final file must 

contain three molecules).  

 

Each atom type is identified/ in a .oeh file by a code number (Table 1.1, next page). The force field 

formulations may distinguish several types of atoms of the same chemical species in different bonding 

environments.  
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Table 1.1.  
Atomic species code numbers. In Molecular Dynamics, for species 1-9, if the atom code is <0 in the 

topology file the atom is assigned the weight of deuterium, 2.0141. Corresponding atomic properties are 

listed in Block Data Alldat.for (double precision) or Alldas.for (single precision). van der 

Waals radii in Å. See Table A1.3 (Section A1.1) in the Appendix for a list of covalent radii.  

 

 code n.  code n. 

hydrogen    van der Waals radius 1.10  oxygen   van der Waals radius 1.58  

acetylene CH 1 -O- 23 

=(C)H2, aromatic (C)H 2 H2O (water) 24 

aliphatic CH, CH2, CH3 3 C=O, COO- 27 

R-OH, R-SH alcohol, thiol 5 (C=O)-OH 28 

COO-H acid 6 R-OH 29 

CO(N)-H amide 7 N=O 30 

R2NH, RNH2,  (R3N+)H 8 S=O 31 

H2O (water) 9 P=O 32 

    

carbon       van der Waals radius 1.77  sulfur     van der Waals radius 1.81    

carbonyl C=(O) 10 -S- 34 

≡C- 11 (C)=S 35 

sp2 or allene C  12 (O)=S 36 

sp3 C 13 R-S(H) 37 

aromatic core C 14   

    

nitrogen      van der Waals radius 1.64  heteroatoms     van der Waals radius   

(RnH4-n)N+  16 P                           1.9 38 

(RnH3-n)N 17 F                           1.46 41 

Aromatic N, R=N(H) 18 Cl                         1.76 42 

-C≡N,-N=N 19 Br                         1.87 43 

nitro N 20 I                            2.03 44 

amide N (CONH,CONH2) 21   
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1.4.3 Detailed oih and oeh formats  

 

Section 1, common to oih and oeh: 

 

line 1) formatted field: 1x,10a4,f8.3,f8.1,3x,f5.0,1x,f6.1 

• a title line (40 characters);  

• crystal exptl. density (if known/needed);   

• temperature (in K); 

• year of the X–ray determination (if known/needed); 

• R-factor  (if known/needed). The last four items are supplied by the Retcif module. 

 

From now on, all data in free format.  

 

CAUTION: Recall that in free format a blank is not equivalent to a zero. 

 

line 2)  IOPT  Dummy entry. Set it to 0. It is here maintained for consistency with previous versions.   

 

line 3) Cell parameters a, b, c,    (if the file refers to a crystal) or metric parameters (if the file refers 

to an isolated molecule); in this last case, they may be 1.0  1.0  1.0;  90.  90.  90. and coordinates may 

be given in angstrom units. 

 

line 4)  sublimation enthalpy of the crystal (if known)  

 

line 5) NATOM, number of atoms with explicit x, y, z coordinates 

 

lines 6) NATOM lines, each with: NUME  X, Y, Z   MLC  ISPEN  QRG, where 

NUME:  atom sequence number: in oih files, atoms need not be input in sequential order;                     

in .oeh files NUME is a dummy and atoms are numbered sequentially on input; 

X, Y, Z:  fractional oblique (crystal) or angstrom orthogonal (single molecule) coordinates; 

MLC:  number of fragment the atom belongs to (e.g. =1 or =2 for a crystal                                        

with two molecules in the ASU or for solute and solvent)  

ISPEN:  atomic species code number (see Table 1.1); 

QRG:   atomic point-charge parameter. 

 

line 7) NHYD  number of replacement code lines (a .oeh file must have NHYD=0 by 

definition) 
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Section 2: only for oih files  

 

Atom placement codes for use in Retcor 

 

In operation from a standard .cif file, all this is automatically provided for hydrogen atoms by the Retcif 

module. 

 

lines 8) NHYD code lines, each with:   

n1, n2, n3, n4, n5, n6, MLC, ISPEN, QRG, R, TORS, ALPH, where 

 

n1, n2, n3, n4, n5, n6:  six identification codes (Figure 1.2 and Table A2.1 in the Appendix).  

MLC:   number of molecular unit, or fragment, to which atom n1 or n1–n2 

belong; 

ISPEN:    atomic species indicator (Table 1.1); 

QRG:   atomic point charge parameter (zero if calculation by Retcha is 

required); 

R:   bond distance;  

TORS:  torsion angle;  

ALPH: bond angle as necessary (refer to Figure 1.2).               

 

Section 3, common to oih and oeh:  

 

Space group block 

 

line 9)  NPE    number of pairs of symmetry lines for a crystal space group 

 

lines 10)  NPE pairs of lines: 

    equivalent position matrix (identity must be the first). 

    equivalent position vector (zero must be the first).  

For fractional molecular units in the asymmetric unit, NPE is the 

number of equivalent positions in the subgroup; e.g. NPE = 2 for P21/c, 

Z=2.   

 

For an isolated molecule NPE=1 and the matrix/vector pair are identity and zero. In normal operation 

from a standard cif file, all this is automatically provided by the Retcif module. 

 

Last line(s) 

 

line 11) IL1  Molecular  reference system indicator (only for the Pixmt2 or Pretop 

modules, see Sections 3.2.5 and 5.4). If IL1=0, coordinates will be 

transferred as such in subsequent Pixelc or MC/MD modules (useful to 

deal with liquids). If IL1=3, the reference system is changed into the 

internal inertial one (normal use for Pixelc). 

line 12) NEXTRA Number of non-library 6-12 parameters when the Lennard–Jones–

Coulomb potential is used (IPOTS=1, Section 3.1.2), if needed. Leave 

0 if no extra parameters are needed. IPOTS=0 and NEXTRA  0 are 

incompatible.  
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If NEXTRA  0, add NEXTRA lines with i, j, A6(i,j),A12(i,j) each. i,j are atom id numbers (same order 

in the .oih/.oeh file), A6 and A12 are the coefficients employed in equation  (2.6), Section 2.1.2. 

 

 
 

Figure 1.2. Geometry of the model building routines in Retcor driven by the codes supplied by the user 

or automatically by Retcif. The angles  and  corresponds to parameters ALPH and TORS to be given 

in lines 8ff (see above). If n2, n3, n5 and n6 are all zero, atom n1 is re-positioned by changing the n1–n4 

distance to the value given in the following parameter R. Shaded atoms are those that are generated from 

the automatic building procedure. See Appendix, Section A2 and Table A2.1 for technical description 

of how the various cases are handled by the program. 
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1.5 The Statimpa module 
Retcif, Retcor and Retcha modules can read a .cif file containing multiple structures, obtaining 

eventually a .oeh file with sequentially ordered crystal data (unit cell, atom coordinates and symmetry 

operations). If one of the starting modules fails to correctly read or handle a structure (see Section 1.1), 

this is skipped but the others are printed regularly. Note that, if you are not interested in specific 

structures and you want to collect large databank information, missing a few .cif files is not a serious 

problem. Rather, the Retcif–Retcor–Retcha procedure might help you to recognize problematic or wrong 

cases. 

 

Dealing with multiple-structure .oeh files is very useful to retrieve massive data on close intermolecular 

contacts, particularly hydrogen bonds (see L. Lo Presti, CrystEngComm, 2018, 20, 5976-5989, 

https://doi.org/10.1039/C8CE00674A). This can be done using the statimpa.for routine, which applies 

periodic boundary conditions to each static crystal structure in the .oeh input file and detects relevant 

intermolecular atom-atom contacts, based on purely geometrical criteria. A “contact” is defined for 

every atom pair i,j belonging to different molecules, whenever it is satisfied either  

 

(i) 𝑅𝑖𝑗 < 𝑃 ∙ (𝑅𝑖 + 𝑅𝑗)    

or 

(ii) 𝑅𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗) < 𝑃  

 

Here Rij is the distance between atoms i and j, Ri and Rj are the corresponding standard atomic radii 

(SAR, see below), and P is a user defined tolerance parameter. The user is also free to decide which 

criterion ((i) or (ii)) will be employed to define “contacts”.  

 

Three libraries of SAR can be selected by the user, namely those by Rowland & Taylor (J. Phys. Chem., 

1996, 100, 7384–7391),1 Alvarez (Dalton Trans., 2013, 42, 8617–8636) or Bondi (J. Phys. Chem., 1964, 

68, 441–451). User-defined atomic radii can be also used seamlessly. However, only atoms recognized 

by MiCMoS can be analyzed (see Table 1.1).  

 

statimpa.for requires that two service files, radii.par and impa.inp, be present in the working directory. 

These are available in a subdir of the Source A directory of the source code 

(~/programs/MiCMoS/SourceA/util) and are automatically copied in the working directory by the 

run.statimpa command. The user can edit them both, before the program is launched. 

 

The file radii.par looks like 

 
      Rowta   Alvar   Bondi   Usdef 

H     1.10    1.20    1.20    0.00 

C     1.77    1.77    1.70    0.00 

N     1.64    1.66    1.55    0.00 

O     1.58    1.50    1.52    0.00 

P     1.84    1.90    1.80    0.00 

F     1.46    1.46    1.47    0.00 

S     1.81    1.89    1.80    0.00 

CL    1.76    1.82    1.75    0.00 

Br    1.87    1.86    1.85    0.00 

I     2.03    2.04    1.98    0.00 

 

 
1 The SAR of phosphorus was taken from M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer & D. G. Truhlar, 

J. Phys. Chem. A 2009, 113, 5806–5812. 

https://doi.org/10.1039/C8CE00674A
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Each column contains the SAR (in Å) for the various chemical species according to Rowland & Taylor 

(Rowta), Alvarez (Alvar), Bondi (Bondi). If you want to employ radii from other sources, incuding 

your own ones, you must add them in the “Usdef” column. It is wise to edit the master radii.par file 

stored in the SourceA/util directory, as this is the file called by the macro when you execute the 

program.  

 

The impa.inp file contains specific steering instructions to run the program: 

 
Rowta            

0.95 1 2 2 2 0   

 

First row:  a5 format, keyword to select the SAR you intend to use. Admitted choices are Rowta, 

Alvar, Bondi or Usdef, with the same meaning as above. The program will read the 

file radii.par and will store the corresponding set of atomic radii. 

Second row: free format, numerical parameters, one floating and 5 integers (atol, iverb, ipack1, 

ipack2, ipack3, igave).  

atol: the P tolerance parameter in equations (i) and (ii) above. 

iverb: verbosity flag to control the amount of output. Zero corresponds to the minimum 

printout. If 1, two more output files are written (see below), with explicit interaction 

tables for atom-atom contacts and full list of atom types (see Table 1.1) for statistical 

purposes. If greater than 1, the full printout is displayed, including atom coordinates, 

metric tensors and orthogonalization matrices. iverb=1 is the normal choice. 

ipack1, ipack2, ipack3: three packing factors defining integer translations along the unit 

cell edges (a, b and c). Atom-atom contacts will be searched around the asymmetric unit 

in the supercell defined by ipack1 x a, ipack2 x b, ipack3 x c. In most cases, 2 2 2 works 

fine.  

igave: Controls whether the equation (i) or (ii) will be employed to define a “contact”. 

If =0, the condition is 𝑑𝑖𝑗 < 𝑃 ∙ (𝑅𝑖 + 𝑅𝑗); if =1, the condition is 𝑑𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗) < 𝑃. 

Note that the atol parameter P has different meanings depending on the value of igave. 

A warning is printed in the ASCII output specifying the scheme that is selected.  

 

The running command is:  

 

run.statimpa NAME 

Where NAME is the input NAME.oeh file 

    

The program will copy the necessary files radii.par and impa.inp from the SourceA/util repository 

and will automatically try to open them with your associated ASCII text editor. Make sure that .par and 

.inp extensions are associated to an appropriate text editor, according with your working environment 

(e.g. Wordpad in Windows). In Unix/Linux, the editor vi is used instead. 
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run.statimpa module (Unix/Linux) 

 

# 

rm $1HB.pri 

rm $1impa.pri 

rm $1tabe.pri 

rm $1Bs.pri 

rm $1stat.pri 

# 

cp $1.oeh statimpa.oeh 

cp ~/programs/MiCMoS/SourceA/util/radii.par radii.par 

vi radii.par 

cp ~/programs/MiCMoS/SourceA/util/impa.inp impa.inp 

vi impa.inp 

~/programs/MiCMoS/exe/statimpa > $1impa.pri 

rm statimpa.oeh 

mv HB.out $1HB.pri 

mv tabe.out $1tabe.pri 

mv Bs.out $1Bs.pri 

mv stat.out $1stat.pri 

 

The following output files are produced: 

 

1. NAMEimpa.pri. This is the main output file. After a brief summary of the chemical structure 

retrieved from the NAME.oeh databank (CSD refcode, unit cell, input parameters, chemical 

formula, symmetry operations), atom-atom contacts are printed. For example, a typical output 

looks like: 

 
At. Mol  At. Mol      d      Op   Translations     Bs% 

N     1  H     1    2.5680    1 -1.0  1.0  0.0     1.346 

N     1  H     1    1.7914    1 -1.0  1.0  0.0    31.180 

O     1  N     1    2.7466    1  1.0 -1.0  0.0    10.212 

  

Where “At” is the atomic specie, “Mol” the molecule ID number, “d” the distance in Å, “Op” 

the symmetry operation ID number, “Translations” are the corresponding translations and 

“Bs%” is the bond shrinking parameter defined as 

 

𝐵𝑠 = 100 ∙
𝑅𝑖𝑗
0 − 𝑅𝑖𝑗

𝑅𝑖𝑗
0  

 

𝐵𝑠 summarizes the total percent reduction of a specific contact distance, 𝑅𝑖𝑗, with respect to the 

corresponding sum of SAR’s, 𝑅𝑖𝑗
0  (see CrystEngComm, 2018, 20, 5976-5989 and references 

therein). Then, hydrogen bonds are analyzed in detail: 

 

 
Number of H bonded contacts found    4 

 

D - - - H (mol) . . . A (mol)      Donor group       Acceptor group      d(D-H)   d(H...A)  d(D...A)   alpha(D-H-A) 

O   4 H  34 (1)     N   7 (1)   -COOH acid         N aromatic or =N(H)   1.0000    2.5680    3.3029    130.19 

O   4 H  34 (1)     N   8 (1)   -COOH acid         N aromatic or =N(H)   1.0000    1.7914    2.7466    158.55 

C  15 H  27 (1)     N   7 (1)  H aromatic or =CH2  N aromatic or =N(H)   1.0800    2.5498    3.4596    141.35 

C  17 H  28 (1)     O   3 (1)  Aliphatic CH,CH2,CH3   C=O carbonyl       1.0800    2.3052    3.3517    162.66 
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 Finally, the close contact count is summarized:  

Total number of close contacts within atol   0.95000 :         6 

Total number of H...A contacts:    4 

H ...N :                           3 

H ...O :                           1 

 

Total number of other contacts:    2 

H ...C :                           1 

N ...O :                           1 

 

Number of atoms that form primary interactions satisfying the Delta limit:   12 

H (HB):                            4 

H (NOT HB):                        1 

C :                                1 

N :                                4 

O :                                2 

 

Number of naked (=without acceptors) hydrogens in this structure              8 

 
After the whole databank is scanned, a summary of total number of donor-acceptor contacts, as 

well as the corresponding average contact distances Rav (with standard deviations), is printed. 

“Nc” stands for number of contacts.  

 
======================================================== 

Total number of Donor...Acceptor contacts included in the databank 

======================================================== 

Donor                    Acceptor                             Nc       Rav            sigma(Rav) 

H aromatic or =CH2      N aromatic or =N(H)                   5        2.54149        0.02518 

H aromatic or =CH2      C=O carbonyl                         32        2.39803        0.01745 

 
Averages over the acceptors are also given: 

 
======================================================== 

Averages over the whole set of acceptors 

======================================================== 

Acceptor                             Nc       Rav            sigma(Rav) 

C=O carbonyl                         82        2.11540        0.03828 

(C=O)-OH Acidic hydroxy               8        2.41939        0.01771  

 

2. NAMEHB.pri. All the hydrogen bonds retrieved from the whole databank are summarized in 

this file in the usual DH···A atom sequence. For each interaction, geometrical parameters, CSD 

refcode, symmetry operation for the acceptor A, chemical nature of the donor and acceptor 

groups are given. 

3. NAMEBs.pri. For each intermolecular close contact i-j (not only H bonds), the following 

information are given: identity of atoms involved, their distance, order number of the symmetry 

operation that produces the atom j, the corresponding translations, the bond shrinking parameter 

𝐵𝑠 and the CSD refcode. 

4. NAMEtabe.pri. This file is printed only if iverb>0 in the impa.inp input file. A contact matrix 

for each structure is printed, which summarizes how many specific atom-atom contacts are set 

up across the databank. 

5. NAMEstat.pri. This file is printed only if iverb>0 in the impa.inp input file. For statistical 

purposes, for each structure the number of atom types is printed. See Table 1.1 for the meaning 

of the various atom ID’s. 
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2. Potential energy schemes  
 

2.1 Atom-atom potential forms: CLP and LJC 
 

CLP and LJC are theoretical approaches to the evaluation of intermolecular potential energies, in the 

assumption that interaction centers are restricted to atomic nuclear positions and that all energy terms 

depend only on distances between them. Energies can be subdivided into a Coulomb-polarization term, 

a dispersion term (London) and a repulsion term (depending on electron density overlap, Pauli 

exclusion), hence the CLP acronym. The Lennard-Jones-Coulomb LJC approach consists of a unified 

polarization-dispersion term plus a repulsion term along with the usual Coulomb electrostatic term. 

These potential forms are totally empirical. The evaluation of the lattice energy of a large crystal takes 

less than one second, requiring only cell dimensions and atomic nuclear coordinates. Atom-atom 

potentials are a useful option for preliminary screening of large databases or for quick calculations of 

the order of magnitude of lattice energies of a static crystal; they are the only option for Monte Carlo 

and Molecular Dynamics simulation.  

 

2.1.1 CLP potentials 

The form of the CLP atom-atom i-j energy is   

 

𝐸(𝑖, 𝑗) = {
1

4𝜋𝜀0
𝐹𝑄𝑞(𝑖) ∙ 𝐹𝑄𝑞(𝑗)

𝑅(𝑖, 𝑗)
} −

𝐹𝑃𝑃(𝑖, 𝑗)

𝑅(𝑖, 𝑗)4
−
𝐹𝐷𝐷(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐹𝑅𝑇(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12
= 

 

= 𝐸(𝐶𝑜𝑢𝑙) −
𝐴4

𝑅(𝑖,𝑗)4
−

𝐴6

𝑅(𝑖,𝑗)6
+

𝐴12

𝑅(𝑖,𝑗)12
   (2.1) 

 

𝛼(𝑒𝑓𝑓) = √{
𝛼𝑖(𝑍𝑣,𝑖−𝑞𝑖)

𝑍𝑣,𝑖
∙
𝛼𝑗(𝑍𝑣,𝑗−𝑞𝑗)

𝑍𝑣,𝑗
}        (2.2) 

𝑃(𝑖, 𝑗) = 𝛼(𝑒𝑓𝑓) ∙ |𝑞𝑖 ∙ 𝑞𝑗|         () 

𝐷(𝑖, 𝑗) = 𝛼(𝑒𝑓𝑓) ∙ 𝑛𝑖𝑛𝑗√𝐼𝑖𝐼𝑗         (2.4) 

𝑇(𝑖, 𝑗) = (1 + 𝐻𝐵𝑑𝐻𝐵𝑎)(𝑍𝑣,𝑖 − 𝑞𝑖)(𝑍𝑣,𝑗 − 𝑞𝑗)√(𝐵𝑖𝐵𝑗)     (2.5) 

            With HBd HBa = 0 if  HBd HBa > 0  

 

with q atomic point charges, R atom-atom distances,  atomic polarizabilities, Zv number of valence 

electrons, n quantum number of valence orbitals, I atomic ionization potential, B empirical diffuseness 

parameters, and H empirical hydrogen-bonding propensity (see Table 2.1). FQ ,FP ,FD ,FR are general 

scaling parameters (see Section 3.1.2). The B parameters are assigned using carbon = 1 and decreasing 

for more electronegative atoms. The HB parameters are numbers between 0 and 1, negative for acceptors 

and positive for donors, so repulsion is greatly reduced over hydrogen-bonding contacts. All data are 

stored in the program and potentials are automatically supplied on the basis of the atomic species codes. 

The potential 2.1 is then calculated for each pair of atoms in the molecule(s) and stored for future use. 

Since 2.2 to 2.5 depend on current atomic charges, the CLP potentials are not assigned for given atomic 

types, but are adjusted on the basis of local environment for each molecule. Energies are meaningless if 

the .oeh file does not have charges, and warning messages are issued. Charges obtained by methods 

other than the Retcha module may give unpredictable results. Standard CLP operation includes a charge 

rescaling factor FQ (that can be set = 1 when user-optimized charges are applied).  
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Table 2.1 

Properties of atomic species considered in the CLP intermolecular energy scheme. Data are included in 

Block Data Alldat.for (double precision) or Alldas.for (single precision).  
 

 indicator atomic 

polarizability, 

Å3  

ionization 

potential, a.u. 

I° eq. 4.8 

space diffusion 

parameter 

H-bond 

propensity factor 

hydrogen    radius 1.10  0.39 0.500   

acetylene CH 1   0.60 0.20 

=CH2, arom.CH 2   0.62 0.10 

aliphatic  

CH, CH2, CH3 

3   0.64 0.05 

R-OH, R-SH alcohol, thiol 5   0.75 0.99 

COO-H acid 6   0.80 0.99 

CON)-H amide 7   0.80 0.90 

R2NH, RNH2,  (R3N+)H 8   0.80 0.99 

H2O (water) 9   0.80 0.99 

unnormalized hydrogen atom  

from Cambridge files 

99     

carbon                   1.77   0.414 1.00 0.00 

carbonyl C=(O) 10 1.05    

≡C- 11 1.35    

sp2 or allene C  12 1.35    

sp3 C 13 1.05    

aromatic core C 14 1.90    

nitrogen                1.64  0.95 0.534   

(RnH4-n)N+  16   0.63 0.00 

(RnH3-n)N 17   0.63 -0.97 

arom.N, R=N(H) 18   0.58 -0.99 

-C≡N,-N=N 19   0.70 -0.70 

nitro N 20   0.63 0.00 

amide N (CONH,CONH2) 21   0.63 -0.85 

oxygen                    1.58  0.75 0.500   

-O- 23   0.45 -0.90 

H2O (water) 24   0.70 -0.99 

C=O, COO- 27   0.50 -0.99 

(C=O)-OH 28   0.50 -0.90 

R-OH 29   0.45 -0.99 

N=O 30   0.50 -0.95 

S=O 31   0.75 -0.90 

P=O 32   0.75 -0.90 

sulfur                    1.81    3.00 0.381   

-S- 34   2.00 -0.5 

(C)=S 35   2.00 -0.5 

(O)=S 36   2.50 0.0 

R-S(H) 37   2.00 -0.5 

heteroatoms          

P                          1.9 38 1.54 0.386 3.0 0 

AS                       1.8 39 3.5 0.400 5.0 0 

Se                         1.8 40 3.5 0.400 6.0 0 

F                           1.46 41 0.55 0.640 0.20 0.00 

Cl                         1.76 42 2.50 0.477 2.40 -0.20 

Br                         1.87 43 3.27 0.434 1.50 0.00 

I                            2.03 44 5.00 0.384 5.00 0.00 

  



43 

 

  

Table 2.1b  
Further atomic species.   

 
 indicator atomic 

polarizability, 

Å3  

ionization 

potential, a.u. 

space diffusion 

parameter 

H-bond 

propensity factor 

transition 

metals* 

     

Ti 51 4.18 0.25 0.80 -0.5 

V 52 3.31 0.25   

Cr 53 2.86 0.25   

Mn 54 2.93 0.27   

Fe 55 2.81 0.29   

Co 56 2.62 0.29   

Ni 57 2.61 0.28   

Cu 58 2.81 0.285   

Zn 59 3.63 0.345   

      

      

positive ions**      

Li+ 61 0.10 1.00 0.2 0.0 

Na+ 62 0.20 0.85 0.3  

K+ 63 0.30 0.70 1.5  

Rb+ 64 0.40 0.50 3.0  

Cs+ 65 0.30 0.45 5.0  

Ca+ 66 0.70 0.70 1.5  

negative ions      

F- 67 0.40 0.75 0.5  

Cl- 68 2.50 0.65 3.0  

Br- 69 3.27 0.50 4.0  

I- 70 5.00 0.40 5.0  

      

 

*Optimized: A.G.P. Maloney, P. A. Wood and S. Parsons, CrystEngComm 2015, 17, 9300–9310 

** Tentative values: J. D. Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357–366.  

 

2.1.2 LJC potentials  

The form of the LJC potential is: 

 

𝐸(𝑖, 𝑗) =
1

4𝜋𝜀0

𝑞(𝑖) ∙ 𝑞(𝑗)

𝑅(𝑖, 𝑗)
−
𝐴6(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐴12(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12
=                               (2.6) 

= 𝐸(𝐶𝑜𝑢𝑙) −
𝐴6(𝑖, 𝑗)

𝑅(𝑖, 𝑗)6
+
𝐴12(𝑖, 𝑗)

𝑅(𝑖, 𝑗)12
 

 

A library of A6 and A12 parameters for the most common atomic species are supplied (Table 2.2). They 

have been optimized using high-level point charges qi from an MP2/6-31G** wavefunction (see J. D. 

Dunitz, A. Gavezzotti, S. Rizzato, Cryst. Growth Des. 2014, 14, 357–366, 

https://doi.org/10.1021/cg401646t). Use of cheaper charges may lead to unpredictable results. User 

defined parameters and charges can be accepted, allowing the use of literature potential energy schemes.  

The LJC potentials were also recently implemented in the Molecular Dynamics module (see A. 

Gavezzotti, L. Lo Presti, S. Rizzato, CrystEngComm 2020, 22, 7350–7360 

https://doi.org/10.1039/D0CE00334D). 

  

https://doi.org/10.1021/cg401646t
https://doi.org/10.1039/D0CE00334D
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Table 2.2  

A6 and A12 library parameters for the LJC potential scheme. Cross interactions should be derived by 

the geometrical mean rule. Data are included in Block Data alldat.for (double precision) or 

alldas.for (single precision) but can be updated by the user. The coefficients are consistent with 

distances in Å and energies in kJ/mol. 

 

 

 

2.2 The PIXEL form 

Intermolecular energies for crystals are calculated as numerical integrals over a large number (20,000 

for a typical medium-size organic molecule) of electron-density units (“pixels”, hence the name, 

although it has been correctly pointed out that they should be called “voxels”). The method requires one 

ab initio molecular orbital  calculation (for which programs are not supplied) to prepare the molecular 

electron density in the form of discrete points on a grid. The calculation of the lattice energy for the 

crystal of a medium size organic molecule (25 atoms) then takes some15 minutes. Use of this scheme 

in Monte Carlo or Molecular Dynamics simulation, where energies must be evaluated millions of times, 

is obviously impossible. 

 

 

  

Atomic specie A6 A12 

hydrogen non h-bonding 73.8      14500.0 

hydrogen H-bonding 0 0 

carbon any 2280.0 4.5600d+06 

nitrogen any 2200.0 2.32d+06 

oxygen any 1650.0 1.22d+06 

water oxygen  2470.0 2.27d+06 

sulfur any 10000.0 1.3d+07 

Fluorine 1080.0 7.6d+05 

Chlorine 6400.0 7.65d+06 

Bromine 11900.0 1.58d+07 

iodine (tentative) =A6(Br)·1.2 =A12(Br)·1.2 
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3. Lattice energy calculation modules  

 
Figure 3.1 Block diagram of the modules for crystal lattice-energy calculations. All modules use a rigid 

molecular unit and there is no evaluation of intramolecular energies.  

 

3.1 The Crysaa module   
Crystal lattice energies by CLP or LJC atom-atom potentials 

 

Running command :  

 

run.crysaa NAME 

where NAME.oeh is the input file with one or many sets of crystal structure data; output is in 

NAMEcry.pri. 

 

run.crysaa module (Unix/Linux) 

 
~/programs/MiCMoS/exe/crysaa <$1.oeh  

rm $1cry.pri 

mv cryout.pri $1cry.pri 
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3.1.1 General description of crysaa 

Module Crysaa reads a NAME.oeh file with crystal coordinates of one reference molecular group 

(RMG). A molecular group can consist of a single molecule or of several molecules. A model of the 

crystal is constructed by forming a cluster of molecules using the symmetry operations of the space 

group. The program reads a parameter, Vecmax, and calculates Na = Vecmax/a +2; all integer ti cell 

translation from –Na to +Na are considered, thus forming a parallelepiped of repeated cells of dimensions 

2Na+1, where a is any of the three cell edges. A translation vector Tabc = ta·a + tb·b + tc·c identifies a 

translated unit cell. The program loops over translation vectors Tabc and over equivalent positions within 

the cell, generating a number of surrounding molecular groups (SMG). Whole SMGs are always 

included in the lattice energy summations, if the distance between SMG and RMG centers of mass is 

below Vmax; using cutoffs on atom-atom distances cuts off parts of molecules and leads to charge 

imbalance and lack of convergence. For atom-atom calculations, a typical value of Vmax is 40-100 Å, 

but it is very easy to perform calculations with Vmax = 500 or even 1000 Å. Inclusion of 50,000,000 

molecules in the cluster is quite affordable, although mostly useless because convergence is reached at 

much shorter ranges.   

 

The program calculates lattice energies and separate pairwise energies between molecules in the cluster, 

E(mol-mol). These can be useful in deciding which are the most cohesive interactions in the crystal. 

Crysaa performs a structure check for unreasonable intermolecular distances, destabilizing energies, 

wrong crystal densities (< 0.7 g·cm–3), wrong charge balance, or other patent errors. Error messages are 

printed in the output file NAMEcry.pri. Note that some 10-20% of entries in the Cambridge Structural 

Database contain errors in atomic coordinates, space group, etc., or unnoticed disorder, or other kinds 

of inconsistencies that prevent the calculation of lattice energies.    

 

3.1.2 Running parameters, file crypar.par  

Some parameters are in a separate file, crypar.par, supplied by the user once for all the crystal structure 

set when dealing with many crystal structures at a time. This file must reside in the same directory as 

the oeh file; if the file is not present, defaults will be assumed. The file contains: 

 

line 1) IPRI  IPOTS 

• IPRI      0 or 1 controls the level of output  

• IPOTS   =0 CLP potentials,  =1 LJC potentials  (default =0) 

 

line 2)  FQ, FP, FD, FR actual values needed only if IPOTS=0; otherwise set zero  

These are the four coefficient in equation (2.1) for scaling point charges, polarization, dispersion 

and repulsion terms. Universal values are suggested, but fine tuning over classes of compounds 

is possible. Defaults: 0.41, 235, 650, 77000.   

 

line 3)  

• VECMAX   translation search parameter, default 40 Å  

• EWRONG   a warning message is issued if any E(mol-mol) > EWRONG, def. +2 kJ/mol 

• ELIMIT     E(mol-mol) is printed if abs(E) > ELIMIT, def. 3 kJ/mol 

• CONLIM   atom-atom distance is printed if less than conlim times sum of atomic radii  

(Table 1.1); default = 0.9 

• RPLIMI   E(mol-mol) is printed only if distance between centers of mass is < RPLIMI 
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3.1.3 Lattice energies  

When there is only one unit in the RMG, the total intermolecular non-bonded potential energy of the 

molecule in the crystal cluster is calculated as:  

 

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = ∑ ∑ 𝐸(𝑖, 𝑗)𝑗𝑖      (3.1) 

 

𝐸(𝑙𝑎𝑡𝑡) = −∆𝐻(𝑠𝑢𝑏𝑙) = 1 2⁄ 𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡)     (3.2) 

 

where i labels any atom in the RMG and j labels any atom in any SMG. E(pot,tot) is the potential energy 

of one mole of molecules in the crystal, while ½ E(pot,tot) is the gain in energy when one mole of 

molecules at infinity are brought into contact in the crystal (the computational equivalent of the 

sublimation  energy). The Coulombic part of the sums does not converge properly only for structures 

with a large cell dipole in polar space groups (see below).   

 

If there are n molecular units in the asymmetric unit (ASU), E(pot,tot) = E+E'+E''+..., where E is the 

equivalent of equation (3.1) for the packing of the whole cluster of n molecular units all together, each 

interacting with all the other symmetry–dependent clusters. E', E''... are instead the energies between 

units1-2, 1-3...1-n, 2-3, 2-4,...2-n, ... n-n. For example, for three molecules in the ASU: 

 

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = 𝐸 + 𝐸(1,2) + 𝐸(1,3) + 𝐸(2,3)     (3.3) 

 

𝐸(𝑙𝑎𝑡𝑡𝑖𝑐𝑒) = 1 2⁄ 𝐸 + 𝐸(1,2) + 𝐸(1,3) + 𝐸(2,3)     (3.4) 

 

Eq. (3.4) is the lattice energy of a mole of three units; if they are all equal, the true sublimation energy 

per mole is H(subl) = –E(lattice)/3. If the units are different, like for example in an A-B molecular 

complex:  

𝐸(𝑝𝑜𝑡, 𝑡𝑜𝑡) = 𝐸 + 𝐸(𝐴, 𝐵)      (3.5) 

 

𝐸(𝑙𝑎𝑡𝑡𝑖𝑐𝑒) = −∆𝐻(𝑠𝑢𝑏𝑙) = 1 2⁄ 𝐸 + 𝐸(𝐴, 𝐵)     (3.6)  

 

(3.6) is the computational equivalent of the heat of sublimation for one mole of complexes bound in the 

crystal to one mole of A and one mole of B separated in the gaseous state.  

 

Crysaa always writes energies "per entire molecule in asymm. unit"; if all molecules are equal, this is 

the heat of sublimation per mole; if units are different, multiply by the number of units in the ASU, n.  

 

3.1.4 Intermolecular analysis  

Crysaa provides also the following intermolecular information: 

1) For each atom of the RMG: 

- all short intermolecular atom-atom distances, including hydrogen bonds;  

2) For each nearest neighbour molecular pair in the crystal: 

- distance from center of mass of each unit in the SMG to center of mass of each unit in the RMG and 

molecule-molecule interaction energy.  

 

  



48 

 

3.1.5 Coulomb sums in polar space groups 

In polar space groups the calculation of Coulombic energies is critical because the lattice sums either 

are non-convergent, or, more fundamentally, because the method of summing all contacts to a central 

molecule becomes inadequate. Surface/termination effects become important and the Coulombic energy 

may in principle depend also on the shape of the crystal (e.g, influencing comparisons between 

polymorphs, crystal structure predictions, etc.) although this complication is usually neglected. 

Increasing the cutoff distance in the summations will not help. The problem is significant only when the 

molecule has a large dipole oriented along the polar direction. An easy but not exhaustive way of 

spotting a polar direction is to examine the translation vectors in the unit cell symmetry operations: any 

direction t for which there is no inversion of the t-coordinate is a polar direction (e.g. y in P21, z in Pna21, 

all three directions in P1). A centrosymmetric crystal structure is obviously non polar. 

 

The calculated Coulombic energy is underestimated, and a correction must be applied; this can be done 

by Ewald-Bertaut reciprocal space methods (Williams, D.E., Acta Cryst. 1971, A27, 452–455), of 

considerable mathematical complexity. An alternative real-space method has been proposed (Kroon, J. 

and van Eijck, B.P., J. Phys. Chem. 1997, B101, 1096–1100), based on the assumption that the cutoff 

sphere is large enough that the surface cells can be seen as dipoles, and that the molecules at the surface 

of the cutoff sphere can be treated as a uniform distribution of dipoles. Integration of the dipole-dipole 

energies leads to the dipole correction energy per molecule (kJ/mol): 

    

    𝐸(𝑐𝑒𝑙𝑙, 𝑑𝑖𝑝) = −1389.355 
2𝜋

𝜇2
(3𝑁𝑉𝑐𝑒𝑙𝑙)    (3.7) 

 

where Vcell is the cell volume, N is the number of molecules in the cell, and  is the module of the cell 

dipole moment vector, in electron·Å units. This correction energy has been checked to correspond very 

nearly to the Ewald sum result in test cases and should be summed to the Coulombic lattice energy 

calculated at the current cutoff.   

 

Crysaa calculates the molecular dipole vector as the vector joining the centroid of positive charges (d(+)) 

to the centroid of negative charges (d(–)): 

 

𝒅(+) =
∑ 𝒙𝒊𝑞𝑖(+)𝑖

∑ 𝑞𝑖(+)𝑖

𝒅(−) =
∑ 𝒙𝒊𝑞𝑖(−)𝑖

∑ 𝑞𝑖(−)𝑖

}     (3.8) 

 

Σi qi(+), that should be equal to Σi qi(–), is the total dipole charge. The molecular dipole moment is then:  

 

𝑫 = [𝒅(+) − 𝒅(−)] ∙ ∑ 𝑞𝑖(+)𝑖     (3.9) 
               

and the total cell dipole is the vector sum over all N molecules in the cell: 

 

𝝁 = ∑ 𝑫𝒌
𝑁
𝑘=1      (3.10) 

 

Extensive experience on uncharged molecular species indicate that this correction seldom exceeds a few 

kJ/mol, but the problem becomes acute with ionic or zwitterionic species, a typical example being the 

crystals of natural L-aminoacids. 

 

For a test, the Coulombic energies of glycine have been computed (in kJ/mol) by the two methods with 

the following results: 



49 

 

  

 

Reference –glycine –glycine –glycine Method 

Van Ejick-Kroon1         –234.8 –239.5 –232.3 40 Å cutoff + equation (3.7) 

Other Literature2 –235.0 –239.5 –231.5 Ewald summation 
1 Kroon, J. and van Eijck, B.P., J. Phys. Chem. 1997, B101, 1096–1100. 
2 See Voogd, J.; Derissen, J. L.; Van Duijneveldt, F. B., J. Am. Chem. Soc. 1981, 103, 7701–7706; Jönsson, P.–G., Kvick, Å, Acta Crystallogr. 

1972, B28, 1827–1833; Iitaka, Y. Acta Crystallogr. 1960, B13 35–45, Kvick, Å; Canning, W. M.; Koetzle, T. F.; Williams, G. J. B. Acta 

Crystallogr. 1980, B36, 115–120. 
 

 

Dipole moments are usually given in Debye units, 1 Debye = 10-18 esu cm, with 1 esu = 1 StatCoulomb. 

The conversion factor is 1 C = 2.9979 109 StatCoulomb, the factor being 10 times the speed of light. 

Using the charge of the electron in Coulomb, the final conversion factor is 1 electron·Å angstrom = 

4.80318 Debye. The cell dipole energy is summed into the Coulombic energy calculated by ordinary 

lattice sums.  

 

 

  



50 

 

3.2 The Pixelc module: Calculation of intermolecular energies by the PIXEL method 
 

The PIXEL model allows the calculation of intermolecular energies by a distributed charge description. 

The model requires a preliminary evaluation of the molecular charge density by some quantum chemical 

method, presented in the form of a numerical grid; presently, all modules are designed to read the CUBE 

output of the GAUSSIAN package but adaptation to other density outputs is relatively easy.  

 

3.2.1 Perspective 

The PIXEL calculation of intermolecular interaction energies rests upon a representation of a molecular 

object with a large collection of electron density points ("pixels") instead of just a limited set of nuclear 

positions as is done in the atom-atom approach. Interactions are then to be computed as discrete sums 

of pixel-pixel contributions. The Coulombic integral results in interaction energies almost 

undistinguishable from those obtained by analytical integration.  For the calculation of polarization and 

dispersion energies as pixel-pixel sums, the key approach is the estimation of distributed ionization 

potentials and polarizabilities in an empirical way. Repulsion energies use numerical overlap integrals 

partitioned over atomic species and a coefficient depending on the difference between 

electronegativities, the concept being that atom pairs where the difference is large must show some 

amount of intermolecular chemical "bonding".    

 

3.2.1.1 Full list of bibliographic references 

For more information and practical applications, 

see: 
• Gavezzotti, A. J. Phys. Chem. 2002, B106, 4145–4154;  

• Gavezzotti, A, J. Phys. Chem. 2003, B107, 2344–2353;  

• Gavezzotti, A. J. Chem. Theor. Comput. 2005, 1, 834–

840;  

• Gavezzotti, A. Z. Krist. 2005, 220, 499–510; 

• Gavezzotti, A. In: Newsletter nov. 2006, International 

Union of Crystallography, Commission for 

Crystallographic Computing (Chair: A.L.Spek), pp. 45-

58;http://www.iucr.org/resources/commissions/crystall

ographic-computing/newsletters/7 

• Maschio, L. et al. J. Phys. Chem. A2011, 115, 11179-

11186; 

• Dunitz, J. D. & Gavezzotti, A. Cryst. Growth Des. 

2012, 12, 5873-5877; 

• Dunitz J.D. et al. Cryst. Growth Des. 2014, 14, 357-

366; 

• Colombo V. et al. CrystEngComm 2017, 19, 2413-

2423; 

• Carlucci, L. & Gavezzotti, A. Phys. Chem. Chem. Phys. 

2017, 19, 18383-18388; 

• Gavezzotti, A. et al. Cryst. Growth Des. 2018, 18, 

7219-7227; 

• Chickos, J. S. & Gavezzotti, A. Cryst. Growth Des. 

2019, 19, 6566−6576; 

• Gavezzotti, A. Mol. Phys. 2008, 106, 1473–1485; 

• Gavezzotti, A. Molecular aggregation, Structure 

analysis and molecular simulation of crystals and 

liquids, Oxford University Press, Oxford 2007, Chapter 

12.;  

• Dunitz, J. D. and Schweizer, W. B. Chem. Eur. J. 2006, 

12, 6804–6815;  

• Gavezzotti, A. and Eckhardt, C. J.  J. Phys. Chem. 2007, 

B111, 3430–3437;  

• Schweizer, W.B. and Dunitz, J.D. J. Chem. Theor. 

Comp. 2006, 2, 288–291;  

• Gavezzotti, A. Acta Crystallogr. 2010, B66, 396-406.  

• Gavezzotti, A. & Dunitz, J.D. J. Phys. Chem. B, 2012, 

116, 6740–6750. 

 

http://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/7
http://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/7


 

 

3.2.2 PIXEL Theory 

Consider a molecule (1) with nuclei of charge Zj at points (j) = [xj yj zj]. Let k be the electron density in 

an elementary volume Vk centered at point (k) = [xk yk zk]. k is usually derived from MP2/6-31G** 

wavefunctions, but less demanding basis sets are acceptable for large molecules. Each e-pixel has charge 

qk = k Vk. In an usual MO calculation for a medium size organic molecule, with typical steps of 0.08 

Ǻ, one has some 106 pixels, too many for practical use; the distribution is then contracted into n x n x n 

super-pixels, n being called the contraction level. Each pixel is assigned to a particular atom in the 

molecule, as follows. Let p be the number of atoms for which the nucleus-pixel distance is smaller than 

the atomic radius. If p=1, the pixel is assigned to that atom (Figure 3.1, case A, nucleus a). If p > 1, the 

pixel is assigned to the atom from which the distance is the smallest fraction of the atomic radius (case 

B, nucleus b). If p = 0, the pixel is assigned to the atom whose atomic surface is nearest (case C, nucleus 

c).  

 
Figure 3.1. Allotment of electron density points to atomic spheres.  

 

3.2.2.1 Calculation of the Coulombic Energy 

Consider now a second molecule, 2 with nuclei of charge Zm at points (m) = [xm ym zm], and whose e-

pixels of charge qi = i Vi are at positions (i) = [xi yi zi]. Let Rln be the distance between any two centers 

of pixels or nuclear positions l and n; the electrostatic potential i generated by molecule 1 at point (i) 

of the charge density of  molecule 2 and that generated by molecule 1 at nucleus m of molecule 2, m , 

with the corresponding Coulombic potential energies Ei and Em, are respectively: 

  

Φ𝑖 =
1

4𝜋𝜀0
[∑

𝑞𝑘

𝑅𝑖𝑘
+𝑘 ∑

𝑍𝑗

𝑅𝑖𝑗
𝑗 ] ;  𝐸𝑖 = 𝑞𝑖Φ𝑖    (3.11a) 

Φ𝑚 =
1

4𝜋𝜀0
[∑

𝑞𝑘

𝑅𝑘𝑚
+𝑘 ∑

𝑍𝑗

𝑅𝑗𝑚
𝑗 ] ;  𝐸𝑚 = 𝑍𝑚Φ𝑚         (3.11b) 

E𝐶𝑜𝑢𝑙,1−2 = ∑ 𝐸𝑖 +𝑖 ∑ 𝐸𝑚𝑚           (3.11c) 

 

When e-pixels of two approaching molecules overlap, besides the un-physical aspect of the matter, 

numerical singularities in the R-1 dependence may result for very short pixel-pixel distances; all pixel-

pixel distances shorter than half the stepsize of the pixel mesh are reset at half the stepsize (the 'collision 

avoidance' procedure). For the Coulombic energy of a crystal of polar molecules in a polar space group 

the van Eijck correction of eq. 3.7 is calculated using the nuclei as positive charges, and the electron 

charge pixels as negative charges. Interestingly, molecular dipoles calculated by eqs. (3.8) (3.9) are 

identical to the dipoles calculated by the GAUSSIAN program. E(cell dip) is added into the total PIXEL 

energy.  
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3.2.2.2. Calculation of the polarization energy 

Let i be the total electric field exerted by surrounding molecules at pixel i, i the polarizability at pixel 

i, and i the dipole induced at pixel i by that field. The linear polarization energy is:  

 

𝐸𝑃𝑜𝑙,𝑖 = −
1

2
𝜇𝑖𝜀𝑖 = −

1

2
𝛼𝑖𝜀𝑖

2    (3.12) 

 

i is empirically approximated in the PIXEL scheme as i =  (qi/Zatom) atom, where Zatom and atom  are 

the atomic charge and polarizability of the atom to whose basin the pixel belongs (Figure 3.1 and Tables 

2.1 and 2.2). The sum of i 's is equal to the total volume polarizability of the molecule.  

As before, when e-pixels of two molecules overlap, pixel-pixel distances are subjected to the 'collision 

avoidance' scheme (see above); then, the polarization energy at pixel i is damped as:   

    

𝐸𝑃𝑜𝑙,𝑖 = −
1

2
𝛼𝑖[𝜀𝑖𝑑𝑖]

2;  𝜀 ≤ 𝜀𝑚𝑎𝑥

𝐸𝑃𝑜𝑙,𝑖 = 0;  𝜀 > 𝜀𝑚𝑎𝑥

𝑑 𝑖 = 𝑒
−[

𝜀𝑖
(𝜀𝑚𝑎𝑥−𝜀𝑖)

]

}
 
 

 
 

   (3.13) 

                                                             

Where max , the limiting field, is an adjustable empirical parameter in the formulation. The total 

polarization energy at a molecule is the sum of polarization energies at each of its electron density pixels,  

EPol,TOT  =  EPol,i . 

  

3.2.2.3. Calculation of dispersion energies 

Dispersion energies are calculated as a sum of pixel-pixel terms in a London-type expression: 

 

𝐸𝐷𝑖𝑠𝑝,1−2 = −
3

4
∑ ∑

𝐸OS∙𝑓(𝑅)∙𝛼𝑖∙𝛼𝑗

(4𝜋𝜀0)2(𝑅𝑖𝑗)
6𝑗,2𝑖,1

𝑓(𝑅) = 𝑒𝑥𝑝 [−(
𝐷

𝑅𝑖𝑗
− 1)

2

]  for 𝑅𝑖𝑗 < 𝐷 
}
 

 

    (3.14) 

 

where D is an adjustable empirical parameter with measure units of length. EOS is the 'oscillator strength'.  

