SEMINARIO DI GEOMETRIA ALGEBRICA
Nell’ambito del seminario congiunto di geometria algebrica organizzato dai Dipartimenti di Matematica dell’Università e del Politecnico di Milano,
Giovedì 24 Marzo 2011
presso la Sala di Rappresentanza del Dipartimento di Matematica dell’Università di Milano si terranno i seguenti seminari:
ore 14:00, dott. Antonio Rapagnetta (Università di Roma “Tor Vergata”)
The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface.
Abstract: I will focus on the moduli spaces of sheaves on a projective K3 (or abelian) surface admitting a symplectic desingularization. I will show that these moduli spaces belong to a unique deformation equivalence class and that their weight-2 Hodge structure can be described in terms of the Mukai lattice of the underlying surface. These results (obtained in collaboration with Arvid Perego) generalize what was well known for smooth moduli spaces.
ore 15:30, prof. Kieran O’Grady (Sapienza – Università di Roma)
Moduli and periods of double EPW-sextics
Abstract: We analyze the GIT-quotient of the parameter space for (double covers of) EPW-sextics i.e. the symplectic grassmannian of lagrangian subspaces of the third wedge-product of a six-dimensional complex vector-space (equipped with the symplectic form defined by wedge product on 3-vectors) modulo the natural action of PGL(6). Our goal is to analyze the period map for the GIT-quotient, thus we aim to establish a dictionary between (semi)stability conditions and properties of the periods. We are inspired by the works of C.Voisin and R.Laza on cubic 4-folds.