Algebra 4 – June 12th – Tensor algebras

Tensor algebras

Definition of the tensor algebra T(M) of an R-module M. Definition of the symmetric (and antisymmetric) algebra S(M) (and \Lambda(M)).

If M is a cyclic module, then T(M)=S(M).

Let R=k[x,y] and I=(x,y). Show that \Lambda^2 R=0 and \Lambda^2 I\not=0. Show that \Lambda^2 is not an exact functor. (Hint: The only non-trivial thing is the map f:I\times I \to R/I defined by f(ax+by,cx+dy)=ad-bc.)

References: Dummit and Foote “Abstract Algebra”

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Time limit is exhausted. Please reload CAPTCHA.