It is empirically approximated  by considering each pixel as a separate oscillator, with a formal ionization 

potential Ii, which in turn is a function of the ionization potential, I° of the atom to whose basin the pixel 

belongs, and of the distance between the pixel and the atomic nucleus, Ri:  

 

𝐸OS = √(𝐼𝑖 ∙ 𝐼𝑗)

𝐼𝑖 = 𝐼
o𝑒−𝛽∙𝑅𝑖

}      (3.15) 

 

The empirical parameter  is a function of the atom type (see Table 2.1a).  

 

3.2.2.4. Calculation of the repulsion energy 

For the repulsion energy, the total charge density overlap integral between molecules 1 and 2 is 

subdivided into contributions from pairs of atomic species m and n, Smn. The expressions are:   

 

𝑆1−2 = ∑ ∑ [𝜌𝑖(1) ∙ 𝜌𝑗(2)] ∙ 𝑉 = ∑ ∑ 𝑆𝑚𝑛𝑗,2𝑖,1𝑗,2𝑖,1

𝐸Rep,𝑚𝑛 = (𝐾1 − 𝐾2∆𝜒𝑚𝑛) ∙ 𝑆𝑚𝑛
}    (3.16) 
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where mn is the corresponding difference in Pauling electronegativity. K1 and and K2 are positive 

disposable parameters. For atoms with Z >30 (in this case Br and I) the presence of the d-electrons in 

the valence shell produces larger overlap and hence a slight (8%) decrease in K1 is introduced. The 

total repulsion energy is the sum over all m-n pairs, 𝐸Rep,tot = ∑ 𝐸Rep,𝑚𝑛𝑚,𝑛 . 

 

The total charge density overlap integral between molecules A and B is calculated over the original 

uncontracted charge densities. Therefore, the repulsion energy does not depend on the contraction level. 

 

CAUTION: The integration is done numerically by counting all pairs of overlapping charge density 

elements, for each of which the integral is (i)·(j)·dV, dV being the charge density elementary volume. 

The procedure is sensitive to the stepsize and to the accuracy of symmetry transformations. Pairs of 

symmetry-related molecules in crystals may have slightly different repulsion energies (0.5-1.0 kJ/mol).  

 

3.2.2.5. Calculation of the total interaction energy 

The total intermolecular Pixel interaction energy is: 

 

𝐸Tot = 𝐸Coul + 𝐸Pol + 𝐸Disp + 𝐸Rep     (3.17) 

 

In the above formula, ECoul should be corrected by the cell dipole energy of equation (3.7).  

 

The empirical parameters in the PIXEL formulation, that is, max, D, K1 and K2, were optimized 

considering (i) the agreement between calculated lattice energies and experimental heats of sublimation 

for organic crystals, (ii) interaction energies between molecular dimers in comparison with ab initio 

calculations, and (iii) qualitative agreement between PIXEL partitioned energies and Intermolecular 

Perturbation Theory (IMPT) partitioned energies.  

 

CAUTION: The numbers are max = 150 1010 V m-1 in eq. (3.13), D = 3.0 Å in eq. (3.14), K1 =  4800 

and K2 = 1200 in eq. (3.16) for energies in kJ mol-1 with electron densities in electrons Å–3. While these 

are suggested as universal parameters, very minor adjustments can be made to fit any desired 

thermochemical or structural property of the particular system under investigation, without substantial 

loss of physical realism. 

 

Coulombic, dispersion and repulsion energies are pairwise additive and hence can be subdivided into 

contributions from two molecules in the asymmetric unit (ASU). Polarization energies are not pairwise 

additive as they depend on the overall crystal electric field (for more detail see A. Gavezzotti, 

CrystEngComm 2008, 10, 389). Polarization energies over molecular pairs do not add up exactly to total 

lattice polarization energies.  

 

3.2.3 General layout  

The Pixel module calculates coulombic, polarization, dispersion and repulsion energies between 

separate, rigid molecules.  
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CAUTION: No intramolecular energies are calculated. The reference coordinate frame for position of 

atomic nuclei and of electron density pixels is the one used in the GAUSSIAN calculation. The 

procedure applies to a crystal with one (A) or two (A and B) molecular species, one or two molecules 

per asymmetric unit (ASU), and there is no way of extending it to more fragments.  

 

Module Pixmt2 reads an .oeh file and calculates the matrix/vector operations that transform from the 

molecular reference frame to coordinates in the crystal structure (see 3.2.9) and prepares an input file to 

GAUSSIAN (extension .gjf) with appropriate limits for the electron density cube, and the input file to 

PIXEL (extension .inp). As in the atom-atom modules (see Section 3.1 above), molecules in the cluster 

that represent the crystal structure are obtained by space group symmetry operations, subject to a cutoff 

distance between centers of mass of reference and surrounding molecules.  

  

3.2.4 Program inputs and outputs 

The input to PIXEL consists of: 

 

1) an electron density file for the A molecule, and one for the B molecule if any, extension  .den; these 

should come from a GAUSSIAN calculation which in turn requires an input file, extension gjf. The .den 

file is in the usual .cube format and can be also produced by running the formchk and cubegen ancillary 

programs of the GAUSSIAN package (see Section 3.2.5 below). 

 

2) a file with atomic parameters, extension .inp. 

 

3) a file (pixpar.par) with the parameters of the theory.  

 

The outputs are a printout file with the results of the calculation, extension .pri, and a file with molecule-

molecule energies, extension .mlc.  

 

3.2.5 How to run a PIXEL calculation 

 

1) Prepare a molecular model for the A molecule (x,y,z coordinates) and set up a oeh file. This could be 

the output of Retcif-Retcor ;  

 

2) Run module Pixmt2: the running command is        

 

run.pixmt2  NAME    (for file NAME.oeh) 

 

run.pixmt2 module (Unix/Linux) 

 

~/programs/MiCMoS/exe/pixmt2 <$1.oeh 

rm $1.gjf 

mv pixmt2.gjf $1.gjf 

rm $1.inp 

mv pixmt2.inp $1.inp 

 

Pixmt2 transforms from coordinates (.oeh) to local reference systems in the .gjf file. The final entry in 

the .oeh file (IL1, see also at the end of Section 1.4.3) can be zero, in which case the coordinates are left 

as they are, or = 3, in which case the coordinates are transformed to the inertial reference frame (normal 
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use). PIXEL will then apply the appropriate transformations to prepare the cluster of molecules for the 

actual calculation on crystals. Pixmt2 will also generate a NAME.inp file for PIXEL input, including for 

the crystal case, also the matrix/vector M2/t2 pair that relate the reference system of the unit cell with the 

one of the molecular inertial axes (see Section 3.2.8 and Appendix, Sections A3 and A4).  

 

3) Run GAUSSIAN for the electron density calculation. Pixmt2 prepares a .gjf input file that can be 

directly read by the program. If a different MO package is used, the input data and the output electron 

density file must be converted accordingly (see Appendix, Section A5 for a description of the .den 

density file format).  

 

Typically, the main input string is written as follows: 

 
#MP2/6-31G** guess=core nosym density=MP2 pop=esp cube=cards 

cube=frozencore 

 

The keyword cube=cards requires that specific instructions to generate the cube density file (Appendix, 

Section A5) be read just after the atom coordinates block, as follows: 

 
<blank line> 

Path_to_locate_density_file 

N0 X0 Y0 Z0  

N1 X1 Y1 Z1 

N2 X2 Y2 Z2 

N3 X3 Y3 Z3 

<blank line> 

 

where N0 is a format flag that should be set equal to 0, X0, Y0 and Y0 are the coordinates of the initial 

grid point in bohr, and Nn, Xn, Yn, Zn the number of points and step sizes along the three Cartesian 

axes. See https://gaussian.com/cubegen/ for more information. “Path_to_locate_density_file” must be 

replaced by the full path of the directory where the density file should be placed, such as, for example, 

c:\users\yourname\yourjob.den for Windows users or ~/yourdirectory/yourjob.den for Linux/Unix 

users. 

 

CAUTION: The last blank line below this set of instructions is mandatory. Otherwise, the program will 

end with an error message after the SCF procedure without printing the density! 

 

Normal use requires a valence only density (cube=frozencore), which in the recent releases of the 

program is the default calculation mode for post–Hartree–Fock Hamiltonians. It implies that inner–shell 

electrons do not contribute to the total correlation. More information (and options) can be found in the 

GAUSSIAN manual (https://gaussian.com/frozencore/). Please notice that the NoSym option must be 

chosen, so the automatic symmetry recognition and consequent, further transformations operated by 

GAUSSIAN are suppressed (M1 = identity matrix, t1 = 0, see Section 3.2.7 and Section A4 in the 

Appendix). 

 

CAUTION: The above-described procedure is recommended. However, the .gjf input file makes use 

of some obsolete/deprecated keywords (have a look at https://gaussian.com/obsolete/), in particular 

pop=esp and cube. Luckily, the current (2016) release of GAUSSIAN is still able to correctly handle 

these keywords. Future program developments might make the whole procedure obsolete, though.  

 

https://gaussian.com/cubegen/
https://gaussian.com/frozencore/
https://gaussian.com/obsolete/
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We here provide an alternative procedure, that employs up–to–date program commands and strings. 

First, pop=esp should be replaced by the equivalent pop=MK one. This implies that, if the density=MP2 

keyword is also specified, atomic charges are evaluated by fitting the MP2–derived electrostatic 

potential at the points of a grid defined according to Mertz & Kollman (B. H. Besler, K. M. Mertz, P. 

A. Kollman, J. Comput. Chem. 1990, 11, 431–439). See https://gaussian.com/population/ for more 

information. Second, you should explicitly require that the checkpoint file be written. Third, the “cube=” 

instructions must be omitted, as well as the corresponding cube card strings after the atom coordinates 

input block. In summary, the typical GAUSSIAN input command line should now look something like: 

 
%Chk=yourjob.chk 

#MP2/6-31G** guess=core nosym density=MP2 pop=MK 

 

After the calculation is complete, you should call the ancillary program formchk to format the checkpoint 

file according to: 

 
formchk yourjob.chk yourjob.fchk 

 

Finally, the density file can be produced by the cubegen routine: 

 
cubegen n density=MP2 yourjob.fchk yourjob.den -3 h 

 

Where n is the number of processors you choose to employ, density=MP2 calls for the Møller–Plesset 

density, .fchk and .den are the input and output files, –3 is a flag corresponding to a medium–spaced grid 

(6 points/bohr) and h is a flag to include the header in the density cube file. More information can be 

found at https://gaussian.com/cubegen/. 

 

The two procedures for generating the density grid file give the same cohesive energies within ~2 kJ/mol 

(0.5 kcal/mol) per ASU. For example, the energies of the P212121 polymorph of naphthalene are as 

follows: 

 

Procedure ECoul EPol EDisp ERep ETot 

recommended -29.6 -11.9 -94.9 53.6 -82.8 

formchk+cubegen -31.1 -12.4 -95.0 54.2 -84.4 

 

Incidentally, this dependence on grid shape is another of the many computational uncertainty factors 

that may well be of the same order of magnitude as differences between crystal polymorphs.  

 

4) Repeat steps 1-3 for the B molecule if needed.  

 

5) Prepare the parameter file, pixpar.par (see Section 3.2.6). 

 

6) Run PIXEL making sure that all necessary data are in the same directory.  

 

Pixel running command (make sure file pixpar.par is present, see Section 3.2.6): 

 

run.pixelc   name1  name2   name3   name4 

 

Where name1–name4 have the following meaning: 

- name1.inp line input file 

https://gaussian.com/population/
https://gaussian.com/cubegen/
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- name2pix.pri printout with energies 

- name2.mlc .mlc file with molecule-molecule energies  

- name3.den A-molecule electron density file 

- name4.den B-molecule electron density file   

(name4=blank if there is only one molecular species in the calculation) 

 
run.pixelc module (Unix/Linux) 

 

rm fort.* 

cp pixpar.par pixel.pmt 

cp $1.inp pixel.inp 

cp $3.den solu.den 

cp $4.den solv.den 

~/programs/MiCMoS/exe/pixelc 

rm $2pix.pri 

mv pixel.oxp $2pix.pri 

rm $2.mlc 

mv pixel.mlc $2.mlc  

rm fort.* 

rm solu.den 

rm solv.den 

rm pixel.pmt 

rm pixel.inp  
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3.2.6 Description of the pixpar.par file 

 

CAUTION: if the default version of the theory is adopted, all these inputs are zero and the default 

quantities are automatically used. 

 

All free format 

 

1) first line: 

• collis  collision parameter (write 0; defaults to one half the step in electron density) 

• ddamp  damping distance for dispersion (defaults to 3.00)  

• fiemax      max field in calculation of polarization (defaults to 150) 1010 implicit 

• corep1      factor K1 in calculation of overlap repulsion energy, E = K1+K2(Del) 

where Del is a difference in electronegativity; default is K1=4800 

• corep2      factor K2 as above; default is K2=1200 

 

2) second line, electron density trimmers for A molecule: 

• nrdu         contraction level (defaults to 4) 

• ivalu         = 0 valence electron density (normal operation), =1 total electron density 

                         (e.g. in positive ions)  

• romiu       minimum value of charge in a density pixel (defaults to 0.000001) 

• romau      max value for a charge density pixel (defaults to 9999) 

 

3) the same for B molecule (give zeros if nmsolv=0) 

nrdv, ivalv, romiv, romav  

 

4) threen        threshold for printing absolute molecule-molecule energies in the output 

    idibar      = 0 molecule-molecule distances between centers of mass 

                     = 1 distances between centers of coordinates  

 

If this input line is missing the parameters are set to 3.0 and 0.  

 

3.2.7 Description of the .inp file 

 

All free format. 

Line 1) A title line 

Line 2) molecular specifiers: 

• nmsolu     number of A molecules   

for the crystal case, NMSOLU=1 (the n. of molecules is determined by the 

program) 

• nmsolv     number of B molecules  

for the crystal case, NMSOLV=1 for 2 molecules in ASU 

• nasolu      number of atoms in A molecule 

• nasolv      number of atoms in B molecule 

Line 3a) chargu   net charge for the A molecule 

Line 4a) for each atom in the A molecule: 

• sequence number 

• atom type (Table 1.1)  
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• a dummy "atomic charge" parameter (for compatibility with old versions); = 0.0 

• atomic  polarizability; polarizabilities are taken from database if left = 0 (suggested) 

Line 3b) if nmsolv > 0:   chargv net charge, as in 3) above, for molecule B 

Line 4b) if nmsolv > 0:   as in 4a), for each atom in the B molecule 

 

The Pixmt2 module usually supplies the following input lines in file .inp automatically:  

 

Line 5) cutmi, cutma 

Symmetry operations that produce repeated molecules whose distance from the central one is between 

cutmi and cutma are automatically included in crystal model. When there are two molecules in the ASU, 

a symmetry operation is included if at least one of the four distances (A-A', A-B', B-A' or B-B') is in the 

range. A cutoff of 15 Å for non-charged compounds, and of 30 Å for zwitterions, is usually enough to 

ensure convergence.  

Setting cutmi=cutma=0 suppresses the neighbor search, and the calculation includes only molecules for 

the supplied symmetry operations. In this case, energies are potential energies for the central molecule 

in the field of the surrounding ones, and not lattice energies (i.e. they are not multiplied by 0.5 as normal 

in lattice sums).  

 

Line 6) cell parameters 

 

Line 7) M1, t1    matrix/vector pair (matrix by rows); see Appendix, Section A4. Normally 

M1=unit matrix and t1= [0 0 0] if the Nosym option is used in GAUSSIAN. 

Line 8) M2, t2   matrix/vector pair (matrix by rows), from Pixmt2 module (see also the 

Reference Materials in the Appendix, Section A4). 

 

9) NPZ, number of symmetry operations in space group (or of included molecules if cutma=0) 

  

10) npz matrix/vector pairs, one pair for each symmetry operation  
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3.2.8 The PIXEL output files 

While the program is running, some output appears on screen. The pri file has a title, some echo of input 

parameters, and detail on the electron density screenout and condensation procedures. Then the PIXEL 

energies: Coulombic, polarization, dispersion, repulsion and total. For crystals, factors of 1/2 are 

appropriately applied so that these numbers are the computational equivalent of the enthalpy of 

sublimation. At the end, the output file has a list of molecule-molecule energies:  

 

A···A i-th molecule A to j-th symmetry-transformed molecule A; distance between centers of 

mass, coul, pol, disp, rep, total PIXEL energy;  

A···B     i-th molecule A to j-th symmetry-transformed molecule B; etc. for the B···A and B···B 

lists. 

 

These molecule-molecule energies along with the symmetry operation connecting the reference and 

symmetry-related molecule, also appear in a separate file extension .mlc.  

 

CAUTION: More than total lattice energies, this is the key feature that makes PIXEL a useful and 

reliable tool: perusal of the relative entity of these energies, along with the structure of the corresponding 

dimer, give solid indications on the relative importance of various kinds of interactions in crystal 

packing. It is usually if not always the case that these indications are in contrast with conclusions derived 

from geometric analysis of short contacts, or from fancy surmise of exotic bond types. It is usually the 

case that packing factors thought important on a geometrical basis, like short atom-atom intermolecular 

distances giving rise to a fanciful bonding literature, are vigorously contradicted by consideration of the 

relative energies.  

 

Scripts for the interpretation of this output have been prepared by some PIXEL users groups and may 

be available in the net.  
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4. General flowchart of Monte Carlo and Dynamics modules 
 

The MiCMoS platform includes modules to perform Monte Carlo (MC) or Molecular Dynamics (MD) 

simulations of the condensed states of organic compounds. Figure 4.1 gives a flow diagram of the 

organization of the MC and MD simulations. Auxiliary programs help with the preparation of force field 

files and of structure-data files for liquids or for solids. Other modules provide trajectory analysis and 

other kinds of structural analysis. Please refer to the following Sections for a full description. 
 

 

 
Figure 4.1. Block diagram of the Monte Carlo and Molecular Dynamics manifold. Circles are files, 

squares are program modules. Blue (green) boxes denote auxiliary (analysis) programs. 

 

The Pretop module (Figure 4.1, Section 5.4) reads an .oeh file and prepares the best possible 

approximation to the pertinent force field file, except for the separation between core and slave atoms 

in MC (see Sectios 6.2 and 6.6.4) that must be handled by the user. The Boxcry and Boxliq routines 

prepare the starting simulation boxes of pure substances, whereas Boxsolv produces two-component 

simulation boxes of various kind. They are described in Sections 5.1–5.3. 

 

4.1 Available intermolecular potentials 
 

Monte Carlo e Molecular Dynamics calculations rely on the same AA potentials described in Section 2, 

that is, AA–CLP (All Atoms–Coulomb, London and Pauli, Section 2.1.1) or AA–LJC (All Atoms–

Lennard-Jones and Coulomb, Section 2.1.2).  
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5.  Interface between structural files and MC or MD files 
 

5.1 The Boxcry module 
 

This module prepares a computational box with molecules in a crystal structure, for space groups up to 

orthorhombic and for up to 2 molecules in the asymmetric unit. The formats are .bxi for MC and .dat 

for MD. Boxes of .bxi type for space groups with non-diagonal symmetries (e.g fourfold axes) cannot 

be dealt with in this routine. For MD, crystal boxes of any symmetry in .dat form can be prepared by 

user-defined scripts.  

 

CAUTION: Singularities can arise for molecules in special crystallographic positions (see Appendix, 

Section A6). Moreover, sometimes the box thus obtained is not very compact, with protrusions and 

voids due to uncomfortable layout of the crystal fractional atomic coordinates (e.g., coordinates given 

very far from the cell origin). A preliminary MC or MD run will take care of this by replacing molecules 

out of box boundaries.  

 

The Boxcry running command is:  

 

run.boxcry NAME 

where NAME is the name of a NAME.oeh file with fractional crystal coordinates, and also the name of 

the NAME.sla file needed only if there are slave atoms (only for MC, see Sections 6.2 and 6.6.4). There 

must be two sets of slave atom lines if there are solute and solvent (i.e. two molecular species in the 

crystal).  

 

run.boxcry module (Unix/Linux) 

 

cp $1.oeh boxcry.oeh 

cp $1.sla boxcry.sla 

~/programs/MiCMoS/exe/boxcry 

rm $1cry.bxi 

rm $1cry.dat 

rm $1box.pri 

mv boxcry.dat $1cry.dat 

mv boxcry.bxi $1cry.bxi 

mv boxcry.pri $1box.pri 

rm boxcry.oeh 

rm boxcry.sla 

 

Answer the dialog mode, which asks for: 

 

NREPA, NREPB, NREPC  Number of cells along a, b and c to build the simulation box 

 

The output is in part printed on screen, but the program generates also the following files: 

 

- NAMEcry.bxi  This is the MC input simulation box, in a contracted format  

- NAMEcry.dat:        .dat file with atomic coordinates for MD input or for graphics of the 

entire crystal box (format: see Section 5.1.3) 

- NAMEbox.pri:       detailed printout with orthogonal coordinates of all molecules in cell 
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5.1.1 The .bxi/.bxo format (MC only) 

Boxcry builds the initial simulation box by replicating the crystallographic unit cell a certain number of 

times along a, b and c vectors. The user specifies the number of replicas for each direction (see above). 

The program uses the information contained in the .oeh file produced by the Retcif, Retcor and Retcha 

modules (see Section 1). The .bxi file, which will enter the subsequent MC procedure, contains all the 

information concerning the position and mutual orientation of the molecules in the simulation box in a 

rigid-body six-parameter format (Table 5.1). A MC run also produces an output .bxo file in the same 

format, which can be used to restart the simulation if needed. 
 

Table 5.1 

The MC-box file (input .bxi and output .bxo, all free format). It carries information on the molecular 

position and orientation and on the number of slave atoms (for MC only, Section 6.6.4). They are 

prepared by Boxliq and Boxcry but should not be conusfed with .dat files (Section 5.1.3) that carry 

atomic coordinates.  

  

1) NMSOLU   number of solute molecules, number of the last simulation step 

 

NMSOLU blocks, each with: 

 

a) x, y, z of the centre of mass of each solute molecule (Å units), three Euler rotation angles 

(degrees, see Appendix, Section A5), ISYMM indicator (see below), three step type number n 

for variation of  x, y, z (usually 1) and three step type number for variation of the three angles 

(usually 2). These numbers correspond to a series of stepsizes specified in the run-control, mci 

input file, Section 6.6.2: the actual step in an MC move is (rand-0.5)·step, where rand is a 

random number, and step is the stepsize specified in the list. These numbers are usually 1 and 

2, respectively, meaning that the first two stepsizes in the list define the rigid-body overall 

molecular motion. Setting these number(s) to zero suppresses the variation of the corresponding 

degree of freedom (e.g., to constrain some center-of-mass displacements and/or rotations). 

Similar step type numbers are also defined for internal degrees of freedom, bond stretching, 

bending and torsions, in MC moves (Section 6.6.4). 

 

b)  Only if some slave atoms are present in a MC run, the contents of the .sla file for the solute 

(see Sections 6.2 and 6.6.4). 

 

2) NMSOLV    number of solvent molecules 

NMSOLV blocks Same as 1a), 1b) for the solvent 

 

3) BOXX, BOXY, BOXZ, ALF, BET, GAM, NX, NY, NZ 

BOXX, BOXY, BOXZ: Computational box dimensions edges (in Å);  

ALF, BET, GAM: Computational box angles (deg);  

NX, NY, NZ: Number of repetitions of the unit cell along the three axes for a crystal calculation 

 (1,1,1 if box is for a liquid). Needed only for periodic-box runs, otherwise may be set to zero.  

 

5.1.2 How Boxcry works: the ISYMM indicator (MC only) 

For the simulation of crystal structures, an ISYMM indicator (Table 5.2) is needed to specify which 

symmetry operation must be performed on the fundamental molecule to obtain the proper orientation of 

each molecule in the crystal box. This information is automatically provided by the Boxcry module.  
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CAUTION: Known bug: the automatic algorithm runs into singularities for some special positions in 

some space groups. You may solve these issues by lowering the symmetry of your space group before 

entering the MiCMoS system. To this end, the free Bilbao Crystallographic web Server can assist you 

(https://www.cryst.ehu.es). 

 

Table 5.2 

ISYMM codes to be specified in the .bxi/.bxo files (Section 5.1.1).  

Operation ISYMM Operation ISYMM Operation ISYMM Operation 

Pure translation 0 x, y, z     

Mirror plane or glide plane 1 –x, y, z 2 x, –y, z 3 x, y, –z 

Twofold axis or twofold screw    4 –x, –y, z 5 –x, y, –z 6 x, –y, –z 

Inversion center                            7 –x, –y, –z     

 

The .bxi crystal box has the number of molecules corresponding to the number of cell replications given 

in the input. Figure 5.1 shows some pictorial schemes for the operation of Boxcry. The ISYMM indicator 

is prepared by comparing the signs of symmetry-related atoms in different molecules, when all 

molecules have been set in their inertial reference frame. This does not work when molecules are at 

some special positions with zero coordinates or when there are coordinate interchanges, e.g. x = –y. All 

this is unnecessary in MD that works on explicit coordinate files.  

 

 
Figure 5.1. Building of a crystal simulation box 

 

Together with Euler angles and centre of mass position, ISYMM allows to properly generate the 

coordinates of all the symmetry–related molecules in the box. This procedure should work well for all 

the space groups up to the Orthorhombic system.  
 

5.1.3 Format of .dat files 

These files contain explicit coordinates of all atoms in the simulation box in Å units in the Cartesian 

reference frame of the simulation box (the corresponding .gro format of the GROMACS platform uses 

nm units). The .dat format covers several purposes, including MC trajectories (mcc.dat and mco.dat, 

Section 6.6), MD input/output coordinates (md.dat and .mdo, Section 7.1) and trajectories (.mdc, Section 

7.1). In MD also the atomic velocities and forces are printed in the last trajectory frame (.mdo file) as 

m·s–1 and N.  

The .dat format is set for graphics by SchaKal (E. Keller) but conversion to any other graphics file 

format is straightforward.  

Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed. 

  

1) “TITL” (a4), Title line (10a4), NMOVE (i10).  

“TITL” is the line identifier in SchaKal and MiCMoS analysis modules (do not 

change!);  

https://www.cryst.ehu.es/
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‘Title line’ is any string you want (typically, something like “trajectory at MD/MC step 

number…”);  

NMOVE; number of MC or MD move to which coordinates are referring to.           

2) “#” (1x), NMSOLU, NMSOLV, NASOLU, NASOLV, IVEL (5i5)  

“#” is the line identifier (do not change!). This means that the following information are 

skipped when read by SchaKal, but they are still used by utilities programs in the 

MiCMoS environment. 

NMSOLU: number of solute molecules; 

NMSOLV: number of solvent molecules;  

NASOLU: number of atoms in each solute molecule;  

NASOLV: number of atoms in each solvent molecule;  

IVEL: a 0/1  =0: atomic velocities and forces are not present; 

=1: atomic velocities and forces are read in MD after the “END” 

keyword (see below).  

3) “#” (1x); a, b, c (3f10.4); , ,  (3f10.3); NREPA, NREPB, NREPC (3i5) 

This line must bear non–zero quantities whenever a periodic simulation box is employed 

(see for example the MD case, Section 7.6.3).  

“#” is the line identifier (do not change!).  

a, b, c: edge lengths of the whole simulation box, in Å. 

, , : angles of the whole simulation box, in degrees. 

NREPA, NREPB, NREPC: number of repetitions of the crystallographic unit cell to 

build the whole simulation box. This means that the actual crystallographic cell edges 

ac, bc, cc can be found according to ac = a / NREPA bc = b /NREPB and cc = c / NREPC. 

3)  “CELL” (a4); X, Y, Z, ALP, BET, GAM (6f6.1)  

After the line identifier, this is a dummy line, which must be 1. 1. 1. 90. 90. 90. in the 

correct format, as coordinates are always Cartesian orthogonal (see above). 

4)  “ATOM” (a4, 2x); IAT (a2); X, Y, Z (3f10.3) 

“ATOM” is the line identifier (do not change!).  

IAT: symbol of atom species.  

X, Y, Z: atomic coordinates, in Å.  

Line (4) is replicated NASOLU·NMSOLU + NASOLV·NMSOLV times, one for each atom in the 

simulation box. 

5)  “END” (a3) 

“END”: line identifier (do not change!). It signals the end of the coordinates section. 

6) Only for MD, if IVEL = 1, further NASOLU·NMSOLU + NASOLV·NMSOLV lines are attached to 

the coordinates section, after the “END” keyword. Information are given as follows: 

NMOL, NATOM, Vx, Vy, Vz, Fx, Fy, Fz (i5, i3, 3d14.6, 1x, 3d12.4) 
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  NMOL: molecule id number; 

  NATOM: atom id number for the NMOLth molecule; 

  Vx, Vy, Vz: Cartesian components of the atomic velocity (m·s–1); 

  Fx, Fy, Fz: Cartesian components of the atomic force (N). 

 

5.2 The Boxliq module 
 

This module prepares a computational box containing molecules in an approximate liquid structure. 

Molecules are at sites of a body-centered pseudo-cell.   

 

Running command:   

 

run.boxliq  NAME 

NAME refers to a NAME.oeh file with orthogonal coordinates in a local (e.g. inertial) reference (for a 

molecule out of a crystal structure, this can be obtained e.g. from the Retcor module, file NAMEort.oeh: 

see Section 1.1), and the name of the .sla file with slave atoms if any (only for MC simulations, Sections 

6.2 and 6.6.4). 

 

run.boxliq module (Unix/Linux) 

 

cp $1.oeh boxliq.oeh 

cp $1.sla boxliq.sla 

~/programs/MiCMoS/exe/boxliq 

rm $1liq.bxi 

mv boxliq.bxi $1liq.bxi 

rm boxliq.oeh 

rm boxliq.sla 

 

The output is file NAMEliq.bxi: input liquid box. This file has the same format detailed in Table 5.1 

above, but there is no corresponding .dat file, as there was in Boxcry. Some information is printed on 

screen.  

 

Answer the dialog mode, which asks for: 

 

- NREP   The number of repetitions of a body centered pseudo-cell; the final box contains 

2(NREP+1)3 molecules 

- FACT    Expansion factor, controls the spacing between molecules and the final box 

density. Usually FACT = 1.0 to 1.5 is ok. Adjust until the final printed density 

is acceptable, somewhat below the experimental value to facilitate the 

subsequent optimization;  

- RANDT      Small random displacement from cell sites. Usually 0.5 Å is ok. 

- TAUSPREAD    Controls the spread of starting random torsion angles for slave atoms, from the 

values given in the .sla file (see Sections 6.2 and 6.6.4). Usually 10° is ok. 

- ISYMM      Controls whether the liquid is a racemate or not. 

= 0  All molecules have the same chirality,  

= 1  Generates half molecules of each chirality for a racemic liquid by setting half 

molecules as mirror images.  
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FACT, TAUSPREAD and RANDT control the expansion and randomization of the original box. 

Usually many hard contacts arise, but running a preliminary MC run (even with a fully rigid molecule 

without slave atoms etc., if the aim is MD) will get rid of these contacts and prepare a reasonable starting 

geometry. Figure 5.2 shows some pictorial schemes for the operation of Boxliq. A preliminary MC run 

is anyway always needed to run  MD in order to have a starting .dat file (mco.dat).  

 

 
Figure 5.2. Generation of next–neighbors pair in a simulation box of the liquid phase. Two molecules 

are shown in a “body centered” cubic lattice, with a = 31/2·d/2; each molecule has a random orientation 

and is displaced at random from perfect lattice nodes. The starting box is repeated n = NREP times in x, 

y, z, generating a total of 2(n+1)3 molecules. If a racemic liquid is desired, every second molecule is set 

with ISYMM = 7  in the .bxi file (Table 5.1).  
 

5.3 The Boxsol module 
 

This module merges two MC computational boxes (extension .bxi or .bxo) into a single box. The 

program reads a “solute” box, a “solvent” box, and deletes as many solvent molecules as necessary to 

make approximate space for the solutes. Each box may come from Boxliq, Boxcry, or manual 

preparation.  The procedure is very approximate and relies on an estimate of the diameters of the two 

molecules. Quite often very hard contacts result, and extensive MC energy minimization cycles may be 

needed to reach a satisfactory configuration.   

 

Running command:   

 

run.boxsol name1 name2  name3 

where name1 is the solute box, name2 is the solvent box, and name3 is the resulting solution file.  

 

run.boxsol module (Unix/Linux) 

 

cp $1 mcboxu.sol 

cp $2 mcboxv.sol 

~/programs/MiCMoS/exe/boxsol  

rm $3 

mv mcboxs.out $3 

rm mcboxu.sol 

rm mcboxv.sol 
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You should answer the dialog mode, which asks for:  

- n. of slave atom lines (Sections 6.2 and 6.6.4) in the name1 and name2 boxes; 

- X, Y, Z shifts for origin in name1 box (usually all zero); 

- X, Y, Z shifts for name2 box (usually zero);  

- approximate molecular diameters for solute and solvent, and a 'tolerance factor'; solvents are 

deleted when the distance to a solute is less than the sum of molecular radii times the tolerance. 

In practice, go by trial and error until the desired solute/solvent ratio is reached. 
 

5.4 The Pretop module 
 

Reads a .oeh file and generates a template topology file with all possible stretch and bend potential sites. 

Depending on the value of the penultimate .oeh entry,  The force constants are estimated by a balanced 

choice between ab initio results on test systems and comparison with force constants in the Gromacs 

environment. Tentative torsion functions are generated for each atom quartet. The program asks for 3 

scaling factors that modulate the estimated force constants of stretching (ks), bending (kb) and torsions 

(ktors), to be given as input from keyboard. The automatic force constants are slightly underestimated for 

flexible molecules; fudge factors of about 1.5 should favor molecular stiffness reducing excess 

distortions. A detailed description of the procedure is given in the Appendix, Section A7. 

The coordinate reference frame is also changed according to the following procedure. First, 

crystallographic coordinates are translated into the crystallophysical Cartesian reference frame. Then, 

atomic coordinates are back-translated so that the origin coincides with the centre of mass and eventually 

refereed to the inertial reference frame by multiplication of the matrix of inertial eigenvectors.  

 

Running command:  

 

run.pretop NAME 

 

where NAME is the name of the NAME.oeh file (Section 1.4.3) and possibly of the NAME.sla file (only 

for MC simulations, see Sections 6.2 and 6.6.4). The program prints an output NAMEpre.pri file with 

various comments and a NAMEtry.top file, with the computed topology. 

 

run.pretop module (Unix/Linux) 

 

cp $1.oeh pretop.oeh 

cp $1.sla pretop.sla 

~/programs/MiCMoS/exe/pretop  

rm $1try.top 

mv pretop.top $1try.top 

rm $1pre.pri 

mv pretop.pri $1pre.pri 

rm pretop.oeh 

rm pretop.sla 

 

Answer the dialog mode, which will ask for: 

 

ks,kb,kt Three fudge factors that multiply stretch, bend and torsion force 

constants given in the output .top file. With this tool, the user can tune 

the force constants; give 1.0 to keep standards, or some factor > 1 or < 

1 to increase or decrease the respective force constants. 
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CAUTION: Pretop is a tentative procedure and the resulting force constants and interaction sites should 

be carefully checked. No force field is really universal; in classical simulations of organic crystals, 

torsional potentials are crucial. A library of such profiles from quantum chemistry has been published 

in Gavezzotti & Lo Presti, J. Appl. Cryst. 2019, 52, 1253–1263 and is available in Section A7.3 of the 

Appendix (Table A7.5). A databank of .top files of simple organic molecules for MC and MD runs of 

MiCMoS, is also available on https://sites.unimi.it/xtal_chem_group.  

 

5.5 The Excbox module 
 

Excbox trims a mc.bxi and mc.dat files by deleting all molecules whose centre of mass is farther than a 

preset limit from the cluster center. This module allows editing the computational box, shaping a cluster 

of molecules with a roughly spherical radius. This can be useful, for example, to simulate a liquid 

droplet. Note that you need both a .bxi and a .dat file to run Excbox, but only the latter must be used, 

for example, in MD simulations (see Section 7). 

 

Running command: 

 

run.excbox name1 name2 

 

Here name1 is the name of the .bxi (see Section 5.1.1) and .dat (see Section 5.1.3) files, while name2 is 

the corresponding output flag. The program will create name2.bxi and name2.dat files, which contain 

only the information on the molecules that survived this trimming procedure. 

 

run.excbox module (Unix/Linux) 

 

cp $1.bxi excbin.bxi 

cp $1.dat excbin.dat 

~/programs/MiCMoS/exe/excbox 

rm $2.bxi 

mv excbout.bxi $2.bxi 

rm $2.dat 

mv excbout.dat $2.dat 

rm excbin.* 

 

Answer the dialog mode, which asks for: 

 

dimu,dimv  Cutoff distance for solute and solvent molecules. Molecules more 

distant by dimu or dimv from the system centre of mass (in Å) will not 

be included in the final cluster. 

nslavu,nslavv  Number of slave atom cards (see Sections 6.6.3 and 6.6.4) for solute 

and solvent, if any. Input 0 if no slave atoms are present. 

 

The program checks for consistency of the number of solute and solvent molecules present in .bxi and 

.dat files. If the counts do not correspond to each other, Excbox stops with an error message.  

 

CAUTION: The program does not update the number of molecules in the output .dat and .bxi files. The 

user must edit such files and correct the header. 

https://sites.unimi.it/xtal_chem_group
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5.6 The Nanosolv module 
 

Nanosolv merges two .dat frame files, one containing a nanoparticle produced by the routine Nanocut 

(Section 8.9), and the other a liquid, possibly equilibrated, produced by either the Boxliq+MC or MD 

procedures. The program makes the centre of mass of the nanoparticle coincident with that of the liquid 

and erases all the solvent molecules that lie at contact distance with any of the atoms in the nanoparticle. 

The resulting .dat file should be a reasonable starting point for any subsequent MD simulation.  

 

Running command: 

 

run.nanosolv name1 name2 

 

Where “name1” is the name of the .dat frame of the nanoparticle, and “name2” that of the liquid.  

 

run.nanosolv module (Unix/Linux) 

 

rm $1solv.dat 

cp $1.dat nanoparticle.dat 

cp $2.dat liquid.dat 

~/programs/MiCMoS/exe/nanosolv 

mv nanosolv.dat $1solv.dat 

rm nanoparticle.dat 

rm liquid.dat 

 

The user is prompted to give from keybord the following quantity: 

 

atol   Tolerance parameter (in Å) to define the allowed contact distance 

between solute (nanoparticle) atoms and solvent ones. A solvent 

molecule is erased if and only if any of its atoms i lies closer than 

rvdW(i) + rvdW(j) + atol to any solute (nanoparticle) atom j. rvdW(i) 

and rvdW(j) are the corresponding van der Waals radii of the two atoms, 

taken from J.D. Dunitz, A. Gavezzotti, Attractions and Repulsions  in  

Molecular  Crystals, Acc. Chem. Res., 1999, 32, 677. 

 

The program produces a third .dat frame, called name1solv.dat, with the solvated nanoparticle. Some 

useful information (number of erased molecules, atom count…) is printed on screen.  

 

If the number of molecules in the liquid phase is reduced by more than 50 % during merging, the user 

is prompted to choose to either stop the calculation or to continue anyway. Note that too few molecules 

in the liquid box might be insufficient to produce a fully solvated nanoparticle, especially if the latter is 

relatively large. 

 

CAUTION: Note that Nanosolv cannot deal with slave atoms. 
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5.7 The Solution module 
 

The program solution.for merges two .dat frame files, both containing (possibly) equilibrated liquids. 

The idea is to prepare a solution with the desired concentration, ready to enter the Molecular Dynamics 

module without the need of pre-equilibration with Monte Carlo. The solute box is put at the centre of 

the solvent box. A certain number of solute molecules is conserved, depending on the desired 

concentration. Then, all the solvent molecules that lie too close to any of the surviving solute molecules 

are erased. It is applied a proximity criterion: any solvent molecule with any atom closer than 

[RvdW]+atol to any solute atom will be erased. RvdW is the van der Waals radius (see taken from J. D. 

Dunitz, A. Gavezzotti, Acc. Chem. Res., 1999, 32, 677) and atol is a user-defined tolerance parameter, 

expressed in Å, that is given from keyboard when the program is executed.  

 

Current program limits are 10,000 atoms and 8,000 molecules in the two boxes. The running command 

is: 

 

run.solution name1 name2 

 

where name1 is the box containing the solute molecules, and name2 that containing the solvent 

molecules. The output is a third .dat box file named name1solv.dat, which contains the desired number 

of solute units embedded in solvent molecules.  

 

run.solution module (Unix/Linux) 

 

# 

rm $1solv.dat 

cp $1.dat solute.dat 

cp $2.dat solvent.dat 

~/programs/MiCMoS/exe/solution 

mv solution.dat $1solv.dat 

rm solute.dat 

rm solvent.dat 

 

The user is prompted to give from keybord the following quantities: 

 

conc, atol,enlarge conc is the desired concentration, in mol·L–1. A number of solute 

molecules compliant with conc will be selected randomly from the 

solute box name1.dat. 

 atol is the contact tolerance parameter, in Å. The two starting boxes will 

be superimposed, and the minimum allowed contact distance for solute-

solvent atom pairs i,j will be RvdW(i)+RvdW(j)+atol. Any solvent 

molecule with one or more contacts closer than this limit with surviving 

solutes will be erased. Larger atol’s mean that more solvent molecules 

will be eliminated.  

 enlarge is the cell enlargement factor. It has been introduced since 

MiCMoS v2.3 to avoid clashes on the borders of the merged simulation 

box. These could arise if one or more solute molecule falls close to the 

box boundaries. This parameter must be 1.0 or greater; cell edges of the 
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final box are multiplied by enlarge. Thus, for example, 1.2 means that 

the cell boxes are enlarged by 20 % in the initial frame.  

 

CAUTION: Note that Solution cannot deal with slave atoms. 

 

CAUTION: Obviously, the resulting merged box is not equilbrated, as it may contain voids due to the 

elimination of solvent units. Moreover, some residual solute-solvent steric clashes could survive, 

especially if atol is low or zero. If this is the case, re-run Solution by increasing atol. Probably, you 

should play a bit with concentration and atol to produce a satisfactory starting box. 

 

Re-equilibration of the solution through Molecular Dynamics might cause the volume of the box to 

change. This in turn implies that the actual concentration could be slightly different from the one set up 

in your keyboard input. It is always wise to check the actual concentration c (in mol·L–1) at equilibrium 

according with: 

𝑐 =
𝑛𝑠𝑜𝑙𝑢
𝑁𝐴

∙
1027

𝑉𝑏𝑜𝑥
 

 

Where nsolu is the number of solutes, Vbox is the volume of the simulation box in Å3, NA is the Avogadro 

constant (6.02214076·1023 mol–1) and 1027 is the conversion factor from Å–3 to L–1.  

 

 

5.8 The Confbox module 
 

The program confbox.for allows to shape a previously equilibrated liquid box with extension .dat into a 

simulation box suitable for molecular dynamics run in confined space. Please refer to Section 7.2.5 for 

a complete explanation of the confinement algorithm.  

The routine confbox.for fulfills two tasks:  

(i) prepares the parameter file barrier.par, which specifies the geometrical details of the 

confined space and the force field parameters of the barrier; 

(ii) prepares a new simulation box named nameconfined.dat, where “name” is usually the name 

of the substance you are dealing with, which is ready for the confined simulation. 

Essentially, confbox.for deletes all the molecules which bear an atom in close contact (less 

than the sum of the van der Waals radii) with the barriers that set the limits of the confined 

space. 

The running command is: 

 

run.confbox NAME 

 

where NAME correspond to the NAME.dat box of any previously equilibrated liquid. The program 

produces a file barrier.par (the parameter file of the barrier) and a new file NAMEconfined.dat (the new 

simulation box). At the same time, the original NAME.dat box file is renamed into 

NAMEunconfined.dat to avoid that it erroneously enters the dynamics when the mdmain job is executed 

(see Section 7.6.1).  
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run.confbox module (Unix/Linux) 

 
rm input.dat 

rm intest.dat 

rm barrier.par 

cp $1.dat input.dat 

~/programs/MiCMoS/exe/confbox 

cat confined.dat >> intest.dat 

mv intest.dat $1confined.dat 

mv $1.dat $1unconfined.dat 

echo ' ' 

echo '################################################' 

echo '# ORIGINAL .DAT FILE SAVED INTO UNCONFINED.DAT #' 

echo '################################################' 

echo ' ' 

rm input.dat 

rm confined.dat 

 

The following parameters are requested from keyboard: 

 

inano  type of confinement. Type either 0 for none (full periodic system) or 1 

for the nanolayer, 2 for the nanotube and 3 for the nanocavity.  

iplane  active confining planes (type either XY, XZ or YZ), not required if 

inano=3. This instructions sets how the barriers are oriented with 

respect to the main crystallophysical reference system. 

thickness  starting distances between opposite pairs of barriers (in Å). Type 0 to 

set the thickness of the confined space equal to the corresponding whole 

box edge.  

rvdw, ispbar, offset Each barrier is built as a plane made by an uniform grid of dummy 

atoms (pixels); see Section 7.2.5 for a complete description of the 

algorithm.  

rvdw is the van der Waals radius of each pixel.  

ispbar is the corresponding atomic species code number, according 

with the entries in Table 1.1 (Section 1.4.2). Thus, ispbar sets the A6, 

A12 Lennard-Jones parameters of the barrier pixels and determines the 

functional employed to compute all the molcule-barrier interactions.  

offset is the offset distance (in Å) between the barrier and the starting 

simulation box boundary. A value greater than zero is useful to avoid 

the deletion of a large number of molecules (see Section 7.2.5 for more 

details). 

iattr  determines whether to use or not the attractive part of the potential for 

the description of the barriers. 0 means that only the repulsive part is 

employed, that is, the A6 coefficient is set to 0; iattr = 1 implies that the 

full Lennard-Jones potential is used, that is, both A6 and A12 

coefficients are nonzero.  

dampk(XY), dampk(XZ),   3 scaling factors applied to the force constants along Z, Y, and X 

dampk(YZ) direction, used to tune the stiffness of the barrier. See Section 7.2.5 for 

full information. 
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zacsize, nmolzacu, nmolzacv zacsize is the target equilibrium distance between the barriers of the 

nanolayer or the nanotube. During the simulation, the barostat will take 

care of modifying the distance between opposite pairs of barriers to 

reach the desired thickness, if physically possible. For cubic 

nanocavities,  zacsize is automatically set to 0 as the equilibrium barrier-

barrier distances corresponds to the edge lengths of the cavity, which 

are set by the program according to the target packing efficiency (see 

below).  

nmolzacu is the number of molecules to consider for the determination 

of the equilibrium volume of the simulation box. By default (nmolzacu 

= 0), the program uses the number of molecules in the original box to 

set the volume that corresponds to a packing efficiency, Cpack, of 0.66, 

which is the theoretical limit for close packing of random spheres (see 

Zaccone, Phys. Rev. Lett., 2022, 128, 028002). 

For the nanocavity, no periodic directions exist, and the edge length of 

the cubic space is computed as: 

𝑙 = √𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙
3

 

For the nanolayer, the lengths of the periodic edges of the simulation 

box are computed taking into account the desired zacsize: 

𝑙 = √
𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙

𝑧𝑎𝑐𝑠𝑖𝑧𝑒

2

 

When dealing with the nanotube, the formula becomes: 

𝑙 =
𝑛𝑚𝑜𝑙𝑧𝑎𝑐𝑢 ∙ 𝑉𝑚𝑜𝑙

𝑧𝑎𝑐𝑠𝑖𝑧𝑒2
 

Thus, the nmolzacu parameter may be increased to achieve lower 

packing efficiencies, as it increases the dimensions of the simulation 

box. This is exploited along the periodic directions in the nanolayer and 

in the nanotube. If one tries to use nmolzacu values lower than those in 

the original fully periodic simulation box, the program stops and issues 

a warning. Note that no molecules are erased in any case.   

nmolzacv has the same meaning as nmolzacu but refers to solvent 

molecules. 

CAUTION: The confinement procedure was not tested for solutions, that is, in the presence of 

simulation boxes containing both solute and solvent. Please report any issue you may experience to 

leonardo.lopresti@unimi.it.  

