Algebra 4 – May 22th – More localization

More localization

The localization is an exact functor.

We have S^{-1}A\otimes_A M\cong S^{-1}M as A-modules and S^{-1}A-modules.

Local properties: an A-module M is zero if and only if its localizations at prime ideals are, if and only if the localizations at the maximal ideals are.

In S^{-1}A all ideals are extension of ideals of A. An ideal I of A extends to the whole ring if and only if it meets S.  Prime ideals of the localization are in 1-1 correspondence to prime ideals of A which do not meet S. The nilradical of the localization is the localization of the nilradical.

References: Atiyah-Macdonald chap 3.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Time limit is exhausted. Please reload CAPTCHA.