 

  

mailto:leonardo.lopresti@unimi.it
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5.8.1 Format of barrier.par file 

This file is created by confbox.for (see Section 5.8) and contains all the geometric and force field 

information necessary to build the barrier(s) of confined space MD simulations. The parameters are 

mostly the same described in Section 5.8 and are automatically written by confbox.for according to the 

user’s choices. The reading format is free; in the following table, all the parameters that begin with “i” 

or “n” are integers; the others are floating. It is also possible to edit this file manually if desired (e.g., to 

simulate non-neutral barriers).  
 

1) #comment line 

2) iplane(XY), iplane(XZ), iplane(YZ), iattr 

iplane()  3 values that set the confining planes to use (plane XY, XZ, YZ) 

   =0 inactive 

   =1 active 

iattr Determines whether to use the attractive part of the potential for the 

description of the barriers 

   =0 repulsive-only potential  

   =1 full van der Waals potential 

3) #comment line 

4) ispbar, rvdw, qqbar, offset 

ispbar atom type to describe the C6 and C12 Lennard Jones parameters of the 

pixels that make up the barrier  

rvdw  radius of the pixels 

qqbar  charge of the pixels. It is defined here for future program improvements 

and is set to 0 by confbox. 

offset offset distance (in Å) between the barrier and the starting simulation 

box to avoid the deletion of a large number of protruding molecules 

5) #comment line 

6) dampk(XY), dampk(XZ), dampk(YZ) 

dampk() 3 scaling factors applied to the force constants along Z, Y, and X 

direction, used to tune the stiffness of the barrier. 

7) #comment line 

8) zacsize, nmolzacu, nmolzacv 

zacsize equilibrium distance between opposite barriers; it is set to 0 for the 

nanocavity. See Section 5.8 for a full explanation. 

nmolzacu number of molecules to consider for the determination of the 

equilibrium volume of the simulation box. See Section 5.8 for more 

explanations. 

nmolzacv  the same of nmolzacu, for the solvent molecules.  
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6. Monte Carlo (MC) simulation 
 

6.1 Overview  
 

MC requires a central computational box with a sample of the system under consideration, typically 

300-2000 molecules. Periodic boundary conditions can be applied in one, two or three dimensions. 

Temperature and pressure control are included when applicable. The main module uses a force field 

(topology) file (extension .top, Section 6.6.3), a run control file with all the pertinent commands 

(extension .mci, Section 6.6.2), and a starting computational box file (extension .bxi, Section 5.1.1). The 

output consists of energies (.ene, Section 8.5.1) and trajectories (in format .dat, Section 5.1.3). A 

snapshot of the simulation box corresponding to the final trajectory frame is also printed (format .dat), 

as well as an extended printout summarizing the general program outcomes at user–specified time 

intervals (again in format .dat). 

The final frame (.mco), the energy file (.ene) or the whole trajectory (.mcc) are analyzed using the 

Analys, Correl, Geomet and Redene modules (Section 8). Some information at running time is also 

printed on screen.  
 

6.2 Construction of molecular frameworks 
 

In a MC run molecules are assigned first six rigid-body degrees of freedom (d.o.f.). To allow for 

molecular flexibility, i.e., to explicitly deal with internal degrees of freedom, the present MC code 

partitions each molecular object into a number of "core" atoms ( 3) and a number of "slave" atoms ( 

0). The coordinates of the core atoms are given numerically, and define an invariant rigid part of the 

molecule, that can be a group whose instantaneous distortions are irrelevant, such as a phenyl ring. 

While the relative positions of core atoms never change, slave atoms rely on an implicit definition, that 

is, only their distance and relative orientation with respect to neighboring atoms are specified. For 

example, the three hydrogen atoms in a rotatable methyl group may be defined by setting a single C–H 

parameter for the C–H distances, a single parameter for the H–C–C bond angles and a torsion that 

describes the overall orientation of the –CH3 group. In this way the internal molecular d.o.f.'s (bond 

distances, bond angles and torsions) can be changed by random moves as well; for each MC step, the 

explicit coordinates of slave atoms are recomputed while the internal d.o.f.'s vary. In practice however, 

for the simulation of condensed states of organic small molecules only torsional variables are relevant 

in most cases, and distance/angle ones can be safely left unchanged. A list of available slave group 

definitions is given in Table 6.2 at the end of Section 6. See also Section 6.6.4 for a detailed description 

of slave atom parameters. 

 

One or two molecular species are allowed in the computational box, formally called solute and solvent. 

For each molecule, solute or solvent, Cartesian coordinates are calculated for slave atoms using current 

values for all parameters, mostly torsional, thus defining the current conformation, in a local reference 

frame whose origin is determined by the specification of core atom positions. The molecular object in 

its current conformation is then "inserted" into the computational box by applying a rigid-body 

translation vector and a rigid-body rotation by three Euler angles, plus one indicator that specifies the 

chirality (if needed). The total degrees of freedom are then the conformational ones plus 3+3 rigid-body 

ones. The approach provides the full range of choices between one completely rigid molecular species 

and two completely flexible (minus 3 atoms) molecular objects.  

 

One advantage of this way of proceeding over the traditional, all-coordinate approach is that no 

computing time is wasted in probing irrelevant degrees of freedom (stretching, bending) or in 

computationally heavy algorithms (e.g. SHAKE) to preserve rigid conformations.   



78 

 

6.3 Computational boxes 
 

A computational box is an ensemble on N(u) solute molecules and N(v) solvent molecules, enclosed in 

a parallelepiped box with dimensions boxx, boxy, boxz and angles ,  and . The Boxliq module 

(Section 5.2) reads a file with orthogonal coordinates of a molecular model (.oeh format, see Section 1) 

and prepares a cubic box containing a number of molecules, a rough start for the simulation of an 

isotropic liquid. The Boxcry module (Section 5.1) reads a .oeh file with crystallographic information 

and prepares an oblique box with multiples of the crystal unit cell in three dimensions. Any pair of boxes 

coming from Boxliq or Boxcry modules can be merged using module Boxsol (Section 5.3). This module 

produces a solvation box by deleting solvent molecules in close contact with solute molecules. 

Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed. 
 

6.4 Force fields 
 

The total MC configurational energy is a sum of intramolecular stretch, bend, torsion and non-bonded 

terms, and intermolecular terms:  

 

𝐸(𝑡𝑜𝑡) = [∑ 𝐸𝑖(𝑠𝑡𝑟𝑒𝑐𝑡ℎ, 𝑏𝑒𝑛𝑑) +
𝑖

∑𝜑𝑖(𝜏) +
𝑖

∑𝑢𝑖(𝑅, 𝑖𝑛𝑡𝑟𝑎)
𝑖

] +∑ 𝑢𝑖(𝑅, 𝑖𝑛𝑡𝑒𝑟) =  
𝑖

 

= 𝐸(𝑖𝑛𝑡𝑟𝑎) + 𝐸(𝑖𝑛𝑡𝑒𝑟)       (6.1) 

 

where each summation runs over the appropriate number of degrees of freedom. The first term accounts 

for stretching and bending potential (Section 6.4.1);  represent the torsion potential (Section 6.4.1), 

u(R, intra) the intramolecular potential due to non–bonded interactions at distance R (Section 6.4.2), and 

u(R, inter) the intermolecular potential (Section 6.4.3). 
 

6.4.1 Stretching, bending and torsion 

Bond stretching and bond angle bending potentials are provided in the quadratic forms: 

 

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠(𝑅 − 𝑅

0)2     (6.2) 

𝐸(𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =
1

2
𝑘𝑏(cos 𝜗 − cos𝜗

0)2    (6.3) 

 

As already mentioned, these are seldom applied in the Monte Carlo simulation of condensed phases of 

organic molecules. The torsional intramolecular part () is a trigonometric function in  (0 <   ): 

 

𝜑(𝜏) = 𝐾{1 + 𝑓 ∙ cos[𝑛𝜏]}    (6.4) 

 

where n is a frequency term that can be set equal to 1, 2 or 3 and f a phase factor, which can be either 

+1 or –1. n and f are specified by the user in the .top file.  

 

CAUTION: Torsional potentials are indispensable in molecules with rotatable bonds. For example, 

biphenyl is usually modeled as an object formed by two rigid moieties joined by a disposable, torsional 

degree of freedom.  

 

The procedure to determine torsion angles according to standard conventions is summarized in the 

Appendix, Section A8.  
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6.4.2 Intramolecular non-bonded interactions 

Intramolecular nonbonded interaction energies are described by the same potentials that are used for 

intermolecular interactions, that is, CLP or LJC, damped by a factor FACTIN set in the run control file 

.mci. Values of 0.5-0.7 usually apply successfully. The intramolecular contacts to be considered are 

specified in an input pair list, chosen among sensitive 1–n distances with n ≥ 4 (obviously) not within 

rigid core atom groups. 

 

CAUTION: This procedure is somewhat improper because the summation of Coulombic energies runs 

on a sporadic number of terms and not on a neutral ensemble. These "energies" have anyway little 

physical significance and should only act as a mean of preventing hard contacts in extreme molecular 

conformations (e.g. cis–n–butane) or as a way of taking into account stabilizing intramolecular hydrogen 

bonding in a tentative way. To summarize, this should be taken as a better-than-nothing procedure. 

However, it is computationally very cheap and significantly improves the quality of the simulation 

results. 

 

6.4.3. Intermolecular force fields 

These are the CLP or LJC schemes described in detail in Sections 2 and 4. Following a well established 

convention, intermolecular energies are subdivided in Coulombic and non-Coulombic terms, the latter 

sometimes going under the name (a misnomer) of "van der Waals" terms:  

 

𝐸(𝑡𝑜𝑡, 𝑖𝑛𝑡𝑒𝑟) = ∑ ∑ [𝐸𝑖𝑗] = 𝐸(𝑑𝑖𝑠𝑝) + 𝐸(𝐶𝑜𝑢𝑙)𝑗,𝛽𝑖,𝛼    (6.5) 

 

where  and  denote different molecules, Eij is the total potential energy between atoms i and j, and 

E(disp) and E(Coul) are the total non–Coulombic and Coulombic terms for molecule–molecule 

interactions. 

 

CAUTION: Summations (6.5) are truncated by applying a centre–of–mass distance cutoff that is 

specified in the input .mci file (Section 6.6.2). This cutoff applies to centres of coordinates rather than 

to single atom-atom distances. In this way, the sums always span entire molecules (neutral charge units) 

thus substantially reducing truncation effects even if no convergence correction is applied. For polar 

crystals, the van Eijck–Kroon energy correction for polar boxes (Section 3.1.5) to Coulombic energies 

can be applied. 

 

6.5 Simulation details 
 

The degrees of freedom (dof) are three center-of-mass coordinates and three orientation angles for each 

molecule in the box, plus the slave-atom parameters (Section 6.6.4). A tag in the input .mci file specifies 

whether each parameter is to be altered or kept fixed during the run. The maximum stepsizes for each 

kind of MC move, molecular translation, rotation, or change in internal dof's, are also specified.  

 

When box periodicity is imposed, each molecule in the original box has translated counterparts for a ±1 

addition of three periodicity vectors. As soon as the center of a molecule moves outside the box 

boundary, the molecule re-enters the box at the opposite end.  

 

A MC move or action can be any of the following: 

 

a) Variation of molecular dof's. A random number 0 < r1 < 1 is generated and the number n of the 

parameter P to be varied is determined as n = int(r1 •Ntot) + 1 where Ntot is the total number of variable 
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parameters and "int" denotes the integer part of the number. Positive or negative steps are taken by using 

P' = P°+(r2 - 0.5)*step with r2 another random number. Step magnitudes for each dof are specified in 

the .mci input file (Section 6.6.2, instruction 8). 

 

b) Suppression of center-of mass drift. The overall motion of the center of mass of the whole box can 

be stopped at selected intervals during the simulation, by resetting all molecular position vectors to the 

origin in the current center of mass.   

 

c) Box dimensions change. The box dimensions can be changed at selected intervals according to the 

nboxc input parameter (see Table 6.1 and Section 6.6.2), with or without pressure control. Isotropic 

variation with cubic boxes (liquids), or anisotropic variation with oblique boxes (crystals, Figure 6.1) 

are possible. The computational box is identified by three box edges, a, b, c, and three box angles, 

  . Whenever one of these box dimension is changed by a MC step, the positions of all molecules 

undergoes a rigid-body change by the following procedure:  

(i) calculate fractional coordinates for the molecular centres of  coordinate (com) in the old box metrics;  

(ii) calculate new orthogonal coordinates of the centres in the new box metrics;  

(iii) calculate the components of the displacement of each molecular centre, dx, dy, dz, and apply the 

same displacement vector to all atoms in the molecule. The process is repeated until all the atoms in  teh 

computational box are translated. This procedure avoids the molecular structure distortion that would 

accompany a change of metrics on atomic coordinates.  

 

Figure 6.1. A scheme showing how the displacements after a change in box 

dimensions are calculated. B is the centre of mass of the old cell (blue) with 

"old" metrics. The "new" box metrics is in red. The green vector is the 

displacement vector of the centres of mass from coordinates in the old and 

new metrics, that is applied to all atomic coordinates.  

 

 

 

 

 

d) Pressure control. There is no temperature rescaling in MC, as temperature is a preset invariable 

parameter. When box periodicity is present and box dimension are allowed to vary pressure control is 

possible by the standard isothermal-isobaric ensemble (IIE) method. The advantage is that the 

procedure samples directly from the proper probability density of the NPT ensemble, and is therefore 

rigorous from the statistical thermodynamics point of view. Its application is straightforward for 

isotropic and anisotropic cases, and is also relatively fast, as it does not involve a calculation of forces. 

However, pressure is set at a constant value P, thus pressure fluctuations are not allowed.  

When cell dimensions are varied the new total box energy U’ and the new volume V’ are calculated, 

along with the quantity H:    

 

      𝛿𝐻 = 𝑈′ − 𝑈0 + 𝑃(𝑉′ − 𝑉0) − 𝑁𝑘𝑇 ln (
𝑉′

𝑉0
)   (6.6) 

 

For more information, see Allen, M.P. and Tildesley, D.J. (1989) Computer simulation of liquids, 

Oxford University Press, 1989, pp. 41 and 124). The usual Metropolis algorithm (see Section 6.5.1) is 

implemented on H instead of U. The second term is interpretable as expansion work, while the third 

term has no immediate interpretation. N is the number of "particles" in the system, that comes originally 

from simulations of simple monoatomic species and is somewhat ill-defined in a simulation involving 

large flexible molecules. In the default option it is taken as the number of molecules but could as well 
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be the number of flexible sub-molecules or even the number of atoms, depending on the structure and 

setup of the molecular object (options are provided at running time). By appropriate combinations of 

input control indices, the program allows runs without box periodicity (isolated clusters, no P control); 

with box periodicity; no box change (NVT simulation); box change without P control (sometimes useful 

is intermediate steps); box change with isotropic or anisotropic IIE P control. A full list of options is 

provided in Table 6.1.  

 

Table 6.1 

Pressure and box control options. Sequence of parameters to be used in the input .mci file depending on 

your purpose. Refer to Section 6.6.2 for detailed explanation of the meaning of individual parameters. 

An integer n means that changes in box dimensions (nboxc) or pressure checks of the isothermal–

isobaric ensemble (npres) are carried out every n simulation steps. 

 

# Options nboxc npres ianis 

(1) no box change, no P control, NVT run 0 0 0 

(2) isotropic box change every n steps, no P control n 0 3 

(3) anisotropic box change every n steps, no P control n 0 4 

(4) as (3), with van Eijck-Kroon box dipole energy correction n 0 5 

(5) isotropic IIE Pressure control, liquids 0 n 3 

(6) anisotropic IIE Pressure control, crystals 0 n 4 

(7) as  (6), with van Eijck-Kroon box dipole energy correction 0 n 5 

 

6.5.1 The Metropolis criterion  

Each MC move (either a parameter change or a box periodicity variation without pressure control) is 

accepted according to the usual Metropolis criterion: calling E the energy change, each move is 

accepted if E < 0 or, when E > 0, it is accepted only if exp(-E/RT) > r, where r is a random number 

between 0 and 1. T is the formal, constant temperature parameter of the MC run. Setting T very small 

(say 10 K) is then equivalent to forced energy decrease and sets MC into an excellent energy-

optimization tool.  

 

6.6 Running a Monte Carlo job 
 

Templates and standard values for all the data input files are available in the manual. Tutorials are also 

avialable to provide working examples. 

 

6.6.1 Batch runfile 

The files needed to run a Monte Carlo calculation for a compound NAME are:  

 

- NAME.top, coordinate and force field input;  

- NAME.mci, the run control file;  

- name2.bxi, a file with the box description in a special MC-box format prepared by Boxcry or 

Boxliq.  

 

A typical MC run provides the following output: 

 

- name3mc.pri, output, printfile 

- name3mcc.dat, output, trajectory file in dat format (Section 5.1.3) 

- name3mco.dat, output, final frame position file in dat format (Section 5.1.3) 

- name3.bxo, output, final box file for restart, MC-box format (Section 5.1.1) 
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- name3.ene, output, energy trajectory file (Section 8.5.1) 

-  

Monte Carlo running command 

 

run.mcmain NAME name2 name3  

 

where NAME must correspond to the NAME.mci control file and NAME.top topology file; name2 is 

the full name of the input box file name2.bxi, and name3 is the prefix of all output files.  

 

run.mcmain module (Unix/Linux) 

 

cp $1.mci   mc.mci   MC control file 

cp $1.top   mc.top   forcefield file 

cp $2       mc.bxi   input box file, MC-box format 

~/programs/MiCMoS/exe/mcmain run execution module  

mv mc.mcp   $3mc.pri   output, printfile 

mv mc.mcc   $3mcc.dat   output, trajectory file in dat format 

mv mc.mco   $3mco.dat   output, final frame position file in dat format  

mv mc.bxo   $3.bxo   output, final box file for restart, MC-box format 

mv mc.ene   $3.ene   output energy trajectory file 

 

Detailed explanations on the meaning of the control parameters and file format follow below. 
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6.6.2 The MC run-control file (.mci) 
 

CAUTION: #lines are comment lines at fixed places: do not change their position or introduce new # 

lines! These #lines usually show the identity of the various parameters but may contain user's own 

comments. 

 

Extension . mci; all free format. 

1) A title line  

2) #line -------------------------------- 

3) iprint, ivarib, iwrh, ipots, FACTIN 

iprint  Controls the amount of information printed in the .pri output file. 

=0    minimum printout,  

=1, =2 detailed printout 

ivarib   How to treat N in eq. (6.6) 

=0, N = n.of molecules (normal use, recommended);  

=1 N = n.of molecules times torsional degrees of freedom  

iwrh   Printout for H coordinates 

=0  write (CH) H-atom coordinates on output trajectory file  

=1 write H-solute not solvent,  

=2 H-solvent not solute,  

=3 no H written 

ipots  Controls the energy functional of the Force Field. 

=0 use AA-CLP  

=1 use AA-LJC 

FACTIN Damping factor for intramolecular nonbonded interactions (see Section 6.4.2). 

4) #line --------------------------------- 

5) cutoff, boxx, boxy, boxz, alf, bet, gam, variation indices (3 for lengths, 3 for angles), irbox  

cutoff  max distance between centres of coordinates in intermolecular energy 

calculation 

boxx, boxy, boxz three box edges in Å (only if irbox =0 – see below; otherwise, set =0.0) 

alf, bet, gam   three box angles in deg (only if irbox =0 – see below; otherwise, set 

=0.0) 

IBX,IBY,IBZ  control whether a change in box length parameters is allowed or not. 

The absolute values of IBX, IBY and IBZ determine the maximum step 

as |IBX|·0.01 Å along a, |IBY|·0.01 Å along b and |IBZ|·0.01 Å along 

c. 

=0 do not vary the corresponding box length  

≠0 vary the corresponding box length; if < 0, couple those cell lengths 

for which the indices are negative: e.g. –5 –5 5  means a=b 

IAL, IBE, IGA  same as IBX,IBY,IBZ above, now for cell angles. Coupling is no 

allowed for angles. The maximum step is computed depending on to 

the absolute values of these indices, according to: |IAL|·0.1° for , 

|IBE|·0.1° for  and |IGA|·0.1° for . 

=0 do not vary the corresponding parameter; 

≠0 do vary.  

 irbox   Determines where the lattice parameters are to be read in. 

    = 0 use box dimensions given in the .mci file, as detailed above.  

≠ 0 read box dimensions from the input box file (.bxi). 

6) # line --------------------------------- 
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7) temp, n.moves, ncom reset, nbox reset, nwri, nwre, npri/steps 

temp  set temperature (in K). 

nmoves  total number of MC moves. 

ncom stop the drift of the overall centre of mass every ncom steps (see Section 6.5). 

nboxc         change box every nboxc steps; for box variation control, see Table 6.1 above. 

More information in Section 6.5. 

nwrite  write trajectory coordinate file every nwrite moves (output file NAMEmcc.dat) 

nwre  write the energy data in the output file .ene (Section 8.5.1) every nwre moves;  

npri   print accepted energies every npri moves (on screen and printfile, .pri) 

 

CAUTION: All the outputs specified on line (7) can be suppressed by setting the corresponding index 

to zero (except npri). If nmoves =0 the program stops after computing starting energies. 

 

8) 10 steps 10 floating numbers that control the maximum-stepsizes.  

Each of them is associated with a d.o.f. type as indicated by its sequence number 

in .bxi or .sla files. Therefore, the actual meaning of the various entries may 

change according with the user’s needs. In any case, the actual stepsize that is 

applied is always (rand–0.5)·step, where rand is a random number, and step is 

any of the specified stepsizes. Molecular and internal dof’s are associated to 

entries in the maximum stepsize array through the step type numbers n indicated 

either in the .sla file (Section 6.6.4, NCARDU/NCARDV instructions – internal 

dof’s) or in the .bxi /.bxo files (Section 5.1.1, Table 5.1, NMSOLU/NMSOLV 

blocks, molecular translations and rotations). Advisable values are 0.3 Å for 

centre of mass motion, 20° for Euler angle variation (rotational dof’s of the 

whole molecule), 5° for torsion angle variations. Larger stepsizes may help in 

the preliminary energy minimizations of approximate box construction.  

An explanatory example on how all this works is provided in Section 6.6.4.1. 

9) # line ------------------------------------ 

10) Pressure, npres, ianis 

P   Set overall pressure, in bar. 

npres Determines the number of steps after which the box dimensions are 

changed. The Metropolis algorithm is then applied to see whether the 

change is accepted, depending on H (equation 6.7). For box variation 

control, see Table 6.1 above. More information in Section 6.5. 

ianis  Controls how the cell shape is changed. For box variation control, see 

Table 6.1 above. More information in Section 6.5. 

   =0 No changes (box fixed). 

   =3 Only isotropic changes are allowed. 

   =4 Anisotropic changes are applied. 

=5 As ianis=4, and the Eijck-Kroon box dipole energy correction is also 

applied. This is meaningful only if your space group is polar. See also 

Section 3.1.5.  
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6.6.3 The forcefield input file (.top) 

The Pretop module (Figure 4.1, Section 5.4) reads an .oeh file and prepares the best possible 

approximation to the pertinent force field file, except for the separation between core and slave atoms 

that must be handled by the user (Section 6.6.4). Otherwise, use of templates available in the Tutorials 

(deposited on https://sites.unimi.it/xtal_chem_group) will make things easy. In the .top file, as follows, 

all data except the title line is free format.  

 

Extension .top; all free format. 

1) A title line   format 1x,10a4  

2) NCOREU   number of core atoms, solute 

NCOREU lines  core atom id number, x, y, z, flag for atom species (see Table 1.1), raw 

charge   

3) NSLAVU   number of slave atom lines, solute (see Section 6.6.4). 

NSLAVU lines  n1, n2, n3, n4, n5, n6 integer codes (see Table 6.2 for meaning), flag for 

atom species (see Table 2.1), raw charge. See also Section 6.6.4 for 

correspondence of n1, n2, n3 numbers in the .sla file. 

4) NCOREV     number of core atoms, solute  

NCOREV lines  core atom id number, x, y, z, flag for atom species (see Table 2.1), raw 

charge   

5) NSLAVV   number of slave atom lines, solvent (see Section 6.6.4).  

NSLAVV lines as with NSLAVU lines. 

6) VOLUU, VOLUV     approximate molecular volumes for solute and solvent. They are 

estimated on the basis of the van der Waals atomic radii and can be 

useful only for an estimate of cluster volumes; they are both supplied 

by Pretop (Section 5.4). 

7) NSTRU   number of bond stretching functions  

NSTRU lines   4 entries, as follows: two atom id numbers of the atoms involved in the 

bond, kS and R° for E(stretching)=1/2·kS·(R - R°)2, equation (6.2). See 

Section A7.1 in the Appendix for suggestions on meaningful ks 

parameters if needed: in most cases stretching degrees of freedom are 

irrelevant in MC simulations and are not sampled. 

8) NSTRV   as NSTRU (bond stretching), for the solvent 

NSTRV lines  as NSTRU lines (bond stretching parameters), for the solvent 

9) NBENDU   number of bending function, solute 

NBENDU lines  5 entries, as follows: three atom id numbers of the atoms involved in 

the bending interaction, kb and ° for equation (6.3), 

E(bending)=1/2·kb·(cos - cos°)2. See Section A7.2 in the Appendix 

for suggestions on meaningful kb parameters if needed: in most cases 

bending degrees of freedom are irrelevant in MC simulations and are 

not sampled. 

10) NBENDV   as NBENDU (bond bending), for the solvent 

NBENDV lines  as NBENDU lines (bond bending parameters), for the solvent 

https://sites.unimi.it/xtal_chem_group
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11) NTORSU   number of torsion functions, solute 

NTORSU lines  7 entries, as follows: four atom id numbers, identifying the atoms  

involved in the torsion; K, f and m parameters in E(tors) = K{1 + cos f 

[m]}, equation (6.4). The program Pretop assigns just standard values 

for K (50), f (–1) and m (+1). These must be reset with actual values, 

which can be found for example in Table A7.5 (Appendix, Section 

A7.3). Pretop also automatically assigns improper dihedrals to keep 

planar groups with sp2 hybridization as K = 100, f = –1 and m = +1. You 

may want to check them, but in most cases no external intervention is 

required. 

12) NTORSV   as NTORSU, for the solvent 

NTORSV lines  as NTORSU lines (torsion parameters), for the solvent 

13) NLISTU   number of intramolecular contacts, solute 

NLISTU pairs of atom id numbers, solute, for a total of NLISTUx2 entries (see Section 6.4.2). 

These flag the intramolecular contacts, for which a FACTIN dampening factor is applied to 

scale down the potential (see Section 6.4.2). FACTIN must be given in the .mci instruction file 

(Section 6.6.2). 

14) NLISTV   number of intramolecular contacts, solvent 

NLISTV pairs of atom id numbers, solvent, for a total of NLISTVx2 entries. See NLISTU above 

for explanation. 

15) FQ, FP, FD, FR  force field scaling parameters in eq. (2.1) (standards: 0.41, 235, 650, 

77000); zero if the LJC force field is used. 

 

Add the following instructions only if Lennard-Jones potentials are used (IPO=1 in the .mci or .mdi file, 

Sections 6.6.2 and 7.6.2):  

 

16) NEXTRA    number of extra L-J parameters. Non-zero only if non-library 6-12 

parameters are used.  

17) NEXTRA lines  I, J, A6, A12 in equation (2.6). A6 and A12 are the 6-12 coefficients for 

the atom-atom contact between atom species i and j. 

 

6.6.4 The slave atom parameter file (.sla) 

The NCARDU and NCARDV lines in the preceding section 6.6.3 (instructions (3) and (5)) specify the 

slave atom construction codes. To use the Boxcry or Boxliq modules to prepare the starting 

computational boxes, the actual values for the parameters of the slave atoms must be supplied in a 

separate file, extension .sla. If there are no slave atoms, in a fully rigid molecule, no .sla file need be 

prepared and these modules will ignore them. 

 

The advantages of using a semi-rigid approach will counterbalance the apparent complexity of preparing 

the .sla files. With a little practice and use of worked examples the procedure will become routine.  

 

Extension: .sla; all free format. 

The .sla files contain:  

 

1) NCARDU     number of slave atom groups, solute 
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NCARDU lines  bond distance; bond angle; torsion angle; step type number (distance); 

step type number (angle); step type number (torsion); 3 integer id atom 

numbers. Bond distance, bond angle and torsion angle must be added 

according to the conventions specified in Table 6.2 below. Set 0.0 for 

parameters that are not required; Section 6.6.4.1 describes a worked 

example. The last 3 integers are the id numbers to be assigned to the 

slave atoms when their coordinates are computed at each MC step 

(Section 6.6.4.1 gives a practical example). They will label atoms 

highlighted in grey in Table 6.2. 

2) NCARDV    number of slave atom groups, solvent 

NCARDV lines  as above for NCARDU 

  

Note that Boxcry and Boxliq also automatically load the same instructions in the .sla file into the 

.bxi/.bxo files that specify the content of the simulation box (see Section 5.1.1).  

 

CAUTION: Care must be taken to number atoms so that the N core atoms are numbered from 1 to N, 

i.e., they must come first. Successive slave atoms can be built only if core atoms, necessary for the 

construction, have been already built. 

 

Summarizing: The NSLAVU and NSLAVV lines in the .top file specify the atom numbers and the 

procedure to be followed to build the slaves among those in Table 6.2; the lines in the .sla file specify 

the actual values of the distance, torsion angle and bond angle to be used as starting values in .bxi files. 

The .bxo files will contain the MC-modified values of distances, angles and torsions. Of course any .bxo 

file can be used as input for a continuation MC run. The reason for using two separate files for the 

specification of molecular geometry is that slave atom parameters are variable for each molecule and 

cannot be set from the topology file in continuation runs.   

 

All this looks more complex than it actually is and becomes much simpler after the first use; see the 

following worked example (Section 6.6.4.1).  
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Table 6.2 

Atom positioning options in the Monte Carlo .top and .sla files. Dark grey atoms in the “group” 

column are the slaves, generated by the automatic construction procedure for a given 

NCARDU/NCARDV line in the .top file (Section 6.6.3).  

 

 

* Sequence of atom id numbers to be specified at the end of each NCARDU/NCARDV string in the 

description of the .sla file. See Section 6.6.4.1 for a practical example.  

  

Group Type 
Integer codes in .top file 

Parameters in the .sla file 
 0 = 0 

 

Trigonal n1, n4, n5, n6 n2, n3 
n1–n4 distance. 

Last 3 integers*: n1 0 0 

 

Methylene n1, n2, n4, n5, n6 n3 

n1,2–n4 distance and n1–n4–n2 angle . 

Distances  n1–n4 and  n2–n4 are set 

equal. 

Last 3 integers*:  n1 n2 0 

 

Methine n1, n3, n4, n5, n6 n2 
n1–n3 distance. 

Last 3 integers*: n1 0 0 

 

Z–matrix 
n1, n4, n5, n6 

n2 = –1 
n3 

n1–n4 distance, n1–n4–n5 angle and n1–

n4–n5–n6 torsion angle. 

Last 3 integers*:  n1 0 0 

 

RX3 group 

n1, n2, n3, n4, n5, 

n6 

 

None 

One n1,2,3–n4 distance, one n1,2,3–n4–n5 

angle and one n1,2,3–n4–n5–n6 torsion . 

All distances and angles are set equal; 

torsions are automatically computed 

from  as +120 and +140. 

Last 3 integers*:  n1 n2 n3 
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6.6.4.1 Building slave atoms for ethanol 

An example of a valid topology .top file (Section 6.6.3) for ethanol (CH3–CH2–OH, inset) is given 

below.  

 

    ethanol                      
      3   ncoreu 

    1  -1.53000  0.0000   0.0000   13 -0.9000   

    2   0.00000  0.0000   0.0000   13  0.1100  

    3   0.44190 -1.3600   0.0000   29 -1.4500 

      3   nslav-u 

  4  5  6  1  2  3   3  0.3000   

  7  8  0  2  1  3   3  0.2700   

  9 -1  0  3  2  1   5  0.8000   

  0   ncorev 

  0 nslav-v 

   52.0    0.0 volu-u,volu-v 

 0  nstretch -u 

 0   -v  

 0  nbend-u 

 0   -v 

 2  ntors-u 

 4  1  2  3  3.  1.0  3    

 9  3  2  1  2. -1.0  2    

  0   ntorsv 

  0   nlistu 

  0   nlistv 

0.41 235.0 650.0 70000.0 

   0  nextra 

 

The three atoms of the C1–C2–O3 chain are the core atoms. Methyl hydrogens (id numbers 4–6, atom 

type 3 according to Table 1.1 and raw charge 0.3) are built attached to atom C1 as a RX3 group (Table 

6.2). Methylene atoms 7 and 8 (atom type 3, raw charge 0.27) are built as a “Methylene group” type, 

i.e. they are attached to atom C2 on the bisector of the C1–C2–O3 angle. The alcohol hydrogen (id 9, 

atom type 5 and raw charge 0.8) is built attached to the O atom by “Z-matrix” (Table 6.2). There are no 

stretch or bend potentials, but there are two torsional potentials for rotation around the C1–C2 and C2–

O3 bonds. Instructions after ntors–u define the corresponding force field parameters (see instruction 

11 in Section 6.6.3). 

 

Actual MC stepsizes are governed by a .mci run–control file (Section 6.6.2). A typical input is: 

 

  Ethanol, liquid 

#  iprint ivarib iwrh ipots  factin 

     0     0     0     0       0.7 

#  cutoff  boxx     boxy     boxz    alf  bet  gam  var.indices    irbox 

   16.0   0.0000   0.0000   0.0000   0.0  0.0  0.0  1  1  1  0 0 0   1 

# temp n.moves  ncom nboxc nwri   nwre npri/steps 

 293.    50000    0    0  1000   1000  1000 

  0.30 20.0  3.0 5.0 10.0  0.  0.  0.  0.  0. 

#   P,  npres   ianis 

   1.0  1000      3 

 

The floating number sequence “0.30 20.0  3.0 5.0 10.0  0.  0.  0.  0.  0.” corresponds to the maximum 

stepsize array specified in Section 6.6.2, line 8. The actual step in a MC move is (rand-0.5)·step, where 
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rand is a random number and step the nth element of this array. Numbers “n” unequivocally associate a 

certain variable to a definite step parameter and are both specified in the .sla file (internal molecular 

dof’s) and in the .bxi file (Table 5.1, molecular translational and rotational dof’s). Note that random 

changes of the simulation box edges and angles are controlled by IBX, IBY, IBZ and IAL, IBE, IGA 

parameters described in the instruction (5) of the .mci file, Section 6.6.2. Centre of mass translations and 

rotations of the whole molecule are activated in the .bxi file. 

 

The corresponding .sla file of ethanol looks like: 

 

   3 
    1.0800 109.47 180.00  0  0  3   4  5  6 

    1.0800 110.00   0.00  0  0  0   7  8  0 

    1.0000 109.00 180.00  0  0  4   9  0  0 

 

There are 3 chemically different groups to be defined, namely a methyl (hydrogens 4–6), a methylene 

(hydrogens 7 and 8) and a hydroxy (hydrogen 9). Thus, the .sla file also contains 3 lines plus the heading. 

The first row specifies the methyl: the C1–H distance, bond angle and torsion are 1.08 Å, 109.47° and 

180° respectively. The next three numbers (0 0 3) specify that no stretch or bend degrees of freedom are 

allowed, while the methyl group torsion is allowed by stepsize nº3 in the maximum stepsize array of the 

.mci file (3.0 deg in this example). The last three numbers define the sequence id numbers of atoms that 

are built by the procedure: for methyl, hydrogens 4, 5 and 6. They correspond to the atoms coloured in 

grey in the first column of Table 6.2.  

 

The same applies also to other groups, as detailed below.  

 

CAUTION: The order of the lines in the .sla file must be the same as of instructions in the topology 

.top file.  

 

In methylene, the C2–H distance is also 1.08 Å, the H–C2–H angle is 110° and there is no need for a 

torsion angle (Table 6.2). As for the MC step, methylene has no degrees of freedom (0 0 0) and the two 

hydrogens have id numbers 7 and 8. The O3–H distance is 1.00 Å, the C2–O3–H angle is 109° and the 

torsion angle is 180° as the O–H bond staggers the methylene group. The alcohol hydrogen has a 

torsional motion, governed by maximum stepsize nº4 (5.0 deg) in the list specified in the .mci file.   
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7. Molecular dynamics (MD) simulation 
 

7.1 Introduction 
 

The Mdmain module of the MiCMoS package is designed for the simulation of the dynamics of 

aggregates of molecular substances, allowing for one or two chemical species, formally a solute and a 

solvent. It can be used without periodic box conditions for isolated clusters, providing original 

algorithms for the quenching of translational and rotational global motion, or with periodic box 

conditions, with (NPT) or without (NVT) isotropic or anisotropic pressure control. 

 

The Mdmain module (see also Figure 4.1) reads input starting coordinates from a .dat file (Section 

5.1.3), for liquids typically resulting from a preliminary MC simulation to provide an initial energy 

optimization (Section 6), or directly from the Boxcry module for crystals (Section 5.1). Atomic and 

force field information is in the .top file (same format as in MC modules, Section 6.6.3). Input 

instructions are read from a .mdi run-control file. The main module integrates a leap-frog algorithm and 

produces .mdo (final frame, with atomic coordinates and velocities in m·s–1), .mdc (structural trajectory), 

.ene (energy trajectory, Section 8.5.1) files of the same format as their MC counterparts, and .pri (line 

print). In MD there is no use of core and slave atoms and all atomic coordinates are dealt with explicitly. 

All input and output structural files carry atomic coordinates in Å units and  are in .dat format. 

 

The final frame (.mdo), or a final frame averaged over some last steps, the energy file (.ene) or the whole 

trajectory (.mdc) are analyzed using the Analys, Correl, Geomet and Redene modules (Section 8). Some 

information at running time is also printed on screen.  

 

CAUTION: When a large energy jump is detected due to potential or dynamic malfunctions (a crash), 

the program stops printing the crash energies and the crashed frame. 

 

Table 7.1 

Units of physical properties in eq.s (7.5)–(7.14). Vector quantities are in boldface. Input-output atomic 

coordinates and box dimensions are in Å, atomic masses in amu, atomic charges in electrons. The MD 

programs then convert to and use SI units.  Output configurational and molecular energies are in kJ·mol-

1. 

 

Symbol Physical property  SI unit 

P Pressure Pascal (Pa) 

V Volume of the computational box Cubic meters (m3) 

Mi Molecular mass Kilograms (kg) 

Vi Velocity of the ith center of mass Meters per second (m·s–1) 

vk Velocity of the kth atom Meters per second (m·s–1) 

Ekin Total kinetic energy of the centers of mass Joule (J) 

W Center-of-mass virial Joule (J) 

Fij Force between centers of mass of i-j molecules Newton (N) 

Rij Distance between centers of mass of i-j molecules Meters (m) 

fkl Force between atoms k and l in different molecules Newton (N) 

0 Isothermal compressibility Reciprocal Pascal (Pa–1)  

qk Atomic charge Coulomb (C) 

x, a position coordinates or box dimensions Meters (m) 
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Atomic coordinates for input are in Å, atomic masses in amu, atomic charges in electrons. The programs 

then use time in seconds (s), mass in kg, lengths in meters (m) and velocities in m·s–1. All energies are 

in joule or in kJ/mol (Table 7.1). These units are embedded in the code at several places and cannot be 

changed by the user.  
 

7.2 MD layout 
 

The main modules read starting atomic coordinates for a computational box in dat format (Section 

5.1.3). Note: a maximum of 2000 molecules with at most 100 atoms per molecule is allowed. 

 

7.2.1 Zero-step atomic velocities 

If not present in the input file, starting velocities V can be assigned (in module) by an approximate 

Maxwellian distribution according to: 

 

      𝑉 = [
𝑘𝑏𝑇

𝑀
]
1/2

[∑ (𝑟𝑖)
12
𝑖=1 − 6]    (7.1)  

 

where kb is the Boltzmann constant, T is the set temperature, M is the atomic mass, and ri is a random 

number between 0 and 1. For a better randomization of velocities, to reduce translational or rotational 

biases, the components of any velocity vector V are determined as follows:  

 
𝐕 = 𝑎𝐕𝐱 + 𝑏𝐕𝐲 + 𝑐𝐕𝐳

𝑏2 + 𝑐2 = 1 − 𝑎2

𝑏2 = 𝑎′(1 − 𝑎2)

𝑐2 = (1 − 𝑎′)(1 − 𝑎2)}
 

 

     (7.2) 

 

Where a’ is a random number between 0 and 1. Moreover, each component Vx, Vy and Vz is assigned a 

plus or minus sign according to a random number being grater or smaller than 0.5.  

 

7.2.2 Integration  

MiCMoS is equipped with two second order symplectic integrators: the leapfrog and the velocity–Verlet 

algorithms. They are reasonably simple and are time reversible. Moreover, they both conserve the 

Hamiltonian of the system. These strengths make them very appealing in MD simulations and well 

suited to all the applications for which MiCMoS is designed. 

 

7.2.2.1 Leapfrog algorithm 

After calculation of potentials and forces the trajectory is integrated by:  

 

𝐕(𝑡 +
1

2
∆𝑡) = 𝐕 (𝑡 −

1

2
∆𝑡) +

∆𝑡

𝑀
𝐅(𝑡)    (7.3a) 

𝐫(𝑡 + ∆𝑡) = 𝐫(𝑡) + ∆𝑡 ∙ 𝐕 (𝑡 +
1

2
∆𝑡)     (7.3b) 

 

where the symbols have obvious meaning of time (t), velocity (V), position (r), mass (M) and force (F). 

r, V and F are three–component vectors and apply to each atom in the simulation box.  

 

7.2.2.2 Velocity–Verlet algorithm 

The velocity–Verlet (VV) algorithm can be considered as a variant of leapfrog, which determines r and 

V at the same time. The VV equations read as: 

𝐕(𝑡 +
1

2
∆𝑡) = 𝐕(𝑡) +

1

2

∆𝑡

𝑀
𝐅(𝑡)     (7.4a) 
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𝐫(𝑡 + ∆𝑡) = 𝐫(𝑡) + 𝐕 (𝑡 +
1

2
∆𝑡)∆𝑡    (7.4b) 

This means that velocities at the previous half step are no longer required. Now the forces are updated 

according to the new positions 𝐫(𝑡 + ∆𝑡), and used to update velocities at t + t: 

𝐅(𝑡 + ∆𝑡) = 𝐅[𝐫(𝑡 + ∆𝑡)]     (7.4c) 

𝐕(𝑡 + ∆𝑡) = 𝐕(𝑡) +
1

2

∆𝑡

𝑀
𝐅(𝑡 + ∆𝑡)    (7.4d) 

This algorithm is equivalent to leapfrog, in the sense that it generates identical trajectories if 

corresponding starting points are employed (i.e., if velocities at 𝑡0 = 𝑡 −
1

2
∆𝑡, and not at 𝑡0 = 0, are 

used as VV starting velocities). Otherwise, the two trajectories will be generally different, as leapfrog 

interprets starting velocities as 𝐕(𝑡0 −
1

2
∆𝑡) rather than as 𝐕(𝑡0). The VV algorithm is slightly more 

expensive, as it requires to compute forces at t to update positions, and at t + t to update velocities. 

MiCMoS saves as much time as possible by storing the vector 𝐅(𝑡 + ∆𝑡) to use it in the (t + t) step, 

but this can be done only if the coordinates are not further changed after the main integration procedure. 

In MiCMoS, the routines for stopping the drift and the rotation of the whole cluster (Section 7.5.1), 

suppressing the evaporation (Section 7.5.2) and applying the barostat (Section 7.3) could all modify the 

coordinate vector computed by the integrator. Consequently, whenever one of these corrections is 

applied, the forces must be computed again to account for the updated atomic positions. This implies 

that the computational cost of the VV algorithm is slightly higher than that of leapfrog and increases 

with the call frequency of the above-mentioned correction routines. 

 

7.2.3 Temperature control  

The temperature of the simulation can be kept at Tset in three ways.  

 

7.2.3.1 Stiff coupling 

A stiff coupling can be used, which means that all velocities are rescaled by a factor (Tset/T)1/2. 

 

7.2.3.2 Berendsen thermostat 

A weak coupling procedure can be applied by using the Berendsen thermostat, which implies that a 

velocity rescaling factor is computed as:  

 

𝜆(𝑡) = √[1 +
𝑑𝑡

𝜏
∙ (
𝑇𝑠𝑒𝑡

𝑇
− 1)]     (7.5) 

where dt is the MD timestep and  is the temperature relaxation time (in practice the dt/ ratio is 

approximated by an empirical coefficient, 0.5-0.6).  

This very simple rescaling procedure is computationally inexpensive but is known to produce artifacts 

in the trajectories. The reason is that the Berendsen thermostat suppresses the fluctuations of the kinetic 

energy, preventing a proper microcanonical NVT ensemble from being generated. Unsatisfied detailed 

balance leads to the unphysical redistribution of energy from high frequency into low frequency modes, 

resulting in the well–known “flying ice cube” artefact (see for example E. Braun, S. M. Moosavi, B. 

Smit, J. Chem. Theory Comput. 2018, 14, 5262−5272, https://doi.org/10.1021/acs.jctc.8b00446 for 

more information). This is actually a serious problem in systems where the accurate description of low 

frequency modes is mandatory to catch the correct physics, such as isolated clusters and flexible 

networks. These include, among others, diffusion of small molecules through molecular sieves and 

metal–organic frameworks. However, when totally rigid or semi–rigid systems are considered, such as 

perfect crystals at temperatures far from the melting point, the error that is introduced can be safely 

neglected in most cases. As for the dynamics of isolated clusters (Section 7.5), where sampling of low–

https://doi.org/10.1021/acs.jctc.8b00446
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frequency modes is much more important, we tackled the incorrect energy partition by providing 

MiCMoS with routines that artificially suppress the translation and rotation of the cluster, thus 

alleviating the overweighting of low–energy translational and rotational modes (see Section 7.5.1 and 

Gavezzotti & Lo Presti, New J. Chem., 2019, 43, 2077–2084, https://doi.org/10.1039/C8NJ05825C).  

If a more accurate temperature control is required, i.e., whenever fluctuations of kinetic energy are 

important to determine the observables that are looked for, the CSVR thermostat should be preferred 

(see Section 7.2.3.3). 

 

7.2.3.3 Bussi–Donadio–Parrinello thermostat 

The Canonical Sampling through Velocity Rescaling (CSVR) thermostat is implemented in 

MiCMoS following G. Bussi, D. Donadio & M. Parrinello, J. Chem. Phys. 126, 014101, 2007, 

https://doi.org/10.1063/1.2408420. The idea is to improve simpler rescaling algorithms based on kinetic 

energies or temperatures with a stochastic term, which allows a correct sampling of the kinetic energies 

of the canonical ensemble. A time–dependent velocity–rescaling factor  is applied, which reads 

 

𝛼 = √
𝐾𝑡

𝐾
     (7.6) 

Where Kt is the target value for the kinetic energy, as extracted from the canonical equilibrium 

distribution:  

𝑃̅(𝐾𝑡)𝑑𝐾𝑡 ∝ 𝐾𝑡

𝑁𝑑𝑜𝑓

2
−1
𝑒−𝛽𝐾𝑡𝑑𝐾𝑡   (7.7) 

 

Ndof being the number of degrees of freedom and  = 1/kbT the usual Boltzmann’s factor. In practice, 

whenever the thermostat is called, the kinetic energy K is evaluated. Then, an auxiliary continuous 

stochastic dynamic is used to compute the target Kt, which is expected if the system samples the correct 

canonical distribution. According to Bussi, Donadio and Parrinello, the stochastic correction to the 

kinetic energy is 

 

𝑑𝐾 =  (𝐾𝑡 −𝐾)
𝑑𝑡

𝜏
+ 2√

𝐾𝑡𝐾

𝑁𝑑𝑜𝑓

𝑑𝑊

√𝜏
    (7.8) 

 

In (7.8), dt is the simulation timestep and  the time constant of the thermostat. dW is a Wiener noise, 

that is, a gaussian–distributed random perturbation. Whenever  → 0 (in practice, when  < 0.1), the 

algorithm ignores the last term of the summation. This implies that the Wiener contribution is 

instantaneously thermalized, and the algorithm reduces to a stochastic velocity rescaling.  

 

Following Bussi, Donadio and Parrinello, an effective energy 𝐻̃ is defined as the total energy (kinetic + 

potential) minus the cumulative sum of all the drifts dK to the kinetic energy due to the CSVR thermostat 

(Figure 7.1). The quantity 𝐻̃ should be conserved along the trajectory; the program prints the effective 

energy whenever the CSVR thermostat is called. It should remain constant when the system is 

equilibrated. A systematic drift of 𝐻̃ throughout the trajectory is likely a warning of numerical 

discretization errors, meaning that shorter timesteps and/or more frequent calls to the thermostat are 

required. Fundamentally, the dt/ ratio is crucial in this respect. 

 

CAUTION: Experience shows that very short time steps dt, like 0.00025 ps or lower, might be 

necessary in most cases to avoid discretization errors when the CSVR thermostat is employed.  

 

https://doi.org/10.1039/C8NJ05825C
https://doi.org/10.1063/1.2408420
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Testing was carried out for crystalline paracetamol (phase I, P21/n) at p = 1 bar and T = 100 K, from a 

previously Monte Carlo thermalization at room temperature, with the LJC Force Field. Trajectories were 

all 100 ps long; results averaged over the last 50 ps of the simulation are shown in the table below. For 

comparison, the experimental cell at 100 K (CSD label HXACAN) is a= 7.0915(3) Å, b= 9.2149(4)Å, 

c= 11.6015(5) (1) Å,  = 97.865(1) deg, density: 1.337 g/cm3. 

 
Thermostat 

→ Integrator 

  

Weak coupling / Å, deg, g/cm3, kJ/mol 

dt = 0.002 ps 

CSVR / Å, deg, g/cm3, kJ/mol 

dt = 0.0001 ps 

Leapfrog a = 6.884(2), b = 9.669(3), c = 11.090(4), 

 = 89.93(3),  = 95.91(4), =89.99(2), 

Density: 1.367(1), Ecoh = –109.8(2) 

a = 6.870(3), b = 9.689(1), c = 11.113(11), 

 = 89.65(1),  = 95.66(4), =89.64(2), 

Density: 1.364(1), Ecoh = –109.7(3) 

Velocity–

Verlet 

a = 6.884(3), b = 9.685(5), c = 11.100(4), 

 = 89.93(4),  = 95.91(4), =89.99(2), 

Density: 1.364(1), Ecoh = –106.6(2) 

a = 6.869(3), b = 9.688(1), c = 11.113(10), 

 = 89.65(1),  = 95.65(4), =89.64(2), 

Density: 1.364(1), Ecoh = –109.7(3) 

 

 
Figure 7.1. Effective energy (𝐻̃, red) and total energy (kinetic + potential, black) for 100 ps long MD 

simulation of monoclinic paracetamol at T = 100 K and p = 1 bar using a Parrinello–Rahman barostat 

(see Section 7.3.3) without external stress field and a thermostat time constant  = 0.6 ps. The thermostat 

and barostat algorithms were applied every 100 and 50 MD steps, respectively. (a) Leapfrog; (b) 

velocity–Verlet. 

 

CAUTION: For isolated small clusters, an accurate description of temperature is impossible; in a 

cautionary attitude, simulation temperature can be regarded as just a measure of dynamic freedom 

without much connection with the corresponding thermodynamic quantity.  

 

7.2.4 Bias MD  

From v2.0 onwards, MiCMoS is equipped with the modivel routine, which artificially redistributes the 

molecular kinetic energies to drive the simulation softly toward the “spontaneous” formation of stable 

clusters and nucleation events. The routine modivel is called as the last step of the mdmain engine, just 

before printing the trajectory: this means that it does not affect directly the forces. Rather, it rescales the 

velocities just before the next integration step.  

 

The idea is to advantage stable molecular pairs and small clusters within a disordered system, like a bulk 

liquid phase. Such pairs and clusters are always present, mostly as transient entities. They might act as 

supramolecular synthons during nucleation, especially if their formation is kinetically favoured and they 

survive the thermal agitation for sufficiently long times. Our biased MD algorithm should be considered 

as a tool to speed up the process of driving the molecules toward the most effective recognition modes.  
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Upon self-recognition, molecules form pairs and clusters that are more stable than the individual 

components. The potential energy in excess is redistributed to the surrounding molecules as heat. We 

thus expect that molecules outside the cluster will gain kinetic energy, while those inside will get stuck 

in a local minimum of potential energy that reduces their accessible phase space. To simulate this 

process, the modivel algorithm selects attractive pairs in a user-defined energy range, that is, those whose 

intermolecular energy Eij lies in between a user-defined interval Ebias(lower threshold)–Ebias(upper 

threshold). It is thus possible to advantage specific recognition modes, even at intermediate energies, to 

try driving the system towards ordered patterns. The advantage of this procedure is that no constraints 

are imposed on intermolecular geometric parameters (e.g. centre of mass distances, reciprocal molecular 

orientations) based on structural properties that need to be known a priori. The user can also choose to 

bias only very attractive pairs, i.e. all those with Eij < Ebias(upper limit).  

 

modivel needs information on the actual distribution of molecule–molecule interaction energies. These 

are computed only if the idistr flag in the third line of the MD control file (.mdi) is active (idistr = 1) and 

an upper threshold Emolim for the distribution is defined (see Section 7.6.2 for the full description of 

the available commands and options). For the same reason, Ebias parameters must be strictly lower (more 

negative) than Emolim, the maximum energy threshold for computing the distribution. MiCMoS checks 

the internal consistency of input parameters; if errors are found, the program stops with a warning 

message.  

 

In practice, a bias scaling factor g  1 is computed: 

 

𝑔 = 1 −
|𝐸𝑖𝑗 − 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟)|

|𝐸𝑖𝑗|
  if 𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟)                                (7.9𝑎) 

𝑔 = 1 if 𝐸𝑖𝑗 ≥ 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟) or 𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟)                                (7.9𝑏) 

 

 
Figure 7.2. (a) Bias scaling function vs. molecule-molecule interaction energies Eij for 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟) <
𝐸𝑖𝑗 < 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟), with 𝐸𝑏𝑖𝑎𝑠(𝑙𝑜𝑤𝑒𝑟) = −40 𝑘𝐽/𝑚𝑜𝑙. (b) Same as (a), without a lower limit. In both 

panels, 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟) = −15 𝑘𝐽/𝑚𝑜𝑙. 
 

The functional g(Eij) has the form shown in Figure 7.2: the larger the |𝐸𝑖𝑗 − 𝐸𝑏𝑖𝑎𝑠(𝑢𝑝𝑝𝑒𝑟)| difference, 

the smaller is g; when Eij << Ebias(upper), g → 0, while g → 1 when Eij approaches Ebias(upper). Both 
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the molecules i and j involved in the attractive pair will have their kinetic energies, Ti and Tj, scaled 

according to:  

 

 

𝑇𝑖
𝑛𝑒𝑤 = 𝑔 ∙ 𝑇𝑖                                                                            (7.10𝑎) 
𝑇𝑗
𝑛𝑒𝑤 = 𝑔 ∙ 𝑇𝑗                                                                           (7.10𝑏) 

 

To the sake of simplicity, we will refer just to the ith single molecule hereinafter. In the algorithm, the 

same operations are obviously repeated also for the jth molecule of each pair. 

The ith molecule undergoes a kinetic energy change of 

 

∆𝑇𝑖 = 𝑇𝑖
𝑛𝑒𝑤 − 𝑇𝑖 =  𝑔 ∙ 𝑇𝑖 − 𝑇𝑖 = 𝑇𝑖 ∙ (𝑔 − 1)                                       (7.11) 

 

∆𝑇𝑖 is negative, as g < 1 and Ti must be positive. When g → 0, it turns out that the whole molecular 

kinetic energy is suppressed (∆𝑇𝑖 = −𝑇𝑖). On the contrary, no changes are made (∆𝑇𝑖 = 0) in unbiased 

steps (g = 1). The reduction of the molecular kinetic energy is equally distributed across the Ni atoms in 

the molecule i. Thus, each atom loses an amount of kinetic energy ∆𝑇𝑖,𝑎: 

 

∆𝑇𝑖,𝑎 =
∆𝑇𝑖
𝑁𝑖

= 𝑇𝑖,𝑎
𝑛𝑒𝑤 − 𝑇𝑖,𝑎 < 0                                                       (7.12) 

 

where 𝑇𝑖,𝑎 is the contribution to the molecular kinetic energy due to the atom 𝑎 ∈ 𝑖 with velocity module 

𝑣𝑖,𝑎: 

𝑇𝑖,𝑎 =
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2                                                               (7.13𝑎) 

𝑇𝑖 =∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2

𝑁𝑖

𝑎

=∑𝑇𝑖,𝑎

𝑁𝑖

𝑎

                                                (7.13𝑏) 

 

A correspondent equality holds true for the biased kinetic energy of the molecule i: 

 

𝑇𝑖
𝑛𝑒𝑤 =∑

1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎,𝑛𝑒𝑤

2

𝑁𝑖

𝑎

=∑𝑇𝑖,𝑎
𝑛𝑒𝑤

𝑁𝑖

𝑎

= 𝑔 ∙ 𝑇𝑖                                   (7.14) 

 

Substituting (7.13b) into (7.14) one gets the equality (7.15): 

 

∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎,𝑛𝑒𝑤

2

𝑁𝑖

𝑎

= 𝑔 ∙∑
1

2
𝑚𝑖,𝑎𝑣𝑖,𝑎

2

𝑁𝑖

𝑎

=∑
1

2
𝑚𝑖,𝑎𝑔(𝑣𝑖,𝑎

2 )

𝑁𝑖

𝑎

                                   (7.15) 

 

which is certainly true if 

 

𝑣𝑖,𝑎,𝑛𝑒𝑤
2 = 𝑔(𝑣𝑖,𝑎

2 )                                                                          (7.16) 

 

In other words, the bias scaling function g rescales the square modules of atomic velocities, whose 

individual components can be obtained by taking the corresponding square roots: 
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{

±𝑣𝑖,𝑎,𝑥
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑥

 ±𝑣𝑖,𝑎,𝑦
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑦

±𝑣𝑖,𝑎,𝑧
𝑛𝑒𝑤 = ±√𝑔 ∙ 𝑣𝑖,𝑎,𝑧

                                                                 (7.17) 

 

To conserve the total kinetic energy of the ensemble, the reduction of kinetic energy ∆𝑇𝑖 must be 

compensated by a corresponding gain from all the molecules whose kinetic energies are not going to be 

reduced, that is, those Nk molecules that have Ekl > Ebias. The change ∆𝑇𝑖 is equally distributed across 

these Nk molecules as ∆𝑇𝑘 = −∆𝑇𝑖 𝑁𝑘⁄ > 0. By expressing this energy change as a kinetic energy 

rescaling of each kth molecule, one gets:  

 

𝑇𝑘
𝑛𝑒𝑤 = 𝛼 ∙ 𝑇𝑘 = 𝑇𝑘 + ∆𝑇𝑘                                                            (7.18) 

 

The factor  for the kth non-frozen molecule can be computed from (7.18): 

 

𝛼 = 1 +
∆𝑇𝑘
𝑇𝑘
                                                                        (7.19) 

 

As it should be, 𝛼 > 1. From 𝑇𝑘
𝑛𝑒𝑤 = 𝛼 ∙ 𝑇𝑘 (7.18) we can proceed analogously to (7.14)–(7.16) to find 

the scaling factor for the atomic velocities:  

 

{

±𝑣𝑘,𝑎,𝑥
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑥

 ±𝑣𝑘,𝑎,𝑦
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑦

±𝑣𝑘,𝑎,𝑧
𝑛𝑒𝑤 = ±√𝛼 ∙ 𝑣𝑘,𝑎,𝑧

                                                                 (7.20) 

 

The rescaling procedure is applied again and again to the same molecule, one time for each 

intermolecular interaction that fulfills the biasing criterion. This means that molecules involved at the 

same time in more than one stable pair, that is, forming a cluster, are frozen more rapidly, increasing the 

probability of obtaining stable aggregates. Eqs. (7.17) and (7.20) provide a very simple recipe to rescale 

all the velocities in the simulation box in such a way that the total kinetic energy is conserved upon the 

application of (7.10) and (7.19). In practice, discretization errors and numerical approximations could 

make the total kinetic energy not fully conserved. The algorithm checks the kinetic energy before and 

after the application of the bias and stops with a warning message if an error larger than 1 % is detected. 

This is just a precaution, as the thermostat should take care of restoring periodically the correct kinetic 

energy of the ensemble. 

 

In summary, the user can select the thresholds of the bias (parameters Ebias(upper) and Ebias(lower), see 

Section 7.6.2) and the frequency of its application (parameter Nbias, see Section 7.6.2). The algorithm 

selects the best scaling factor g depending on the strength of interaction between the involved molecules 

(Figure 7.2). It is possible to keep the bias active for the whole trajectory, or to repeatedly switch it 

on/off for specific user–defined time periods (parameters tinon and tinof, see Section 7.6.2).  

 

7.2.5 Molecular dynamics in confined spaces  

The model for confined space relies on neutral, rigid and stretchable barriers that are added on the 

boundaries of the simulation box. 

To perform a confined molecular dynamics simulation, MiCMoS needs (i) a pre-equilibrated simulation 

box and (ii) a topology file as input. These can be obtained with standard procedures, which include for 
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example routines like boxliq.for (Section 5.2) and pretop.for (Section 5.4), followed by a fast 1-2 Msteps 

long run of Monte Carlo (Section 6) to dispose of hard contacts and adjust the starting density.  

The unconfined liquid is given in input to a new module, confbox.for (Section 5.8). This program 

prepares the parameter file barrier.par (Section 5.8.1), which specifies the geometrical details of the 

confined space and the force field parameters of the barrier. At the same time, confbox.for converts the 

standard simulation box into a new one, ready for the confined simulation, by deleting all the molecules 

which bear an atom in close contact (less than the sum of the van der Waals radii) with the barrier pixels.  

The barriers consist of regular square/rectangular grids of massless pixels, neutral by deafult. The user 

is free to set the pixel diameter and the Force Field parameters that determine molecule-pixel interactions 

during the dynamics. In practice, at the user’s convenience, the same atom id code is attached to all 

pixels according with Table 1.1 (Section1.4), which selects the corresponding A6, A12 Lennard–Jones 

parameters of the LJC parametrization (Section 2.1.2). It is wise to set pixel dimensions similar to the 

van der Waals diameter of the selected atom type, but smaller or larger pixels can be employed as well 

if desired, for example to set up simulations in a coarse-grained fashion. 

Upon addition of the barriers, at least one direction out of X, Y or Z becomes non periodical. The user 

sets the desired equilibrium distance between pairs of opposite barriers, wihich may or not be different 

from the starting one. The program confbox.for takes care of tuning the length of the simulation edges 

to have the desired target packing efficiency. In other words, the volume of the confined box is variable 

and depends on the number of molecules and the desired packing efficiency (Cpack). By default, the 

program sets the box volume to have the theoretical maximum efficiency for the random packing of 

spheres, 0.66 (see Zaccone, Phys. Rev. Lett., 2022, 128, 028002). If desired, the user can start with less 

dense liquids by acting on the parameters nmolzacu and nmolzacv specified in the barrier.par file 

(Sections 5.8 and 5.8.1). By increasing these parameters, a larger box will be produced, and Cpack will 

be consistently lowered. When dealing with nanotubes and nanolayers, the user sets the barrier-to-barrier 

distances they desire, and confbox.for tunes the length of the simulation box along the periodic 

directions. For nanocavities, no periodic directions exist, and the target equilibrium edge length are 

automatically computed according to the target Cpack. This procedure ensures that no steric clashes 

should be produced, as the program prevents the user from setting box dimensions that are too small 

with respect to the number of the molecules in the liquid.  

From a geometrical viewpoint, confbox.for places the barriers onto the surfaces that bound the original 

simulation box. This implies that the barriers are always parallel in pairs, and only squared sections are 

available for nanotubes and nanocavities. An offset parameter can be controlled at the confbox.for stage, 

to tune the distance between the barriers and the box boundaries. The offset parameter allows to perform 

fine adjustments of the barrier positions with respect to the simulation box surface. Confbox.for deletes 

those molecules that have at least one atom below the van der Waals distance with at least one pixel of 

the barrier (see above). This step is mandatory to prevent steric clashes at the beginning of the 

simulation. Thus, the offset parameter is useful to avoid the deletion of many molecules. 

The number of pixels that define the barriers is calculated by rounding down the ratio between the 

equilibrium length of the box edges, as computed by the program according with the desired Cpack, and 

the user-defined pixel diameter.  

The confinement partitions the available space into a “bulk” region, where molecules are distant from 

the barrier and no significant pixel-molecule interactions are set up, and a “barrier” region, where on the 

contrary pixel-molecule interactions are not negligible (Figure 7.3). A reasonable empirical cutoff of 

10–3 kJ·mol–1 is usually employed to discriminate between such regions, but the user is free to make 

their own choice to establish the corresponding boundaries.  
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Figure 7.3. Structure of the confined space for a nanolayer. The barriers (in grey) can be stretched or 

compressed along direction parallel to their surface. At the same time, they are allowed to vibrate along 

the perpendicular direction. The amplitudes of these motions are controlled by a force constant (see 

text). Molecule-barrier interactions are nonzero (EB > 0.001 kJ·mol–1) in the barrier region (dark blue), 

while they are negligible in the bulk region (light blue). 

The barriers are stretchable: every time the barostat varies the dimensions of the simulation box, the 

pixel positions are modified accordingly, but their number remains constant. If the pressure of the system 

is high and positive (negative) along a specific direction parallel to the barrier, the box dimension in that 

direction would increase  (decrease). To avoid unphysical stretching, the following solution is employed. 

A fictitious pressure is added in each laboratory direction X, Y, and Z. This counterpressure is 

proportional to the difference between the actual box size and the equilibrium box size, divided by the 

area of the face orthogonal to that direction. By default, the force constant k corresponds to the stretching 

of an aromatic Csp2-Csp2 bond (3400 kJ·mol-1·Å-2). Damping scale factors can be also applied by the 

user at the confbox.for stage, which are also specified in the barrier.par parameter file. Thus, the user 

may control the stiffness of the system, along both the parallel and perpendicular directions with respect 

to the barrier(s). To this end, three damping factors are available (dampk(XY) along Z, dampk(XZ) along 

Y and dampk(YZ) along X, see also Section 5.8), to change the relative strength of the force constant 

along the X, Y and Z directions (Figure 7.3). Contradictory statements (for example, different parallel 

and perpendicular force constants in a nanocavity) are recognized by the program, which in that case 

stops before entering the simulation.  

To start the dynamics, a new parameter, inano, must be specified in the input .mdi file (see Section 7.6.2 

below). inano = 0 means unconfined simulations and implies that the confbox procedure described 

above is not needed, while inano = 1, 2, 3 may be set for nanolayer, nanotube, and nanocavity 

simulations respectively; in other words, the confinement is applied on the starting simulation box by 

reducing the corresponding number of periodic directions.  

Then, the dynamics proceeds as usual; the only difference with respect to standard (unconfined) 

simulations is that atom-pixel interactions are evaluated at every steps. Every atom interacts with all the 

pixels lying within the usual cutoff distance. In particular, the solute-solute cutoff (see Section 7.6.2) is 

applied also for atom-pixel distances that involve the solute, while the same solvent-solvent cutoff is 

applied for atom-pixel distances that involve the solvent.  

As the barrier has not a true chemical structure, it is only affected by stretching deformations, as 

prompted by the barostat. Accordingly, the atom-pixel energy terms are not explicitly considered to 

compute the total virial of the forces of the system, which still refers to the usual solute-solute, solute-

solvent and solvent-solvent terms. As a consequence, the forces exerted onto the barriers by the liquid 

are totally ignored. This prevents the barrier from changing its shape, for example from being bent. On 

the contrary, the molecules fully feel the force exerted by the barriers, as their dynamics (in terms of 

translation, rotation and velocity) is influenced by the interactions with the pixels. In other words, the 

presence of the barriers has an indirect effect on the total virial and henceforth on the (an)isotropic 

pressure. 
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At the very beginning of the simulation, in particular if a large offset is set between the faces of the 

simulation box and the barriers, a high negative pressure could be developed in the direction 

perpendicular to the barriers, which might rapidly compress the system and produce clashes. To avoid 

such problems, when the confinement is active (inano > 0), a further damping is automatically applied 

to the barostat algorithm (Section 7.3). In particular, the barostat is prevented from applying 

(an)isotropic scaling factors lower than 0.95 to the box edge lengths. Equivalently, changes not greater 

than 5 % are allowed for the box edge lengths in a single MD step. 

Finally, the user can employ either full Lennard-Jones barriers or repulsive-only ones. This options is 

controlled by the parameter iattr, which is given as input during the confbox.for procedure and is 

consequently set in the barrier.par file. If iattr is 0, the attractive A6 coefficient (Section 2.1.2) is 

switched off (A6 = 0) and the only possible atom-barrier interactions are the short-range repulsive ones, 

as governed by the A12 coefficient. This also implies that the “barrier” part of the simulation box (Figure 

7.3) becomes thinner, while the “bulk” one enlarges. If the A6, A12 coefficients of Carbon are used, for 

example, the thickness of the “barrier” layer is ~11.6 Å for a full Lennard-Jones potential and shrinks 

to ~6.4 Å for a repulsive-only one.  

 

7.3 Periodic boundary conditions and pressure control 
Periodic boundary conditions can be imposed in three dimensions. To this end, the program 

automatically loads 27 replicas of the main box along the three directions. At preset intervals and/or 

after box changes, the center of mass motion is stopped (subroutine comres) and out of box molecules 

re-enter the box from the opposite side. 

 

The pressure of the simulation can be controlled with two algorithms. When simulating a liquid with a 

cubic simulation box, pressure rescaling should be isotropic (Section 7.3.1), the box being constrained 

to stay cubic. In principle, isotropic rescaling could apply also to orthogonal crystal boxes as in 

orthorhombic or higher-symmetry systems, although this is not advisable. In general, for the simulation 

of a crystal, pressure rescaling should be anisotropic (Section 7.3.3), allowing full relaxation of different 

box dimensions and angles. This can be achieved by a “minimal barostat” option (Section 7.3.2), or 

by the Parrinello–Rahman algorithm (Section 7.3.3).   
 

7.3.1 Isotropic pressure control 

The isotropic pressure control on orthogonal computational boxes is achieved by use of the virial 

theorem. The algebra is from GROMOS96 manual: see Van Gunsteren, W. F., Billeter, S. R., Eising, 

A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P. & Tironi, I. G., Biomolecular 

simulation: The GROMOS96 manual and user guide, BIOMOS B.V. Zurich, Groningen, vdf 

Hochschulverlag A.G. and der ETH Zurich (1996).  

 

Consider an ensemble of molecules each with total mass Mi , made of atoms of mass mk and velocity vk. 

Let Vi, be the centre of mass velocity:  

 

𝐕𝑖 = ∑
𝑚𝑘𝐯𝑘
𝑀𝑖

𝑎𝑡𝑜𝑚𝑠 ∈ 𝑖

𝑘=1

                                                                  (7.21) 

     

Thus, the molecular kinetic energy is ½MiVi
2, and the total kinetic energy of the ensemble is: 

 

𝐸𝑘𝑖𝑛 = ∑
1

2
𝑀𝑖𝑉𝑖

2

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑖=1

                                                               (7.22) 
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The kth atom of the ith molecule interacts with all the l atoms in each of the surrounding molecules, j. 

The corresponding forces can be computed with the established force field (Section 7.4). Atom–atom 

force contribution fkl will sum up to give the total force acting on the centre of mass of the ith reference 

molecule due to the presence of the jth one: 

 

𝐅𝑖𝑗 = ∑ 𝐟𝑘𝑙  

𝑎𝑡𝑜𝑚𝑠 ∈ 𝑖,𝑗

𝑘,𝑙

                                                                  (7.23) 

 

If we now define as Rij the i–j centre of mass vector distance, the centre of mass virial W can be computed 

as: 

 

𝑊 = −
1

2
∑ 𝐅𝑖𝑗 ∙ 𝐑𝑖𝑗

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑖<𝑗

                                                            (7.24) 

 

Eventually, the pressure experienced by the whole molecular ensemble can be estimated from the 

classical virial theorem, V being the volume of the computational box: 

 

𝑃 =
2

3𝑉
(𝐸𝑘𝑖𝑛 −𝑊)                                                               (7.25) 

 

Table 7.1 above shows the measure units that are employed throughout. At preset time intervals, virial 

(W) and kinetic energy (Ekin) are calculated and current pressure P is obtained by (7.25); then, 

compliance towards the set pressure, Pset (usually 1 atm = 101300 Pa) is achieved using the relationships 

(7.14)–(7.18). 

 

First, an adimensional shift factor  is computed from the corresponding compressibility coefficient, 0, 

which is given in the run control file .mdi (see Section 7.6.2 below; this being an empirical factor whose 

values is usually  0.3 or 0.4):  

 

𝜇 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃)]
3

                                                            (7.26) 
 

Then, the new box dimensions are computed and centre–of–mass vector (rcom) components accordingly 

updated: 

 

𝑎′ = 𝜇𝑎                                                                            (7.27) 
 

𝐫com
′ (𝑖) =

𝑎′

𝑎
𝐫com(𝑖)                                                                (7.28) 

          

For each molecule, the centre–of–mass displacement is applied to all the atomic coordinates xk of the ith 

molecule: 

 

∆𝐱 = 𝐫com
′ (𝑖) − 𝐫com(𝑖)                                                           (7.29) 

 

𝐱𝑘
′ = 𝐱𝑘 + ∆𝐱                                                                      (7.30) 
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7.3.2 Anisotropic pressure control for oblique boxes 

For monoclinic or triclinic crystals, in the minimal barostat option the anisotropic pressure control 

proceeds with the 3-dimensional equivalent of the algorithm detailed in equations (7.9)–(7.14): the 

separate x, y, z components of virial, kinetic energy and forces are computed to obtain three separate 

box update parameters, x y and  z, which rescale each of the three components of box vectors. 

Moreover, the whole vector algebra in an oblique system must go through an orthogonalization and 

deorthogonalization procedure as detailed below.  

 

CAUTION: With this procedure, no explicit equations of motions are solved for the simulation box. 

Thus, if the starting cell has angles equal to 90º, its shape will remain fixed, as no off–diagonal elements 

are present in the transformation matrix, which could mix edge vectors and affect angles. 

 

Let a, b, c,    be the unit cell parameters, repeated by Na, Nb, Nc times along the three dimension to 

form a computational box with cell parameters A, B, C and    , where A = a·Na, B = b·Nb  and C = 

c·Nc. Let cos, cos, cos sin, sin sin be the cosines and sines of the three box angles. From these 

values, an orthogonalization matrix O can be computed according to:  

 

𝐎 =

(

  
 

𝐴 𝐵 cos𝛾 𝐶 cos𝛽

0 𝐵 sin𝛾 𝐶 [
cos 𝛼 − cos𝛽 cos 𝛾

sin 𝛾
]

0 0 𝐶 [
𝑓𝑉
sin 𝛾

]
)

  
 
                                         (7.31) 

Where the scalar fV is 

 

𝑓𝑉 = (1 − cos
2𝛼 − cos2𝛽 − cos2𝛾 + 2 cos𝛼 cos𝛽 cos 𝛾)1/2                       (7.32)  

 

Any column vector of fractional coordinates xf, yf, zf can thus be orthogonalized to give the 

corresponding xo, yo, zo coordinates in a Cartesian reference frame following the transformation xo = O 

xf:  

 
𝑥0 =                      𝐴𝑥𝑓 + 𝐵 cos 𝛾 ∙ 𝑦𝑓 + 𝐶 cos𝛽 ∙ 𝑧𝑓

                              𝑦0 =                                   𝐵 sin 𝛾 ∙ 𝑦𝑓 + 𝐶 [
cos𝛼 − cos𝛽 cos 𝛾

sin 𝛾
] ∙ 𝑧𝑓

    𝑧0 =                                                             𝐶 [
𝑓𝑉
sin 𝛾

] ∙ 𝑧𝑓 }
 
 

 
 

                     (7.33) 

 

Where fV is defined in (7.32) and the volume of the simulation box is 

 

𝑉𝑏𝑜𝑥 = (𝐴𝐵𝐶)𝑓𝑉                                                                    (7.34) 
 

For crystals, starting orthogonalized atomic coordinates in files boxcry.dat are generated by program 

Boxcry (Section 5.1) using (7.31)–(7.34) from crystallographic data. In liquid boxes, A = B = C with 

three angles 90° and all coordinates are directly generated orthogonal by the Boxliq module (Section 

5.2).  

 

The edge vectors of the computational Bx, By, Bz are also computed in the new orthogonal reference 

frame by applying the same transformation O to the fractional unit translations corresponding to the 
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crystallographic computational box: (1 0 0), (0 1 0), (0 0 1). This leads to the following expressions for 

the components of Bx, By, Bz: 

 

𝐁𝐱 = (
𝐴
0
0
); 𝐁𝐲 = (

𝐵 cos𝛾
𝐵 sin𝛾
0

); 𝐁𝐳 =

(

 
 

𝐶 cos𝛽

𝐵 [
cos𝛼−cos𝛽 cos𝛾

sin𝛾
]

𝐶 [
𝑓𝑉

sin𝛾
]

)

 
 
                               (7.35)  

 

To implement box periodicity, 27 vectors n of components n1, n2, n3 = -1, 0 or +1 in all combinations 

are generated and then the actual translation vectors T are: 

 
𝐓(1) = 𝑛1𝐁𝐱(1) + 𝑛2𝐁𝒚(1) + 𝑛3𝐁𝐳(1)

𝐓(2) = 𝑛1𝐁𝐱(2) + 𝑛2𝐁𝒚(2) + 𝑛3𝐁𝐳(2)

𝐓(3) = 𝑛1𝐁𝐱(3) + 𝑛2𝐁𝒚(3) + 𝑛3𝐁𝐳(3)

}                                        (7.36) 

 

All coordinates in the computational box are periodically repeated by summing the possible vectors T, 

in all their 27 combinations. The intermolecular energy is computed between all molecules in the 

computational box, and all translated molecules within a cutoff distance between centers of mass 

(usually, 15-18 Å). In this way, summations are always carried out between full molecules (neutral 

units), thus reducing if not disposing of truncation and edge effects. Vectors T are established at the 

beginning of the calculation in subroutine rebox, and are updated as soon as vectors Bx, By and Bz are 

updated during pressure control. 

 

In the "minimal barostat" option, the new pressure components P(i) (former (7.25)) and the 

corresponding shift factors (i) (former (7.26)) are: 

 

𝑃𝑥 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑥 −𝑊𝑥𝑥); 𝜇𝑥 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑥)]

3

𝑃𝑦 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑦 −𝑊𝑦𝑦); 𝜇𝑦 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑦)]

3

𝑃𝑧 =
2

3𝑉
(𝐸𝑘𝑖𝑛,𝑧 −𝑊𝑧𝑧); 𝜇𝑧 = √[1 − 𝜇0(𝑃𝑠𝑒𝑡 − 𝑃𝑧)]

3

}
 
 

 
 

                               (7.37) 

 

Where 0 is the compressibility coupling parameter detailed in Section 7.3.1. Translation vectors are 

updated accordingly: 

 

[

𝐁𝐱
′ (1) = 𝜇𝑥𝐁𝐱(1)

𝐁𝐱
′ (2) = 𝜇𝑦𝐁𝐱(2)

𝐁𝐱
′ (3) = 𝜇𝑧𝐁𝐱(3)

] ; [

𝐁𝐲
′ (1) = 𝜇𝑥𝐁𝐲(1)

𝐁𝐲
′ (2) = 𝜇𝑦𝐁𝐲(2)

𝐁𝐲
′ (3) = 𝜇𝑧𝐁𝐲(3)

] ; [

𝐁𝐳
′(1) = 𝜇𝑥𝐁𝐳(1)

𝐁𝐳
′(2) = 𝜇𝑦𝐁𝐳(2)

𝐁𝐳
′(3) = 𝜇𝑧𝐁𝐳(3)

]                           (7.38) 

      

after which also the translation vectors T are updated (eq. (7.36)). Once the new vector components are 

available, the box parameters in the new crystallographic reference frame are recalculated as: 
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𝐴𝑛𝑒𝑤 = √𝐁𝐱
′ (1)2 + 𝐁𝐱

′ (2)2 + 𝐁𝐱
′ (3)2

𝐵𝑛𝑒𝑤 = √𝐁𝐲
′ (1)2 + 𝐁𝐲

′ (2)2 + 𝐁𝐲
′ (3)2

𝐶𝑛𝑒𝑤 = √𝐁𝐳
′(1)2 + 𝐁𝐳

′(2)2 + 𝐁𝒛
′ (3)2}

 
 

 
 

                                                  (7.39) 

 

And accordingly, the new angles are given by: 

 

𝛼𝑛𝑒𝑤 = cos
−1 [

𝐁𝐲
′ ∙ 𝐁𝒛

′

𝐵𝑛𝑒𝑤𝐶𝑛𝑒𝑤
]

𝛽𝑛𝑒𝑤 = cos
−1 [

𝐁𝐱
′ ∙ 𝐁𝒛

′

𝐴𝑛𝑒𝑤𝐶𝑛𝑒𝑤
]

𝛾𝑛𝑒𝑤 = cos
−1 [

𝐁𝐲
′ ∙ 𝐁𝒙

′

𝐵𝑛𝑒𝑤𝐴𝑛𝑒𝑤
]
}
  
 

  
 

                                                         (7.40) 

 

All orthogonal center of mass coordinates xo, yo, zo are updated as follows (subroutine boxexp). First, 

old coordinates are de-orthogonalized with the old metrics Aold, Bold, Cold and old old old old with the 

inverse matrix O–1 (inverse of (7.31), see Appendix Section A3): new c.o.m. coordinates are then 

generated by re-orthogonalizing  with the new metrics: 

 

𝐫(old, fract) = 𝐎old
−1 ∙ 𝐫(old, orthog)

𝐫(new, orthog) = 𝐎new ∙ 𝐫(old, fract)
}                                          (7.41) 

 

New c.o.m. coordinates are then generated by re-orthogonalizing [rx, ry, rz] with the new metrics (matrix 

O, eq. (7.31)), such that 𝐫com
′ = 𝐎 ∙ 𝐫com. Finally, the displacements are calculated as ∆𝐱 = 𝐫com

′ − 𝐫com 

(as in eq. (7.29)) and the coordinates of all atoms are displaced by x (as in eq. (7.30)). This procedure 

preserves rigid molecular conformations, as it shifts molecules as rigid bodies. Velocities are left 

unchanged after box update (an acceptable approximation).  
 

7.3.3 Parrinello-Rahman barostat 

The original procedure is described in Parrinello, M. & Rahman, J. Appl. Phys. 1981, 52, 7182–7190;   

Phys. Rev. Letters 1980, 45,1196-1199. The code for the P-R barostat is embodied in in the mdviri 

library of the MD setup. All quantities are expressed in S.I. units, with energy in kJ/mol, velocity in m/s, 

distance in meters and forces in Newton. 

 

1) An array vl(4000,3) is defined, where the velocities of the centers of mass (c.o.m.) of solute 

(from 1 to NMSOLU, see Table 5.1) and solvent (from NMSOLU+1 to NMSOLV, see Table 

5.1) are progressively stored. At the same time, the halved negative virial tensor components 

due to solute-solute, solvent-solvent and solute-solvent interactions are computed according to: 

 

𝐖 = −1 2⁄ 𝐟𝑖𝑗 ⊗𝐑𝑖𝑗                                                          (7.42) 

 

Eventually, the tensor contributions coming from each molecular pair are summed up, and the 

total virial tensor is obtained. fij is the force between molecules i and j and Rij is the 

corresponding c.o.m. distance (see also Table 7.1). The symbol ⊗ denotes the tensor product 

between the two vector (1st–rank tensor) quantities.  
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CAUTION: For the moment, a maximum number of 4000 molecules can be dealt with, including solute 

and solvent. If your box contains more molecules, the array dimensions must be incremented directly in 

the source code, and the program recompiled. 

 

2) The total (3x3) kinetic energy tensor is computed according to:  

 

𝐄 =∑
1

2
𝑚𝑖 (𝐯𝑖⊗𝐯𝑖)

𝑖

                                                     (7.43) 

 

vi being the i-th vector stored in the vl(4000,3) array. The summation goes up to the total number 

of molecules, NMSOLU+NMSOLV.  

 

3) Eventually, the individual components of kinetic energy and virial are summed each other, and 

the pressure tensor is computed as 

𝐏 =
2

𝑉
(𝐄 +𝐖)                                                              (7.44) 

 

where V is the volume of the simulation box and takes care of converting energy units into 

pressure units. Overall, this procedure implements the definition of the pressure tensor proposed 

by Parrinello & Rahman: 

 

𝐏 =
2

𝑉
{∑[

1

2
𝑚𝑖 (𝐯𝑖⊗𝐯𝑖)] −

1

2
∑[𝐟𝑖𝑗 ⊗𝐑𝑖𝑗]

𝑖<𝑗𝑖

}                              (7.45) 

 

4) The scalar hydrostatic pressure, p, is defined, as usual, as one third of the trace of the P tensor: 

 

𝑝 =
1

3
∑ 𝑃𝑖𝑖

3

𝑖=1
                                                              (7.46) 

 

5) Subroutines metric and boxconv take care of computing H, that is, the matrix of the box edges 

arranged as column vectors in a crystallophysical cartesian reference frame. Orthogonalization 

is carried out with the same procedure detailed in Section 7.3.2. 

 

6) The box edges experience their own equation of motion, which can be written as: 

 

𝐅 = 𝑤
𝑑2𝐇

𝑑𝑡2
= [𝐏 − 𝑝𝐈]𝛔                                                   (7.47) 

 

Here, F is the force acting on the simulation box, H the matrix of the box edges in cartesian 

coordinates, P the pressure tensor, p the scalar hydrostatic pressure, I the identity matrix and  

the volume-scaled reciprocal cell matrix. The coupling parameter w determines the strength of 

the pressure coupling and must be given in input within the .mdi parameter file (see Section 

7.6.2). It has dimensions of a mass (kg) and determines the inertial response of the lattice to the 

pressure unbalance. 
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CAUTION: Strictly speaking, w should be chosen so that the relaxation time be of the same order of 

magnitude as L/c, L being the length of the simulation box and c the velocity of sound in the bulk. In 

fact, w determines the relaxation time for recovery from an imbalance between external pressure and 

internal stress. In practice, equilibrium properties are independent on the fictitious mass and w can be 

arbitrarily chosen to have a convenient relaxation time. Something like w=1.0-3.0 is normally 

appropriate. 

 

7) The standard leap–frog algorithm is exploited. First, the velocity matrix associated to cell edge 

displacements (VH) is computed according to: 

 

𝐕𝐇 =
1

2
(
𝑛 · Δ𝑡

𝑤
)𝐅                                                               (7.48) 

 

where n is the number of MD steps between two subsequent pressure controls, t the simulation 

time step (as defined in the input .mdi file, Section 7.6.2) and w the coupling parameter above 

discussed. As usual in the leap–frog procedure, velocities are evaluated at n·t/2 seconds. Then,  

the H matrix of cell edges is finally updated from the velocity tensor at t/2: 

 

𝐇(𝑡 + Δ𝑡) = 𝐇(𝑡) + (𝑛 · Δ𝑡)𝐕𝐇                                              (7.49) 
 

Note that the velocity verlet algorithnm cannot be applied to the dynamics of the cell edges. 

 

8) The c.o.m. positions of all the molecules in the simulation, including the 26 translationally–

dependent images of the simulation box, are updated according to the change in the cell edge 

vectors, analogously to what detailed in Section 7.3.2.  

 

7.3.4 External pressure 

NpT MD simulations can be also carried out under arbitrary external stress. The original algebra was 

developed by Parrinello & Rahman (J. Appl. Phys. 1981, 52, 7182–7190) and relies on Lagrangian 

dynamics applied to the 3x3 cell edge tensor, H, that is, the array of three column vectors expressing 

cell edges Cartesian coordinates in the crystallophysical reference frame {𝒆̂1,2,3} (𝒆̂𝑖 ∙ 𝒆̂𝑗 = 𝛿𝑖𝑗; |𝒆̂𝑖,𝑗,𝑘| =

1). We associate the ordinary X, Y and Z labels to the directions expressed by the 𝒆̂1, 𝒆̂2, and 𝒆̂3 versors. 

The external stress field can be applied along any combination of the X, Y, Z directions. We adopt a 

standard transform, pivoting on the crystallographic a cell axis, to define the laboratory Cartesian 

reference system, according to the orthogonalization procedure reported in Section A3 of this Manual. 

In this frame, X, Y and Z are exactly oriented as the cell edges a, b and c if the crystallographic system 

has angles =  =  = 90º. If this is not the case, Y and Z may be not perfectly parallel to the 

crystallographic vectors b and c. For the moment, different choices of the laboratory axes are not 

allowed; we plan to include a routine to allow the user to rotate the laboratory reference frame as he/she 

wish in a forthcoming release of the package 

 

According to classical elasticity theory of solids (Landau & Lifshitz, Theory of Elasticity, Pergamon, 

Oxford, 1959), when an external stress field is applied, an excess elastic energy is transferred to the 

lattice. To compute this term, a reference structure must be defined. Following Parrinello & Rahman, 

the cell corresponding to the first simulation frame (t = 0, H0) is chosen as the least biased and most 

practical choice to this purpose. If the simulation under stress starts from a previously equilibrated 

structure, and ends with a fully equilibrated structure as well, the elastic energy (Vela) has the usual 

thermodynamic connotation and corresponds to a meaningful correction – within the limits of the Force 
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Field – to the steric energy. Eventually, the generalized enthalpy of a (Hstress, N) ensemble with cohesive 

energy E and compliant with the Lagrangian under stress is: 

 

𝐻𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐸 + 𝑉𝑒𝑙𝑎                                                              (7.50) 
 

The Vela component can be computed from the volume of the reference (starting) cell, V0, as:  

 

𝑉𝑒𝑙𝑎 = 𝑝(𝑉 − 𝑉0) + 𝑉0 ∙ Tr[(𝐒 − 𝑝𝐈) ∙ 𝛆]                                            (7.51) 
 

Where S is a generalized 2nd–order symmetric tensor that is given in input by the user in units of GPa, 

“Tr” means “trace” and  is the symmetrical strain tensor. The latter is evaluated by comparing actual 

and reference (t = 0) cell parameters in Cartesian coordinates, as given by orthogonalized matrices H 

and H0: 

ε𝑖𝑖 =
[H𝑖𝑖(𝑡) − H𝑖𝑖(0)]

H𝑖𝑖(0)
                                                           (752𝑎) 

ε𝑖𝑗 =
1

2
[
H𝑖𝑗(𝑡)

H𝑗𝑗(0)
+
H𝑗𝑖(𝑡)

H𝑖𝑖(0)
]                                                         (7.52b) 

 

The symmetry properties of the S matrix mirror the symmetry of the external stress field in the reference 

crystallophysical frame. For example, an external hydrostatic isotropic compression corresponds to 

S11=S22=S33 and Sij = 0  i,j with magnitude equal to the trace of S (Tr[S]), while any difference among 

the diagonal elements reflects into an anisotropic tensile stress along some laboratory direction(s) X, Y 

or Z. Nonzero off-diagonal elements (Sij  0) correspond to applied shear stresses. According to the 

Cauchy notation, the index i identifies the shear plane, taken as the one normal to the corresponding i-

th axis, while j specifies the laboratory axis along which the stress is applied. 

 

A symmetric tensor 𝚺 is defined, which converts the applied stress, S, into a surface energy density 

(force/m or energy/m2) by accounting for the shape of the unit cell.  

 

𝚺 = [𝐇𝟎
−𝟏(𝐒 − 𝑝𝐈)𝐇̃𝟎

−𝟏] ∙ 𝑉0                                                      (7.53) 
 

H0 here represent the starting (undistorted) simulation box tensor and the “–1” and “~” symbols have 

the usual meaning of “inverse” and “transpose” matrix operations. Once the actual metric tensor (G) is 

known,  modifies the Lagrangian according to: 

 

ℒ𝑠𝑡𝑟𝑒𝑠𝑠 = ℒ −
1

2
Tr[𝚺 ∙ 𝐆]                                                         (7.54) 

 

Starting from equation 7.35, showed that this Lagrangian corresponds to the following equation of 

motion, which applies to the cell edge vectors and, indirectly, to all atom coordinates: 

 

𝐅 = 𝑤
𝑑2𝐇

𝑑𝑡2
= [𝐏 − 𝑝𝐈]𝛔 − 𝐇 ∙ 𝚺                                                   (7.55) 

 

In practice, Equation (7.55) is made compliant with standard leap–frog integrator used in MiCMoS 

through Equations (7.48) and (7.49). Accordingly, all the molecules in the simulation box are them 

rigidly translated to account for the cell edges displacement, ∆𝐇 = 𝐇(𝑡 + Δ𝑡) − 𝐇(𝑡). 
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In this framework, perfect hydrostatic conditions are simulated by setting S11 = S22 = S33 and S12 = S13 = 

S23 = 0.0. Any unbalance in the stress components can be can be defined accordingly; for example, S11 

= S22 = 1.0133·10–4 GPa (=1 atm) and S33 = 1.0 GPa means an excess stress field, 1 GPa large, along the 

Z laboratory axis (see above). 

 

CAUTION. Following Parrinello & Rahman (J. Appl. Phys. 1981, 52, 7182–7190), the target pressure 

used by normal anisotropic scaling without external stress field (entry Pset in Section 7.6.2, line #9) 

should be set to 0 when S  0. At the same time, larger values of the coupling parameter w are advised 

to avoid too large displacements, especially in the first steps of the simulation, when the system may be 

very far from equilibrium. Experience showed that w = 8–10 kg could be a reasonable choice. 

 

 

7.4 Force fields 
 

7.4.1 Intramolecular force field 

The intramolecular force field includes bond stretching, bond bending, torsional and non-bonded terms:  

 

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅 − 𝑅

0)2                                                      (7.56) 

𝐸(𝑏𝑒𝑛𝑑) =
1

2
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)2                                                (7.57) 

𝐸(𝑡𝑜𝑟𝑠) = 𝑘𝑡𝑜𝑟𝑠[1 + 𝑓 cos𝑚𝜑]                                                      (7.58) 
 

where R is a bond distance,  is a bond angle,  is a torsion angle, and the k's are parametric force 

constants.  In Equation (7.58) f is a phase factor equal to  ±1, and m is an integer equal to 1, 2 or 3 (see 

Appendix, Figure A7.1 in Section A7.3). If required by the user, specific atom–atom nonbonded terms 

can be also added, typically to avoid clashes when rotatable groups become very close to each other, or 

to other groups attached to the main molecular backbone. The calculation of these intramolecular 

nonbonding energies proceeds as in the MC setup, i.e. by the same potentials used in intermolecular 

interaction, damped by a factor FACTIN (see Section 6.4.2) that must be given in the .mdi run control 

file (Section 7.6.2). See Section 7.6.4 (instructions NLISTU and NLISTV) to see how to define 

nonbonded contacts I practice. 

 

In MC stretching and bending potentials are seldom applied; in MD they are instead vital for the 

conservation of molecular shape, because MD acts on separate atomic coordinates rather than on global 

fragments. However, the precise values of the force constants, once a reasonable order of magnitude is 

supplied, are not crucial. Usually, one stretching potential is applied to each chemical bond in the 

molecule, one bending potential to each bond triad, and one torsion potential along each chemical bond. 

Equation (7.58) is also used with a very large force constant for improper dihedrals to keep sp2 centers 

planar (Appendix, Section A7.3). The formulation and the algebra for the calculation of forces over 

potentials in Equations (7.56-58) can be found in the GROMOS96 manual cited at the beginning of 

Section 7.3.1. Sections A7 and A8 in the Appendix describe (i) how tentative torsional parameters are 

assigned by Pretop (Section 5.4); (ii) how torsion angles are actually computed, and (iii) provide values 

afir ktors, f and m that are best suited to model specific functional groups (Table A7.5 in the Appendix, 

Section A7.3).  
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7.4.1.1 Anharmonic correction to the stretching potential 

Since the program version 2.0, it is possible to explicitly introduce an anharmonic correction to the 

stretching motion (see Section 7.6.2 for input instructions). 

 

CAUTION. The anharmonic correction is applied to all the covalent bonds in the solute molecule, 

including the X–H ones; in other words, solvent is not affected, and different bond types cannot be 

differentiated based on their harmonic or anharmonic behavior. The reason is to avoid possible 

unbalance effects in the force components acting on atoms. This option was introduced to work with 

pure substances, especially one-component crystalline solids. Thus, pay attention if you switch on the 

anharmonicity of the solute in a two-component system (e.g. a solution). 

 

If required by the user (see the description of parameter ianh in Section 7.6.2), MiCMoS modifies the 

harmonic function (7.56) with a cubic term that makes the potential no more symmetric around the 

equilibrium bond distance R0 (Figure 7.4). Specifically, the potential is made steeper at short distances 

and softer at longer ones, mimicking the Morse potential for small deviations from R0. 

 

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅 − 𝑅

0)2 − 𝛼𝑘𝑠𝑡𝑟(𝑅 − 𝑅
0)3                              (7.59) 

 

 is a multiplier scaling factor set in the program source code (see below). At higher deformations, the 

cubic correction implies that the potential has an unphysical maximum at  

 

𝑅𝑀𝐴𝑋 =
1

2
[(2𝑅0 +

1

3𝛼
) + √(2𝑅0 +

1

3𝛼
)
2

− 4((𝑅0)2 +
𝑅0

3𝛼
)]                    (7.60𝑎) 

 

𝐸𝑀𝐴𝑋(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
1

2
𝑘𝑠𝑡𝑟(𝑅

𝑀𝐴𝑋 − 𝑅0)2 − 𝛼𝑘𝑠𝑡𝑟(𝑅
𝑀𝐴𝑋 − 𝑅0)3                    (7.60𝑏) 

 

To avoid singularities, MiCMoS sets E(stretch) = EMAX(stretch) whenever R > RMAX, that is, it makes 

the potential constant for very large deformations. This corresponds to the bond dissociation plateau, 

where the contribution to the stretching force is exactly 0 for both the atoms involved. Overall, the cubic 

correction is intermediate between the pure harmonic potential and the more accurate Morse form 

(Figure 7.4). 

 

CAUTION. This very simple model cannot catch the correct physics when a bond is close to its 

dissociation limit; thus, any prediction that would imply very large deformations of covalent bonds 

should be interpreted with care.  

 

The anharmonic constant is estimated empirically by multiplying kstr by an adimensional scaling 

constant , which is now set at 0.48 in the source code. This empirical value was chosen as it guarantees 

that the bond dissociation energies in organic compounds are reasonably close to the experimental ones 

(see Table 4.11 in Dean, J. A. Lange’s Handbook of Chemistry, 15th Ed. McGraw Hill (1999), ISBN 0-

07-016384-7).  

 

The force resulting from this correction has the following form: 
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𝐹𝑥(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑥1 − 𝑥2
|𝐫𝟏 − 𝐫𝟐|

             (7.61𝑎) 

𝐹𝑦(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑦1 − 𝑦2
|𝐫𝟏 − 𝐫𝟐|

             (7.61𝑏) 

𝐹𝑧(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = [−𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅
0) + 3𝛼𝑘𝑠𝑡𝑟(|𝐫𝟏 − 𝐫𝟐| − 𝑅

0)2]
𝑧1 − 𝑧2
|𝐫𝟏 − 𝐫𝟐|

             (7.61𝑐) 

 

Where r1 and r2 are the vector positions of bonded atoms 1 and 2 in the crystallophysical reference frame 

and x, y and z the corrisponding coordinates. 

 

 
Figure 7.4. Comparison of the harmonic stretching potential (equation (7.56), blue line), the 

anharmonic–corrected cubic form (equation (7.59), full red line) and the Morse potential (dashed green 

line) for a covalent bond with R0 = 1.373 Å, kstr = 5100 kJ·mol–1·Å–2 and dissociation energy of 410 

kJ/mol. The dotted black line shows the point–by–point difference for a positive stretching between the 

anharmonic–corrected form and the Morse one. The error is very small for small displacements from R0 

but increases rapidly at large displacements and is maximum at RMAX. 

 

CAUTION. It is advisable to work with smaller time steps when the anharmonicity is introduced in the 

model.  

 

7.4.1.2 Anharmonic correction to the bending potential 

Expression (7.57) shows the cosine potential that is employed to model bending deformations in 

MiCMoS. Note that it is not purely harmonic already, even though it closely resembles the parabolic 

potential for small deformations, especially when the angle closes (Figure 7.5).  

 

Since the release v2.1, MiCMoS can handle a further anharmonic correction to bond angle bending. The 

philosophy is the same illustrated for the anhramonic correction to the stretching potential (Section 

7.4.1.1). In the following, the bending interaction is defined by an atom triple i-j-k, j being covalently 

bonded to both i and j, and  being the angle ijk (Figure 7.5). 
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CAUTION. The anharmonic correction to bending is applied to all the covalent angles in the solute 

molecule, that is, those defined by atom triples i-j-k; in other words, solvent is not affected, and different 

angle types cannot be differentiated based on their harmonic or anharmonic behavior. The reason is to 

avoid possible unbalance effects in the force components acting on atoms.  

 

Starting from (7.57), we expand the bending potential in power series up to the 4th order: 
 

𝐸(𝑏𝑒𝑛𝑑) =
1

2
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)2 +
1

3!
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)3 +
1

4!
𝑘𝑏𝑒𝑛𝑑(cos 𝜃 − cos 𝜃

0)4    (7.62) 

 

The advantage of this very simple model is that the correction to force components due to the 3rd and 4th 

terms are additive. The factorial coefficients serve just as damping factors for high-order contributions; 

no explicit definitions of the anharmonic bending constants are thus required. A bit of algebra shows 

that the 3rd-order correction to force component x on atom i in the crystallophysical reference frame read 

 

𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −
1

2
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)2 [
𝑥𝑘 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃]            (7.63) 

 

Where 𝑟𝑖𝑗 and 𝑟𝑗𝑘 are the corresponding distances between i-j and j-k. Analogue expressions can be 

written for 𝐹𝑖,𝑦 and 𝐹𝑖,𝑧 by substituting the x coordinate with either y or z.  

 

The 3rd-order correction to the force acting on atom k is: 

 

𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −
1

2
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)2 [
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑘 − 𝑥𝑗

𝑟𝑗𝑘
2 𝑐𝑜𝑠𝜃]            (7.64) 

 

And that acting on j is given by the sum of these contributions, so that the total sum of bending forces 

on the atom triple i-j-k is zero. This is a necessary requirement, as bending concerns the relative motion 

of atoms in the triple and must cause neither a dispacement nor a rotation of the whole i-j-k system. 

 

𝐹𝑗,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) = −𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) − 𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼)                           (7.65) 

The 4th-order term also produces the following expressions for forces: 

 

𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −
1

6
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)3 [
𝑥𝑘 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃]            (7.66𝑎) 

𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −
1

6
 𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃

𝑜)3 [
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗 ∙ 𝑟𝑗𝑘
−
𝑥𝑘 − 𝑥𝑗

𝑟𝑗𝑘
2 𝑐𝑜𝑠𝜃]            (7.66𝑏) 

𝐹𝑗,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) = −𝐹𝑖,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉) − 𝐹𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉)                           (7.66𝑐) 

 

Finally, 3rd and 4th-order corrections are summed to the 2nd-order contribution, −𝑘𝑏𝑒𝑛𝑑(𝑐𝑜𝑠𝜃 −

𝑐𝑜𝑠𝜃𝑜) [
𝑥𝑘−𝑥𝑗

𝑟𝑖𝑗∙𝑟𝑗𝑘
−

𝑥𝑖−𝑥𝑗

𝑟𝑖𝑗
2 𝑐𝑜𝑠𝜃], to give the total force on each atom in the triple.  

 

 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑) = 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼) + 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝐼𝐼) + 𝐹𝑖𝑗𝑘,𝑥(𝑏𝑒𝑛𝑑, 𝐼𝑉)                   (7.67) 

 

The anharmonic corrections make the potential softer toward the angle opening and stiffer against the 

opposite deformation (Figure 7.5).  
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Figure 7.5. Comparison of the of the cosine bending potential (7.57) (dashed green line) with a truly 

harmonic potential of the form ½kbend(–º)2 (black dashed/dotted line, not available in MiCMoS) and 

that resulting from the application of the anharmonic correction up to the 4th-order (Equation 7.62). The 

curves were plotted for an ideal system with º = 109º and kbend =450 kJ·mol–1.  

 

 

CAUTION. It is advisable to work with smaller time steps when high order anharmonic terms are used. 

Moreover, pay attention to atom triple definitions in the topology file. Make sure that they are defined 

consistently with the desired greater or smaller ease of bending deformation, especially when 4th-order 

anharmonicity correction is included in the model.  

 

7.4.2. Intermolecular force field 

Also in the MD module, a choice can be made between the atom–atom Coulomb–London–Pauli (AA–

CLP) and the Lennard–Jones–Coulomb (LJC) force fields (see also Sections 2.1.1 and 2.1.2). The 

intermolecular force field between two atoms i and j at a distance Rij and bearing point charges qi and qj 

is: 

 

(1) in the AA-CLP form: 

 

𝐸(inter, 𝑖, 𝑗, CLP) =
𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
−
𝐴

𝑅𝑖𝑗
4 −

𝐵

𝑅𝑖𝑗
6 +

𝐶

𝑅𝑖𝑗
12                                           (7.68) 

 

The corresponding force experienced by the atom i due to the presence of j (and vice–versa) as a function 

of distance is:  

 

𝐹(𝑅𝑖𝑗) = −
𝑑𝐸

𝑑𝑅
= −

𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
2 +

4𝐴

𝑅𝑖𝑗
5 +

6𝐵

𝑅𝑖𝑗
7 −

12𝐶

𝑅𝑖𝑗
13                                          (7.69) 

 

Coefficients A, B, C are computed as described Section 2.1.1. 
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(2) in the LJC form, as described in 2.1.2: 

 

𝐸(inter, 𝑖, 𝑗, LJC) =  
𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
−
𝐵

𝑅𝑖𝑗
6 +

𝐶

𝑅𝑖𝑗
12                                             (7.70𝑎) 

𝐹(𝑅𝑖𝑗) = −
𝑑𝐸

𝑑𝑅
= −

𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
2 +

6𝐵

𝑅𝑖𝑗
7 −

12𝐶

𝑅𝑖𝑗
13                                           (7.70𝑏) 

 

7.5 Simulation of isolated clusters 
 

7.5.1 Translational (T) and rotational (R) momentum 

In simulations of isolated clusters, net translational and rotational momenta may develop, affecting the 

evaluation of correlation functions with spurious faster decrease of the rotational correlation coefficient, 

C(u, t) (see Section 8.4), and faster increase of the translational diffusion coefficient, D(t) (see Section 

8.4). Several possible analytical constraints could be proposed to take care of this problem, most of 

which implying very complex algebra and time consumption. We have devised a simpler procedure, as 

follows. First, the array of centers of mass in the starting configuration (step zero for crystal clusters) is 

taken as a reference.  

 

To dispose of T-drift, a) one atom is assigned zero velocity and zero forces, thus keeping its position 

constant throughout the simulation, and b) every Nr moves (typically 500-1000) the whole cluster is 

reset to its current center of mass.  

 

For R-momentum, a rotation matrix is prepared as the product of three rotation matrices, one around the 

x, y, and z axis, and an array of possible back-rotations of the whole cluster is explored by varying the 

three rotation angles from -15 to +15° in steps of 3°. The back-rotation actually performed every Nr 

moves is the one (out of 11 x 11 x 11) for which the sum of the distances between current centers of 

mass and the reference configuration is minimum. This is an empirical equivalent of the analytical back-

mapping of actual coordinates onto reference ones, with the advantage that only N points have to be 

considered for an N-molecule system.  

 

As these corrections tackle the problem with a very simple strategy, they avoid complex algebra. 

Moreover, they affect the whole set of atomic coordinates in a rigid manner without discontinuities in 

the trajectories. Their efficiency has been checked by tests on correlation functions and distributions of 

centers of mass with and without the corrections. 

 

7.5.2 Evaporation control 

In simulations of small clusters without periodic boundary conditions, some loosely bound surface 

molecules may drift away in the simulation analog of evaporation. To deal with this problem, every time 

the translational motion is stopped by resetting the center of coordinates (see Section 7.5.1), all 

molecules are also checked for evaporation. Two strategies can be selected, namely a “tethering 

algorithm” and a “deletion algorithm”. 

 

(I) Tethering algorithm: if the center-of-mass vector of a molecule from the overall center of mass 

becomes longer than an assigned threshold Rev, to be specified in input (Section 7.6.2, instruction line 

(13), it is reduced by a factor 0 < Fev < 1, where Fev is another input parameter, and the whole molecule 

is pulled back by a vector 1–Fev toward the centre of mass of the cluster. Using a Rev threshold 

approximately equal to 1.5–2.0 times the cluster radius and Fev ~ 0.9 keeps a few molecules out of the 

main cluster but still in its orbit, thus effectively preventing evaporation.  
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(II) Deletion algorithm:  if the center-of-mass vector of a solvent molecule becomes longer than an 

assigned threshold Rev, the molecule is deleted from the cluster i.e. coordinates and velocities are deleted 

and a new box file is produced. This strategy applies to larger clusters where deletion of a few molecules 

is scarcely relevant 

Often the internal cohesion of the sample is such that no evaporation occurs, and no evaporation control 

need be applied. For example, at room T only small nonpolar solvents like chloroform may evaporate. 

 

7.5.3 The distribution-analysis option.  

In the .mdi input file an option is present (labels idistr and Emolim, see Section 7.6.2) that allows to 

store and write in the output .pri file molecule-molecule pair energies and distances below a certain 

(negative) threshold, and provides a histogram of the corresponding distributions. The distribution of 

center-of-mass velocities is also computed and printed in form of a histogram. This might be useful to 

locate specific molecular pairs that are binded by strongly attractive potentials, with application in 

molecular recognition studies. 

 

CAUTION. The distribution-analysis option must be made active if a biased MD run is required.  

 

An analysis module, histog.for, is available since MiCMoS v2.0 to estimate average histograms from a 

.pri file (see Chapter 8). 

 

7.6 Running a Molecular Dynamics job 
 

Templates and standard values for all input files are available in the manual. Tutorials are also avialable 

to provide working examples. 

 

7.6.1 Batch runfile 

The files needed to run a Molecular Dynamics calculation for a compound NAME are:  

 

- NAME.mdi, the run control file (Section 7.6.2);  

- simulation_box.dat, a file with the box description in .dat format (Sections 5.1.3 and 7.6.3); 

- NAME.top, force field input (Section 7.6.4).  

 

A typical MD run provides the following output: 

 

- name3md.pri, output, printfile 

- name3mdc.dat, output, trajectory file in .dat format (Section 5.1.3) 

- name3mdo.dat, output, final frame position file in .dat format (Section 5.1.3) 

- name3md.ene, output, energy trajectory file (Section 8.5.1) 

 

 

Molecular Dynamics running command 

 

run.mdmain NAME name2 name3 

 

NAME must be the name of both the MD control and topology files (.mdi and .top); name2 is the full 

name of the simulation box (.dat) and name3 is the flag for naming output files. 
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run.mdmain module (Unix/Linux) 

 

cp $1.mdi mdyn.mdi   !MD control file 

cp $1.top mdyn.top   !forcefield file 

cp $2 mdyn.bxi    !input box file, .dat format 

cp barrier.par mdyn.par  !barrier parameter file 

~/programs/MiCMoS/exe/mdmain !run execution module 
rm $3mdc.dat 

mv mdyn.mdc $3mdc.dat   !output, trajectory file in .dat format 
rm $3mdo.dat 

mv mdyn.mdo $3mdo.dat   !output, final frame position file in .dat format 
rm $3md.pri 

mv mdyn.mdp $3md.pri   !output, printfile 
rm $3md.ene 

mv mdyn.ene $3md.ene   !output energy trajectory file 

rm mdyn.mdi    !Deleting service files 
rm mdyn.top 

rm mdyn.bxi 

rm mdyn.par 

 

Detailed explanations on the meaning of the control parameters and file format follow. 
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7.6.2 The MD run control file (.mdi) 
 

CAUTION: #lines are comment lines at fixed places: do not change their position or introduce new 

#lines! These #lines usually show the identity of the various parameters but may contain user's own 

comments. 

 

Extension: .mdi; all free format. 

1) A title line 

2) #line --------------------------------  

3) n.steps, IRVEL, ipri, ibox, idistr, timestep, Emolim, iengt, ibias 

n.steps  Number of MD steps 

IRVEL Describes how velocities should be treated. For the format of the .dat file, see 

Section 5.1.3. Velocities and forces are always written in the last frame of the 

trajectory (file .mdo) after the final atomic coordinates. 

=0 Assign but do not write velocities in the output .dat file (this is the 

normal option if you are entering the MD program from a preliminary 

MC run).  

=1 Assign starting velocities, and write them on the output .dat file. 

=2 Read velocities from the input .dat file, but do not write in the output 

one. 

=3 Read velocities from the input .dat file, and write them in output.  

ipri  Controls the amount of information printed in the .pri output file. 

=0 Minimum printout. 

=1 Detailed printout (force field echo, stress tensor for Parrinello–Rahman, 

etc.). 

ibox Determines whether the simulation uses or not periodic boundary conditions. 

=0 No periodicity (isolated cluster). If this option is chosen, the 

instructions on line (15) below will control the rotation–evaporation 

issues as detailed in Sections 7.5.1 and 7.5.2. Note that ibox = 0 is 

incompatible with confined simulations (inano > 0, see below). The 

program recognizes the incompatible instructions and stops with a 

warning message.  

 =1 Periodic box (in three dimensions). 

idistr Controls whether the energy/velocity distribution analysis must be carried out 

(see Section 7.5.3).  

 =0 No distribution analysis is done. 

=1 The distribution analysis of molecule–molecule pair energies (< Emolim) 

and their centre–of–mass velocities is carried out and written in the .pri 

file. This option is mandatory if one wants to perform a biased MD run 

(see parameter ibias below). 

timestep Simulation time step, expressed in ps. A value is 0.002 (2 fs) is recommended 

for best compromise between speed and accuracy of results. 

Emolim If idistr=1, this is the energy limit (<0) to store molecule–molecule energies in 

the distribution (see Section 7.5.3). A value roughly equal to the 20% of lattice 

energy is normally acceptable. In a biased MD run, Emolim must be defined 
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and less negative than the upper limit for bias energy Ebiau (see line #4 below). 

If idistr=0, this is a dummy entry (leave 0.0). 

iengt Switch parameter to decide the integration algorithm (Section 7.2).  

 =0  The leapfrog integrator is used. 

 =1  The velocity–Verlet integrator is used. 

ibias  Controls whether the distribution of kinetic energy of the MD run is biased 

(Section 7.2.4). 

 =0 Unbiased run. 

=1 The kinetic energy distribution is biased. It is mandatory that idistr=1 

 (see above) if ibias =1. An extra bias.tab output file is also produced if 

ibias=1 (see below). Change its name if you don’t want that it will be 

overwritten by further MiCMoS biased MD runs.  

4) Biasing parameters (Ebial, Ebiau, Nbias, tinon, tinof). 

Add this line only if ibias = 1 in the last instruction of line #3. Otherwise, skip and 

continue with line #5.  

Ebial and Ebiau are the biasing threshold energies in kJ/mol (lower and upper limit). As 

the bias algorithm is intended to be applied to negative intermolecular Eij’s to select and 

favour stabe pairs, MiCMoS expects that Ebial is more negative that Ebiau. If this is not 

the case, the program stops with an error message. Ebial=0.0 is a special flag to get rid 

of a lower bias threshold and to bias all pairs with Eij < Ebiau. In any case, MiCMoS 

must compute the distribution of intermolecular energies to recognize what molecules 

fulfil the bias conditions. For this reason, it is mandatory that idistr=1 and Ebiau < 

Emolim when ibias = 1, or the program stops with a warning message. 

Nbias determines the bias frequency, in units of MD step numbers.  

The last two entries (tinon and tinof) specify the time intervals (in ps) for which the 

biasing algorithm is active (tinon) or inactive (tinof). For example, tinon = 5.0 and tinof 

= 2.0 mean that the bias will be kept active for 5 ps, then it will be switched off for 2 

ps, then it will be active again for the next 5 ps, and so on. The whole on/off procedure 

is repeated until the last MD move is done. Note, however, that the program can handle 

a maximum of 5,000 on/off intervals; you should avoid splitting the simulation time 

into too many short periods. If you want to keep the bias active for the whole trajectory, 

you can either set tinon=n.steps·timestep and tinof=0.0, or directly tinon=0.0. This is a 

dummy entry to flag that the user wants to keep the bias active for the whole trajectory.  

For example, “–20.0 –10.0 10 2.0 3.0” means that the bias algorithm will be applied 

every 10 MD moves for pairs whose Eij fulfil –20  Eij  –10 kJ·mol–1. The bias will be 

repeatedly switched on for 2.0 ps and then switched off for 3.0 ps, until the end of the 

dynamics. Another example: the string “0.0 –15.0 10 0.0 3.0” implies that the bias is 

active every 10 MD steps whenever Eij < –15 kJ·mol–1 and it will never be switched off, 

as tinon=0.0. In this case, tinof is ignored and its value is irrelevant.  

During each MD move in which the bias is active, the program prints an extra bias.tab 

ASCII text file, which summarizes the time (in ps), the number of interactions that fulfil 

the Ebial  Eij  –Ebiau condition, and the complete list of the corresponding molecular 

pairs. 

5) #line -------------------------------- 
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6) cutoffu, cutoffv, cutoffuv, FACTIN, ipots, ianh, inano  

Energy cutoff parameters are specified in this instruction line. Refer to Section 7.3.2 for more 

details. All cutoffs are expressed in Å.  

 

CAUTION: values of 16.0–18.0 are acceptable in most cases for neutral molecules, but in the 

presence of ions the convergence of Coulombic summations should be checked. Please note 

however that the standard force fields have not been calibrated for ions. 

 

cutoffu  Distance cutoff in intermolecular sums (solute–solute). 

cutoffv  Distance cutoff in intermolecular sums (solvent–solvent). 

cutoffuv Distance cutoff in intermolecular sums (solute–solvent). 

CAUTION: Cutoff values must not exceed 0.55 times any of the three box lengths. 

 

FACTIN Damping factor for intramolecular nonbonded interactions (see Sections 6.4.2, 

7.4.1 and 7.6.4). 

ipots Controls the energy functional of the Force Field. 

=0 use AA–CLP 

 =1 use AA–LJC  

ianh Controls the function used to simulate the intramolecular stretching and bending 

potentials of the solute (see Sections 7.4.1.1 and 7.4.1.2). Solvent is never 

affected. 

 =0 the stretching potential is fully harmonic, as in Equations (7.56) and (7.57). 

 =1 the MiCMoS third order anharmonic correction is included to the stretching 

potential of the solute, as in Equation (7.59).  

 =2 the MiCMoS 4th-order anharmonic correction is applied to the bending 

potential of the solute, according to Equation (7.62). The stretching is treated as 

fully harmonic.  

 =3 same as options 1 and 2. Both the anharmonic corrections to stretching and 

bending potentials are activated at the same time. 

 

CAUTION: It is usually a good idea to reduce the timestep of the simulation to 0.001 ps or 

lower when dealing with anharmonic motion. 

 

inano Controls whether the simulation is fully periodic in all directions, or some 

confinement is applied in some directions. See Section 7.2.5 for a full 

description of the confinement algorithm. Note that inano > 0 requires a valid 

barrier.par file (Section 5.8.1) in your working directory. This can be produced 

automatically by the confbox.for utility (Section 5.8). 

 = 0 the simulation is fully periodic in all directions (normal MiCMoS usage). 

Please set inano = 0 if you deal with nonperiodic simulations like nanoclusters, 

nanodroplets and nanocrystals.  

 = 1 one direction is non-periodic (nanolayer, confined in one direction and 

periodic along the other two). 

 = 2 two directions are non-periodic (squared nanotube, confined in two 

mutually orthogonal directions and periodic along the third one). 

 = 3 three directions are non-periodic (cubic nanocavity).   
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CAUTION: inano > 0 is incompatible with ibox = 0 (see above). If this parameter cobination 

is entered in the .mdi input file, the program stops with a warning message.   

 

7) #line -------------------------------- 

8) N(T), Tset, Tstart, relax, itrel 

This instruction controls the thermostat (Section 7.2).  

N(T) The temperature of the ensemble is updated every N(T) steps. Its value depends 

on the nature of the ensemble and on the run type (preliminary, production). For 

neutral organic molecules, N(T)~1000. 

Tset Target temperature (K). 

Tstart Starting temperature (K) (usually = Tset) 

Trelax Temperature relaxation time () in equations (7.5) and (7.8). A value of 0.5–0.6 

is recommended. This entry is relevant only for the weak coupling algorithm 

(itrel=0) or the CSVR algorithm (itrel=2). 

itrel Switch parameter to decide the T control algorithm (Section 7.2.3). 

 =0 Weak coupling algorithm is selected. 

 =1 Stiff coupling algorithm is selected (not recommended) 

 =2 CSVR (Bussi–Donadio–Parrinello) thermostat is selected 

9) #line -------------------------------- 

10) N(P), Pset, comprs, ianis, ipr, ww, iexstr 

This instruction controls the barostat (Section 7.3). P control can be applied only in the presence 

of a periodic box, i.e., ibox must be =1 in the instruction (3). 

N(P) Step frequency. The pressure of the ensemble is updated every N(P) steps.  

Pset Target pressure, in atm. This value is converted into Pa in the program. If you 

want to apply an external stress field, set it to 0. 

comprs Compressibility (0) in equation (7.14). This parameter is relevant only if the 

minimal barostat algorithm is used (ipr=0). A value of 0.3–0.4 is usually 

appropriate but trial and error on each kind of ensemble is recommended. A 

larger value makes convergence faster but too large a value may also lead to 

sudden crashes. 

ipr Controls the barostat algorithm.  

 =0 Minimal barostat option (Section 7.3.2). 

 =1 Parrinello–Rahman barostat (Section 7.3.3). 

ianis Flag for isotropic or anisotropic pressure control.  

 =0  Isotropic box (Section 7.3.1). 

 =1 Anisotropic box (Sections 7.3.2 and 7.3.3). 

ww Coupling parameter w for the Parrinello–Rahman procedure (equation 7.43). 

Values of 1.0 or 2.0 kg are normally appropriate for simulations without 

external stress field, while larger couplings (w = 10 kg) are advised in the 

presence of an external stress. This parameter is active only if ipr=1, otherwise 

it can be safely set to 0.0. 
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CAUTION: Experience shows that fine tuning of ww, N(P) and N(T) parameters is crucial to avoid 

divergence in the Parrinello–Rahman algorithm. The reason is that Lagrangian dynamics on cell edges 

translates into a slight excess of molecular kinetic energy, which must be frequently dissipated through 

the thermostat to avoid overheating. Strategies to cope with possible instabilities that may occur in the 

first thousands steps of the simulation include (i) making controls over T and P more frequent (try 

lowering both at 200 or below); (ii) making P control slightly more frequent than over T (N(P)< N(T)); 

(iii) increasing the ww parameter up to 2.5–3.0. You should try different setups and choose the one that 

best fits your needs.  

 

iexstr Controls the external stress options. 

 =0  No external stress. Skip to instruction line #12 below.  

=1 External stress field (Section 7.3.4). Meaningful only for anisotropic 

pressure control with the Parrinello–Rahman barostat (Table 7.3) and 

periodic structures (no isolated clusters). If iexstr = 1, the following 

instruction line #10 must be added. 

 

11)   Components of the external stress field 

Add this line only if iexstr = 1 in the last instruction of line #10. Otherwise, skip and 

continue with line #12. If iexstr = 1, these are the independent components of the 2nd–

rank symmetric stress tensor S (see Section 7.3.4). They must be given exactly in the 

following order: S11, S22, S33, S12, S13, S23 with units of GPa.  

Table 7.3 

Summary of pressure control parameters in MD simulations. 

 

Option  ipr ianis comprs ww 

Isotropic pressure control 0 0 needed 0.0 

Anisotropic pressure control, minimal barostat 0 1 needed 0.0 

Anisotropic pressure control, Parrinello–Rahman barostat 1 1 0.0 needed 

 

12) #line -------------------------------- 

13) N(com), nwbox, nwre, npri 

N(com) Reset frequency of the centre–of–mass of the ensemble. The translational drift 

is suppressed every N(com) steps, according with the procedure detailed in 

Section 7.5.1. 

nwbox Write frequency of the trajectory. The atomic coordinates of the whole 

ensemble are stored in the trajectory output .dat file (Section 5.1.3) every nwbox 

steps.  

nwre Same as nwbox, for printing the energies in the .ene output file (Section 8.5.1). 

npri On–screen write frequency. 

14) #line -------------------------------- 

15) N(rot-ev), romin, maxs, stepr, Rev, fact, icut 

This instruction specifies the rotation–evaporation control for simulation of isolated clusters 

(Sections 7.5.1 and 7.5.2). These parameters are needed only if ibox=0 in instruction (3) (no 

periodicity).  
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N(rot-ev) Reset frequency of the rotational momentum, which is suppressed every N(rot-

ev) steps, according with the procedure detailed in Section 7.5.1. 

romin Minimum value of the back–rotation range to be exlpored, in degrees. 

maxs Number of rotation steps to scan the rotation space. 

stepr Step size, in degrees.  

CAUTION: Recommended values for the three last parameters are: romin –15, maxs 11, stepr 3. 

Rev Evaporation distance, in Å. A molecule is considered as “evaporated” if its 

distance from the centre of mass of the whole cluster is > Rev (see Section 

7.5.2). Rev should be at least ~ 1.5 times the average radius of the cluster. 

factor Tethering scaling parameter, Fev (Section 7.5.2; only if icut=2). This number 

should be chosen so that the molecule is kept in the orbit of the cluster but does 

not crash back into the cluster. A value of 0.9 is prudential.  

icut Decide which strategy is employed to deal with evaporation.  

 =0  No evaporation check or control is carreid out. 

 =1  The deletion strategy is applied (Section 7.5.2). 

 =2 The thetering strategy is applied (Section 7.5.2). 

CAUTION: The program checks for incompatible options and in case stops with a warning message. 

For example, N(P) in instruction (9) and N(rot-ev) in instruction (13) cannot be both nonzero;  P control 

can be applied only when ibox=1 in instruction (3); combinations such as ipr=1 (Parrinello–Rahman 

barostat) and ianis=0 (isotropic pressure scaling) are contradictory; etc. 

  

Some examples of complete .mdi input files 

See also Tutorials 9–11. The first input calls an unbiased (ibias=0) and unconfined (inano=0) LJC MD 

run (ipots=1) with a fully harmonic stretching potential (ianh=0) and full periodic boundary conditions 

(ibox=1), with the leapfrog integrator (0/1LF/VV =0) and the CSVR thermostat 

(0/1/2weak/stiff/CSVR=2). The pressure is set to 1 atm (Pset=1) with the anisotropic Parrinello–Rahman 

algorithm (ianis=1, ipr=1) but without external stress (iextstr=0). The last input line (#Nrot-ev…) is 

dummy because ibox=1. 

Example LJC PR no stress LF CSVR 

# n.steps irvel ipri ibox idstr  timestep  Emolim  iengt ibias +Ebias Nbias tinon tinof 

  200000    0     0   1    0     0.002      0.0      0      0 

# cutoffu cutoffv cutoffuv factin  ipots  ianh   inano 

   12.0    0.0     0.0       0.7      1     0      0 

#  N(T)   Tset Tstart Trelax  0/1/2weak/stiff/CSVR 

    100    298   298    0.6      2 

#  N(P)   Pset  comprs  0/1ianis ipr  ww   iextstr + stra11 22, 33, 12 13 23, GPa 

     50    1.0   0.0      1      1    3.0    0 

#  N(com)  nwbox   nwre  npri 

     50    1000    1000  1000 

#  Nrot-ev romin   maxs  stepr   Rev   fact   icut 

    200    -15     11    3.0    30.0    0.9    2 

 

The following input calls a biased (ibias=1) CLP MD run (ipots=0) with an anharmonic stretching 

potential (ianh=1). The bias is applied for 10 ps every 15 MD steps (i.e. 0.015 ps), and then switched 

off for the next 5 ps. Only molecules with interaction energy more negative than -20 kJ/mol will be 

biased. The leapfrog integrator (0/1LF/VV =0) is used, in conjuction to the Berendsen rescaling of 

temperature. The pressure is controlled by the anisotropic Parrinello–Rahman algorithm (ianis=1, ipr=1) 
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under an external (iextstr=1) isotropic stress of 1 GPa. The last input line (#Nrot-ev…) is dummy 

because ibox=1. Note that ibias=1 implies that idistr must be 1 as well, with Ebias < Emolim. 

Example CLP PR stress 1GPa LF Berendsen biased 

# n.steps irvel ipri ibox idstr  timestep  Emolim  iengt ibias +Ebias Nbias tinon tinof 

  200000    0     0   1    1     0.001     -5.0      0      1 

      -20  15  10.0  5.0 

# cutoffu cutoffv cutoffuv factin  ipots  ianh   inano  

   12.0    0.0     0.0       0.7      0     1      0 

#  N(T)   Tset Tstart Trelax  0/1/2weak/stiff/CSVR 

    100    298   298    0.6      0 

#  N(P)   Pset  comprs  0/1ianis ipr  ww   iextstr + stra11 22, 33, 12 13 23, GPa 

     50    0.0   0.0      1      1    8.0    1 

     1.0   1.0   1.0   0.0   0.0   0.0  

#  N(com)  nwbox   nwre  npri 

     50    1000    1000  1000 

#  Nrot-ev romin   maxs  stepr   Rev   fact   icut 

    200    -15     11    3.0    30.0    0.9    2 

 

The next input calls for the unbiased (ibias=0) simulation of a liquid phase into a nanotube (ibox=1, 

inano=2) in LJC fashion (ipots=1) at 350 K with anisotropic minimal barostat (ianis=1). Note that to run 

this simulation, it is necessary to have a valid barrier.par file in your working directory, or the program 

will stop issuing an I/O error. See Sections 5.8 and 5.8.1 for more information.   

Example of simulation LJC 350 K unbiased nanotube 

# n.steps irvel ipri ibox idstr timestep Emolim iengt ibias + Ebias Nbias 

  500000     0    0    1    1     0.001   -5.0    0     0  

# cutoffu cutoffv cutoffuv factin  ipots ianh inano  

   16.0    0.0     0.0       0.7      1    0    2 

#  N(T)   Tset Tstart Trelax  0/1 weak/stiff 

    100    350   350    0.6      0 

#  N(P) Pset comprs 0/1ianis ipr ww  iextstr+stra11 22,33,12,13,23,GPa 

     50    1.0   0.4      1      0    0.0    0 

#  N(com)  nwbox   nwre  npri 

    100     500    500    500 

 

The last input is an example of MD run without periodic boundary conditions (ibox = 0). The box 

contains both solute and solvent molecules, as it can be appreciated by the fact that cutoffv and cutoffuv 

parameters are now defined. Moreover, the only possible specification for inano is 0 as well. No pressure 

scaling is applied (N(P)=0), as ibox in the first instruction line is 0 (the system is isolated). Accordingly, 

the last instruction line (# Nrot-ev…) is mandatory and specifies that suppression of rotational 

momentum occurs every 200 steps, while the thetering algorithm (icut=2) is selected to cope with 

solvent evaporation. The thethering radius (Rev) is here 30 Å with respect to the centre of mass of the 

simulation box. See Section 7.5 for more information.  

Example solute+solvent clp 300 K aperiodic 

# n.steps  irvel  ipri  ibox idstr  timestep Emolim iengt ibias + Ebias Nbias tinon tinof 

    2000     0      0      0    1     0.001   -5.0    0     0 

# cutoffu cutoffv cutoffuv factin  ipots ianh  inano 

   20.0   20.0    20.0       0.7      0    0     0 

#  N(T)   Tset Tstart Trelax  0/1 weak/stiff 

     10    300   300    0.6      0 

#  N(P)   Pset  comprs  0/1ianis ipr  ww   iextstr + stra11 22, 33, 12 13 23, GPa 

      0    0.0   0.0      0      0    0.0    0 

#  N(com)  nwbox   nwre  npri 

     50      100   100    100 

#  Nrot-ev romin   maxs  stepr   Rev   fact   icut 

     200    -15     11    3.0    30.0    0.9    2 
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7.6.3 The input box file (.dat) 

Extension .dat 

This can be any .dat file in the format described in Section 5.1.3. If resulting from a previous MD run, 

the file has also atomic velocities and forces, as determined by the IRVEL control indicator in instruction 

(3) of the .mdi file (Section 7.6.2). This file should carry box dimension information if a periodic box is 

required.  

 

7.6.4 The forcefield file (.top) 

This has the same format as described for MC in Section 6.6.3, except that NCARDU and NCARDV 

must be zero, and all atom coordinates and charges must be given explicitly (no slave atoms can be 

defined in MD). The Pretop module (Figure 4.1, Section 5.4 and Section A7 in the Appendix) reads an 

.oeh file and prepares the best possible approximation to the pertinent force field file. Use of templates 

available in the Tutorials (deposited on https://sites.unimi.it/xtal_chem_group) will make things easy. 

In the .top file, as follows, all data except the title line is free format. See Section A7.1 in the Appendix 

for suggestions on meaningful force constants and other relevant force field parameters. 

 

Extension .top. 

1) A title line   format 1x,10a4  

2) NCOREU   number of core atoms, solute 

NCOREU lines  core atom id number, x, y, z, flag for atom species (see Table 2.1), raw 

charge. In the MD algorithm these coordinates are immaterial; the list 

is used only as a reminder of the pristine molecular model (Geomet 

module, Section 8.1) and for atom type indicators and atomic point 

charges. 

3) NCARDU   Number of slave atom cards, solute. This entry must be equal to 0 in a 

 MD simulation. 

4) NCOREV     number of core atoms, solute  

NCOREV lines  core atom id number, x, y, z, flag for atom species (see Table 2.1), raw 

charge   

5) NCARDV   Number of slave atom cards, solvent. This entry must be equal to 0 in a 

 MD simulation. 

6) VOLUU, VOLUV     approximate molecular volumes for solute and solvent. They are 

supplied by Pretop (Section 5.4). 

7) NSTRU   number of bond stretching functions  

NSTRU lines   4 entries, as follows: two atom id numbers of the atoms involved in the 

bond, kS and R° for E(stretching)=1/2·kS·(R - R°)2, equation (7.56). The 

same parameters are also used to automatically estimate anharmonic 

corrections if required (see Section 7.4.4.1). 

8) NSTRV   as NSTRU (bond stretching), for the solvent 

NSTRV lines  NSTRV lines (bond stretching parameters), for the solvent 

9) NBENDU    number of bending function, solute 

NBENDU lines  5 entries, as follows: three atom id numbers of the atoms involved in 

the bending interaction, kb and ° for equation (7.57, 

E(bending)=1/2·kb·(cos - cos°)2. The same parameters are also used 

https://sites.unimi.it/xtal_chem_group
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to automatically estimate further anharmonic corrections if required 

(see Section 7.4.4.2). 

10) NBENDV   as NBENDU (bond bending), for the solvent 

NBENDV lines  NBENDV lines (bond bending parameters), for the solvent 

11) NTORSU   number of torsion functions, solute 

NTORSU lines  14 entries, as follows: four atom id numbers, identifying the atoms  

involved in the torsion; K, f and m parameters in E(tors) = K{1 + cos f 

[m]}, equation (7.58). The program Pretop assigns just standard values 

for K (50.0), f (–1) and m (+1). These must be reset with actual values, 

which can be found in most cases in Table A7.5 (Appendix, Section 

A7.3). Pretop also automatically assigns improper dihedrals to keep 

planar groups with sp2 hybridization as K = 100.0, f = –1 and m = +1. 

Have a look at them to verify that all is ok, but usually no external 

intervention on improper dihedrals is required (if this is not the case, it 

is wise to carefully check your structure!).  

12) NTORSV   as NTORSU, for the solvent 

NTORSV lines  NTORSV lines (torsion parameters), for the solvent 

13) NLISTU   number of intramolecular contacts, solute 

NLISTU pairs of atom id numbers, solute, for a total of NLISTUx2 entries. These flag the 

intramolecular contacts, for which a FACTIN dampening factor is applied to scale down the 

potential (see Sections 6.4.2 and 7.4.1). FACTIN must be given in the .mdi instruction file 

(Section 7.6.2). 

14) NLISTV   number of intramolecular contacts, solvent 

NLISTV pairs of atom id numbers, solvent, for a total of NLISTVx2 entries. See NLISTU above 

for explanation. 

15) FQ, FP, FD, FR  force field scaling parameters in eq. (2.1) (standards: 0.41, 235, 650, 

77000); set them to zero if the LJC force field is used. 

 

Add the following instructions only if Lennard-Jones potentials are used (IPO=1 in the .mci or .mdi file, 

Sections 6.6.2 and 7.6.2):   

 

16) NEXTRA    number of extra L-J parameters. Non-zero only if non-library 6-12 

parameters are used. 

NEXTRA lines I, J, A6, A12: equation (2.6), A6 and A12 are the 6-12 coefficients for 

the atom-atom contact between atom species i and j. 

 

CAUTION: In MD stretching and bending potentials are indispensable to prevent molecular distortions. 

Improper torsions are also mandatory to preserve planarity of trigonal groups. Most of the MD .top files 

is directly provided by module Pretop (Section 5.4).  
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8. Analysis of MC and MD results 
 

Trajectory analysis modules read atomic data from MC or MD runs in .dat files (Section 5.1.3). Several 

checks and analyses are carried out on final frames of a MC or MD simulation. 

 

The following Table summarizes the I/O requirements of the modules illustrated in Section 8. The user 

must replace the strings “name1”, “name2” and “name3” with the actual name(s) of the file(s) he/she is 

using.  

 

Table 8.1 

Modules to analyze MiCMoS trajectories (.dat format, see Section 5.1.3), with specified the files 

requested in input and the main ones produced as output. If a keyboard input is required from the user, 

a flag “Y” is indicated in the “Dialog mode” column. 

 
Program Section Input 1 Input 2 Input 3 Dialog 

mode 

Main output 

Geomet 8.1 name1.top name2.oeh name3.dat Y name3geo.pri 

Analys 8.2 name1.top name2.dat – Y name2anl.pri 

Distrib 8.3 – name2anl.pri – N name2distr.pri 

Correl 8.4 name1.dat – – Y name1cor.pri 

Redene 8.5,8.5.1 name1ene.pri – – Y name1ene.pri 

Datgro 8.6 name1.dat – – Y name1.gro 

Naverag 8.7 name1.dat – – Y name1ave.res 

name1ave.dat 

Debye 8.8, 

8.8.1 

name1.inp name2.oeh name3.dat N name3deb.pri 

name3prof.pri 

Nanocut 8.9, 

8.9.1 

name1.inp name2.oeh – N name2cut.dat 

Trajedit 8.10, 

8.10.1 

name1.inp name2.dat – N name2edit.dat 

Vanhove 8.11, 

8.11.1 

name1.inp name2.dat – N name2van.pri 

Renergy 8.12, 

8.12.1 

name.1.inp name2.top name3.dat N name3rene.pri 

name3rene.ene 

Denflu 8.13 name.1.inp name2.dat – N name2denflu.pri 

Clusters 8.14 name1.top name2.dat name3 Y name3_xxx.pri 

name3_histene.pri 

name3_xxx_breaking.pri 

Conta 8.15 – – name3_xxx.pri N name3_timespan.pri 

name3_dimension.pri 

name3_ordered.pri 
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8.1 The Geomet module 
 

This module serves for studying the molecular conformations after a MC or MD run. It is also wise to 

employ it for checking purposes, i.e., to verify that the simulation ended with an ensemble of reasonable 

structures. It reads a .dat file containing either a unique frame or a whole trajectory, a topology .top file 

and a molecular .oeh file. It performs the following tasks (all optional): 

 

1) Check solute and solvent connectivity and bond distances (useful to find errors in the 

construction of the molecular geometry); check for very short intramolecular distances 

(impossible conformations from wrong force fields or erratic runs);  

2) Produce a histogram for the distribution of torsion angles in the force field. The distribution 

ranges from –180º to +180°, with the usual convention for the angle signs (looking from atom 

1 down the 2-3 bond, angle positive if atom 4 turn to the right). See also Section A8 in the 

Appendix – Reference Materials and Technical Details. 

3) Calculate the root mean square deviation (rmsd) of bond stretch and bond bend in the force field 

according to: 

rmsd(𝑅) = √∑
(𝑅 − 𝑅0)2

𝑁𝑅
                                                  (8.1) 

rmsd(𝜃) = √∑
(𝜃 − 𝜃0)2

𝑁𝜃
                                                  (8.2) 

 

In eq. (8.1) and (8.2), reference values R0 and 0 refer to the pristine molecular model, that is, 

that loaded into and topology .top file (Section 6.6.3 or 7.6.4). The summations run on all bond 

distances and bond angles in all molecules in the sample. These indices and the spread of torsion 

angles are monitored to make sure that they stay within reasonable energy-equipartition limits 

without spurious molecular distortions.  

 

CAUTION: This module had been written for solutes only with a project of extending it to solvents. 

The project was never carried out, however. The current status is such that the program stops without 

notice if a solvent is present. No wrong data are produced but the program does not work for solvents. 

 

Running command: 

 

run.geomet name1 name2 name3 

 

Where the labels have the following meaning: 

 

name1  name1.top file, with all bond stretch bends and torsions to be analyzed  

name2  name2.oeh file (Section 1.4); 

name3 name3.dat file (Section 5.1.3). If the .dat file contains several frames, the geometrical 

study is performed for each frame. 

 

Printed output is on name3geo.pri.  

 

The run.geomet instructions (Linux/Unix) are arranged as follows: 
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cp $1.top geomet.top 

cp $2.oeh geomet.oeh 

cp $3.dat geomet.dat 

~/programs/MiCMoS/exe/geomet 

rm $3geo.pri 

mv geomet.pri $3geo.pri 

rm geomet.top 

rm geomet.oeh 

rm geomet.dat 

 

Answer the dialog mode, which asks for: 

 

- TMIN, TMAX, NTBIN Minimum torsion angle in the distribution, maximum torsion 

angle in the distribution (normally –180.0 and 180.0), number 

of bins in the distribution. NTBIN must be lower or equal 300. 

The step will be (TMAX–TMIN)/NTBIN. 

- RLIM, TELIM R and  : limit values of distance and angle deviations, in Å 

and deg, from the reference geometry from atomic coordinates 

in the .top file. Bond lengths and angles that exceed the limits 

are printed. Recommended: 0.05 Å and 10°.  

- NSTPF when checking a trajectory .mdc file, the analysis is performed 

every NSTPF steps. This number is =1 if checking a .mdo or 

.mco single frame. 
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8.2 The Analys module 
 

The Analys module computes the radial distribution function distributions for both molecular centre of 

mass and atom–atom intermolecular contacts. It reads a .dat file containing either a single frame or a 

whole trajectory, plus a topology .top file, and writes a .pri output file. It performs the following tasks 

(all optional): 

 

1) Produce a list of short intermolecular distances below a fraction of the sum of intermolecular 

radii; 

2) Calculation of the center-of-mass radial distribution function (RDF, equation (8.3)) for solute-

solute, solvent-solvent and solute-solvent; 

3) Calculation of the radial distribution function (RDF, equation (8.3)) for either selected or all 

pairs of atomic species, solute-solute, solvent-solvent and solute-solvent. This is useful to 

investigate the coordination sphere of specific atom species. In the output, these RDF data are 

labelled by the corresponding atomic species code numbers detailed in Table 1.1, without spaces 

between them. For example, 305 means that the RDF pair is formed by atom types 3 and 5, that 

is, by aliphatic H’s and hydroxyl H’s; 323 by aliphatic H’s (3) and –O– (23) atoms; and 1010 

means the RDF of carbonyl oxygens (10) with themselves.  

For the evaluation of RDF's, consider a pair of atomic species (atom–atom RDF), or pairs of molecular 

centers (center of mass RDF). Ni is the number of distances in a spherical distance bin of radius dR 

(usually 0.1–0.2 Å) and volume Vi, N is the total number of distance points and V is the total volume of 

the system sphere; the radial density function g(Ri) for each distance Ri of the ith bin is: 

 

𝑔(𝑅𝑖) = (
𝑁𝑖
𝑉𝑖
) ∙ (

𝑁

𝑉
)
−1

=
𝑁(𝑅𝑖)

4𝜋𝑅𝑖
2𝑑𝑅

∙ (
𝑁

𝑉
)
−1

                                                 (8.3) 

 

In equation (8.3), N/V is the total number density of distances, corresponding to uniform and random 

distribution; g(R) is thus normalized and g(Ri) > 1 indicates a significantly high frequency of distances 

at Ri. For this reason, RDF is the main tool for structural analysis in liquids.  

 

CAUTION: While a quick impression can be gathered from analysis on the last frame, averaging over 

.mcc or .mdc frames after steady state is highly recommended, and is indispensable for crystal 

simulations. If the system is at equilibrium, the last 100-500 frames of the production stage are usually 

enough for averaging. Module Distrib (Section 8.2) can do this using an anl.pri output file produced by 

Analys, which contains the analysis of more than 1 frame.  

 

CAUTION: For periodic-box simulations, 'total volume' means the volume of the computational box. 

The volume of an isolated cluster can be estimated as the sum of the molecular volumes of the 

constituting molecules divided by an approximate packing coefficient of 0.5 for a liquid or 0.7 for a 

crystal (see parameter cpack below). For very small clusters, the RDF gradually loses physical 

significance.  

 

CAUTION: The RDFs are meaningful only for homogeneous systems, not for example for clusters with 

solute nucleus surrounded by solvent.   
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Running command: 

 

run.analys name1 name2 

 

Where the labels have the following meaning: 

 

name1  name1.top, forcefield file;   

name2  name2.dat, coordinate (trajectory) file to be analyzed; 

 

run.analys module (Unix/Linux) 

 

cp $1.top analys.top 

cp $2.dat analys.dat 

~/programs/MiCMoS/exe/analys   

rm $2anl.pri 

mv analys.pri $2anl.pri 

rm analys.top 

rm analys.dat 

 

The output is written on a name2anl.pri file.  

 

 Answer the dialog mode, which asks for: 

 

(1) nfrmi,nfrma Start and final frame numbers. The requested analysis (see 

below) will be repeated for each frame between nfrmi and 

nfrma. Give “1 1” if your .dat file contains only 1 frame. 

(2) PERINT Prints all intermolecular contacts shorter than PERINT percent 

of the sum of intermolecular radii. 90 could be a good choice.   

= 0.0 to skip. 

In the .pri file, short contacts are reported as a list of entries labelled as “short inter, at-mol-

types”. For each entry: number of the atom in the first molecule (same order as in the .top file), number 

of the first molecule (same order as in the .dat file), atomic species code number (as in Table 1.1), 

number of the atom in the second molecule (same order as in the .top file), number of the second 

molecule (same order as in the .dat file), atomic species code number (as in Table 1.1), actual distance 

(Å), van der Waals contact distance (Å).  

(3) IGR Switches on / off the evaluation of radial distribution functions. 

 = 0:  g(R)’s are computed; proceed with instruction (3). 

 = 1; g(R)’s are not computed, end of job. 

(4) cpack If IGR = 0, an approximate packing coefficient must be given 

(see above). Acceptable values are 0.5 for liquids or amorphous 

solids and 0.7 for crystalline solids. This paremeter is important 

only if the simulation is not periodic (e.g. isolated clusters, no 

box), otherwise it can be safely set equal to 0.0. 

(5) rminc,stepc,nbinc Parameters to compute the centre–of–mass radial distribution 

function. Give zeros to skip this RDF calculation. 
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 rminc: minimun distance (Rmin) value for starting the 

distribution. 

     stepc: bin widths. Usually 0.1-0.2 Å. 

nbinc: number of bins (maximum 300). The maximum R of the 

distribution will be Rmin + nbinc·stepc. 

 (6) rmin,step,nbin  As above, for the individual radial functions of specific atom 

types. Give zeros to skip all atom–atom RDF calculations. If 

nbin  0, rmin is the minimum distance (Rmin) value for starting 

the distribution; step is the bin width; nbin the number of bins 

(max 300). 

(7) ncpu  Number of specie pairs for the solute. Individual RDF will be 

computed for each of the ncpu pairs of atomic species.  

 = –1: Calculate RDF’s for all pairs of atomic species (solute). 

= 0: skip (proceed to instruction (8)). 

  > 0: Will ask for ncpu pairs (instruction (7). 

(8) ncpu ISP indicators If ncpu is greater than zero, the program will ask for ncpu pairs 

of ISP specie indicators. These are the solute atom-atom species 

for which g(R) is to be computed, according to the codes given 

in Table 1.1. 

(9) ncpv Number of atom species pairs for the solvent. 

= –1: Calculate RDF’s for all pairs of atomic species (solvent). 

= 0: skip (proceed to instruction (10)). 

  > 0: Will ask for ncpv pairs (instruction (9). 

(10) ncpv ISP indicators ncpv pairs of solvent atom-atom species, for the solvent. Refer 

to Table 1.1 for the meaning of ISP indicators. 

(11) ncpuv number of atom species pairs for solute-solvent. 

= –1: Calculate RDF’s for all pairs of atomic species (only 

solute–solvent pairs). 

= 0: skip (proceed to instruction (12)). 

  > 0: Will ask for ncpuv pairs (instruction (11). 

(12) ncpuv ISP indicators ncpuv pairs of solute-solvent atom-atom species. Refer to Table 

1.1 for the meaning of ISP indicators 

(13) ISMO Activates radial function smoothing. 

 = 0: g(R)’s are smoothed (usually recommended) 

 = 1: g(R)’s are not smoothed (e.g. for systems with sharply 

peaked g(R)'s, like perfect crystals) 

CAUTION: Computing the RDFs for all the atom–atom pair types is very time–consuming, especially 

when large or complex molecules are studied. It is advisable to focus just on the centre of mass, and/or 

possibly on 1 or 2 key interactions. The centre of mass RDF is often enough to characterize the average 

molecular environment. 
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8.3 The Distrib module 
 

The analysis of the MD/MC output should be made on an average of the last frames of the MD/MC run 

that can be obtained using module Distrib. This program averages up to 5000 distributions present in a 

NAMEanl.pri output from Analys (Section 8.2), “NAME” being any valid compound id. Preliminary 

information on short intermolecular atom–atom contacts is always skipped, if present in the 

NAMEanl.pri file. If the system is in equilibrium, averaging over 40–200 ps of MD is usually enough 

to produce meaningful distributions. This corresponds to some hundreds of frames, typically 100–500, 

depending on parameters timestep and nwbox in MD input file .mdi, Section 7.6.2. 

 

According to (8.4), each ith step of the nth distribution P, Pi(n), is averaged: 

 

〈𝑃𝑖〉 =
∑ 𝑃𝑖(𝑛)𝑛

𝑁
                                                                            (8.4) 

 

where the summation runs over a total of N frames for which P has been computed, and Pi(n) is the 

value of the ith bin in the nth frame. In Molecular Dynamics, this operation provides time–averaged 

distributions over the N frames included into the Analys analysis (Section 8.2). For each 〈𝑃𝑖〉 step of the 

average distribution, the corresponding estimated standard deviation (ESD) of the mean is computed 

according to (8.5): 

 

𝜎〈𝑃𝑖〉 =
1

√𝑁
√
∑ (𝑃𝑖(𝑛) − 〈𝑃𝑖〉)

2
𝑛

𝑁 − 1
                                                           (8.5) 

 

Averaging is mandatory in crystals to avoid conducting the analysis over a one-sided displacement along 

lattice vibrations. This danger is less prominent for liquids where each frame is much more 

homogeneous, but averaging is always a better choice. Moreover, averaged distributions are 

considerably smoother than non–averaged ones, and thus less prone to show instantaneous fluctuations 

due to background noise. 

 

Running command: 

 

run.distrib NAME  

 

The program reads a NAMEanl.pri file produced by Analys (Section 8.2) and prints a NAMEdistr.pri 

output that contains only the averaged distributions in X, Y format. No input instructions are required. 

If the NAMEanl.pri output refers just to a single frame, i.e. it contains only one distribution per type, 

Distrib stops with a warning message, as obviously no averages can be performed in this case.  

 

run.distrib module (Unix/Linux) 

 

rm $1distr.pri 

cp $1anl.pri distrib.inp 

~/programs/MiCMoS/exe/distrib 

mv distrib.pri $1distr.pri 

rm distrib.inp 
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8.4 The Correl module 
 

This module reads a trajectory mdc.dat or mcc.dat file and calculates rotational correlation functions 

(equation (8.6)) and root-mean-square displacements (equation (8.7)) for self-diffusion coefficients. 

This applies to MD output files rather than MC output trajectories.  

 

The rotational correlation function (t) and the diffusion coefficient D(t) and at any specific time t are 

estimated by the standard formulas: 

 

𝜏(𝑡) =
∑ 𝐮𝑘(𝑡)
𝑁𝑚𝑜𝑙
𝑘=1 ∙ 𝐮𝑘(0)

𝑁𝑚𝑜𝑙
 = 〈𝐮𝑘(𝑡) ∙ 𝐮𝑘(0)〉                                        (8.6) 

 

𝐷(𝑡) =
1

6𝑡
∙
∑ |𝐫(𝑡) − 𝐫(0)|2
𝑁𝑚𝑜𝑙
𝑘=1

𝑁𝑚𝑜𝑙
=
1

6𝑡
∙ 〈|𝐫(𝑡) − 𝐫(0)|2〉                               (8.7) 

                                  

where u(t) is an orientation unit vector within the molecule defined as in Figure 8.1 below, and r(t) is 

the position of the center of mass at "time" t. The average runs over all the molecules in the simulation 

box. u(0) and r(0) are the same quantities at t = 0, that is, for a chosen reference, that can be any frame 

along the trajectory. The  functions are dimensionless numbers between 1 (complete correlation) and 

0 (no correlation), or for more clarity, between 100 and 0. The rotational correlation time is estimated 

as the time for  (u, t) to decay from 100 to about 20, and should be of the order of 5–20 ps for organic 

liquids.  

 

The D functions are averaged over molecules within a radius of usually 30–40 Å from the overall center 

of the box. The quantity 〈|𝐫(𝑡) − 𝐫(0)|2〉 is the mean square displacement, msd; thus, from eq. (8.7), it 

is clear that the slope of a plot of msd vs. time, divided by 6, with distances in Å units and time in ps, 

gives the translational diffusion coefficient. For organic liquids, D should be of the order of 10-8 m2 s-1 

(or Å2 ps-1). 

 

CAUTION (known bug): in periodic–box runs, the value of D can be affected by periodic 

displacements of the molecule. For vary small clusters, say Nmol < 100, care should be taken in attaching 

a physical meaning to the results, especially when rmsd2 exceeds the cluster radius.  

 

Running command:  

 

run.correl name1 

 

where name1 means the full trajectory file name1.dat. The output is found on a file called name1cor.pri.  

 

run.correl module (Unix/Linux) 

 

cp $1.dat correl.dat 

~/programs/MiCMoS/exe/correl 

rm $1cor.pri 

mv correl.pri $1cor.pri 

rm correl.top 

rm correl.dat 
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Answer the dialog mode, which asks for: 

 

(1) NREF, NTOT, TSTEP  number of the reference frame, total number of frames in .dat 

trajectory file, time step (in ps). All frames up to NREF-1 will 

be skipped. 

(2) n1, n2, n3, n4, n5 Atom sequence numbers to define the reference molecular  

vector for rotational correlation. See Figure 8.1 below for some 

illustrative examples. 

a) n1, 0, n3, 0, 0 vector is atom n1 to atom n3 

b) n1, n2, n3, 0, 0 vector is midpoint of n1-n2 to n3 

c) n1, 0, n3, n4, 0 vector is n1 to midpoint of n3-n4 

d) n1, n2, n3, n4, 0 vector is midpoint of n1-n2 to 

midpoint of n3-n4 

e) n1, n2, n3, n4, 1 vector is perpendicular to vector of 

case d) (useful for example for 6-fold 

axis in benzene) 

 

Figure 8.1. Examples for the meaning of the five designators for the definition of the intramolecular 

vector (green) for the intermolecular rotational correlation. Red lines represent ancillary vectors, 

necessary to define the green ones that are then used in equation (8.6) (see point (2) above). In the case 

(e), the vector is the vector product of the first two.  

 

(3) NDIFSU, DIMAXU NDIFSU is an atom sequence number (refer to the atom list in 

the .dat/.top file) for squared rms displacement in equation 
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(8.5); if not zero, calculate rmsd2 of that atom, if zero calculate 

rmsd2 of center of mass. 

 DIMAXU is a threshold distance between com's for rmsd2 

calculation; should be as large as to include all cluster or box 

molecules (e.g. the max dimension of the computational box) 

but not for example evaporated molecules. 
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8.5 The Redene module 
 

This module reads an .ene file produced by a MC or MD run and interpret the energy results, providing 

an energy evolution profile and averages (with estimated standard deviations) over defined simulation 

periods. 

 

Running command: 

 

run.redene name1 

 

“name1” is the name of the name1.ene file coming from a MC or MD run. 

 

run.redene module (Unix/Linux) 

 

cp $1.ene redene.inp 

~/programs/MiCMoS/exe/redene 

rm $1ene.pri  

mv redene.pri $1ene.pri   

rm redene.inp 

 

Answer the dialog mode, which asks for: 

 

(1) FREPA, FREPB, FREPC  Multiples of crystal cell dimension along a, b and c. 

These are the number of cells along each direction that 

define the supercell of the simulation box (see Sections 

5.1 and 5.2) and are also reported in the MC and MD 

output printfiles. Set 1 for liquids. 

(2) TIMST  Time step (ps) for MD runs, or equal to 1 for counting 

steps in a MC run. 

 

(3) MOVE LIMITS  Min and max move. You have to specify the starting 

and ending moves (MC) or times (MD) to be included 

in the analysis. A “move” here corresponds to any 

frame actually written on the trajectory. Thus, for 

example, if you have a trajectory 100 ps long and you 

want to average over the last 50 ps, you should input 

“50 100” here. Ensure however that both t = 50 ps and 

t = 100 ps are included in your frames. In general, the  

n frames corresponding to the last t ps can be obtained 

n=t/(nwbox·dt), where dt is the timestep (Section 

7.6.2, line 3) and nwbox the writing frequency on the 

trajectory (Section 7.6.2, line 12).  

 

The output consists of 4 main tables, summarizing various energy contributions. Entries are given in 

kJ/mol per molecule units, and have the following meaning: 

 

(1) Rounded time (ps), E(Lennard–Jones + Polarization), E(Coulomb), E(intramolecular, solute), 

E(intramolecular, solvent), E(total), E(total electrostatic+LJ, solute-solute), E(total 
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electrostatic+LJ, solute-solvent), E(total electrostatic+LJ, solvent-solvent). If only “solute” is 

present, entries corresponding to “solvent” will be identically 0. 

 

(2) Focus on electrostatic and dispersion contributions. For solute–solute, solute–solvent and 

solvent–solvent, E(Lennard–Jones + Polarization) and E(Coulomb) are given, for a total of 6 

columns.  

 

(3) Intramolecular stretching, bending, torsion and nonbonded interactions from solute (columns 

1–4) and solvent (columns 5–8). 

(4) Interaction energies of solute and solvent with barriers, if present: Lennard-Jones and Coulomb 

solute-barrier; Lennard-Jones and Coulomb solvent-barrier; total Lennard-Jones; total 

Coulomb; total interaction energy (solute + solvent) with barrier. Note that if no confinement is 

applied, such as for example in MC calculations, these values will be identically zero.  

 

(5) Time–evolution of crystal density, plus a, b, c, , ,  cell edges and angles.  

 

8.5.1 Format of the .ene file  

For each simulation step that is printed in the .ene output, according to what is specified in the .mci or 

.mdi command file (see the nwre parameter described in Sections 6.6.2 and 7.6.2), the following 

quantities are present: 

 

LINE 1: nmsolu, nasolu, nmsolv, nasolv, wemolu, wemolv 

Number of molecules (solute); number of atoms in each molecule (solute); number of 

molecules (solvent); number of atoms in each molecule (solvent); molecular weight 

(solute, au); molecular weight (solvent, au) 

LINE 2: nstep 

  Number of the simulation step 

LINE 3: a, b, c, alf, bet, gam, Vbox 

Overall dimensions of the simulation box (Å, deg, Å3). Box edge lengths, angles, and 

volume. 

LINE 4: ELP(uu), EQ(uu), ELP(vv), EQ(vv), ELP(uv), EQ(uv), ELP(ubar), EQ(ubar), ELP(vbar), 

EQ(vbar) 

  Intermolecular potentials, all in kJ/mol.  

ELP(uu): Total solute–solute Lennard–Jones + Polarization energy (if present); 

  EQ(uu): Total solute–solute Coulomb energy; 

  ELP(vv): Same as ELP(uu), for solvent–solvent interactions; 

  EQ(vv): Same as EQ(uu), for solvent–solvent interactions; 

  ELP(uv): Same as ELP(uu), for solute–solvent interactions; 

  EQ(uv): Same as EQ(uu), for solute–solvent interactions; 

  ELP(ubar): Solute-barrier Lennard-Jones + Polarization energy (if a barrier is present); 

  EQ(ubar): Solute-barrier Coulomb energy (if a barrier is present); 

  ELP(vbar): Same as ELP(ubar), for solvent-barrier interactions; 

  EQ(vbar): Same as EQ(vbar), for solvent-barrier interactions; 

LINE 5: [Estr, Ebend, Etors]u, [Estr, Ebend, Etors]v      

Intramolecular potentials, all in kJ/mol. These quantities are defined only from MD 

calculations; files from MC have a -1 marker instead. 

[Estr, Ebend, Etors]u: Total stretching, bending and torsional energies for the solute 

molecules, in this order. 
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[Estr, Ebend, Etors]v: Same as above, for the solvent molecules. 

LINE 6: ELP,tot  EQ,tot, Eintram,u, Eintram,v, Etot 

  Total energies, all in kJ/mol.  

  ELP,tot: Total intermolecular Lennard–Jones + Polarization energy (if present). 

  EQ,tot: Total intermolecular Coulomb energy. 

  Eintram,u: Total intramolecular energy, solute. 

  Eintram,v: Total intramolecular energy, solvent. 

Etot: Total energy of the whole simulation box, computed as ELP,tot + EQ,tot + 

Eintram,u + Eintram,v 
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8.6. The Datgro module 
 

This module reads a trajectory .dat file containing any number of frames, and converts it into a 

corresponding trajectory file in Gromacs–compatible .gro format (see http://www.gromacs.org/ and 

http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html#gro). Visual analysis of 

the .gro trajectory can be carried out by available graphic software. Free VMD (Visual Molecular 

Dynamics) from the NIH Center for Macromolecular Modeling & Bioinformatics, Theoretical and 

Computational Biophysics Group, University of Illinois, USA is very good to this purpose (see 

https://www.ks.uiuc.edu/Research/vmd/). 

 

Running command: 

 

run.datgro name1 

 

Here “name1” is any valid file with extension .dat, coming from either dynamics or Monte Carlo 

simulations. Velocities, if present in the .dat file, are always skipped to save disk space. The program 

produces a name1.gro output compatible with specs detailed in the Gromacs user manual.  

 

run.datgro module (Unix/Linux) 

 

rm $1.gro 

cp $1.dat trajectory.dat 

~/programs/MiCMoS/exe/datgro  

mv trajectory.gro $1.gro 

rm trajectory.dat 

 

Answer the dialog mode, which asks for: 

 

ni, nf  Initial and final frame numbers for the conversion. The program converts only 

those frames whose sequence numbers lie between ni and nf.  

 

Major differences of the .gro file with respect to the .dat one (Section 5.1.3) include: (i) .gro coordinates 

and cell edges must be expressed in nm; (ii) each .gro frame ends with cell vectors expressed as Cartesian 

components in a specific global reference system (see the Appendix, Section A4); (iii) molecular id 

numbers and residue label must be always specified in .gro format. Datgro numbers atoms in each 

molecule in ascending order, following the same sequence as in .oeh and .top files. Labels SOLU and 

SOLV are assigned by default to “solute” and “solvent” molecules. 

 

CAUTION: To use the file produced by Datgro as a suitable input in Gromacs, care should be paid in 

making atom and molecule numbering, order and labels fully compatible with those in Gromacs 

topology file and Force Field libraries. It is impossible to do this automatically. 

 

  

http://www.gromacs.org/
http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html#gro
https://www.ks.uiuc.edu/Research/vmd/
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8.7. The Naverag module 
 

This module reads multiple frames in a MD/MC trajectory (MiCMoS .dat format) to produce average 

structures, referred to either the crystallographic cell or the simulation box. It also estimates average 

anisotropic thermal parameters of all the atoms in the crystallographic unit cell; obviously, this makes 

sense only for MD runs.  

 

Naverag can be useful to evaluate the average crystal structure that emerges from a MD/MC run at 

equilibrium, while it is pretty useless if applied to non-equilibrium structures (i.e. changing in time) or 

disordered systems, like glasses, liquids and solutions. The reason is that not all the possible averages 

correspond to meaningful observable states. For example, consider a dynamic system in which some 

tens of identical jugglers are rapidly passing a ball from their right hand to the left one and vice-versa. 

The spacetime average of this system will produce a unique (average) juggler, whose average ball will 

be likely frozen in midair between his/her hands. Obviously, this does not correspond to an equilibrium 

configuration and hardly bears physical meaning – is it a transition state? Or does it flag an intrinsic 

disorder, either static or dynamic? It is always recommended to pay attention in attributing physical 

relevance to average structures.  

 

The Naverag module can handle a maximum of 1,000 frames and 2,500 molecules, each composed by 

100 atoms at most, for a total of max 10,000 atoms in the simulation box. It recognizes “solute” and 

“solvent” molecules. Admitted atoms are H, B, C, N, O, F, P, S, Cl, Br and I; if other species are present, 

the program stops with a warning message. In agreement with the purpose of MiCMoS, the program is 

not designed to work with polymeric structures - only molecular crystals are allowed.  

 

Naverag performs two tasks. First, it reads the whole trajectory and does a time average of all the frames. 

This produces a time-averaged frame in .dat format. Second, it shrinks the average frame back to the 

original crystallographic cell, performing a space average of all the molecules in the simulation box. 

This produces a shelx .res file with a spacetime average crystallographic structure. As no 

crystallographic symmetry is explicitly considered in MD, the final structure is always treated as P1, 

with the number of independent molecules coincident with the number of molecules in the cell. Each 

atom is also provided with an estimate of its thermal parameters (in the Uij form).  

 

Running command: 

 

run.naverag name1 

 

“name1” is the name of the name1mdc.dat or name1mcc.dat file coming from a MC or MD run.  

 

run.naverag module (Unix/Linux) 

 

cp $1mdc.dat trajectory.dat 

~/programs/MiCMoS/exe/naverag 

rm $1ave.res 

rm $1ave.dat 

rm $1service.out 

mv average.dat $1ave.dat 

mv service.out $1service.out 

mv saverage.out $1ave.res 

rm trajectory.dat 
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Answer the dialog mode, which asks for: 

 

(1) NI, NF  Initial and final frames of the trajectory to be included, expressed as 

frame numbers (not MD moves). Type 0 0 if you want to include all the 

frames in your trajectory. If more than 1000 frames are present, the 

program will work just with the first 1000 ones. 

 

The output consists of the following files: 

(i) name1ave.dat. This is the time-averaged frame, with coordinates in Å.  

(ii) name1ave.res. Space-time averaged crystallographic structure in the basic reference cell 

(P1 symmetry assumed), in shelx format. Average cell edges and angles, as well as their 

standard deviations, come from the average of the corresponding parameters listed in the 

trajectory file; thus, they are generally slightly different from those provided by Redene 

(Section 8.5). For each atom, the corresponding thermal parameters are also listed in the 

form of Uij’s.  

(iii) name1service.out. This is a service file that contains information for checking purposes. It 

includes a table of time-averaged Cartesian coordinates of all atoms in the simulation box, 

with estimated standard deviations (ESD’s) plus anisotropic displacement parameters 

(ADPs) in the form of Uij (Å2). The latter are partitioned into contributions from internal 

degrees of freedom and translations of the molecular centre of mass. Then, molecules that 

are space-averaged are listed. Those that were discarded from the mean due to 

conformational rearrangements or significant rotational motion are indicated with negative 

sequence numbers (see below). 

 

The philosophy of Naverag is briefly summarized below.  

 

The algorithm starts by setting each molecule in its local inertial system, with molecular centre of mass 

as the origin. Taking the first frame read as a suitable reference, each molecule in the next frames is 

rotated so that its inertial axes coincide with those of the corresponding molecule in the first frame. 

Then, atomic coordinates are time–averaged throughout the whole trajectory. At the same time, time–

average variance–covariance matrix elements of atomic coordinates are computed. This gives the 

contribution of internal degrees of freedom to ADP’s. An approximate estimate of the rigid body 

contribution is given by computing the variance–covariance components of the molecular centre of 

mass. These two are summed together with equal weights to give full atomic ADP’s (in Cartesian form, 

Å2: high–frequency internal motion plus low–frequency molecular rigid displacements). Cell edges and 

angles of the simulation box are averaged as well. Then, average molecules are back–rotated to their 

original orientations, and a time-average .dat frame (output (i)) is produced.  

 

The next step defines the space-time averaged crystallographic cell (output (ii)). First, the origin of the 

reference system of the simulation box is translated so that all the molecular centres of mass become 

positive. This means that the final, averaged crystallographic cell might have a different origin with 

respect to that specified in the original .cif file. The enlargement factors NREPA, NREPB and NREPC 

specified at the beginning of each .dat frame (see Sections 5.1 and 5.1.3) are used to scale down the box 

edges and estimate the crystallographic shrunk cell. Atomic coordinates in the average simulation box 

are also shrunk, so that molecular centres of mass lie all within the crystallographic boundaries; then, 

very close (dCM < 3 Å) centres of mass flag molecules that are going to be averaged. The total atomic 

thermal motion parameters are obtained by averaging the total variance-covariance matrix elements 

computed above throughout the simulation box. 
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CAUTION: In doing averages, Naverag traces individual atoms, not individual coordinates. This means 

that rapidly varying conformations in flexible portions of the molecule might result in odd geometries. 

The typical case is a rapidly rotating methyl group, where individual hydrogens exchange their positions 

several times during the trajectory. This usually produces a correct average backbone structure, but the 

terminal C–H bonds of the rotating methyl are unnaturally short. For any subsequent meaningful 

discussion of the crystallographic results, it is a good idea to get rid of wrong hydrogens and to rebuild 

them from scratch using the correct geometry – for example, with Mercury (C. F. Macrae et al., J. Appl. 

Cryst., 53, 226-235, 2020) or the MiCMoS Retcor module. Obviously, thermal ellipsoids computed for 

disordered groups should be considered with care.  

 

To alleviate this problem, Naverag scans molecular pairs that are going to be averaged to see whether 

all the corresponding atoms are reasonably close to each other. If it is found that any pair of chemically 

identical atoms lie farther than 0.8 Å apart, it is assumed that one translation-dependent molecule has 

undergone a significant conformational or rotational rearrangement, and it is therefore skipped when the 

averaged structure is computed. The program takes note of what molecules are used for averaging and 

flags those that are skipped in the name1service.out file by assigning negative sequence numbers to 

them. If too few molecules survive to perform reliable averages, the module ask for user’s intervention: 

either the calculation is stopped before producing the .res file, or the scan algorithm is switched off (at 

your own risk!). In any case, the time average .dat file is always printed. 

 

CAUTION: Remember that accurate experimental Uij come from the information collected on much 

larger time and length scales. If you want to compare simulated thermal ellipsoids with experiment, 

ensure that (i) your structure is fully equilibrated; (ii) the trajectory is long enough to sample all the 

relevant conformers; (iii) the writing frequency of the .dat file is high enough to avoid missing 

dynamical information. In any case, ad hoc scaling factors should be usually applied to predicted Uij 

components to bring them on the same scale as the experiment. A good strategy is to evaluate such 

factors as the average ratios between (Ueq)experimental / (Ueq)predicted for different atom chemical classes (e.g. 

aromatic carbons, aromatic hydrogens, aliphatic carbons, methyl hydrogens…). 

 

Molecular translational and rotational motion might significantly alter the position of the molecular 

centre of mass and/or the backbone orientation, especially at high T or if the system is not fully 

equilibrated. This might result in odd thermal ellipsoids in some of the average molecules in the .res 

file. However, if some molecules in your average unit cell have correct thermal ellipsoids, that is, 

comparable with the experimental ones, you could probably ignore the ones that are clearly biased by 

translational or orientational disorder issues.  
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8.8. The Debye module 
 

The Debye module reads a MiCMoS computational box in .dat format (see Section 5.1.3), with explicit 

coordinates of all atoms. A simulated diffraction pattern is evaluated by the Debye scattering equation:  

 

𝐼(𝜗) = 〈𝐹(𝜗)2〉 = ∑𝑓𝑘
2

𝑁

𝑘=1

+
1

𝑁
∙ ∑ 𝑓𝑘𝑓𝑛

𝑠𝑖𝑛(𝑄𝑟𝑘𝑛)

𝑄𝑟𝑘𝑛

𝑚

𝑘,𝑛=1

                                    (8.8) 

 

where Q = 4 sin/ is the wavevector transfer modulus and fk, fn are the atomic scattering factors of 

atoms k and n, which lie rkn Å apart from each other. The first summation considers overlapping terms 

due to self-pairing, which cannot be included in the second one as rkk=0. The second summation runs on 

all conceivable m atom pairs in the sample of N molecules contained in the MiCMoS simulation box. 

Note that atoms k and n do not need to be chemically bonded.  

 

The Debye scattering equation (its author's name, Petrus J. W. Debije, was originally pronounced “deb-

ee-a” but became Peter Debye, deb-ah-ee, in the US) is of paramount importance in modern 

nanotechnologies: the interested reader may find many good reviews and books on this subject in the 

scientific Literature (for example, see P. Scardi et al., Acta Cryst. (2016). A72, 589–590 and references 

therein). In brief, it can be used to calculate the diffraction pattern from any specimen, either gaseous or 

liquid, if molecules are randomly oriented. It accounts for the total scattering output, which includes 

disorder and thermal effects (if properly modelled). It can be used also to estimate the diffraction pattern 

of a crystalline specimen in the form of a finely ground powder, where small crystallites are oriented at 

random with respect to the incoming radiation. Thus, the resulting 𝐼(𝜗)/𝐼(2𝜗)/𝐼(𝑄) profile can be used 

to evaluate the degree of ordering in a liquid, or to simulate the powder pattern for a crystal. If scattering 

at very small Q is considered, a Small Angle X-ray Scattering (SAXS) signal can be predicted and 

possibly compared with experiment. 

 

CAUTION. If applied to a perfect crystal, the Debye scattering equation should in principle reproduce 

the experimental X-ray powder diffraction output but the resolution of the pattern from the Debye 

formula will be much lower. Equation (8.8) is a brute force summation, which in principle requires an 

infinite number of terms up to very high interatomic distances. When the pattern is simulated using 

calculated structure factors, the periodical lattice interference condition is incorporated in the expression 

for the structure factors, and thus the infinite lattice periodicity is implicitly considered. The added value 

of (8.8) is that a perfect periodicity is not needed at all, as the total scattering signal is simulated. 

 

The atomic scattering factor of the kth atom is computed as a function of the scattering vector module 

using analytical fitting exponential functions:  

 

𝑓(𝑘, 𝑥) = 𝑓𝑒(1) ∙ 𝑒
−𝑓𝑒(2)∙𝑥

2
+ 𝑓𝑒(3) ∙ 𝑒

−𝑓𝑒(4)∙𝑥
2
+                                              

+𝑓𝑒(5) ∙ 𝑒
−𝑓𝑒(6)∙𝑥

2
+ 𝑓𝑒(7) ∙ 𝑒

−𝑓𝑒(8)∙𝑥
2
+ 𝑓𝑒(9)                      (8.9) 

 

Where x = sin/ and the fe(i) are fitting coefficients taken from Table 6.1.1.4. of International Tables 

for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, Third Edition, Editor E. 

Prince, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004. They come from the fitting of 

the form factors as predicted by quantum simulations on isolated atoms.  

 

Application of the Debye scattering equation can be very time consuming in serial codes like MiCMoS, 

as the summation must be carried out across all the atom pairs. This means that for a system with N 
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atoms, the cost scales as N2. To speed up the calculation is possible to exclude hydrogen atoms, whose 

scattering power is small, especially when they are a minor part of the molecule. Another time-saving 

strategy is to ignore periodicity of the simulation box and to apply equation (8.8) just to one isolated 

simulation box.  

 

Running command: 

 

run.debye name1 name2 name3 

 

“name1” is the name of the input parameter file (name1.inp), which must have .inp extension and 

collects all the steering commands needed for the calculation (see Section 8.8.1 below). “name2” is the 

name of the name2.oeh file. This file (see Section 1.4) is used only for the assignment of atomic species 

indicators, which are not present elsewhere. Eventually, “name3” indicates the MiCMoS simulation 

frame name3.dat on which the calculation is to be performed. The user must specify in the input stream 

(see Section 8.8.1) on what frame interval the calculation will be done (a maximum of 1,000 frames are 

allowed). It is thus possible to follow the time evolution of the Debye scattering curve, or to merge 

different curves into a time-average signal.   

 

run.debye module (Unix/Linux) 

 

cp $1.inp debye.inp 

cp $2.oeh debye.oeh 

cp $3.dat debye.dat 

rm $3deb.pri 

rm $3prof.pri 

~/programs/MiCMoS/exe/debye 

mv debye.pri $3deb.pri 

mv profiles.pri $3prof.pri 

rm debye.inp 

rm debye.oeh 

rm debye.dat 

 

The program produces two output files in tabular form; name3prof.pri contains the intensity vs. 2 (or 

Q) profiles for each frame analyzed, while name3deb.pri summarizes the average intensity vs. 2 (or 

Q) profile. These data can be easily adapted to be plotted with any graphic utility. 

 

CAUTION (current program limitation). The input box can have both solutes and solvents; in a run 

without periodic boundary conditions (PBC) the solvents are ignored, in a run with PBC the solvents 

are not allowed.  
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8.8.1 Description of the debye.inp file  

 

An example of the input stream (debye.inp file) for Debye is given below. The format is free. 
 

# nstart nend (first and last frame number, 0 0 to analyze all) 

    1      5 

# lambda, theta min, theta max, step 

   1.54     2.0       30.0      0.25 

# ilp (=0 apply, =1 not apply LP correction), thm(theta monochrom.) 

                  0                                 13.3 

# ibox (0=aperiodic, 1=periodic), cutoff 

                  0                0.0 

# ihyd (0=include,1=exclude H) 

                  0            

# iprint (0=normal, 1=extended printout) 

                  0 

  

Note that the steering parameters are interspersed by comment lines, each starting with a hashtag symbol 

“#”, which can be used to summarize the meaning of the various quantities. The program ignores the 

comment lines.  

 

 

nstart, nend (line 2)  Starting and ending frames in the trajectory. The Debye 

scattering equation will be applied only to frames in the .dat file 

that are included in this interval. If you want to analyze the 

whole trajectory, write “0 0”. A maximum of 1,000 frames is 

allowed; if the trajectory contains more than 1,000 frames, only 

the first thousand will be processed.  

lambda, thmin, thmax, step (line 4)  Wavelength of the X-ray beam (Å); min and max values 

required for the Bragg angle  (deg); the step of  (deg) at which 

the I() curve is computed. Typical values for these parameters 

might be 1.54 (Cu K radiation), 2.0, 30.0 (2 = 4-60 deg) at 

steps of 0.25-0.5 deg (0.5-1 deg in 2). The total number of 

steps in the intensity profile can be estimated as 1+(thmax–

thmin)/step. A maximum of 5,000 steps is allowed. 

ilp, thm (line 6) ilp controls whether the Lorentz-polarization factor is applied; 

in case, thm is the Bragg angle M (deg) of the monochromator 

crystal. 

 =0 the Lp factor is applied; a valid thm is required. If thm is 

lower than 0, the program adds 360 deg to make it positive. 

 =1 the Lp factor is not applied. In this case, the thm value is 

irrelevant. 

 If ilp=0, each intensity step I() of the total scattering profile is 

multiplied by the factor Lp: 



146 

 

                               Lp =
1+(cos2𝜗𝑀)

2(cos2𝜗)2

 [1+(cos2𝜗𝑀)
2] sin2𝜗

  

This expression assumes (i) that an ideally imperfect crystal 

monochromator is used and (ii) that polychromatic, 

monochromatized and diffracted beams are all coplanar, as for 

example they all lie in the equatorial plane of the Ewald sphere. 

Typical values for M are 13.3 deg for Cu K and 6.2 deg for 

Mo K radiations, if a graphite monochromator is used. If the 

correct value is unknown, or you don’t want to apply the 

correction for a crystal monochromator, you should select 

thm=0.0 deg. This excludes the contributions for the 

monochromator but still applies the [1+cos22]/[2sin2] factor 

due to the scattering from the sample. In that case, the program 

prints a reminder.  

ibox, cutoff (line 8) ibox specifies whether the calculation is periodic or not. 

 =0 non periodic calculation; 

 =1 periodic calculation. 

 When ibox=1 (periodic), cutoff selects the cutoff distance for 

including molecules in the calculation. It should be something 

below 1.5 the average box dimension. When ibox=0, cutoff is 

irrelevant. Note that activating periodic boundary conditions is 

often very time consuming.  

ihyd (line 10) ihyd selects the treatment of hydrogen atoms. 

 =0 all hydrogens are included; 

 =1 all hydrogens are excluded. 

iprint (line 12) Controls the amount of printout. 

 =0 normal printout (normal option) 

 =1 extended printout (for checking purposes) 

 

In summary, the procedure can be carried out in four different conditions: 

 

a) no periodic box conditions (PBC), include hydrogen atoms: in this case the summation 

runs only on atoms in the original box. ibox=0, cutoff=0.0, ihyd=0. 

b) as in a), but excluding hydrogen atoms. ibox=0, cutoff=0.0, ihyd=1. 

c) PBC with generation of 26 identical boxes surrounding the central one, but including 

only molecules whose distance from the center of coordinates of the central box is 

below a given threshold. ibox=1, cutoff>0, ihyd=0. 

d) as in c) but excluding hydrogen atoms. ibox=1, cutoff>0, ihyd=1. 

 

For example, the input above requires evaluating the total scattering of the first 5 frames of the trajectory 

using Cu K radiation. The diffraction profile is predicted for 2.0    30.0 deg, that is, 4.0  2  40.0 

deg at steps of 0.25 deg () or 0.50 deg (2). No periodicity is exploited, but the hydrogen atoms are 

included, and the Lp factor is active. The prontout is normal: the Debye module will produce a deb.out 

file with a single, time averaged I vs. 2 (or Q) profile, plus a prof.out file with individual profiles from 

the various frames analyzed.  
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8.9. The Nanocut module 
 

Nanocut reads the information on atom identities, atom fractional coordinates and crystal packing from 

an input .oeh file (Section 1.4). Then, it cuts the periodic structure by applying user-defined boundary 

conditions in terms of surface lattice planes (hkl). The module produces a MiCMoS .dat frame file, 

interpretable by both the MC and MD engines, which contains an isolated, ordered molecular 

nanocluster with the desired shape. This nanocluster can be used as a starting point for subsequent MD 

or MC calculations.  

 

Running command: 

 

run.nanocut name1 name2 

 

“name1” is the name of the input ASCII text file that includes the steering parameters for this calculation. 

This latter file must have .inp extension. Section 8.9.1 below contains a full description of the required 

ASCII instructions.  “name2” is the name of the name2.oeh file for a crystal structure, i.e. with specified 

the crystallographic unit cell and coordinates expressed as fractional vectors. No input data are required 

from keyboard.  

 

run.nanocut module (Unix/Linux) 

 

rm $2cut.dat 

rm $2cut.xyz  

rm $2cut.out 

rm clustercom.xyz 

cp $1.inp nanocu.inp 

cp $2.oeh struct.inp 

~/programs/MiCMoS/exe/nanocut > nanocut.out 

mv frame.dat $2cut.dat 

mv coordi.xyz $2cut.xyz 

mv ccom.xyz clustercom.xyz  

mv nanocut.out $2cut.pri 

rm nanocu.inp 

rm struct.inp 

rm serv1.txt 

rm serv2.txt 

 

The main printout is given on screen (the macro redirects it automatically to name2cut.pri), while the 

cartesian coordinates of molecules belonging to the computed nanoparticle are written in two files, 

name1cut.xyz, and name1cut.dat. The latter is a standard MiCMoS .dat frame file (Section 7.6.3). The 

program produces also another file, clustercom.xyz, where the centre of mass coordinates of all the 

molecules of the original array are displayed as dummy C, S or O atoms, depending whether they are 

included (C: solute, S: solvent) or not (O) within the nanoparticle boundaries. The .xyz files can be 

visualized by all graphical programs able to interpret the xyz format, including Mercury (C. F. Macrae, 

I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, 

M. Towler and P. A. Wood, J. Appl. Cryst., 53, 226-235, 2020). Moreover, the name1cut.dat file can 

be converted into VMD-compatible format using Datgro (Section 8.6). 
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The nanoparticle produced by Nanocut can be solvated. In practice, the simulation box of the solvated 

nanoparticle is produced by Nanosolv, which merges the name1cut.dat file with a second .dat file 

containing an equilibrated liquid, which is used as solvent. See Section 5.6 for more details. 

 

CAUTION. Even though is possible to create a nanoparticle from a crystal with two independent 

molecules in the asymmetric unit, such as solvates and co-crystals, it is not generally possible to put 

such a bi-component molecular cluster into a solvent with Nanosolv. The reason is that MiCMoS can 

handle no more than two different compounds: solvating a co-crystal will result necessarily in a 

simulation box with three chemical species, which is forbidden by the current program limitations. The 

only exception is a solvated nanocluster where the external solvent is identical to either component in 

the nanoparticle. In that case, ensure that the two identical chemical species have the same atom 

sequence in both .dat files.   

 

An example of a cluster produced by Nanocut is given in Figure 8.2 below.  

 

 
Figure 8.2. Projections along the three cell edge directions of a nanocluster of 651 molecules of succinic 

anhydride (7161 atoms) generated by Naverag. The cluster is bound by the following lattice planes and 

distances (Å) (see Section 8.9.1 for details) and comes by cutting the polyhedron from a 11x11x11 slab 

of unit cells. (0 1 1), 21.18; (0 1 -1), 21.18; (0 0 2), 21.66; (1 0 1), 25.78; (1 0 -1), 25.78; (1 1 0), 29.64; 

(1 -1 0), 29.64. The transparent polyhedron shows the superposition of the corresponding BFDH 

morphology with the nanoparticle, as computed by Mercury on the parent SUCANH15 structure. 
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8.9.1 Description of the nano.inp file  

 

An example of the input stream (nano.inp file) for Nanocut is given below. The format is free. 
 

# ipack1, ipack2, ipack3 (initial cluster) 

    2      2       2  

# iprint (=0 normal, 1=extended printout) 

    0 

# nplanes (number of (hkl) planes for boundary conditions) 

    3 

# h,  k,  l,  dhkl 

  1   1   1   10.0 

  0   1   0    8.0 

  0   0   1   11.54 

 

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such 

lines are ignored by the program and can be used to pin up comments on the meaning of the steering 

parameters.  

 

ipack1, ipack2 and ipack3 (line 2)  An initial cluster will be produced from the crystallographic 

unit cell, by exploiting all the elementary translations ranging 

from ipackn. For example, “2 2 2” means that translations 

of –2, –1, 0, +1 and +2 are used along all the a, b and c cell 

unit vectors. Overall, the initial cluster will consist of 5x5x5 

= 125 unit cells in this case. Note that a maximum of 8,000 

unit cells can be handled by the program. 

 

iprint (line 4)   The parameter iprint controls the amount of information print 

in the output file. If iprint=1, all the centre of mass coordinates 

generated according to coefficients ipackn (see above) are 

printed on screen, together with the corresponding acceptance 

conditions. For normal use, leave iprint=0. 

 

nplanes (line 6)  Number of (hkl) planes defining the boundary conditions. This 

parameter must be equal or higher than 3 to ensure that a closed 

polyhedron is defined; otherwise, the program stops with a 

warning message. 

 

h, k, l, dhkl (lines 8ff)   Add nplanes (see above) rows, each specifying hkl and dhkl 

quantities. hkl are the reciprocal space coordinates of the 

crystallographic planes employed as boundaries of the 

nanoparticle. For each plane, dhkl is the corresponding distance 

from the origin (in Å). The program automatically generates 

also the centrosymmetric faces (–h –k –l), keeping them at the 

same distance from the origin. Overall, a total of 2·nplanes 

boundary conditions are used; this should ensure that the 

polyhedron is always closed. 
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For example, the input specified above generates a starting ordered box of 5x5x5 unit cells. Only those 

molecules whose centres of mass projections along the reciprocal space vectors (111), (010), (001) (plus 

the centrosymmetric ones (-1-1-1), (0-10) and (00-1)) lie within 10, 8 and 11.54 Å apart from the origin 

will be included in the nanoparticle.  

 

CAUTION. The algorithm is developed so that the nanoparticle is always a convex closed polyhedron. 

If any of the defined (hkl) planes is set too far from the origin to act as an effective boundary, the 

elementary facets of the ipack1 x ipack2 x ipack3 original prism are used instead. 
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8.10. The Trajedit module 
 

Trajedit reads a .dat trajectory file produced by either the MC and MD engines and modifies the 

simulation box and/or the frame sequence according to the user’s specifications. For example, Trajedit 

can get rid of velocities and forces if present, it can cut the trajectory by selecting only a subset of frames, 

or it can print an edited trajectory with a lower frame frequency. Also, operations on the reference system 

are allowed: the program can change the unit cell system, including the origin. Finally, it is possible to 

produce an edited trajectory which contains either the solute or the solvent, or any number of user-

selected molecules. 

 

Running command: 

 

run.trajedit name1 name2 

 

“name1” is the name of the input ASCII text file that includes the steering parameters for the editing. 

This latter file must have .inp extension. Section 8.10.1 below contains a full description of the required 

ASCII instructions. “name2” is the name of the name2.dat file, without extension, with a MD or MC 

trajectory of any length. The new trajectory will be print in a name2edit.dat file, which can undergo any 

further analysis.  The program produces an output on screen, that by default is redirected to a trajedit.pri 

output file.  

 

run.trajedit module (unix/linux): 

 

rm $2edit.dat 

cp $1.inp trajedit.inp 

cp $2.dat trajectory.dat 

echo 'Working...' 

~/programs/MiCMoS/exe/trajedit > trajedit.pri 

echo 'Done. Output on trajedit.pri' 

mv trajectory.out $2edit.dat 

rm trajedit.inp 

rm trajectory.dat 

 

The operation requested are applied with the following order.  

 

- First, the trajectory is scanned to select the desired bunch of frames.  

- Then, a specific set of molecules within the desired frames is selected and conserved; the other 

molecules are erased. Selection is carried out based on either the molecular specie (solute or 

solvent) or a set of molecule id numbers, depending on the user’s request.  

- The next step is to change the origin; this is done by applying a rigid user-specified translation 

to the whole set of atomic coordinates. The translation vector must be specified in 

crystallographic coordinates.  

- Then, the axes of the simulation box are transformed according with a user-defined matrix. Any 

transformation matrix can be used, provided it is not singular. The reason is that the transform 

of the contravariant coordinates in the real space is carried out by the corresponding inverted 

matrix. If the determinant of the transformation matrix is not unitary, a warning is issued: be 

aware that in that case you are changing the cell volume. If the box is not periodic, no further 

changes are made; if periodicity is exploited, the program fills the transformed box with the 
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appropriate number of molecules to avoid the occurrence of void regions. This is done by 

expanding the original box into the usual 3x3x3 supercell, and including into the transformed 

box all the molecules whose center of mass lies within the new boundaries. Two tolerance 

parameters (apar1 and apar2) must be specified in the input to set the coordinate limit for center 

of mass inclusion (if origin is not changed, apar1 should be ~ –0.5 and apar2 ~ +0.5). This 

implies that the molecule count changes in the transformed box: the program updates the nmsolu 

and nmsolv counters in the transformed trajectory accordingly. The final cell parameters that 

will be written on the output are enlarged by a user-defined factor. This allows avoiding steric 

clashes on the new boundary of the transformed simulation box.  

- Finally, if requested, the whole molecular array can be renumbered.  

- In the printout, velocities and forces (if originally present) are kept or discarded, according to 

the user’s preference. Note that they are automatically discarded if a change of the reference 

system is required. This ensures that, if the edited trajectory is further evolved by MD or MC, 

no forces are constrained to be equal by translation in the simulation box.  

 

8.10.1 Description of the edit.inp file 

 

An example of the input stream (.inp file) for Trajedit is given below. The format is free. 

 

# itrim   iskip    icell    iextr   ivel   icentre 

   1        0        1        0      1        0 

# First and last frame to print (only effective if itrim = 1) 

   10      50 

# Cell transform matrix (only effective if icell = 1)           apar1    apar2    enlarge 

  -0.5  0.5   0.5    0.5   -0.5   0.5   0.5   0.5   -0.5        -0.500    0.500     1.2 

# label -1: take all; label n1,n2,n3..., take only n1,n2,n3... mols.  

SOLU  12 5 45 100 105 6 7 10 27 107 99 500  508 

SOLV  -1 

# irenu (renumber molecules, 0:no; 1:yes) only effective if iextr/icell.ne.0    

  1 

# coordinates shift  (to change the origin, only effective if icentre = 1) 

   -0.5  -0.5  -0.5 

 

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such 

lines are ignored by the program and can be used to pin up comments on the meaning of the steering 

parameters.  

 

1) #line -------------------------------- 

 

2) itrim, iskip, icell, iextr,  

ivel, icentre (line 2) itrim: If active, only frames within the interval istart-iend will be 

saved (see below). 

 0: option inactive (all frames will be processed) 

 1: option active; only frames within the limits specified below will 

be passed to the new trajectory. 

 iskip: Selects the number of frames that are to be skipped after any 

valid read. The program keeps all frames for which the ratio frame 

number / (iskip+1) gives a zero remainder.  

 icell: Activates a change in the reference frame. 

 0: The box coordinates frame is left unchanged. 
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 1: The coordinate frame is changed according to the transformation 

matrix given below. If the simulation box contains an isolated 

cluster (i.e. no periodic boundary conditions), the transform matrix 

just affects the atomic coordinates. If a periodic box is present, the 

reference box is rotated and filled again with those molecules whose 

centre of mass falls within the box. Depending on fluctuation of cell 

edges during the simulation and on the chosen tolerances apar1 and 

apar2 (see below), the number of molecules may vary along the 

trajectory. 

 iextr: Activates the molecule selection stream. If this option is 

active, only a subgroup of molecules will be selected, according with 

the user’s choice. Note that the iextr task is performed before any 

coordinate system adjustment (icell option); this implies that, after 

the coordinate change, only the selected molecules that fall within 

the new box are kept.  

 0: No molecules will be extracted from the trajectory; equivalently, 

all the original molecules will be kept.  

 1: An user-specified group of molecules will be extracted from the 

trajectory (see nextru / nextrv below). 

 ivel: Flag to decide whether velocities and forces are to be kept. It is 

effective only if the original trajectory contains these information 

(see aldo the parameter irvel in the description of the .dat file). 

 0: Velocities and forces, if present, are kept; 

 1: Velocities and forces, if present, are erased. 

 icentre: Specifies if a rigid translation of the origin is to be applied. 

 0: No origin shift is applied; 

 1: An user-defined shift vector is applied to all the crystallographic 

coordinates (see below). 

3) #line -------------------------------- 

 

4) istart, iend (line 4) These values are active only if itrim = 1 (see above); otherwise, they 

are ineffective. For itrim = 1, istart flags the first frame to be 

processed and iend the last one. All frames in the istart-iend interval 

are processed; others are skipped and will not be saved into the 

edited trajectory. 

5) #line -------------------------------- 

 

6) 9 transform matrix components, 

apar1, apar2, enlarge (line 6) These are the components of the transform matrix, to change the 

reference system. They are read only if icell = 1 (see above), 

otherwise they are ignored. The transform matrix is intended to 

operate in the crystallographic reference system and the components 

are organized in a row according to tra11, tra12, tra13, tra21, tra22, 

tra23, tra31, tra32, tra33. For example, the sequence 0.707 0.707 0 -

0.707 0.707 0 0 0 1 corresponds to the matrix  

 

      (
cos 𝛼 sin 𝛼 0
−sin 𝛼 cos 𝛼 0
0 0 1

)  
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for 𝛼 = 45 deg, i.e. it rotates the crystallographic reference system 

by 45 degrees around c. Any other transform matrix is accepted, 

even if the volume of the unit cell does change, provided that the 

transform matrix is not singular. For example, 0.5 0.0 0.0 0.0 0.5 0.0 

0.0 0.0 0.5 corresponds to   

        (

1/2 0 0
0 1/2 0
0 0 1/2

)  

  

and implies that the cell edges are halved. The number of molecules 

in the simulation box is consistently reduced (note that this 

transform is ineffective for isolated clusters, where periodicity is 

meaningless). In general, using the correct transform matrix the user 

may shape the simulation box according to their needs. 

 

Caution. If the trajectory refers to an isolated cluster (i.e. no box is 

present) and a coordinate change is required (icell = 1), the program 

prompts the user to give from keyboard an estimate for the 

(isotropic) dimension of the cell edge. This information is necessary 

to perform the required coordinate conversion.  

  

 apar1, apar2: These floating-point parameters set the tolerances to 

consider a molecule included or not in the new simulation box. Only 

molecules whose centre of mass crystallographic coordinates fall 

within these limits, i.e. apar1 < xCM, yCM, zCM < apar2, will be 

included in the edited trajectory. Usually, values like –0.495 and 

+0.495 or similar (i.e. close to –0.5 and +0.5) provide reasonable 

results. The reason is that MiCMoS sets the origin at the centre of 

coordinates of the simulation box, and this interval allows to fill 

correctly the transformed box. However, the user can adjust the 

limits according to their needs, for example if they are dealing with 

liquids or droplets.  

  

 enlarge: This floating-point parameter defines the enlargement 

factor that is applied to rescale the transformed cell edges. The 

rescaling is applied just before writing the new cell in the output 

frame. Experience shows that enlarge values of 1.1-1.2 are usually 

enough to avoid steric clashes on the new boundaries of the 

transformed box. Note that, after this operation, the transformed 

liquid needs to be equilibrated again before any meaningful results 

may be deduced from the dynamics. Unitary enlarge factors are 

accepted, but the program stops if one tries to load enlarge < 1.0.  

7) #line -------------------------------- 

 

8) nextru, molecule ids... (line 8) This option is active only if iextr = 1 (see above). The parameter 

nextru quantifies how many solute molecules are to be kept. nextru 

= –1 is special option that means that all solutes are kept; nextru = 0 

implies that no solutes are left. If nextru > 0, then the program 
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expects to find a list of molecule id numbers, corresponding to their 

sequence number in the original trajectory .dat file. These can be 

given in any order; only the molecules with the specified id numbers 

will be kept in the edited trajectory. 

9) nextrv, molecule ids... (line 9) Same as nextru above, for solvent molecules. Note that 

contradictory requirements (for example, iextr = 1 and both nextru 

and nextrv = –1) are recognized by the program, which issues a 

warning or stops, depending on the severity of the error. 

10) #line -------------------------------- 

11) irenu (line 11) Flag renumber molecules. If it is not active, the same molecule id 

numbers as in the original trajectory are kept. If a change of 

coordinate is required, some molecule id numbers may be equal: 

these molecules were originally translation-related in the original 

supercell. 

 0: Original molecule id numbers are retained; 

 1: Molecules in the edited trajectory are renumbered in sequence. 

12) #line -------------------------------- 

 

13) shift1, shift2, shift3 (line 13) Coordinates shift along the a, b, c edges of the simulation box (in 

crystallographic coordinates). These shifts are applied only if icentre 

=1 (see above).  

 

You may write your comments in lines 14ff.   
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8.11. The Vanhove module 
 

Vanhove reads a .dat trajectory file produced by either the MC and MD engines, and computes the 

isotropic van Hove distribution function either for the molecular centre of mass or for any pair of atoms, 

or elements, the user wants. 

 

Running command: 

 

run.vanhove name1 name2 

 

“name1” is the name of the input ASCII text file that includes the steering parameters for the editing. 

This latter file must have .inp extension. Section 8.12.2 below contains a full description of the required 

ASCII instructions. “name2” is the name of the name2mdc.dat file with a MD or MC trajectory of any 

length. The resulting van Hove distributions are printed on name2van.pri, where they are organized in 

parallel columns as a function of time.   

 

run.vanhove module (Unix/Linux)  

 
cp $1.inp vanhove.inp 

cp $2mdc.dat trajectory.dat 

rm $2_isot.out 

~/programs/MiCMoS/exe/vanhove 

mv vanhove_isot.out $2_isot.out 

rm vanhove.inp 

rm trajectory.dat 

 

8.11.1 Background 
 

The van Hove correlation function, 𝐺(𝑟, 𝑡), allows to follow the correlated motion of particles both in 

space and in time, an information that may be also obtained experimentally, for example from inelastic 

neutron scattering experiments.  

 

For a homogeneous system like a liquid or a glass, 𝐺(𝑟, 𝑡) depends only on the relative distance: 
 

𝐺(𝑟, 𝑡) =
1

𝑁
〈∑∑𝛿(𝐫 − [𝐫𝑖(𝑡) − 𝐫𝑗(0)])

𝑁

𝑗=1

𝑁

𝑖=1

〉                                        (8.11.1) 

 

Where N is the number of particles (atoms or molecules) included in the calculation, 𝛿 is the Kronecker 

delta and 𝐫𝑖(𝑡), 𝐫𝑗(0) are the corresponding vector coordinates of the particles i and j at times t and 0, 

respectively. The parentheses 〈… 〉 imply an ensemble average over the whole set of sampling directions 

r; thus, 𝐺(𝑟, 𝑡) at time t expresses the probability to find any pair of particles at distance |𝐫| = |𝐫𝑖(𝑡) −
𝐫𝑗(0)|. In other words, 𝐺(𝑟, 𝑡) follows how the average relative distances among the particles change in 

space and in time.  

 

It is easy to see that, at t = 0,  

𝐺(𝑟, 0) =
1

𝑁
〈∑∑𝛿 (𝐫 − 𝐫𝑖(0) + 𝐫𝑗(0))

𝑁

𝑗=1

𝑁

𝑖=1

〉 = 𝛿(𝑟) + 𝜌 ∙ 𝑔(𝑟)                            (8.11.2) 
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That is, 𝐺(𝑟, 0) is proportional to the pair distribution function 𝑔(𝑟); 𝛿(𝑟) is the Dirac delta function 

and 𝜌 is the distance number density. More interestingly,  𝐺(𝑟, 𝑡) can be separated into a self- and 

distinct part: 
 

𝐺(𝑟, 𝑡) = 𝐺𝑠(𝑟, 𝑡) + 𝐺𝑑(𝑟, 𝑡)                                                       (8.11.3) 

Where 

𝐺𝑠(𝑟, 𝑡) =
1

𝑁
〈∑𝛿(𝐫 − [𝐫𝑖(𝑡) − 𝐫𝑖(0)])

𝑁

𝑖=1

〉                                         (8.11.4) 

 

The self-part 𝐺𝑠(𝑟, 𝑡) is the probability density that a particle i has moved by r in a time t. Equivalently, 

𝐺𝑠(𝑟, 𝑡) can be seen as the probability density of finding at r a particle i at time t, knowing where the 

same particle was at time 0.  

𝐺𝑑(𝑟, 𝑡) =
1

𝑁
〈∑∑𝛿 (𝐫 − 𝐫𝑖(𝑡) + 𝐫𝑗(0))

𝑁

𝑗≠𝑖

𝑁

𝑖=1

〉                                   (8.11.5) 

 

Let’s assume that we know that at t = 0 a generic particle j was located at 𝐫𝑗(0). Then, the distinct part 

of the van Hove distribution, 𝐺𝑑(𝑟, 𝑡), is related to the probability of find any other (different) particle 

at distance r from that place.  Moreover, by definition, 𝐺𝑑(𝑟, 0) = 𝑔(𝑟) at t = 0, excluding possible 

normalization factors. 

 

In normal usage, both functions are normalized so that ∫𝐺𝑠(𝑟, 𝑡)𝑑𝑟 = 1 and ∫𝐺𝑑(𝑟, 𝑡)𝑑𝑟 = 𝑁 − 1. 

 

If desired, the user can select normalization conditions analogue to those employed by Analys (Section 

8.2) to calculate the radial distribution function. However, note that the Vanhove does not perform 

distinct calculations of the centre of mass for the solute or the solvent, as it is intended to look for long-

range correlations in both space and time, rather than to investigate the local average coordination. Thus, 

the whole information (solute-solute, solute-solvent and solvent-solvent) concur to define a van Hove 

distribution. It is still possible to extract information on the solute / solvent parts, though; for example, 

the user may edit the trajectory with Trajedit (Section 8.11), so that only the desired information is left. 

For example, if only solute-solute (solvent-solvent) contributions are looked for, solvent (solute) 

molecules must be erased frame by frame.  The solute-solvent cross information may be obtained by 

subtracting the solute-solute and solvent-solvent contributions from the whole van Hove.   
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8.11.2. Description of the vanhove.inp file 
 

An example of input stream for vanhove is given below. The format is free. 
 

# ifirst(first frame)  ilast(last frame)   iuse(skip frames)   max_bin (of the van Hove distribution) 

        10                  14                     1                     250 

# delta_r (bin width of the van Hove)   delta_t (time step, in ps) 

        0.5                                   0.002 

# Type of van Hove (ivH, 0:com, 1:atom count)  Normalzation(norm, 0:particle count; 1:particle density) 

                              1                                   1 

# Atoms to be included 

SOLU   8  -1 1  15 

SOLV   0  0 0  0 

 

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such 

lines are ignored by the program and can be used to pin up comments on the meaning of the steering 

parameters.  

 

1) #line -------------------------------- 

 

2) ifirst, ilast, iuse, max_bin 

 ifirst  First frame to consider. 

 ilast  Last frame to consider. 

 iuse  Starting from ifirst, the analysis is done every iuse frames.  

max_bin Number of bins for the calculation of the discrete van Hove distributions. The 

maximum r (the extension) of the distribution is governed by the product 

max_bin · delta_r (explained below).  

 

Caution: If the extension is insufficient to safely allocate all the bins, the program stops and a warning 

is issued.  

 

3) #line -------------------------------- 

 

4) delta_r, delta_t Control the bin width and the time step. 

delta_r Bin width of the van Hove distributions, in Å. All distances r’s that differ less 

than delta_r are placed into the same bin.   

delta_t Timescale of the Molecular Dynamics simulation, in ps. It corresponds to the 

timestep parameter of the mdi file (see Section 7.6.2).  

 

5) #line --------------------------------  

 

6) ivH, norm  Controls the type of the van Hove distributions. 

 ivH  = 0 : the van Hove distributions is based on molecular centre of mass; 

= 1 : the van Hove distributions is based on individual atom-atom distances. 

Specific atoms to be used are given on lines 8 and 9 below. Only distances 

relating different atoms (or atomic species) in different molecules are included 

in the distribution. In other words, intramolecular distances are always skipped.  
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 norm  Selects the normalization factor for the van Hove distribution.  

= 0 : the particle count is used as a normalization factor. This implies that the 

whole van Hove distribution is normalized over the total number of particles, 

N, and at the same time ∫𝐺𝑠(𝑟, 𝑡)𝑑𝑟 = 1 and ∫𝐺𝑑(𝑟, 𝑡)𝑑𝑟 = 𝑁 − 1. 

= 1 : the same normalization procedure for the calculation of the pair 

distribution function g(r), as implemented in analys.for (Section 8.2), is 

employed. This means that the ith bin is divided by 4𝜋𝑅𝑖
2𝑑𝑅 ∙ 𝑁/𝑉, i.e. by 

4
3⁄ 𝜋[(𝑅𝑖 + delta_r)

3 − (𝑅𝑖)
3] ∙ 𝑁/𝑉. As usual, N/V is the total number 

density of distances, which sets the reference for a perfect random distribution.  

 

7) #line -------------------------------- 

 

8) labl,izu1,natu1,izu2,natu2 

   These instructions are effective only if ivH = 1.  

labl This is a user-defined label. It can be any alphanumeric quantity (4 characters 

long).  Usually, it is just a memo for solute (“SOLU”), as the following 

parameters on this line refer to the solute. 

izu1 Atomic number of the first solute atomic specie to be included in the evaluation 

of the van Hove distribution.  

natu1 Atom id number that is used to compute the distribution. natu1 correspond to 

the number position of the desired atom in the solute atom list written in both 

the topology and the trajectory. For example, “8 21” means that the #21 oxygen 

atom on the atom list is selected.  If a “-1” is given, all solute atoms with izu1 

atomic number are used. A “0” implies that no izu1 atoms are employed. 

izu2 Atomic number of the second solute atomic specie to be included in the 

evaluation of the van Hove distribution. 

natu2 Same as natu1, for the second solute atomic specie. 

 

Caution: Only intermolecular distances are included in the calculation. Distances relating atoms within 

the same molecule are skipped.  

 

9) labl,izv1,natv1,izv2,natv2 

These instructions are effective only if ivH = 1. They are the same as in line 8) 

above, referring to the solvent. 

labl This is an user-defined label. It can be any alphanumeric quantity (4 characters 

long).  Usually, it is just a memo for solvent (“SOLV”), as the following 

parameters on this line refer to the solvent. 

izv1 Atomic number of the first solvent atomic specie to be included in the 

evaluation of the van Hove distribution.  

natv1 Atom id number that is used to compute the distribution. natv1 correspond to 

the number position of the desired atom in the solvent atom list written in both 

the topology and the trajectory. For example, “8 21” means that the #21 oxygen 



160 

 

atom on the atom list is selected.  If a “-1” is given, all solvent atoms with izv1 

atomic number are used. A “0” implies that no izv1 atoms are employed. 

izv2 Same as natu1, for the second solvent atomic specie. 

natv2 Atom id number of the izv2 atom that is used to compute the distribution. If a 

“-1” is given, all solute atoms with izv2 atomic number are used. As above, a 

“0” implies that no izv2 atoms are employed. 

The user may decide which specific atoms, or atom classes, are to be included in the calculation. Suitable 

choice of natu1,2 and natv1,2 switches, allows to cover any case. For example, 

 

# Atoms to be included 

SOLU   8  -1 1  15 

SOLV   0  0 0  0 

 

The above instructions require to compute the van Hove distribution by considering the distance between 

the hydrogen atom number 15 of the solute and any of the oxygen atoms in the solute. It is implicit that 

only intermolecular distances are included in the statistics. 

 

# Atoms to be included 

SOLU   8  1 0 0 

SOLV   7  4 0 0  

 

Here, we want the van Hove distribution for the oxygen atom number 1 of the solute and the nitrogen 

atom number 4 of the solvent.  Note that “SOLV   0 0 7 4” would have been totally equivalent.  

 

# Atoms to be included 

SOLU   0 0 0 0 

SOLV   7 -1 7 -1  

 

This calculation evaluates the van Hove distribution among all the intermolecular distances involving 

nitrogen atoms of solvent molecules.  
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8.12. The Renergy module 
 

Renergy reads a .dat trajectory file produced by either the MC and MD engines, and re-computes the 

potential energies, both intramolecular and intermolecular, based on the atomic coordinates. If 

requested, the program also produces extended files with individual relevant (i.e. most attractive) 

molecule-molecule interaction energies.  

 

Running command: 

 

run.renergy name1 name2 name3 

 

“name1” is the name of the input ASCII text file that includes the steering parameters. This file must 

have .inp extension. Section 8.13.1 below contains a full description of the required ASCII instructions. 

The label “name2” indicates the name2.top topology file, which must be read to retrieve the atom 

identities, the atom charges, and the intramolecular parameters of the force field. Finally, “name3” is 

the name of the name3.dat file with a MD or MC trajectory of any length; it also sets the output file 

names.  

 

Note that the program is compiled in serial mode. If you want, you can compile Renergy in parallel 

mode following the instructions detailed below.  

 

By default, the program prints two main files. The name3rene.pri output lists the total intramolecular 

and intermolecular energies, as well as the corresponding decomposition into dispersive and electrostatic 

contributions, plus an estimate for the cohesive energy of the system. The usual decomposition into 

solute-solute, solute-solvent and solvent-solvent contributions is maintained. The name3rene.ene output 

is equivalent to the .ene file that can be printed on the fly while the trajectory is computed (see the 

parameter nwre in Section 7.6.2; Section 8.5.1 describes extensively of the .ene format).  

 

If requested by the user (see Section 8.12.1 below), for each frame in the trajectory Renergy can print 

detailed lists of molecule-molecule contacts, which include center of mass distance, intermolecular 

dispersive and Coulomb contributions, and total intermolecular energies. Distinct files are produced for 

solute-solute (name3uu.pri), solute-solvent (name3uv.pri), and solvent-solvent (name3vv.pri) 

interactions. Only molecule-molecule energies lower than a user-defined threshold on the total energies 

are printed.  

 

Renergy is intended to perform one or more of the following tasks. It can be used to obtain information 

on specific molecule-molecule interactions, which are not usually printed during the normal trajectory 

analysis. It can be also employed to test the effect of different cutoffs, or force fields, on the estimated 

cohesive energies, getting rid at the same time of redistribution effects like those due to kinetic bias 

(Section 7.2.4), anisotropic pressure (Sections 7.3.2 and 7.3.3) and nanoconfinement (Section 7.2.5). 

Note, however, that Renergy does not recalculate forces and velocities; in other words, it only takes note 

of atom positions and gives back the corresponding intramolecular and intermolecular energies as a 

function of time. Finally, Renergy can also be used in conjunction with Trajedit (Section 8.10) e.g. to 

compute the potential energies of specific molecular subsets. For example, you may use Trajedit to 

select a group of molecules that is of some interest (e.g. a hydrogen bonded cluster, a droplet of 

solute…). Then, you can use Renergy to analyze in depth their contribution to the total energy of the 

system. Note that such a partitioning is possible formally as MiCMoS relies on pairwise atom-atom 

summations, which in turn sum up exactly to give molecular contributions. Clearly, ignoring multi-body 

interactions and correlations is an approximation. This is the cost for an exact partitioning.  
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Caution. Being equal the force field, the factin parameter and the various cutoffs, small numerical 

discrepancies, lower than 0.1 %, are to be expected in total energies when one compares the outcomes 

of renergy with those obtained on the fly from the original trajectory calculation. These are likely due 

to rounding of atomic coordinates in the written trajectory. We verified that cohesive energies are 

essentially not affected from these small (random) errors. 

 

run.renergy module (Unix/Linux) 
 

rm $3rene.pri 

rm $3rene.ene 

rm $3uu.pri 

rm $3vv.pri 

rm $3uv.pri 

cp $1.inp renergy.inp 

cp $2.top topology.top 

cp $3.dat trajectory.dat 

~/programs/MiCMoS/exe/renergy 

rm renergy.inp 

rm topology.top 

rm trajectory.dat 

mv renergy.pri $3rene.pri 

mv renergy.ene $3rene.ene 

mv emoluu.pri $3uu.pri 

mv emolvv.pri $3vv.pri 

mv emoluv.pri $3uv.pri 

 

To be compiled, the program requires to have access to MiCMoS libraries. The following macro should 

be employed. Note that these instructions are already present in the standard compilation macro 

run.compileB, thus you are expected to do nothing to compile Renergy. See also the installation notes 

at the very beginning of this manual. 

 

Compilation instructions for Renergy (serial mode) 
gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/alldat.for 

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/mdlibs.for 

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/mcmdpo.for 

gfortran -O2 -mcmodel=medium -static -std=legacy ~/programs/MiCMoS/SourceB/renergy.for alldat.o mdlibs.o 

mcmdpo.o -o renergy 

[ -f "./renergy.exe" ]  && mv "./renergy.exe"  renergy 

rm *.o 

mkdir -p ~/programs/MiCMoS/exe 

mv renergy ~/programs/MiCMoS/exe/. 

 

By default, the program is compiled in serial mode. However, you can also produce by yourself a parallel 

version of Renergy by executing the following instructions. Please note that these will overwrite the 

serial Renergy executable produced by run.compileB during the installation process. To avoid this, you 

may change the name of the executable.  

 

Compilation instructions for Renergy (parallel mode) 
gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/alldat.for -fopenmp 

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/parallel/mcmdpo.for -fopenmp 

gfortran -O2 -mcmodel=medium -c -std=legacy ~/programs/MiCMoS/SourceB/parallel/mdlibs.for -fopenmp 

gfortran -O2 -mcmodel=medium -frecursive -std=legacy ~/programs/MiCMoS/SourceB/parallel/renergy.for alldat.o 

mdlibs.o mcmdpo.o -o renergy -fopenmp 

[ -f "./renergy.exe" ]  && mv "./renergy.exe"  renergy 

rm *.o 

mkdir -p ~/programs/MiCMoS/exe 

mv renergy ~/programs/MiCMoS/exe/. 
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To execute the parallel version, you should add the following instruction export 

OMP_NUM_THREADS=<N> to the first line of the run.renergy module file (change <N> with the proper 

number of threads).  

 

CAUTION. The parallel version of Renergy is not tested to date. You should check that it works 

properly before extensive use.  

 

8.12.1. Description of the renergy.inp file 

 

An example of input stream for Renergy is given below. The format is free. 

 
Example CLP energy recalc 

# idstr  timestep  euu  evv   euv  cutoffu cutoffv cutoffuv   ipots   factin   indiuu   indivv  indiuv 

    1     0.001   -5.0 -15.0 -10.0   15.0    15.0     15.0       0      0.7      1       1       1 

 

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such 

lines are ignored by the program and can be used to pin up comments on the meaning of the steering 

parameters.  

 

1) Title line  Use this line to sketch some information on your calculation. The format is free. 

 

2) #line -------------------------------- 

 

3) idstr, timestep, euu,evv,euv, cutoffu, cutoffv, cutoffuv, ipots, factin, indiuu, indivv, indiuv  

idstr Controls whether the energy/distance distribution analysis must be carried out 

(see Sections 7.5.3 and 7.6.2).  

   =0 No distribution analysis is done 

=1 The distribution analysis of molecule–molecule pair energies (< 

Emolim) and their centre–of–mass velocities is carried out and written 

in the .pri file.  

timestep Timescale of the Molecular Dynamics simulation, in ps. It corresponds to the 

timestep parameter of the mdi file (see Section 7.6.2).  

euu If idstr = 1, this is the energy limit (<0) to store solute–solute energies and 

distances in the distribution (see Section 7.5.3). In other words, euu takes the 

place of the emolim instruction in the original .mdi input file (Section 7.6.2). 

This option is directly available only for the solute molecules. If interested in 

the solvent, you may run this program on a suitably edited trajectory with 

Trajedit (Section 8.10). If indiuu =1 (vide infra), individual solute–solute 

energies are stored in the name3uu.pri output file, provided that their total 

interaction energies are more negative than euu. 

evv If indivv =1 (vide infra), individual solvent–solvent energies are stored in the 

name3vv.pri output file, provided that their total interaction energies are more 

negative than evv. As for euu, also evv < 0 is required. 

euv If indiuv =1 (vide infra), individual solute–solvent energies are stored in the 

name3uv.pri output file, provided that their total interaction energies are more 

negative than euv. As for euu, also euv < 0 is required. 
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cutoffu Distance cutoff in intermolecular sums (solute–solute). See Section 7.3.2 for 

more details. All cutoffs are expressed in Å. Note that cutoffu = 0.0 is 

incompatible with indiuu = 1. 

cutoffv Distance cutoff in intermolecular sums (solvent–solvent). Note that cutoffv = 

0.0 is incompatible with indivv = 1. 

cutoffuv Distance cutoff in intermolecular sums (solute–solvent). Note that cutoffuv = 

0.0 is incompatible with indiuv = 1. 

ipots Controls the energy functional of the Force Field. 

=0 use AA–CLP 

 =1 use AA–LJC  

factin Damping factor for intramolecular nonbonded interactions (see Sections 6.4.2, 

7.4.1 and 7.6.4). 

indiuu Flags whether individual molecule-molecule energies in the solute should be 

printed. 

  =0 No explicit recording of molecule-molecule interactions. 

=1 Individual solute-solute interactions are recorded in the output file 

name3uu.pri. 

indivv Flags whether individual molecule-molecule energies in the solvent should be 

printed. 

  =0 No explicit recording of molecule-molecule interactions. 

=1 Individual solvent-solvent interactions are recorded in the output file 

name3vv.pri. 

indiuv Flags whether individual cross-interaction energies between the solute and the 

slvent should be printed. 

  =0 No explicit recording of molecule-molecule interactions. 

=1 Individual solute-solvent interactions are recorded in the output file 

name3uv.pri. 
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8.13. The Denflu module 
 

Denflu reads a .dat trajectory file produced by either the MC and MD engines, and computes the local 

density fluctuations, as opposed to the average density of the simulation box. This can be useful, for 

example, to spot early aggregation phenomena or inhomogeneities in liquids and glassy states. 

 

Running command: 

 

run.denflu name1 name2 

 

“name1” is the name of the input ASCII text file that includes the steering parameters. This latter file 

must have .inp extension. Section 8.14.1 below contains a full description of the required ASCII 

instructions. “name2” is the name of the name2mdc.dat file with a MD or MC trajectory, without 

extension. A maximum of 2000 frames can be processed at once. The output is an ASCII text file named 

name2denflu.pri. 

 

run.denflu module (unix/linux) 
 

rm $2den.pri 

cp $1.inp denflu.inp 

cp $2.dat trajectory.dat 

/programs/MiCMoS/exe/denflu 
mv denflu.out $2denflu.pri 

rm trajectory.dat 

rm denflu.inp 

 

In each frame, the program partitions the total volume of the simulation box into a grid according with 

the user’s instructions. The grid must contain no more than 106 volume elements. Then, each molecule 

in the simulation box is associated with one and only one volume element, the one that is closest to the 

corresponding center of mass. For each volume element, the number of molecules it contains is 

evaluated. Thus, it is possible to compute the instantaneous density in each volume element of the grid. 

This value can be compared with the total density of the simulation box, as well as with the average 

density over the whole trajectory.   

For each volume element, a time average value of the density is provided by averaging its point density 

throughout the trajectory. The averaged squared density difference is computed locally in each volume 

element 𝑖 according to  

〈∆2𝜌𝑖〉 = 〈(𝜌𝑖 − 〈𝜌𝑖〉)
2〉                                                               (8.13.1) 

Where 𝜌𝑖 is the density of the 𝑖𝑡ℎ volume element, 〈𝜌𝑖〉 is the corresponding trajectory average, and 

brackets 〈… 〉 denote the temporal average as well. An index can be defined, to quantify the average 

fluctuations with respect to the system density. Following Moynihan & Schroeder, Journal of Non-

Crystalline Solids 160, 1993, 52-59, we define an average density fluctuation 〈∆2𝜌〉 by averaging the 

individual 〈∆2𝜌𝑖〉 over all the volume elements in the grid, and then by normalizing by the squared total 

density. The fluctuations can be also related to thermodynamic response coefficients according to: 

〈∆2𝜌〉

〈𝜌2〉
=
𝑘𝐵𝑇 ∙ ∆𝑘

〈𝑉〉
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Here, brackets 〈… 〉 indicate the spatial average through the grid elements, 𝜌2 is the corresponding 

average squared density, and 〈𝑉〉 is the average volume element. 𝑇 is the absolute temperature and 𝑘𝐵 

the Boltzmann constant (1.380649·10-23 J·K-1). Finally, ∆𝑘 is the difference between the liquid and glass 

isothermal compressibilities.  

The program also prints a table with the time-averaged parameters of all the grid elements. For each 

point volume 𝑖, the Cartesian coordinate of the volume centroid are given, together with: (i) the average 

density 〈𝜌𝑖〉 (in g·cm-3), (ii) the corresponding standard deviation of the mean (𝜎〈𝜌𝑖〉), (iii) the average 

density difference from the average density (〈𝜌𝑖 − 〈𝜌𝑖〉〉), (iv) the average squared density difference 

(〈(𝜌𝑖 − 〈𝜌𝑖〉)
2〉), (v) the local fluctuation for that grid element (〈∆2𝜌𝑖〉/〈𝜌𝑖〉

2) and (vi) the density 

difference with respect to the macroscopic one (𝜌 − 〈𝜌𝑖〉).  

CAUTION. The program is equipped with internal checks for consistency. It may happen that the center 

of mass of a molecule falls exactly halfway between two volume elements and thus it is counted twice. 

In this case, the program stops and issues an error of “Internal molecule count mismatch”. You may 

avoid the problem by changing the grid of volume elements (i.e. ibx, iby and ibz – Section 8.13.1 below). 

 

8.13.1 Description of the denflu.inp file 

 

An example of the input stream (denflu.inp file) for Denflu is given below. The format is free. 

 

# bin numbers:  ibx   iby    ibz    

                10    10     10       

# Starting frame   Ending frame   iprint 

      1                1000            0 

# Temperature in K 

   350        

 

Note that command lines are interspaced by comment lines, each beginning with a hashtag (“#”). Such 

lines are ignored by the program and can be used to pin up comments on the meaning of the steering 

parameters.  

 

1) #line -------------------------------- 
 

2) ibx, iby, ibx  Number of grid bins along x, y and z. The cell edges are partitioned 

according to the ibx, iby and ibz factors to define the grid steps and 

the corresponding volume elements. Each grid element is a 

parallelepiped with edges a/ibx, b/iby and c/ibz long, where a, b and 

c are the box edges. Note that a maximum of 106 volume elements 

are allowed in the grid.  

3) #line -------------------------------- 

4) istart, iend, iprint  istart flags the first frame to be processed and iend the last one. For 

example, if you have a total of 1000 frames in your trajectory, 500 

800 means that the analysis will be carried out from the frame 500th 

to the frame 800th. All frames in the istart-iend interval are 

processed; others are skipped. 

 iprint controls the amount of output that is printed. 0 is the normal 

option; 1 implies full printout, which includes the orthogonalization 

matrices and frame-by-frame information on the box parameters.   

5) #line -------------------------------- 
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6) atemp Temperature of the simulation to which the trajectory refers, in 

Kelvin. It is used just to evaluate the final thermodynamic 

properties.   
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8.14. The Clusters module 
 

Clusters reads a topology (.top) and a trajectory (.dat) and look for stable aggregates of molecules based 

on geometry or energy thresholds.  

 

Running command: 

 

run.cluster name1 name2 name3 

 

where: 

- name1: is the name of the top topology (without extension). 

- name2: is the name of the dat trajectory to analyze (without extension). 

- name3: is the name of the output files (without extension). 

 

The program produces three different files: 

- name3_xxx.pri: lists all the cluster found frame by frame with the geometric (xxx = geo) or energetic 

(xxx = ene) criterion. 

- name3_histene.pri: contains the distribution of the number of interacting molecules vs the energy of 

interactions. This doesn’t depend on the selected interaction criterion.  

- name3_xxx_breaking. pri: contains the frequency of the persistence of molecule-molecule interactions 

as a function of the number of frames. 

 

The two criteria for molecule-molecule recognition work as follows: 

 

- Geometric mode: two molecules are considered interacting if (i) the distance between the donor and 

the acceptor atoms is lower than the sum of their van der Waals radii, scaled by a user-defined factor 

(dH-A ≤ k*(rvdw,H + rvdw,A)), and (ii) the D-H···A angle is below a given threshold (ɑD-H···A ≤ ϑ). The user 

has the possibility to define the list of donor and acceptor atoms, together with the distance scaling 

(default: k = 0.9) and the angle of the interaction (default:  ϑ = 120 deg). 

 

- Energetic mode: molecules are considered bonded if their interaction energy is lower than a given 

threshold (Eij < threshold). No default value is set.  

 

run.cluster module (unix/linux) 

 
#!/bin/bash 

if [ -f "$3_geo.pri" ]; then rm $3_geo.pri ; fi 

if [ -f "$3_ene.pri" ]; then rm $3_ene.pri ; fi 

rm "histene.out" 

rm "breaking.out" 

cp $1.top cluster.top 

cp $2.dat cluster.dat 

~/programs/MiCMoS/exe/cluster 

if [ -f "cluster_geo.out" ]; then crit="geo" ; fi 

if [ -f "cluster_ene.out" ]; then crit="ene" ; fi 

mv cluster_${crit}.out $3_${crit}.pri 

mv histene.out $3_${crit}_histene.pri 

mv breaking.out $3_${crit}_breaking.pri 

rm cluster.dat 

rm cluster.top 
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The program works interactively with the following flow: 

 

i1 modinter:  

(1 = geometric, 2 = energetic)  

modinter 

 

Select which interaction criterion you want to 

use:  

- 1: geometric. Two molecules interact if their 

donor-acceptor distance is lower than the sum 

of van der Waals radii scaled by a scaling 

tolerance factor, and the D-H···A angle is 

lower than the given threshold. 

- 2: energy threshold. Interactions occur when 

two molecules have interaction energy lower 

(more negative) than the given threshold 

i2 Which potential?  

(0 = clp, 1 = ljc)? 

ipot 

 

Select one of the two available force field for 

the energy calculation in modinter = 2 and for 

the name3_histene.out output. Refer to 

Section 2.1 of the manual for more details 

about the force fields. 

 

- 0: CLP (Coulomb-London-Pauli force field. 

- 1: LJC (Lennard-Jones-Coulomb) force 

field. 

i3 Initial and final frames to analyze: first_frame last_frame 

 

- first_frame: first frame to analyze from the 

dat trajectory 

- last_frame: last frame to analyze. 

 

All the frames i < first_frame & i > last_frame 

are skipped. 

i4 Cutoff for molecule-molecule interactions  

(0 = default 15.0 Å)      

cutoff 

 

The user selects the maximum molecule-

molecule distance taken into consideration 

when interactions are searched. 

i5 Is there some confinement?  

(1 = yes, 0 = no) 

iconf 

 

There is the possibility to read confined 

simulation trajectories. This parameter 

controls the periodic boundary conditions. 

 

Expected inputs: 

- 0: unconfined trajectory 

- 1: confined trajectory 
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 [ if confinement is active (iconf=1)] 

i5.1 Insert confining planes XY, XZ, YZ  

(1 = on, 0 = off (default)) 

iplane(1) iplane(2) iplane(3)  

 

a triad of integers defines if a barrier is placed 

along the indicated directions. 

- Nanolayers: “1 0 0” or any permutation; 

- Nanotubes:  “1 1 0” or any permutation; 

- Nanocavities: “1 1 1” 

  

 [ if geometric mode is active: ] 

i6 -- Donor-Acceptors atoms (D-H ... A) --  

i7 How many Donor D-H couples?  ndonors  

 

number of D-H donor atom pairs the user 

wants to insert 

i7.1 [ for i=1,ndonors ] 

Donors #i, D and H = 

idonors(i,2) idonors(i,1) 

 

indexes of the D-H atoms (according to the 

topology list). 

The program asks for the same information 

ndonors time 

i8 How many Acceptor A atoms? nacceptors  

 

number of A acceptor atoms the user wants to 

insert 

i8.1 [ for i=1,nacceptors ] 

Acceptor #i, A = 

iacceptors(i)  

 

indexes of the A atoms (according to the 

topology). 

The program asks for the same information 

nacceptors time 

i9 Insert damping for H-bonds distance 

 (0 = default 0.90) 

tolerance  

 

the scaling parameter used to scale the sum of 

the van der Waals radii when geometric 

criteria are used to detect interaction.  

Interactions between molecules occur when 

dH-A ≤ tolerance*(rvdw,H + rvdw,A)) 

i10 Insert threshold for D-H---X angle 

(0 = default 120 deg) 

anglehb  
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the threshold for the angle criterion. 

Interaction between molecules occur when ɑD-

H···A ≤ anghehb 

   

 [ if energetic mode is active ] 

i6 Insert interaction energy reference (in kJ/mol) eneref  

 

read the energetic threshold. Two molecules i 

and j belong to the same cluster if Eij ≤ eneref 

 

Here are three examples for the clusters steering parameters: (1) geometry mode, LJC force field, no 

confinement; (2) geometry mode, CLP force field with confinement on XZ plane; (3) energy mode, LJC 

force field, with no confinement. For the geometry mode, the selected frame range is 100-200, the cutoff 

is 15 Å with a single D-H pair of atoms (indexed 14 and 15) and two possible acceptors (13 and 14). 

For the energy mode, the threshold value in Example 3 is set to -25 kJ/mol, while the frame range and 

cutoff are the same as the previous examples. 

 

Example 1 Example 2 Example 3 

1 

1 

100 200 

15 

0 

1 

14 15 

2 

13 

14 

0.9 

120 

1 

0 

100 200 

15 

1 

0 1 0 

1 

14 15 

2 

13 

14 

0.9 

120 

2 

1 

100 200 

15 

0 

-25.0 

 

The output files are organized as follows: 

 

cluster_ene.pri or cluster_geo.pri 

 

This is the main output file of the cluster program. It contains all the clusters found frame-by-frame, 

with some valuable information about energy, shape and internal symmetry.  

The output format and meaning is the following: 

 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

frame 100 

100 1 -130.336506  -96.827425 -127.363919  0.000000  4067.112110  3829.274731 282.317075 F  L 0.187076 2 1  361 

100 2 -107.644271 -102.728180 -126.663329 0.000000 24291.858917 19257.277544 10918.135224 F L 0.881904 6 2   13   23  371  373  382 

100 3 0.000000 -122.094045 -127.839255 0.000000 510.299627 413.363036 127.929495 F X 0.000000 1 3 

 

The columns have these meanings: 
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#1: index of the current frame. This value ranges from first_frame to last_frame, as indicated in 

the input. 

#2: progressive index of the cluster. Each frame has a different number of clusters, but the 

ordering index always start from 1. 

#3: cluster internal cohesive energy, normalized by the number of molecules belonging to the 

cluster. This value is the interaction energy between the molecules belonging to the cluster. 

In the first line of the example above, the third column reports the normalized interaction 

energy between molecule no. 1 and 361. To note that for cluster no. 3, this energy is null. This 

is because the third cluster is composed by one isolated molecule. 

#4: cluster-environment cohesive energy, normalized for the number of molecules forming the 

cluster. This is the interaction energy between the molecules belonging to the cluster and all 

the surrounding molecules that belongs to the environment. 

#5: environment cohesive energy, normalized for the number of molecules not belonging to the 

cluster. 

#6: kinetic energy of the cluster. Currently not active. 

#7-9: eigenvalues of the inertia tensor. These values give an idea of the shape and extension of the 

cluster in the three dimensions. If all the three values are similar, the cluster has a spherical-

like shape, while asymmetric values indicate oblate or prolate forms. 

#10: Flag that signals whether the cluster is infinite, that is, whether it connects two opposite 

boundaries of the simulation box. If True, the cluster is repeated indefinitely by periodic 

boundary conditions and has as an infinite number of molecules. If False, the cluster is finite. 

#11: Flag for cluster type. L: linear, C: cyclic, M: mixed linear and cyclic branches, X: not 

applicable. By default, cyclic dimers are considered linear in our program. To be flagged as 

“C”, cluster must be cyclic and contain more than 2 molecules. 

#12: Global asymmetry index G, as proposed by Gavezzotti and Lo Presti (New J. Chem., 2019,43, 

2077-2084). Please refer to this paper for numerical and physical interpretation.  

#13: No. of molecules forming the cluster. 

#14: List of molecule indexes forming the cluster. 

 

histene.pri 

 

This file contains information on the number of molecules that have intermolecular interaction equal or 

below the given values. It gives valuable information on the interaction energy distribution. 

The output format and meaning is the following: 

 

#1 #2 

1.0 58906 

2.0 26616 

3.0 9980 

4.0 5284 

5.0 3351 
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The first column reports the interaction energy bin value, in kJ/mol. Each energy bin takes the reported 

value as the maximum, while the minimum of the range is the energy value of the previous line. As an 

example, the bin 7.0 includes all those molecules that have 6.0 < Eij ≤ 7.0 kJ/mol. The second column 

report the number of molecules that satisfy that requirement.  

 

breaking.pri 

 

This file gives information on the average lifetime of the interactions.  

The output format and meaning is the following: 

 

 

#1 #2 

1 199 

2 84 

3 45 

4 27 

5 22 

 

The first column indicates the molecule-molecule interaction persistence in terms of number of frames. 

The second column reports the number of molecule-molecule interactions that are broken as a function 

of frame persistence. 
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8.15. The Conta module 
 

Conta reads a cluster output file produced by Clusters.f90 (see 8.14) and computes some key quantities 

of the various independent clusters. All individual clusters with the desired size are organized in a table 

and their lifetimes are computed.  

 

Running command: 

 

run.conta name1  

 

“name1” is the name of the main Clusters output (name3_xxx.pri, xxx=geo or xxx=ene, Section 8.14), 

without extension. The program produces three files: name1_timespan.pri lists all the lifetimes of the 

detected independent clusters; name1_dimension.pri lists the corresponding size; and 

name1_ordered.pri produces the full data, organized by independent clusters.  

 
run.denflu module (unix/linux) 
 

rm $1_timespan.out 

rm $1_dimension.out 

rm $1_ordered.out 

cp $1.pri clusters.out 

/programs/MiCMoS/exe/conta 
mv timespan.out $1_timespan.pri 

mv dimension.out $1_dimension.pri 

mv ordered.out $1_ordered.pri 

rm clusters.out 

 

The program prompts the user to give the following information: 

 

nmin, nmax nmin, nmax: minimum and maximum cluster size to analyze. 

Obviously, nmax > nmin is required. nmax = nmin is allowed, though, 

to analyze only a specific cluster size. 

ntol This is the frame tolerance to consider a cluster as “persistent”. A 

cluster persists if and only if is found without compositional changes in 

frames N and N+ntol at least. The lifetime of the cluster is determined 

by counting how many frames host a bound cluster, within the ntol 

tolerance. Thus, if for example ntol = 2, the cluster is considered as 

bound even though it is found in frame N and not in N+1, provided that 

is found again in frame N+2 at least. In other words, an interruption of 

1 frame in its lifetime is ignored. Similarly, ntol = 2 allows to ignore a 

2 frames long interruption to define the cluster as “persistent”, and so 

on. This parameter can be used to get rid of noise, especially when you 

are using a very short timestep and a high sampling frequency in your 

trajectory. However, unless you know exactly what you are doing, it is 

safer to put ntol = 1 in most cases.  

delt Gives the time span of 1 frame, in ps. You can retrieve this quantity by 

checking your timestep in the MD output, and by multiplying it by your 

sampling / writing frequency. For example, if you have time step of 
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0.002 ps (=1 fs) and you write a frame every 500 steps, you should 

specify delt = 0.002 · 500 = 1.0 ps here.  

 

The output files are organized as follows.       

 

dimension.pri 

 
         1      3000        17         2 

         2      3002        17         1 

         3      3003        17         1 

         4      3004        17         1 

 

Here, the first and second columns give the order number of the frame. In this example, the first frame 

analyzed corresponds to the #3000 one in the original trajectory, the second one to #3002, and so on. 

The third column specifies the cluster size that is being analysed (N = 17 molecules in the present case), 

and the last one the number of clusters of that size that are found in the corresponding frame. In this 

example, the first frame contains 2 clusters with 17 molecules, while in the subsequent frames the 

number of clusters with that size reduces to 1. 

 

timespan.pri 

 
Frame,n(cluster),Dimension,molecules:   11    1    4     0.500     0.125     0.125    2   31   82   94    

Frame,n(cluster),Dimension,molecules:   11    2    4   133.500    23.950     7.845  142  160  184  187   

 

This output summarizes the timespan of independent clusters. The first entry is the order number of the 

frame that is being analyzed; the second one is the order number of the cluster in that frame. the third 

column expresses the cluster size, i.e., the number of molecules it contains. The fourth entry is the 

maximum time span of that cluster (in ps). The next two numbers are the corresponding mean timespan, 

with its estimated standard deviation of the mean. Finally, the order number of molecules in each cluster 

are given.  

In this example, the frame #11 contains 2 clusters made of 4 molecules. The first has a maximum lifetime 

of 0.5 ps, and an average lifetime of 0.1(1) ps. The second one is much more persistent, with a maximum 

lifetime of 133.5 ps and an average lifetime of 24(8) ps.   

 

ordered.pri 

  
Frame,n(cluster),Dimension,molecules:    5    3   16    2   21   62   74   85   95   96  123  146  148  158  161  208  260  263  338   

     Frame       N       Euu       Euv       Evv       Ekin       A           B            C          symm      Ray      DEexc     time 

     3000.        2.   -54.363   -65.576   -84.776    61.881  319486.688  298706.344   49379.848     0.958     0.846    11.213     0.000 

     3014.        2.   -54.457   -60.168   -84.661    67.411  316168.312  300312.938   44257.133     0.990     0.883     5.710     0.000 

 

This file is organized in blocks. Each block specifies an independent cluster (first row). The first two 

numbers are the order number of the frame (5 in this case) and the order number of the cluster (3 in this 

case). Thus, here we are looking at the third cluster in the fifth frame. The next entry is the cluster size 

(16 molecules), followed by the molecule ID’s of its building blocks. The next line specifies the energy, 

symmetry and mechanical parameter of the cluster in the first row, as they evolve in those frames where 

it is present. Euu is the molecule-molecule energy within the cluster; Euv the interaction energy with the 

surrounding molecules and Evv the contribution of surrounding molecules only. Ekin is the kinetic 

energy of the cluster, while A, B and C the corresponding eigenvalues of the inertia tensor. Symm is the 

symmetry indicator by Gavezzotti & Lo Presti (New J. Chem., 2019,43, 2077-2084), Ray is the Ray’s 

asymmetry parameter for the rotational dynamics of the cluster (B. S. Ray, “Über die Eigenwerte des 

asymmetrischen Kreisels,” Zeitschrift für Physik, vol. 78, no. 1-2, pp. 74–91, 1932) and ∆𝐸𝑒𝑥𝑐 is the 

cohesion excess energy with respect to the surrounding liquid (Sironi, Macetti, Lo Presti, submitted).  
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Finally, time is the cumulative surviving time of the cluster, whose estimation depends also on the ntol 

and delt parameters described above.  
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A1. The Retcif procedure: atom type recognition and assignment of atom type codes 
 

The Retcif module extracts crystallographic data from a Crystallographic Information File (.cif file). See 

Section 1.1 for operational information. This Appendix explains in detail how the algorithm works. 

 

A1.1 Determination of average bond distances and average bonding radii for various atomic 

species. 

Key to Retcif operation is a recognition of atomic connectivity. Atomic species are recognized from the 

symbol in the .cif file, but then different subspecies are identified. For that purpose, a survey of about 

18000 crystal structures in the CSD has been made to determine average bond distances and ranges 

(Table A1.1), from which atomic bonding radii could be derived. An atom pair is considered bound if 

the distance is below the sum of the bonding radii allowing for some tolerance. 

 

Table A1.1 

Average bond lengths and variability ranges from about 18000 crystal structures in the CSD. These 

parameters are used by Retcif to determine average bonding radii. See Table 1.1 in the main text for 

atomic species code numbers. Car stands for aromatic carbon, a question mark “?” means any atom sub-

species and “–“ denotes  unavailable values due to poor statistics.  

Bond  
Atomic species code 

numbers (Table 1.1) 
Min–Max / Å Average / Å 

–CC– C11–C11 1.11–1.23 1.208 

C–C  
C11–C12 1.39–1.50 1.433 

C–C  
C11–C13 1.39–1.53 1.474 

>C C< C12–C12 1.25–1.45 1.390 

C–C  
C12–C13 1.40–1.60 1.510 

C–C  
C13–C13 1.40–1.64 1.530 

Car–Car C14–C14 1.34–1.50 1.428 

C–Car 
C12–C14 – 1.417 

C–C C11–C11 1.35–1.39 – 

C–C  
C12–C12 1.45–1.54 – 

C–F C?–F41 1.27–1.42 – 

C–Cl C?–Cl42 1.70–1.85 – 

C–Br C?–Br43 1.90–2.00 – 

C–I C?–F44 2.10–2.20 – 

=C–O– C12–O23 1.30–1.45 1.373 

C–O– 
C13–O23 1.32–1.54 1.439 

–O–O– O23–O23 1.45–1.52 1.475 

–C=O C13–O27 1.14–1.30 1.216 

C–O(H) 
C13–O29 1.34–1.48 1.424 

C–O(H) 
C12–O29 1.30–1.40 1.356 

C–N+ 
C13–N16 1.45–1.55 – 

C–NR4 
C13–N17 1.40–1.54 – 

C–N= 
C12–N18 1.22–1.44 – 

C–NO2 
C12–N20 1.40–1.52 – 

–N–O(–) N?–O30 1.18–1.28 – 

–CN C11–N19 1.10–1.18 – 

C–S 
C13–S? 1.70–1.90 – 
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Distances involving H atoms have been retrieved from experimental neutron diffraction estimates (Table 

A1.2). 

 

Table A1.2 

Average bond lengths for hydrogen atoms, as retrieved from neutron diffraction experiments. 

 

Group Chemical specie Average / Å Nº structures 

(R)–O–H  Alcohols 0.970 35 

(CO)–O–H Acids 1.000 7 

(CO)–N–H Amides 1.014 18 

>N–H Amines 1.020 11 

 

Covalent bonding radii estimated from parameters in Table A1.1 and Table A1.2 are shown in Table 

A1.3 and are loaded into the Block Data Alldat.for (double precision) and Alldas.for (single 

precision).  

 

Table A1.3 

Estimated covalent bond radii for specific atomic species in Retcif.  

 

Atom type Atomic species code 

numbers (Table 1.1) 

Covalent  

radius / Å 

H 1–9 0.30 

=C– 10, 12, 14 0.70 

≡C– 11 0.60 
C– 13 0.77 

F 41 0.65 

Cl 42 1.00 

Br 43 1.20 

I 44 1.35 

P 45 1.05 

–O– 23, 24, 28 0.68 

=O 27 0.55 

–O(H) 29 0.68 

N=O 30 0.50 

P=O 32 0.40 

S=O 31 0.40 

S 34, 35, 36, 37 1.05 

(RnH3-n)N+ 16 0.75 

(RnH3-n)N 17 0.75 

>N–N< 17 0.75 

=N– 18 0.65 

N 19 0.55 

(O)2N– 20 0.72 

(CO)N–  

(Amide) 
21 0.70 

 

C–S 
C12–S? – 1.80 
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Retcif assumes that two atoms at distance Rij with covalent radii Ri and Rj, are bonded if ∆=

|𝑅𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗)|  < 0.35.  

 

A1.2 Stage 1: Reading structure 

An input .cif (Crystal Information File) file is read to retrieve the Cambridge Structural Database (CSD) 

refcode (if present), space group symbol and symmetry operations, brute formula, cell parameters, 

number of chemical units, atom type and coordinates for all atoms. The atomic coordinate list is 

rearranged with non-hydrogens first, the connectivity matrix is computed using the covalent radii, 

separate chemical units are recognized and each atom is assigned to one of them. Hydrogen atom 

assignment and renormalization is performed (see below). The final atom count is then compared with 

the retrieved brute formula; if the count is incorrect (some hydrogen coordinates not present) an error 

flag is hoisted. Other error conditions arise from the many inconsistencies that may be present in cif 

files, mostly from valence errors or missing essential information (see below).  

 

A1.3 Stage 2: Scan non-hydrogen atoms 

There are separate procedures for each atom type (see also Figures A1.1–A1.2). 

 

Carbon atoms. Retcif work if original H-atom coordinates are present or missing. In the latter case, the 

number of hydrogens attached to each C-atom is guessed from standard valence considerations. Xray 

H-atom positions are anyway discarded unless the forced retrieval option is adopted. 

 

See Figure A1.1 for the flow diagram followed by the algorithm. Hydrogen atom assignment is 

considered for C≡CH acetylenic, C=CH2 terminal methylene, R-CH2-R saturated methylene, R=CH-R 

unsaturated or aromatic, R3CH methine, R-CH3 methyl, R being any non-hydrogen atom compatible 

with the rules of valence. No action is of course required for quaternary R4C carbons. All C–H distances 

are renormalized to 1.08 Å; then: a) acetylenic H is located along the C-C bond direction; b) terminal 

methylene H's are located assuming a planar configuration at the double bond, all angles 120°; c) 

methylene H's are located in a plane perpendicular to the RCR plane and bisecting the RCR angle, with 

a tetrahedral configuration; d) unsaturated H's are located in the RCR plane on the bisector of the RCR 

angle; e) methine H's are located assuming a C-H direction from the center of coordinates of the three 

basal atoms to the apical atom; f) methyl atoms are located with tetrahedral CCH angles, as close as 

possible to the original set of R'-R-C-H torsion angles, if available from the cif file; otherwise, staggered 

configurations are assumed. 

 

The problem is the blindfold determination of which of the above is the case for each C atom in a 

molecule. If the .cif atom count is correct, the problem is solved by using the .cif connectivity to 

determine the type and number of hydrogen atoms to be assigned to the carbon atom under examination 

(Figure A1.1). Otherwise the approximate valence saturation, V, is calculated on the basis of average C-

R bond distances, the number of hydrogen atoms to be assigned being then 4-V, with appropriate 

roundoff. This last step is obviously not 100% safe, due to valence vagaries, especially when R is 

nitrogen, and to errors or misinterpretations in the original X-ray coordinates.   

 

Nitrogen atoms. See Figure A1.2 for a schematic description of the algorithm. Since various degrees 

of pyramidalization are possible, the ab initio prediction of missing H-atom locations is impossible. 

Structures are accepted only if approximate positions for the H atoms are available in the .cif files, which 

is the case in recent X-ray structure determinations. The .cif connectivity is then used and an error flag 

is set if the atom count does not match (as above). Quaternary nitrogen RnN+H4-n is assigned 4-n H 

atoms. No action is taken for R3N groups (this causes an error if the nitrogen atom is actually quaternary 

and H positions are not in the original .cif file). Nitrogen is H-bond acceptor in R-NH-R or RNH2 groups; 

amide hydrogens are recognized and marked as H-bond donors. No action is taken when the R=N-R 
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connectivity is detected, as distinguished from the R-NH-R connectivity based on the presence of H-

atom coordinates in the original cif file. Sometimes a R-N-R connectivity is detected on the basis of R-

N bond distances, even in absence of H-atom coordinates; in such case, a H atom is assigned on the 

bisector of the RNR angle. This identification is sometimes uncertain. In the two latter configurations, 

nitrogen is considered as a H-bond acceptor and hydrogen as a H-bond donor. One hydrogen is assigned 

for the R=N-H terminal connectivity. Terminal nitrogen atoms are not H-bond acceptors. N-H distances 

are renormalized to 1.00 Å (1.03 Å for quaternary ammonium ions).  

 

Oxygen atoms. The considerations made for nitrogen on the a priori predictability of H-atom positions 

hold also for oxygen; in this case too, only the connectivity retrieved from the original .cif files is used 

for H-atom assignment. No action is taken for the R-O-R connectivity, and oxygen is considered not to 

act as H-bond acceptor (sometimes a questionable choice). Alcohol and acid functions are recognized 

and marked as H-bond donor and acceptor groups. C=O, N=O, S=O and P=O oxygen is always 

considered as H-bond acceptor. COO– (ester) groups are recognized and assigned no hydrogen; except 

for the case of zwitterions (e.g. aminoacids and peptides) the carboxyl group is often a source of error 

because in many carboxylic acid crystals, there is disorder in the H-atom positions and C-O and C=O 

distances are apparently very similar. There is no possible (automatic) solution for this problem, thus 

input and output file must be carefully checked to avoid mistakes. S-OH and P-OH hydrogens are taken 

care of as alcohol hydrogens. All O-H distances are renormalized to 1.00 Ǻ. Oxygen atoms not bound 

to any other atom are considered as water oxygens.  

 

Table A1.4 

Assignment of atomic species code numbers for O atoms, according to Table 1.1 in the main text. A 

stands for “any atom”. 

 

Specie 
Atomic specie code number for 

O 
Notes 

C=O 27 
Ketones, aldehydes, acids, amides, COO– 

groups (keto oxygen). RCO must be < 1.30 Å  

N=O 30 Nitro or nitroso group 

S=O 31 Sulfone or sulfoxide 

A-O-A 23 Ether 

A-O-H 29 Alcohol 

H-O-H 24 Water 

(O=C)–O–A 28 Acids and esters, single–bonded oxygen 

 

Other atomic species. S-H thiol hydrogens are assigned as for O-H hydrogens preserving RSH angles 

and with S-H = 1.30 Å. No provision is made for hydrogen atoms attached to atoms other than C, O, N 

and SH, and an error message is generated when this happens, as well as in cases with erroneous, 

improper, or just unusual bonding situations. 

 

Stage 3: Final checks. These mainly concern large databases retrieved from the Cambridge Structural 

Database, and seldom to single .cif files prepared by the user. In Stage 3, the total atom count after the 

H-atom assignment procedures is matched with the brute formula retrieved from the .cif, generating 

error flags when appropriate (see Section 1.1). In spite of this and all other sieves, the whole procedure 

is not absolutely safe, because of many combinations of casual errors and of their accidental 

cancellation. When retrieving from the CSD, a "statistical noise" of the order of 1-3% of wrong 

structures passes the checks and is introduced in the retrieved samples.  
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CAUTION: Errors at this stage mainly concern items retrieved from the Cambridge Structural 

Database, and seldom to single .cif files prepared by the user, in which case a good practice is to prepare 

directly a .oih file with hydrogen atom codes as necessary, skipping the Retcif stages.   
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Figure A1.1. Flow diagram for the assignment of atom types: Carbon atoms. Id numbers indicated in 

the Figure correspond to atomic species code numbers in Table 1.1 (main text). “C14 test” stands for 

the check against aromatic C atoms not bearing hydrogens: it is passed if the C atom bears 3 bonds, has 

neither H nor O attached atoms and does not belong to a nitrile group. 

 
 

 

 



184 

 

Figure A.1.2. Flow diagram for the assignment of nitrogen of atom types. Symbols have the same 

meaning as in Figure A1.1. 
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The Retcif procedure produces an intermediate file, with extension .oih, generated with only the un-

flagged crystals structures, unless an explicit override command is given, in which case the structural 

information is anyway written on file, ready for perusal and manual correction. A total override option 

is also available (Section 1.1), in which atomic labels (e.g., hydrogen bond acceptor or not, etc.) are 

issued, but the original H-atom coordinates are written on the .oih file without any attempt at hydrogen 

reassignment or normalization. This option is useful for neutron crystal structures. Deuterium is treated 

as hydrogen. 

 

The .oih file contains all independent coordinates for non-hydrogen atoms, always including entire 

molecules if Z'<1 (Section 1.4.3). Hydrogen atom positions are represented in the form of sets of 

numerical codes that specify the connectivity and the desired bond lengths, bond angles, etc. These 

codes can be changed by the user by manually editing the files. In addition, the .oih format allows the 

introduction atoms other than hydrogens in desired position upon intevention by the user. A subsequent 

routine (Retcor module, Section 1.2 in the main text and A2 in the Appendix) reads the .oih files and 

generates the extension .oeh files in which full H-atom x, y, z coordinates are stored. oeh-type files 

branch into all modules of the CLP package for crystal structure analysis, atom-atom lattice energies, 

crystal structure generation, and for the PIXEL calculations modules. 

 

A2. The Retcor module  
Refer to the main text (Section 1.2) for a general description of how to operate this module. The 

following diagrams show the geometrical procedures employed to generate new atoms from the 

coordinates of atoms present. These procedures allow the preparation of a molecular model from a 

minimum of 3 atoms whose coordinates are specified. The program generates coordinates sequentially, 

so that care must be taken to build new atoms only when the coordinates of atoms from which they 

depend have already been generated. 

 

In crystal structure analysis and lattice energy calculations, these procedures are used exclusively to 

generate standard coordinates for hydrogen atoms whose X-ray positions are unreliable. 

 

In the .oih file produced by Retcif, 6 integer codes must be specified, called placement code lines (n1, 

n2, n3, n4, n5, n6: see Section 1.4.3, NHYD indicator, lines id 7–8 and following). They specify how new 

atoms are constructed from the available coordinates. Some integers in the sequence n1, n2, n3, n4, n5, n6 

must be sequential atom id numbers, while others may be path indicators. The main options have been 

already presented in Figure 1.2; the full list of available options, together with detailed a description of 

the various algorithms, is shown in Table A2.1. 

 

Some geometrical parameters must be also specified just after the placement code, that is, MLC, ISPEN, 

QRG, R, TORS, ALPH (Section 1.4.3, lines id 8ff). MLC is the number of the chemical fragment to 

which the new atom belongs; ISPEN the corresponding atomic species indicator (Table 1.1); QRG the 

estimated atom point charge (zero if further calculation by Retcha, Section 1.3, is required); and R, 

TORS and ALPH are distance and angle parameters that define the new group (Figure 1.2 and Table 

A2.1). Table A2.1 specifies, for each case, what entries in the placement code are nonzero and what 

geometrical parameters in the R, TORS and ALPH sequence must be specified accordingly. 
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Table A2.1 

Options for molecular reconstruction in Retcor. Sets of six integers n1-n6, needed values of 

conformation parameters (distance, angle, torsion).  

 

  

Operation 
Placement  

code sequence 

R, TORS, 

ALPH 
Construction procedure; boldface entries denote vectors 

Reset distance I1 0 0 I4 0 0 R 0 0  

Reset I1–I4 vector length by moving I1 according to: 

𝐈𝟏 = 𝐈𝟒 +
𝑅

𝑅𝑜𝑙𝑑
|𝐈𝟏 − 𝐈𝟒| 

Build  

an acetylene–

like terminal 

atom 

I1 0 0 I4 I5 0 R 0 0 

A new atom I1 is added according to: 

 
The new coordinates are: 

𝐈𝟏 = 𝐈𝟒 + (𝐈𝟒 − 𝐈𝟓)
|𝐈𝟏 − 𝐈𝟓|

|𝐈𝟒 − 𝐈𝟓|
 

Build  

a “methine” 

group 

I1 0 I3 I4 I5 I6 R 0 0  

A new atom I1 is created at distance R 

above the I3 apex. P is the centre of 

coordinates of the basal triangle I4-I5-I6. 

 

Build  

a trigonal atom 
I1 0 0 I4 I5 I6 R 0 0 

For simplicity, be A the point of coordinates of the atom I5, 

B of I4, C of I6 and D of I1. A new atom I1 is placed at 

distance R from I4 along the ABC bisector. Note that, if BA 

and BC have different lengths, angles DBA and DBC are 

different as well. 

 

sin(𝛾 2⁄ ) = √
1 − cos 𝛾

2
; 

𝑇 =  
sin 𝛽

sin𝛼
 

 

The point P where the ABC 

bisector cuts AC is looked for. 

 

𝐴𝐵 =
𝐵𝑃

sin𝛽
=

𝑃𝐴

sin(𝛾 2⁄ )
;  𝐵𝑃 sin(𝛾 2⁄ ) = 𝑃𝐴 sin𝛽 

𝐵𝐶 =
𝐴𝐶 − 𝑃𝐴

sin(𝛾 2⁄ )
=
𝐵𝑃

sin𝛼
; (𝐴𝐶 − 𝑃𝐴)sin𝛼 = 𝐵𝑃 sin(𝛾 2⁄ ) 

𝑃𝐴 =
𝐶𝐴

𝑇 + 1
;𝐏𝐀 = 𝐂𝐀

𝑃𝐴

𝐶𝐴
 

𝐏 = 𝐀 + 𝐏𝐀 

𝐃 = 𝐏 + 𝐁𝐏
𝐷𝑃

𝐵𝑃
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Operation 
Placement  

code sequence 

R, TORS, 

ALPH 
Construction procedure; boldface entries denote vectors 

Build  

a “methylene” 

group 

I1 I2 0 I4 I5 I6 R 0 ALPH 

If the ALPH parameter is set to 0, a default value of 108.0 

deg is used. Be A the coordinates of the atom I5, B of I4, C 

of I6, D of I1 and E of I2. Two new atoms I1 and I2 are 

defined at the same distance R from I4, with I1–I4–I2 angle 

equal to  = ALPH deg. 

 

𝐵𝐹 = 𝑅 cos
𝛼

2
 

𝐷𝐹 = 𝑅 sin
𝛼

2
 

 

A point F is defined from points A, B 

and C with the same procedure used 

for the trigonal case. The vector BF thus lies on the bisector 

of the ABC angle. A vector Pv is computed, orthogonal to 

the ABC plane: 

𝐏𝐯 = (𝐁 − 𝐀)⋀(𝐁 − 𝐂) = det ‖
𝐢 𝐣 𝐤
𝑥𝐵𝐴 𝑦𝐵𝐴 𝑧𝐵𝐴
𝑥𝐵𝐶 𝑦𝐵𝐶 𝑧𝐵𝐶

‖ 

With module 𝑃𝑣 = √𝑃𝑣𝑥
2 + 𝑃𝑣𝑦

2 + 𝑃𝑣𝑧
2 . Pv then defines the 

vector DF, which is orthogonal to the ABC plane and has the 

desired length DF, according to 𝐃𝐅 =
𝐏𝐯

𝑃𝑣
𝐷𝐹. Finally 

𝐃 = 𝐅 + 𝐃𝐅 

𝐄 = 𝐅 − 𝐃𝐅 

Build a generic 

group with “Z–

matrix” specs 

I1 –1 0 I4 I5 I6 
R, TORS, 

ALPH 

Be A the coordinates of the atom I6, B of I5, C of I4 and D 

of I1. A new atom I1 is generated at distance R  from I4 and 

configurational parameters TORS ( deg) and ALPH ( 

deg).  

 
1) Origin is set at B. Being C known, the coordinates xC and 

yC of its projection in the XY plane are also known. A 

clockwise rotation on Z by  deg is carried out, so that yC’ = 

0. 

  
(continue in the next page) 
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Operation 
Placement  

code sequence 

R, TORS, 

ALPH 
Construction procedure; boldface entries denote vectors 

Build a generic 

group with “Z–

matrix” specs 

I1 –1 0 I4 I5 I6 
R, TORS, 

ALPH 

(from previous page) 

 

2) The reference system is now rotated counterclockwise by  

deg around the axis Y’, so that the direction of BC coincides 

with that of the new axis X’’, as shown in the next graph. Be 

now ’ the angle made by the AB vector with respect the Y’ 

axis. 

 
3) A clockwise rotation by ’ deg is applied around X’’, so 

that the point A is now orthogonal to the Z axis. At the end of 

this transform, A, B and C lie on the same XY plane. The 

fourth atom D is now added in the XY plane, at a distance R 

from C and making a  = ALPH deg large BCD angle. 

 
4) Finally, D is rotated clockwise around X’’ (i.e. around the 

BC axis) by  = TORS deg. 

 
5) Now the reference system is back–rotated to the original 

one. Being R1(), R2() and R3(’) are the matrices of 

rotations used to carry out the individual transforms, the 

overall rotation for steps 1→ 3  can be expressed as: 

 

𝐑𝐭𝐨𝐭 = 𝐑𝟏 ∙ 𝐑𝟐 ∙ 𝐑𝟑 

 

And the inverse transform, 𝐑𝐭𝐨𝐭
−𝟏 , can be applied to the atomic 

coordinates to restore the original axes. 

 

6) The origin is back–translated to the original laboratory 

reference frame. 
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A3. Algebra for the generation of crystal coordinates, orthogonalization, inertial reference 

frame  
 

Three main reference systems are used in MiCMoS: (i) a crystallographic reference frame; (ii) a 

crystallophysical (Cartesian orthogonal) reference frame; (iii) an internal inertial reference frame.  

 

(i) The crystallographic frame has atomic fractional coordinates (xFC). This reference system 

is useful to apply symmetry transformations and lattice translations, i.e., to build the whole 

simulation box but is impractical for computing distances, angles and forces  

 

(ii) A Cartesian orthogonal reference system, with coordinates in Å units, is sometimes referred 

to as a “crystallophysical” system. An orthogonalization matrix O transforms  coordinates 

between (i) and (ii): 

 

𝐱OC = 𝐎 ∙ 𝐱FC 

𝐱FC = 𝐎
−1 ∙ 𝐱OC 

 

𝐎 =

[
 
 
 
 
 
(𝑎) (𝑏 cos 𝛾) (𝑐 cos𝛽)

0 (𝑏 sin 𝛾) (𝑐
cos𝛼 − cos𝛽 cos 𝛾

sin 𝛾
)

0 0 (
𝑐𝑓

𝑉

sin 𝛾
)

]
 
 
 
 
 

 

 
𝑓𝑉 = (1 − cos2𝛼 − cos2𝛽 − cos2𝛾 + 2 cos 𝛼 cos 𝛽 cos 𝛾)1/2 

 

𝐎−1 =

[
 
 
 
 
 
 (
1

𝑎
) (−

cos 𝛾

𝑎 sin 𝛾
) (

cos 𝛾 (cos𝛼 − cos𝛽 cos 𝛾)

𝑎𝑓𝑉sin 𝛾
−
cos𝛽 sin 𝛾

𝑎𝑓𝑉
)

0 (
1

𝑏 sin 𝛾
) (−

cos𝛼 − cos𝛽 cos 𝛾

𝑏𝑓𝑉 sin 𝛾
)

0 0 (
sin 𝛾

𝑐𝑓𝑉
)

]
 
 
 
 
 
 

 

 

Let now Ss, ts be a matrix-vector pair representing a symmetry operation within the crystal space group. 

Calling xFC,1 the vector of coordinates of the reference molecule “1”, the coordinates of any other 

molecule s in the crystallographic (xFC,s) and crystallophysical (xOC,s) reference frames can be obtained 

through the following transforms: 

 

𝐱FC,𝑠 = 𝐒𝑠𝐱FC,1 + 𝐭𝑠 

𝐱OC,𝑠 = 𝐎 ∙ 𝐱𝐅𝐂,𝑠 = 𝐎 ∙ [𝐒𝑠𝐱FC,1 + 𝐭𝑠] = (𝐎 ∙ 𝐒𝑠) ∙ 𝐱𝐅𝐂,𝟏 + (𝐎 ∙ 𝐭𝑠) 
 

Cartesian coordinates 𝐱OC,𝑠 are used throughout the whole package for all calculations involving 

distances between atoms k and m in molecules i and j, the modules of the corresponding difference 

vectors : 

𝑅𝑘,𝑚
𝑖,𝑗

= |𝐱OC,𝑖
𝑘 − 𝐱OC,𝑗

𝑚 | 
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(iii) Local (molecular) reference frames are useful for example whenever differently oriented 

molecules must be compared. When the local reference frames has origin at the molecular 

centre of mass, orthogonal X, Y, Z axes are rotated to lie along to the three principal moments 

of inertia, that is, the eigenvectors of the inertial matrix. The local reference frame may 

instead have its origin in the center of coordinates without any axis rotation. 

 

To find the inertial xIC coordinates, the following procedure is applied. 

 

(1) Being wk the atomic weight (in atomic units) of the kth atom in molecule i, molecular centre of mass 

coordinates xB are: 

 

𝑥𝐵 =
∑ 𝑤𝑘𝑥𝑘𝑘

∑ 𝑤𝑘𝑘

𝑦𝐵 =
∑ 𝑤𝑘𝑦𝑘𝑘

∑ 𝑤𝑘𝑘

𝑧𝐵 =
∑ 𝑤𝑘𝑧𝑘𝑘

∑ 𝑤𝑘𝑘 }
  
 

  
 

 

 

With xk, yk and zk being the crystallophysical Cartesian coordinates of atom k. The center of coordinates 

is obtained by the same expression with wk's=1.  

 

(2) Atomic coordinates of every atom k are now referred to the centre of mass: 

 

𝐱OC,𝐵
𝑘 = 𝐱OC

𝑘 − 𝐱𝐵 

 

(3) The symmetric inertial matrix I is computed using orthogonal coordinates with origin in xB: 

 

𝐈 =

[
 
 
 
 
 
 ∑(𝑤𝑘𝑦𝑘

2 + 𝑤𝑘𝑧𝑘
2)

𝑘

−∑𝑤𝑘𝑥𝑘𝑦𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑦𝑘
𝑘

∑(𝑤𝑘𝑥𝑘
2 + 𝑤𝑘𝑧𝑘

2)

𝑘

−∑𝑤𝑘𝑦𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑥𝑘𝑧𝑘
𝑘

−∑𝑤𝑘𝑦𝑘𝑧𝑘
𝑘

∑(𝑤𝑘𝑥𝑘
2 + 𝑤𝑘𝑦𝑘

2)

𝑘 ]
 
 
 
 
 
 

 

 

Diagonalization of I gives the main moments of inertia (eigenvalues) and three inertial eigenvectors. 

These are stored as column vectors into a matrix W to rotate all the orthogonal atomic coordinates 𝐱OC,𝐵
𝑘  

into the inertial frame: 

𝐱IC
𝑘 = 𝐖 ∙ 𝐱OC,𝐵

𝑘  

 

The matrix W is unitary, that is 𝐖−1 = 𝐖̃. Its eigenvalues are the same for any symmetry 

transformation on the 𝐱IC
𝑘  coordinates. 
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A4. Coordinate systems and transformation matrices in PIXEL 
 

This procedure produces the translation–related replicas of molecules in the unit cell to evaluate the 

lattice energy by the PIXEL method (See also Section 3.2 in the main text). The M1, M2 matrices and 

t1, t2 vectors must be specified in the PIXEL input file (Section 3.2.7) to transform coordinates from the 

standard orientation of GAUSSIAN into the PIXEL reference frame. If the option Nosym is employed 

in the GAUSSIAN input (recommended), the molecular coordinate system is not re–oriented and M1 = 

unit matrix, t1 = [0 0 0] (otherwise, they must be found by inspection of the atomic coordinates by a 

difficult manual inspection, seldom if ever necessary). M2/t2 transform the molecular reference system 

into the actual PIXEL reference. M2, t2 are automatically computed by Pixmt2 (see also Section 3.2.5). 

 

Let xLG be the collection of the atomic coordinates in the standard reference frame (GAUSSIAN), and 

xLO the same in any other user-defined reference, e.g. the inertial reference frame, with origin at the 

molecular center of mass.  Let x°FC be the fractional coordinates of the reference molecule (unit cell 

reference system), and x°OC the corresponding orthogonalized coordinates: 

 
𝐱LO = 𝐌1𝐱LG + 𝐭1
𝐱OC
0 = 𝐌2𝐱LO + 𝐭2
𝐱OC
0 = 𝐎 ∙ 𝐱FC

0

𝐱FC
0 = 𝐎−𝟏 ∙ 𝐱OC

0
}
 
 

 
 

 

 

where O is an orthogonalization matrix (Appendix, Section A3). The M2, t2 pair are calculated by 

module Pixmt2 and are automatically inserted into the PIXEL input file.   

 

Let now Ss, ts be a matrix-vector pair representing a given symmetry operation within the crystal space 

group. Then:  

 

𝐱FC
s = 𝐒𝑠 ∙ 𝐱FC

0 + 𝐭𝑠
𝐱OC
s = 𝐎 ∙ 𝐱FC

𝑠 } 

 

The final goal is an expression for the orthogonal coordinates for the s-th molecule in the molecular 

cluster that represents the crystal, xs
OC , in terms of the coordinates in the standard molecular reference 

system, xLG. This transformation can be carried out as follows: 

 

𝐱OC
𝑠 = 𝛀𝑠 ∙ 𝐱LG +𝛚

𝑠 

 

where a little algebra shows that the s matrix can be computed as: 

 

𝛀𝑠 = 𝐎 ∙ 𝐒𝑠 ∙ 𝐎
−𝟏 ∙ 𝐌𝟐 ∙ 𝐌𝟏 

and the s vector: 

 

𝛚𝑠 = (𝐎 ∙ 𝐒𝑠 ∙ 𝐎
−𝟏) ∙ (𝐌𝟐 ∙ 𝐭𝟏 + 𝐭𝟐) + 𝐎 ∙ 𝐭𝑠 

 

In practice, a number of molecules surrounding the reference one in the crystal are generated by adding 

integer cell translations to the components of the ts vectors. Both atomic coordinates and coordinates of 

the e-pixels are transformed accordingly. This method allows the packing of any molecular object 

specified by xLG coordinates, with location and orientation in the unit cell specified by vector t2 and 
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matrix M2, respectively, into a crystal specified by cell dimensions (matrix O) and space group (Ss, ts 

pairs).  

 

As an added bonus, if matrix M2 is interpreted as a rotation matrix, the orientation angles for the 

molecule in the crystal with respect to the local reference frame can be derived (see Section A6). These 

could then be used as parameters in the rigid-body lattice energy minimization.  

 

A5. Structure of the .den density file 
 

This is the GAUSSIAN “cube” format; each entry a record. 

 

• Title  

• natom, xmin, ymin, zmin       number of atoms and min values of the coordinates of the 

density cube 

• nx, dxx, dxy, dxz               number of points along x, components of the x step vector 

• ny, dyx, dyy, dyz               same, for y 

• nz, dzx, dzy, dzz               same, for z 

• For each atom: Z, q, x, y, z    atomic number, number of electrons, x, y, z coordinates 

 

All the above lines are written in format: i5,4f12 

 

Then, nx times ny lines, each nz long: (den(k),k=1,nz) density points, format 6e13.6. Only the dxx, dyy, dzz 

terms have meaning. Each pixel point in the density grid has coordinates of xmin+n·dxx, ymin+m·dyy, 

zmin+p·dzz, with n, m and p integers. All quantities are in atomic units and the unit length is 1 bohr.  

 

A6. Definition of Euler angles , ,  in rotation matrix E (Boxcry module) 
 

Boxcry produces a .bxi file format (Section 5.1.1) that specifies, for each molecule in the simulation 

box, three Euler rotation angles , ,  . The overall rotation is the product of three rotations; for clarity, 

c, c, c are abbreviated forms for cos, cos, cos, and s, s, s the corresponding forms for sin, 

sin, sin.  

 

𝐄 = [
c𝜒 −s𝜒 0
s𝜒 c𝜒 0
0 0 1

] ∙ [
c𝜑 0 s𝜑
0 1 0
−s𝜑 0 c𝜑

] ∙ [
1 0 0
0 c𝜗 −s𝜗
0 s𝜗 c𝜗

] = [
c𝜒 −s𝜒 0
s𝜒 c𝜒 0
0 0 1

] ∙ [
c𝜑 s𝜗s𝜑 c𝜗s𝜑
0 c𝜗 −s𝜗
−s𝜑 s𝜗c𝜑 c𝜗c𝜑

]  

 

               = [

c𝜑c𝜒 s𝜗s𝜑c𝜒 − c𝜗s𝜒 c𝜗s𝜑c𝜒 + s𝜗s𝜒
c𝜑s𝜒 s𝜗s𝜑s𝜒 + c𝜗c𝜒 c𝜗s𝜑s𝜒 − s𝜗c𝜒
−s𝜑 s𝜗c𝜑 c𝜗c𝜑

]  

 

Note that these matrix products are not commutative: this means that a different sequence of rotations 

produces a different E matrix. 

 

In module Boxcry, the inertial matrix I of each symmetry–related molecule is treated as an Euler rotation 

matrix that transform the global reference system into the local (inertial) one (see Appendix, Section 

A3). Thus, the three Euler angles , ,  to be written in the .bxi file are : 
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𝜗 = atan2[𝐄(3,2), 𝐄(3,3)]

𝜑 = atan2 [−𝐄(3,1),√𝐄(1,1)2 + 𝐄(2,1)2]

𝜒 = atan2[𝐄(2,1), 𝐄(1,1)]

} 

 

Where atan2 is a modified tan–1 function so that atan2(x, y) = tan–1(y/x) if x >0. If x is negative, the 

function gives tan–1(y/x)+ if y is positive, or tan–1(y/x)– if y is negative. In other words, the sign of 

both the arguments are used to determine the quadrant of the output. Singularities arise whenever x=0 

and y=0, for which the function atan2 is undefined. This happens for molecules or atoms in special 

positions. To cope with this problem, you should lower the symmetry of your space group and supply 

to the MiCMoS system a corresponding .cif. To do so, the Bilbao Crystallographic Server is definitely 

your friend (https://www.cryst.ehu.es/).  

 

A7. The Pretop routine 
 

In MC/MD calculations stretching and bending potentials are defined by harmonic functions, R and  

being distances and angles and R0/0 the corresponding reference values: 

 

𝐸(𝑠𝑡𝑟𝑒𝑡𝑐ℎ) = 𝐸𝑠 =
1

2
𝑘𝑠(𝑅 − 𝑅

0)2 

𝐸(𝑏𝑒𝑛𝑑) = 𝐸𝑏 =
1

2
𝑘𝑏(cos𝜃 − cos𝜃0)2 

 

Program Pretop reads a .oeh file and generates a template topology file with all possible stretch and 

bend potential sites. Reference distances and angles are taken as they are in the geometry supplied by 

the .top file coordinates, so they are not always strain-free values. Stretching (ks) and bending (kb) force 

constants are estimated by a combination of data derived from high-quality ab initio stretch and bend 

energy profiles on sample molecules, and of fitting against 54A7 GROMOS force field parameters (see 

Gavezzotti, A. & Lo Presti, L. J. Appl. Cryst. 2019, 52, 1253–1263). To add flexibility, overall rescaling 

factors are read in by the module at running time and are applied to all constants. Preliminary experience 

shows that values of 1.2 to 1.5 are appropriate as the force constants seem a bit underestimated.  

 

The above assumptions derive from the fact that in MiCMoS the purpose of stretch and bend potentials 

is to keep molecules undistorted, rather than to describe precisely thermal vibrations. The whole package 

is oriented to low-frequency intermolecular libration and diffusion, while high-frequency vibrations 

much less if at all relevant. This minimal loss of physical reality affects only marginally the accuracy of 

the simulation and is counterbalanced by the avoidance of complex algorithms to prevent molecular 

distortions.  

 

  

https://www.cryst.ehu.es/
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A7.1 Stretching potentials 

 

Table A7.1 

Bond stretching force constants from ab initio MP2/6–31G** calculations, consistent with energies 

expressed in kJ/mol and distances in Å.  

 

Bond Rexpt R°calc  kstr system for R° and k calculation 

-C≡C- 1.183 1.223 9620 but-1-yne 

>C=C<       1.346-1.360 1.353 5600 butadiene 

≡C - C≡  1.378 1.383 4540 buta-1,3-diyne 

Car---Car 1.382 1.397 4640 benzene 

Csp2 - Csp2  1.439 1.457-1.463 3400 butadiene 

 ≡C - Csp3  1.467 1.472 3340 but-1-yne 

Csp2 -Csp3  1.503 1.513-1.515 3120 toluenes 

Csp3 - Csp3  1.523 1.517-1.536 2800 butane 

Csp3- H 1.085 1.093 3630 ethane 

Csp2 - H 1.077 1.087 3630 benzene 

C≡N 1.139 1.180 11500 acetonitrile 

Csp3 - N<  1.461 1.460 3540 trimethylamine 

Csp2 - O 1.369 1.381 4320 methoxybenzene 

Csp3 - O 1.435 1.432 3630 dimethylether 

C=O 1.214 1.227 8200 acetone 

Csp2 - F 1.346 1.358 4200 fluorobenzene 

Csp3 - F 1.367 1.397 3950 fluoroethane 

Csp2 - Cl 1.735 1.742 2580 chlorobenzene 

Csp3 - Cl 1.771 1.784 2410 chloroethane 

Csp2 - Br 1.892 -    

Csp2 - I  2.095 -    

N = O nitro 1.218 -    

N-H -  1.018 5300 urea 

O-H -  0.987 4250 acetic acid 

 

For a generic molecule with generic bond distances, the actual force constants adopted in Pretop come 

from a fitting of distance/force constant plots from the above data; for example, a generic carbon-carbon 

bond stretching force constant comes from interpolation of the k vs. distance plot for all the C···C types 

in the above Table.  

 

Table A7.2 

Other averaged or guessed k/R values used to define stretching potentials. A question mark means 

uncertain or unknown entries.  

 

Bond R° / Å ks 

C-F 1.38 4000 

C-Cl 1.75 2500 

C-Br 1.89 ?2000 

C-I 2.10 ?1500 
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For bonds not in the above list, R° distance is taken from coordinates in .oeh file and ks is set to zero.  

 

A7.2 Bending potentials 

 

Table A7.3 

Bending force constants from ab initio MP2/6–31G** calculations, for energies expressed in kJ/mol and 

angles in deg. 

 

Angle ° kb, kJ mol-1 sample system 

C-C-C 112.4 880 propane, bend of CCC and CCH angles in the CH2 group  

C=C-C 124.5 1030 propene, bend of CCC and CCH angles 

C-O-C 112.4 972 dimethyl ether 

C-C=O 123 894 acetone simultaneous bending of two angles 

(O)=C-O-H 104 475 -COOH (acid) 

(O)=C-N-H 120 940 -CONH2 (amide, bend of 2 CNH) 

(Ar)C-O-H 107 550 alcohol (phenol) 

CCH 120 890 benzene simultaneous bending 

HCH 106.5 530 propane, scissor mode at the methylene group 

CCH 110 680 Methyl 

CCH 110 980 Methylene 

 

As mentioned before, ° the bond angles come from the supplied atomic coordinates. kb of CCC, XCH 

(X=C, N, O, S, Cl), CNO, CxN3–x and CxO3–x, are assigned through the appropriate, if approximate,  

fitting of ab initio data and 54A7 force field values. Table A8.5 has some averaged values.  

 

Table A7.4 

Averaged bending potential constants. 

 

Bond ° / deg kb 

HCH 108.0 470 

COH 110.0 450 

HNH 120.0 445 

CNH 115.0 460 
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A7.3 Torsional potentials 

 

In MC/MD calculations, torsional potentials are defined as (𝐸(𝑡𝑜𝑟𝑠) = 𝑘𝑡𝑜𝑟𝑠[1 + 𝑓 cos𝑚𝜑], see 

Sections 6.4.1 and 7.4.1 in the main text). f is normally equal to  +1 or –1, and m ranges between 1 and 

3. In Pretop, starting values for the torsion angles are obtained directly from the coordinates in the 

topology file with the procedure described in Appendix, Section A8, and the local geometry is exploited 

to determine tentative values for f and m.  

 

 
Figure A7.1. (a) Functional form of E(tors) for ktors = 10, f = +1 and m=+1 (light blue), +2 (red) and +3 

(green). (b) Same as (a), for ktors = 10 and f = –1.  

 

Proper torsions: Let Na and Nb be the numbers of bonds out of bound atoms a and b. One torsion is 

assigned to any bond joining two atoms with Na, Nb > 1. The corresponding assigned parameters  must 

be checked and reset with actual values, many of which are given in Table A7.5, which summarizes the 

complete maps of torsional potential energies from post–HF quantum chemistry calculations.   

 

Improper torsions: The routine assigns one improper torsion to any trigonal center with ktors=100, f=–

1.0 and m=+1.  
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Table A7.5 

Recommended values for parameters ktors, f and m for MC/MD torsional potentials. “System” shows the 

chemical connectivity; atoms highlighted in red define the torsion. “Potential” shows the MP2/6-31G** 

results for single–point calculations of the total electronic energy as a function of the torsion angle, . 

“ktors, f and m”. ktors is equal to ½ of the barrier height. 

 

System Potential ktors f m 

 

 

7.5 1 3 

 
 

2.5 1 3 

 

 

4 –1 3 

 

0.5 –1 3 
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System Potential ktors f m 

 

Not available 2 –1 2 

 

 

7.5 1 3 

 

 

6 1 3 

 

50 1 1 

 

 

6 1 2 

 

50 –1 2 

 

10 –1 2 
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System Potential ktors f m 

 

 

10 –1 2 

 

10 1 4 

  

40 1 1 

 

 

10 –1 1 

 

 

2 –1 2 

 

10 1 4 
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System Potential ktors f m 

 

 

60 –1 2 

 

 

10 –1 2 

 

1 –1 2 

 

 

14 –1 2 

 

6 –1 2 

 

16 –1 2 

 

 

11 –1 2 
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System Potential ktors f m 

 

 

35 –1 2 

 

 

2 1 3 

 

7 –1 2 

 

2 –1 2 

 

 

50 –1 2 

 

 

17 –1 2 
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A8. Procedure to determine torsion angles according to standard conventions.  
 

This procedure is exploited by Monte Carlo and Molecular Dynamics modules to compute torsion angles 

in the range –180     +180 deg, to determine the intramolecular part of the potential (see Sections 5 

and 6 in the main text). Given a 1–4 sequence of i, j, k and l bonded atoms (Figure A8.1a), the algorithm 

sets a local right–handed Cartesian reference frame, with origin on atom j (Figure A8.1b). Then, the 

whole atom sequence is rotated so that the j–k vector is aligned to the x axis, and the first atom i has z 

= 0. This way, the first three atoms now lie on the same (x,y) plane. This is always possible, as three 

atoms define a unique plane. To ensure the right handedness of the reference system, z must point 

upwards (Figure A8.1c).  

 
Figure A8.1. Procedure for the determination of torsion angles In MC and MD according to 

convention.  > 0 if looking from 1 down 2-3 atom 4 turns right.  

 

Finally, A, B, C and D reference point (Figure A8.1d) are defined on the basis of the atomic coordinates 

in the local reference frame according to: 

 

A = [0, y1, 0]; B = [0, 0, 0]; C = [x3, y4, z4]; D = [x3, 0, 0] 

 

The following difference vectors and vector modules are thus computed: 

 

𝐀 − 𝐁 = [0, 𝑦1, 0]; |𝐀 − 𝐁| = |𝑦1| 

𝐂 − 𝐃 = [0, 𝑦4, 𝑧4]; |𝐂 − 𝐃| = √(𝑦4
2 + 𝑧4

2) 

 

The scalar product between vectors A–B and C–D provides the angle between them, : 

 

cos 𝜏 =
(𝐀 − 𝐁) ∙ (𝐂 − 𝐃)

|𝐀 − 𝐁| ∙ |𝐂 − 𝐃|
=

𝑦1 ∙ 𝑦4

𝑦1 ∙ √(𝑦4
2 + 𝑧4

2)
=

𝑦4

√(𝑦4
2 + 𝑧4

2)
 

 

𝜏 = cos−1 (
𝑦4

√(𝑦4
2 + 𝑧4

2)
) 

 

By the normally adopted convention looking from atom i down the j–k bond  is positive if l turns to 

the right. The sign of  is the same as that of the z4 coordinate.  

 


